
MNRAS 467, 1569–1585 (2017) doi:10.1093/mnras/stx196
Advance Access publication 2017 January 22

Real- and redshift-space halo clustering in f(R) cosmologies

Pablo Arnalte-Mur,1,2,3‹ Wojciech A. Hellwing4,2,5 and Peder Norberg2,6
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ABSTRACT
We present two-point correlation function statistics of the mass and the haloes in the chameleon
f(R) modified gravity scenario using a series of large-volume N-body simulations. Three
distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial � cold
dark matter (�CDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering
is indistinguishable for all models except for F4, which shows a significantly steeper slope.
The ratio of the redshift- to real-space correlation function at scales >20 h−1 Mpc agrees with
the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We
consider three halo populations characterized by spatial abundances comparable to that of
luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of
F4 and F5 deviate significantly from �CDM at intermediate and high redshift, as the f(R)
halo bias is smaller than or equal to that of the �CDM case. Finally, we introduce a new
model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering
ratio – R. The sampling required to adequately reduce the scatter in R will be available with
the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue
to obtain largely model-independent cosmological constraints on this class of modified gravity
models.

Key words: gravitation – methods: data analysis – cosmology: theory – dark matter – large-
scale structure of Universe.

1 IN T RO D U C T I O N

The hot relativistic big-bang � cold dark matter (�CDM) cosmol-
ogy is a very successful standard model of cosmology. It passes
a tremendous amount of observational tests, from properties of
the cosmic microwave background (e.g. Hinshaw et al. 2013),
large-scale clustering of galaxies (e.g. Cole et al. 2005; Eisenstein
et al. 2005; Zehavi et al. 2011; Alam et al. 2016), weak and strong
lensing (e.g. Bartelmann & Schneider 2001; Schrabback et al. 2010;
Suyu et al. 2013) to properties of galaxy clusters, galaxies and their
satellites in the nearby Universe (e.g. Mandelbaum et al. 2006;
Allen, Evrard & Mantz 2011; Wojtak, Hansen & Hjorth 2011; Guo
et al. 2015; Umetsu et al. 2016). The minimum set of parameters
describing this simple scenario has now been established to a re-
markable precision (Planck Collaboration XIII 2016). Despite its
undeniable success, the standard �CDM model suffers from serious
theoretical problems. The model explains the observed late-time ac-
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celeration of the Universe (Riess et al. 1998; Perlmutter et al. 1999)
by attributing it to a very low positive value of Einstein’s cosmo-
logical constant, �. One of the main shortcomings of this approach
comprises the fact that the only known possible physical explana-
tion of the non-zero � is the zero-point energy of vacuum quantum
fluctuations. However, quantum theory predicts a natural value for
� that is many orders of magnitude larger than the actual value that
is compatible with observations (for an excellent discussion, see e.g.
Carroll 2001, and references therein). The unavoidable conclusion
is that one of the fundamental ingredients of the equations describ-
ing the evolution of the cosmological background is lacking a clear
physical interpretation. In addition, General Relativity (GR), as any
working physical theory, itself needs to be continuously tested on all
scales and regimes accessible through experiments and observations
(Will 2014).

The conceptual problems of �CDM have motivated a number of
theoretical modifications to the standard model, which can produce
the observed late-time acceleration of the Universe by means of
different physical mechanisms. The rich literature on the subject
can be divided broadly into two distinct categories. In the first, it
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is postulated that the acceleration is produced by a dynamically
evolving background scalar field (for a solid review of the subject,
see Copeland, Sami & Tsujikawa 2006). These models, usually in-
voking a minimally coupled scalar field, are collectively dubbed
as dark energy. The second category consists of theories where the
accelerated expansion is a manifestation of the modifications to
the Einstein–Hilbert action integral. That is, they implement mod-
ifications to the theory of GR, an otherwise fundamental building
block of modern cosmology (Brax et al. 2008; Clifton et al. 2012;
Koyama 2016). The latter class of models are the so-called modified
gravity (MOG) models. Here the late-time acceleration is fuelled
by extra terms appearing in the cosmic Lagrangian and that act as
an ‘effective Lambda’ term. Thus, in this approach, a mechanism
that would set the usual cosmological constant to exactly zero is
needed. Since such a mechanism has not yet been discovered, this
approach should not be regarded as an attempt to construct a new
fundamental theory of gravity, but rather an effort to probe the rich
phenomenology of infrared modifications to GR, with non-trivial
effects on cosmological scales. MOG models, in principle, can be
constructed in many different ways. In the recent years, one of the
broadly investigated models, which falls into the MOG category,
is the so-called f(R) gravity theory. In this case, the accelerated
expansion is produced by an extra term replacing � in the action
integral. This term consists of a non-linear function f taking as an
argument the curvature scalar R (Navarro & Van Acoleyen 2007;
de Felice & Tsujikawa 2010; Sotiriou & Faraoni 2010). This class
of models exhibit rich and interesting new physics. In addition to
producing late-time acceleration, they admit for a non-negligible
fifth force acting on small and intermediate cosmological scales
(i.e. much smaller than the horizon, � cH−1

0 ). This non-trivial and
intrinsically non-linear fifth force can manifest itself in deviations
of the large- and small-scale clustering of galaxies and matter from
the standard GR picture. In other words: in f(R) gravity one can
have a universe exhibiting GR, or �CDM-like, expansion history
but admitting, at the same time, a different history of growth of
structures (Faulkner et al. 2007; Brax et al. 2008; Oyaizu, Lima &
Hu 2008; Li et al. 2013).

Any potentially successful MOG theory is required to not only
predict a global expansion history compatible with observations but
also needs to pass stringent local tests of gravity. The latter come
from observed orbital dynamics in the Solar system (e.g. Chiba,
Smith & Erickcek 2007; Hu & Sawicki 2007; Berry & Gair 2011),
pulsar timing (Brax, Davis & Sakstein 2014) and as of recently
the physics of gravitational waves emitted during black hole merg-
ers (Raveri et al. 2015; Abbott et al. 2016). See also Berti et al.
(2015) for a discussion of other astrophysical tests of MOG. In
the most general class of f(R) theories, the fifth force can freely
propagate whenever there is a gradient of the f(R) scalar field (also
called the scalaron). Thus, if this model wants to stay compatible
with the local gravity tests, it needs to implement a mechanism for
suppressing the fifth force in high-density regions, like our Solar
system or neutron star binaries. In f(R) theories, this is accom-
plished by a convenient choice of the f(R) function that gives rise
to the so-called chameleon mechanism (Khoury & Weltman 2004;
Brax et al. 2008). The chameleon mechanism makes the scalaron
very massive in spatial regions of high local curvature (density);
this leads to an effective suppression of any fifth-force propagation.
Contrastingly, in regions with a low local density, the field is light
and admits the propagation of the scalar fifth force. The effective-
ness of the chameleon suppression is moderated by the local density
field. This makes this mechanism to be intrinsically environment
dependent and thus highly non-linear in its nature. Consequently,

in this scenario, one can have regions of low cosmic density (such
as e.g. cosmic voids) in which the fifth force strongly affects the
dynamics and clustering of galaxies, as well as regions with higher
density, where the theory can effectively behave as the classical
GR. As the degree of non-linearity in both matter and scalar cosmic
fields increases fast during cosmic evolution, it quickly renders pre-
dictions of simple linear and weakly non-linear perturbation theory
unreliable (e.g. Hellwing 2015). Because of this, the use of N-body
computer simulations is essential for forecasting reliable and accu-
rate predictions. However, the same very non-linear nature makes
such simulations much more challenging and more expensive than
standard GR simulations. In the recent years, there has been a sig-
nificant progress in the development of MOG N-body solvers (e.g.
Llinares, Knebe & Zhao 2008; Oyaizu 2008; Schmidt, Vikhlinin
& Hu 2009b; Zhao, Li & Koyama 2011; Li et al. 2012a; Llinares
& Mota 2013, 2014; Puchwein, Baldi & Springel 2013; Winther
et al. 2015; Bose et al. 2016). As an outcome, modern codes are not
only capable of running large-volume and high-resolution simula-
tions, but also have attained the accuracy needed for the precision
cosmology era of the current and forthcoming galaxy surveys, such
as Euclid (Laureijs et al. 2011), the Dark Energy Spectroscopic In-
strument (DESI) survey (Levi et al. 2013) or the Javalambre-Physics
of the Accelerated Universe Astrophysical Survey (J-PAS; Benitez
et al. 2014). Thanks to this, it is now possible to study the galaxy,
halo and matter clustering properties of f(R) gravity models with
sufficient resolution.

In general, we can expect that in f(R) models the modifications
to GR will manifest themselves as a modified history of growth of
structures, and thus will also affect the galaxy clustering and dy-
namics. It has been shown in the literature that indeed this class of
models exhibit higher amplitude of matter power spectrum at small
and intermediate scales (i.e. � 20 h−1 Mpc; Oyaizu et al. 2008;
Gil-Marı́n et al. 2011; Li et al. 2013), and even on larger scales for
the case of higher order clustering amplitudes (Hellwing et al. 2013).
Dark matter (DM) clustering in redshift space is also charac-
terized by stronger Finger-of-God (FOG) effects at small scales
(Jackson 1972), which is accompanied by more pronounced Kaiser
effect (Kaiser 1987; Hamilton 1992) at larger scales (Jennings
et al. 2012). The stronger FOG, which leads to more effective
small-scale power damping in redshift space, is a manifestation
of dynamics enhanced by the fifth force. This effective enhance-
ment was also shown to be predicted, as a prominent MOG ‘smok-
ing gun’ feature, for the galaxy/DM halo velocity field (Hellwing
et al. 2014). Other studies have shown that f(R) models can lead to
different predictions for density profiles and size of cosmic voids
(Li, Zhao & Koyama 2012b; Cai, Padilla & Li 2015), modified stel-
lar evolution (Sakstein 2015) or several characteristics of galaxy
clusters: number counts (Schmidt et al. 2009b), X-ray or lensing
radial profiles (Wilcox et al. 2016) and measured gas fractions (Li,
He & Gao 2016).

All the above-mentioned effects of MOG in general should
manifest themselves in observations as deviations from the GR-
based predictions. However, the highly non-linear character of the
galaxy formation process makes it very difficult to foster obser-
vational predictions with respect to GR/MOG differences. Highly
energetic processes, such as star formation feedback and active
galactic nuclei (AGN) feedback, affect the matter distribution up
to scales of 20 h−1 Mpc (e.g. van Daalen et al. 2011, 2014; Hell-
wing et al. 2016). It was shown that, when matter clustering is
concerned, the baryonic feedback effects are degenerate with en-
hanced clustering predicted by pure collisionless simulations of f(R)
(Puchwein et al. 2013). Therefore, a good strategy aimed to find a
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clean f(R) signature is to look at both larger scales and at more mas-
sive haloes. Here one can expect that the baryonic effects should
be relatively weaker, giving hope of reducing the baryonic–MOG
effects degeneracy.

These previous works have studied the expected changes in the
growth of structures in f(R) models by analysing the changes in
different clustering properties of the DM density field. However,
in order to be able to compare the models with observational data
from galaxy surveys, one needs to obtain a prediction for the clus-
tering of galaxies. This involves studying possible differences in
the biasing mechanism between �CDM and the f(R) models. In
principle, this would require the modelling of the galaxy formation
process in the f(R) theory. A first step in this direction is to study
the clustering properties of DM haloes, as the bias of galaxies is
closely related to the bias of the haloes in which they reside. More-
over, when we restrict the study to the most massive haloes and
linear or quasi-linear scales, the clustering of DM haloes is a good
proxy for the clustering of the corresponding central galaxies. A
complementary approach was followed by He, Li & Baugh (2016)
who used the sub-halo abundance matching technique to study the
clustering of galaxies in the f(R) model at small non-linear scales
(r ≤ 6 h−1 Mpc).

The aim of this work is therefore to characterize the clustering
properties of DM haloes in a set of f(R) models and compare them to
the �CDM model. We explain how the clustering of massive haloes
is affected by f(R) enhanced dynamics in both real and redshift
space. We also conduct our study for a range of cosmic times,
aiming to find the epoch of cosmic evolution at which the relative
differences between the models are strongest. Our ultimate goal is to
confront the theoretical predictions with observations from galaxy
redshift surveys. Hence, when selecting our samples and defining
our clustering observables, we try to match what could be feasible
when using real data. Following this approach, we define a new
statistic that can be easily measured from observations, and that can
potentially help discriminate between GR and f(R) cosmologies in
the real Universe.

This paper is organized as follows. In Section 2, we give a brief
description of both the physical set-up of the f(R) model and of the
numerical simulations used in this work. The clustering statistics
and the definition of the different halo samples that we use are
described in Section 3. Section 4 concerns the results of our analysis,
while in Section 5 we discuss potential observational clustering tests
using the new clustering ratio statistic. Finally, in Section 6 we give
our conclusions.

2 TH E f(R) G R AV I T Y T H E O RY
A N D S I M U L AT I O N S

Here we briefly introduce the physical set-up and basic properties of
the f(R) MOG model accompanied by a description of the numerical
structure formation simulations used in this work.

2.1 The f(R) gravity theory

The f(R) gravity (Carroll et al. 2005) is an extension of GR that
has been extensively studied in the literature in the past few years.
The main properties of the model are widely known; hence, we will
focus here on only a very brief introduction of this theory, referring
the reader for more details to the rich literature on the subject (see
e.g. de Felice & Tsujikawa 2010; Sotiriou & Faraoni 2010, for
detailed reviews).

The theory is obtained by substituting the Ricci scalar R in the
Einstein–Hilbert action with an algebraic function f(R),

S =
∫

d4x
√−g

{
M2

Pl

2
[R + f (R)] + Lm

}
. (1)

Here MPl is the reduced Planck mass, M−2
Pl = 8πG, G is Newton’s

constant, g the determinant of the metric gμν and Lm the Lagrangian
density for matter and radiation fields (including photons, neutrinos,
baryons and cold dark matter). By designing the functional form of
f(R), one can fully specify a f(R) gravity model.

Varying the action, equation (1), with respect to the metric field
gμν , one obtains the modified Einstein equation

Gμν + fRRμν − gμν

[
1

2
f (R) − �fR

]
− ∇μ∇νfR = 8πGT m

μν,

(2)

where Gμν ≡ Rμν − 1
2 gμνR is the Einstein tensor, fR ≡ df/dR, ∇μ

is the covariant derivative compatible with gμν , � ≡ ∇α∇α and
T m

μν is the energy momentum tensor of matter and radiation fields.
Equation (2) is a fourth-order differential equation, but can also be
considered as the standard second-order equation of GR with a new
dynamical degree of freedom, fR, the equation of motion of which
can be obtained by taking the trace of equation (2)

�fR = 1

3
(R − fRR + 2f (R) + 8πGρm) , (3)

where ρm is the matter density. This new degree of freedom fR is
the scalaron mentioned earlier.

Our analysis here is mainly concerned with large-scale structures,
which are much smaller than the Hubble scale. Since the time
variation of fR is very small in the models to be considered below, we
shall work in the quasi-static limit by neglecting the time derivatives
of fR. It has been shown that by adopting this approximation, the
resulting modelled dynamics of the scalar and matter fields deviates
negligibly from the true dynamics (Bose, Hellwing & Li 2015).
Under this limit, the fR equation of motion, equation (3), reduces to

	∇2fR = −1

3
a2

[
R − R̄ + 8πG (ρm − ρ̄m)

]
, (4)

where 	∇ is the three-dimensional gradient operator, and the overbar
takes the background ensemble average of a quantity.

Similarly, the Poisson equation, which governs the behaviour of
the gravitational potential �, simplifies to

	∇2� = 16πG

3
a2 (ρm − ρ̄m) + 1

6
a2

[
R − R̄

]
, (5)

by neglecting terms involving time derivatives of � and fR, and
using equation (4) to eliminate 	∇2fR.

The above considerations foster two ways in which the scalaron
field can affect cosmology: (i) the background expansion of the
Universe can be modified by the new terms in equation (2) and (ii)
the relationship between the gravitational potential � and the matter
density field is modified, which can affect the matter clustering and
growth of density perturbations. Clearly, when |fR| � 1, we have
R ≈ −8πGρm (see equation 4) and thus equation (5) reduces to
the usual Poisson equation; when |fR| is large, we will have rather
|R − R̄| � 8πG|ρm − ρ̄m| and then equation (5) simplifies to the
standard Poisson equation, but with G rescaled by 4/3. The value
1/3 is the maximum intensification factor of gravity in f(R) models,
independent of the specific functional form of f(R). The choice of
f(R), however, is crucial because it determines the scalaron dynamics
and therefore when and on what scales the enhancement factor
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changes from 1 to 4/3. Scales much larger than the range of the
modification to Newtonian gravity mediated by the scalaron field
(i.e. the Compton wavelength of fR) are unaffected, and gravity
is not enhanced there, while on small scales, depending on the
environmental matter density, the 1/3 enhancement may be fully
realized. This results in a scale-dependent modification of gravity
and therefore a scale-dependent growth rate of structures already at
the linear theory level (Koyama, Taruya & Hiramatsu 2009).

2.1.1 The chameleon mechanism

The gravity and Newtonian dynamics passes stringent tests coming
from the Solar system observations, and so any 4/3 force enhance-
ment factor related to f(R) needs to avoid high-density regions as
our Solar system. The theory achieves this by implementing the
so-called chameleon screening mechanism.

The basic idea of the chameleon mechanism is the following: the
modifications to Newtonian gravity can be considered as a fifth force
mediated by the scalaron field fR. Because the scalaron is massive,
this extra force experiences a Yukawa-type potential. Hence, the
enhanced gravity is decaying exponentially as exp (−mr), in which
m is the scalaron mass, as the distance r between two test masses
increases. In high matter density environments, m is very heavy and
the exponential decay causes a strong suppression of the force over
distance. In reality, this is equivalent to setting |fR| � 1 in high-
density regions because fR is the potential of the fifth force, and this
leads to the GR limit as we have discussed above.

Consequently, the functional form of f(R) is crucial in determin-
ing whether the fifth force can be sufficiently suppressed in high-
density environments. In this work, we consider the f(R) Lagrangian
proposed by Hu & Sawicki (2007), for which

f (R) = −M2 c1

(−R/M2
)n

c2

(−R/M2
)n + 1

, (6)

where M2 ≡ 8πGρ̄m0/3 = H 2
0 �M, with H being the Hubble ex-

pansion rate and �M the present-day fractional density of matter.
Throughout the paper, a subscript 0 always denotes the present-day
(a = 1, z = 0) value of a quantity. It was shown by Hu & Sawicki
(2007) that |fR0| � 0.1 is already sufficient to pass the Solar system
constraints, but the exact constraint depends on the behaviour of fR

in galaxies and pulsating stars as well (Sakstein 2013, 2015). At the
background level, the scalaron fR always sits close to the minimum
of the effective potential; therefore, for the smooth scalar field, we
have (Brax et al. 2012)

− R̄ ≈ 8πGρ̄m − 2 ¯f (R) = 3M2

(
a−3 + 2c1

3c2

)
. (7)

The Hu–Sawicki model we consider is fixed by requesting that the
background expansion history matches that of �CDM. Thus, we
set

c1

c2
= 6

��

�M
, (8)

where �M and �� are respectively the present-day fractional energy
densities of the matter and dark energy. The simulation we use in this
work uses Wilkinson Microwave Anisotropy Probe 3 cosmological
background parameters (Spergel et al. 2007, see Table 1). Using
�� = 0.76 and �M = 0.24 and equation (7) gives |R̄| ≈ 41M2 �
M2 at late times. Using this approximation simplifies the expression
of the scalaron to the following form:

fR ≈ −n
c1

c2
2

(
M2

−R

)n+1

. (9)

Table 1. Main properties of the simulations used in this work, for more
details please see Li et al. (2013) and Hellwing et al. (2013).

Models �CDM, F6, F5, F4
Number of realizations 6
Box size Lbox = 1500 h−1 Mpc
Number of particles Np = 10243

Particle mass mp � 2 × 1011 h−1 M
Nyquist frequency kNyq = 2.14 h Mpc−1

Force resolution ε = 22.9 h−1 kpc

Cosmological parameters:

Total matter density �M = 0.24
Dark energy density �� = 0.76
Baryonic matter density �b = 0.041 81
Dimensionless Hubble parameter h = 0.73
Tilt factor of the initial power spectrum ns = 0.958
Power spectrum normalization σ 8 = 0.77
BAO peak scale (linear theory) rBAO � 113 h−1 Mpc

The above considerations show that once a �CDM background is
fixed, our chosen f(R) model is completely specified by the two free
parameters: n and c1/c

2
2. Henceforth, the ratio c1/c

2
2 is also fixed by

the averaged background value of the scalaron, fR0, at z = 0. This
yields

c1

c2
2

= − 1

n

[
3

(
1 + 4

��

�M

)]n+1

fR0. (10)

Thus, the choice of fR0 and n fully specifies our model.
The particular f(R) set-up we consider here has very interesting

cosmological properties. At small scales in regions where the lo-
cal density is high, the enhanced gravity will be suppressed and
the dynamics will be Newtonian. Hence, we can expect that orbital
satellites and halo close interactions will be very similar as in GR.
However, in regions exhibiting low densities, such as e.g. cosmic
voids, the modified dynamics should affect both halo and galaxy
clustering and velocities. We specifically consider three flavours of
the Hu–Sawicki f(R) model with fixed n = 1, which differ in the
present-day mean (background) scalaron value |fR0| = 10−4, 10−5

and 10−6. We dub the models F4, F5 and F6 consequently. These
three models cover the portion of the f(R) parameter space that pro-
duce interesting cosmological effects and is still compatible with
extragalactic observations. While F5 and F6 are so far in a broad
agreement with the cosmological observations, F4 however is al-
ready in a strong tension with observations of cluster number counts
(Schmidt et al. 2009b; Ferraro, Schmidt & Hu 2011; Lombriser
et al. 2012; Cataneo et al. 2015) or weak lensing (Harnois-Déraps
et al. 2015; Liu et al. 2016). Thus, we shall use F4 results just as an
extreme example of effects induced by only weakly screened fifth
force.

2.2 Cosmological f(R) simulations used in this work

In this work, we use the f(R) simulations introduced in Li et al.
(2013). Most of the previous work however focused on DM density
fields only. Here we are very much interested in clustering properties
of DM haloes (and ultimately galaxies). For that reason, we have ap-
plied ROCKSTAR, a phase-space Friends-of-Friends (FOF) halo finder
(Behroozi, Wechsler & Wu 2013). We kept all the haloes that con-
tained at least 100 DM particles; hence, this sets our minimal halo
mass limit to Mmin = 2.09 × 1013 h−1 M. Further on, we recom-
pute the FOF halo mass using a proper virial mass definition. For
the virial mass, we use M200, i.e. the mass contained in a sphere of
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radius r200 centred on a halo, such that the average overdensity inside
the sphere is 200 times the critical closure density, ρc ≡ 3H 2/8πG.
Our adopted mass cut left us with ∼106 haloes at z = 0 for each
initial condition realization. Thus, the upper limit on our spatial
number density of objects is n̄ = 3 × 10−4 h3 Mpc−3 at z = 0 and
correspondingly smaller at higher redshifts. Our simulations use a
computational domain of 1500 h−1 Mpc size. Following the analy-
ses by other authors of the importance of both finite-volume effects
(e.g. Colombi, Bouchet & Schaeffer 1994) and sparse sampling
(e.g. Szapudi & Colombi 1996), we adopt conservative limits on
the minimal and maximal scales that we trust. For a minimum scale,
we adopt a limit of 3 × 2πk−1

Nyq � 10 h−1 Mpc, where the Nyquist
frequency for the simulations is kNyq = 2.14 h Mpc−1. We take as
the maximum scale to study 1/10 × Lbox � 150 h−1 Mpc, as we ex-
pect larger scales to be affected by the finite-volume effects. Finally,
we will focus our analysis on four snapshots taken consecutively at
z = 0, 0.25, 0.66 and 1.0. Previous studies (Hellwing et al. 2013)
have shown that for those times the differences between GR and
f(R) clustering are expected to be the largest. We list other details
of the simulations used here in Table 1.

3 A NA LY SIS O F H ALO C LUSTERING
IN N- B O DY SI M U L ATI O N S

The astronomical observations that provide the data characteriz-
ing the clustering of matter at large scales contain information
only about the luminous stellar matter distribution in our Uni-
verse. Contemporary galaxy redshift catalogues contain positions
of millions of galaxies, observed over large parts of the sky and
over vast distances (redshifts). Ideally, one would like then to
study the clustering of galaxies in various competing cosmologi-
cal models. This requires however introduction of another compo-
nent into a theory under investigation, namely the galaxy formation
model.

Various techniques exist that allow for galaxy formation mod-
elling, the semi-analytic models (for a review see Baugh 2006),
hydrodynamical simulations (Vogelsberger et al. 2014; Schaye
et al. 2015) and abundance matching (Kravtsov et al. 2004; Moster
et al. 2010), to just name a few. However, all the existing techniques
were developed and tested self-consistently only for the �CDM
model. Application and extrapolation of such modelling to MOG
models is neither straightforward nor simple (Fontanot et al. 2013).
In addition, the existing �CDM galaxy formation models are still
subject of intensive scrutiny (Contreras et al. 2013), as our un-
derstanding of the importance and interconnection of all the com-
plicated baryonic feedback processes is far from being full and
complete (see e.g. Fabjan et al. 2010; McCarthy et al. 2010; Schaye
et al. 2010; McCarthy et al. 2011; Puchwein & Springel 2013).
In addition, the strength and the environmental dependence of the
additional fifth force of the f(R) model impact the galaxy clustering
in a way that is degenerated with strong baryonic feedback invoked
by AGN and galaxy winds (Puchwein et al. 2013).

Taking into account all the difficulties mentioned above and the
challenges connected with galaxy formation, we decide to fol-
low a simpler approach. We use DM haloes and their cluster-
ing properties as proxies for galaxy clustering. Haloes are well-
defined objects (both in �CDM and f(R)), and as such can be
straightforwardly identified and extracted from N-body simulations
(Knebe et al. 2011).

We expect that in f(R) gravity the galaxy formation mechanism
and processes involved can, in principle, take largely different char-

acter than in �CDM. However, if we restrict the analysis to a sample
of very luminous galaxies, the situation is simpler. In this case, the
fraction of satellite galaxies is very small (e.g. Zheng et al. 2009),
so we can assume that most of the galaxies are located at the cen-
tres of massive DM haloes and the galaxy clustering properties
will follow closely those of the host haloes. This is certainly a
valid approximation if we constrain ourselves to sufficiently large
scales (i.e. the two-halo term limit, ≥10 h−1 Mpc). Moreover, for
this type of galaxy samples, it is possible to remove the effect of the
satellite galaxies from clustering measurements (Reid, Spergel &
Bode 2009). Going further to the high-mass end of the mass func-
tion, DM haloes correspond to galaxy groups or clusters, which
can be identified from galaxy surveys (see e.g. Koester et al. 2007;
Robotham et al. 2011; Ascaso et al. 2015). In this regime, the clus-
tering of DM haloes in different models can be directly compared
to that of observed groups.

To characterize the clustering of matter and haloes (in position
and redshift space) at different scales and epochs, we use a basic
two-point statistic: the two-point correlation function, ξ (r). This is
defined as (Peebles 1980) the excess probability (with respect to
a Poisson process) of finding two haloes contained in two volume
elements dV1 and dV2 at a distance r:

dP12(r) ≡ n̄2[1 + ξ (r)]dV1 dV2 , (11)

where n̄ is the mean halo (galaxy) number density.
In general, the halo two-point correlation function will depend

on the selected halo population (H), the redshift (z) and the cosmo-
logical model (M) considered, which we denote as ξ (r|z,H,M).
Because a density perturbation in an expanding universe needs to
pass a certain threshold value δc

1 in order to be able to collapse and
form a gravitationally bound structure (i.e. a halo), the haloes are
biased tracers of the underlying smooth matter density field (see
e.g. Fry & Gaztanaga 1993). We parametrize this through a simple
linear relation:

ξ (r|z,H,M) = b2(r|z,H,M)ξm(r|z,M) , (12)

where b(r|z,H,M) is the linear bias parameter and ξm(r) is the
correlation function of the matter density field.

Generally, we can expect that the main differences between
�CDM and f(R) halo clustering will arise due to (i) different ampli-
tudes of the matter correlation function, ξm, at the same scale r, and
(ii) deviation in the bias parameter, which will be driven by both the
departure in the halo mass–bias relation and by the differences in
the selection of a particular halo population. We will study the clus-
tering of haloes in redshift space, as this corresponds to what would
be available from observations. Therefore, further differences can
originate from changes in the effects of redshift-space distortions
in different gravity models.

We present in Section 3.1 the method we use to measure the halo
correlation function in the simulations. In Section 3.2, we show
the halo mass functions obtained in the simulations and we also
explain the approach used to select the different halo populations
we analyse in Section 4.

1 The critical density threshold for collapse takes different values in var-
ious cosmologies. For �CDM, δc � 1.673 (Peebles 1980; Weinberg &
Kamionkowski 2003). For f(R), this number is no longer universal as the fifth
force has an environmental and scale dependence (Li & Efstathiou 2012).
Schmidt et al. (2009a) have shown for example that, when the chameleon
effect is ignored, the value for F4 is δc � 1.692.
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3.1 Estimation of the correlation function in the simulations

In this work, we estimate the correlation function for different trac-
ers (haloes or DM particles) extracted from N-body simulations.
This means that the selection function in all cases is complete,
isotropic and homogeneous. Moreover, as the volume is a box with
periodic boundary conditions, we do not need to correct for any
edge effects. Therefore, we obtain the correlation function in each
case using the simple estimator:

ξ̂ (r) = DD(r)

Nn̄v(r)
− 1 , (13)

where DD(r) is the number of pairs of tracers with separation in the
range [r, r + r], N is the total number of tracers in the sample, n̄

is their number density, and v(r) is the volume of a spherical shell
of radius r and width r,

v(r) = 4π

3

[
(r + r)3 − r3

]
. (14)

We use in all cases bins in separation of width r = 8 h−1 Mpc. This
simple estimator is much faster than the estimators usually used for
real data, such as that from Landy & Szalay (1993), as in this case
we do not need to use an auxiliary random sample to correct for
the selection function or edge effects. We checked that we obtained
identical results when using the Landy & Szalay (1993) estimator
for our calculations.

We compute, for each tracer, the correlation function separately
in each of our six realizations and take as our value for the corre-
lation function of this tracer the mean of these six estimations. To
estimate the corresponding error, we use the standard error on the
mean over the ensemble of six realizations. This is a conservative
error estimation (Szapudi & Colombi 1996) that takes into account
the contributions of both the cosmic variance and the shot noise. Al-
though cosmic variance is the main source of uncertainty for the DM
correlation function, shot noise is also important when we consider
samples of massive haloes, with low number density. As we are com-
bining here our six realizations, the statistical error we obtain would
correspond to that achievable by an ideal survey covering a volume
of V = 6 × (1500 h−1 Mpc)3 � 20 h−3 Gpc3. When we compute the
DM correlation function (in Section 4.1), we use a random subsam-
ple containing � Np/1000 DM particles in each realization. This
subsample is obtained by randomly selecting particles from the ID
list, so that all the population properties are sampled uniformly. This
avoids the need for a prohibitive computation time, while not affect-
ing the results, as the errors in the resulting sample are still domi-
nated by cosmic variance, and not by shot noise. For comparison, the
resulting number density of DM particles used in our calculations is
still ∼10 times larger than that of the densest halo sample used (see
below).

3.2 Halo mass function and selection of halo populations

Before discussing the halo populations selected for our analysis, we
need to consider the halo mass function of our simulations. This
is shown for four different times (z = 0, 0.25, 0.66, 1.0) in the
four panels of Fig. 1. It is quite obvious that our simulations suf-
fer significantly from numerical shot-noise effects at the low-mass
end. Due to limited mass and spatial resolution of the simulations,
the small-mass haloes suffer from the well-known overmerging ef-
fect (Klypin et al. 1999a,b; Moore et al. 1999). Thus, the number
density of small-mass haloes is underestimated. This is clearly in-
dicated by the change of slope of the halo mass functions around
M200 ∼ 2 × 1013 h−1 M. For GR, this mass roughly corresponds
to n̄ = 10−4 h3 Mpc−3 at z = 0, and to n̄ = 3 × 10−5 h3 Mpc−3

at z = 1. Although it seems that the magnitude of the resolu-
tion effects is very similar in all the models we study (Winther
et al. 2015), for the sake of fair comparison we decide to restrict
ourselves to this limiting number density as the highest one we
consider. As the mass function is always larger for the f(R) mod-
els than for GR, this limiting n̄ should be sufficient for all our
models.

The additional analysis of the plots in Fig. 1 reveals the be-
haviour already found by other authors (Schmidt et al. 2009a;
Hellwing et al. 2013; Li et al. 2013). The largest deviation with
respect to the �CDM case is observed, as expected, for the F4
model. In this case, the mass function already shows a significant
deviation from �CDM at z = 1, with this deviation slightly increas-
ing towards the largest halo masses. The F5 model, with a more
efficient screening, experiences a more complicated behaviour of
the halo mass function. Due to the screening, the deviation is very
small at the high-mass end, and we observe that the mass at which
the halo abundances depart from the fiducial model is growing
with time. For both the F4 and F5 models, for the range of halo
masses not strongly affected by the screening, the relative depar-
ture of the halo number density from the �CDM case tends to
shrink with time. This reflects the known effect that initially the
�CDM model experiences a structure formation that is retarded
with respect to the MOG models, but at late evolutionary stages the
halo growth slows down in the fifth-force cosmologies and so the
�CDM is able to shrink the initial gap (Hellwing, Juszkiewicz &
van de Weygaert 2010). This is mostly due to the relative scarcity
of small haloes available for mergers, that is handicapping the halo
mass growth via mergers at late times in f(R). Finally, for the F6
model, we do not observe any significant deviation from the �CDM
case.

We select different halo populations from our simulations by
defining a series of threshold samples, i.e. selecting haloes with
mass above a certain value Mmin. Since for massive haloes the virial
mass–luminosity relation (or mass-to-light ratio) is monotonic and
deterministic (Moster et al. 2010), such cuts are equivalent, on
a first approximation, to a sample of galaxies selected by lumi-
nosity. However, as the virial halo mass is not an observable, a
selection with a fixed Mmin cannot be directly replicated in a real
galaxy sample. Instead, we decided to set a fixed number density
n̄(H) for each of our samples, and define Mmin in each model to
match it. This approach is in essence a very simple version of the
halo abundance matching. As shown in Fig. 1, the halo mass func-
tion can be significantly different in f(R) models and in �CDM.
This means that, for each sample defined in this way, we may
end up with significantly different values of Mmin in each of our
models.

We defined three halo populations for the present work,
H1,H2,H3, with corresponding number densities n̄ = 3 × 10−5,
10−5 and 3 × 10−6 h3 Mpc−3, respectively. The upper limit for the
number density, n̄(H1), was chosen based on the resolution limits of
the simulations described above. The lower limit n̄(H3) was chosen
to ensure that shot noise would not dominate our results. These three
number densities were used to select the corresponding samples at
each of the redshift snapshots used. Table 2 lists the corresponding
values of Mmin used in each case. Following the differences in the
mass function shown in Fig. 1, the values are nearly identical for
the �CDM and F6 models, while they are larger for F5 and F4.
As expected, in all cases, for a fixed n̄, the corresponding Mmin

increases with decreasing redshift.
The number densities of the selected halo samples can be used

to relate them to possible tracers to be used in the analysis of
real surveys. The density of H1, for instance, is similar to that of
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Figure 1. Cumulative halo mass function of the different models considered in this work for the four different epochs z = 0, 0.25, 0.66, 1.0, as indicated. The
horizontal dotted lines signal the number densities we use to define our three halo samples. In each case, the lower panel shows the relative change with respect
to the �CDM (GR) model.

Table 2. Properties of the halo samples used in this work. In each case,
we list the minimum halo mass Mmin used to obtain the required number
density n̄ for a given redshift z.

Halo n̄ Mmin (1013 h−1 M)
z population ( h3 Mpc−3) GR F6 F5 F4

0 H1 3 × 10−5 4.23 4.31 5.15 5.36
H2 10−5 8.94 8.98 10.43 11.39
H3 3 × 10−6 17.50 17.52 19.41 22.07

0.25 H1 3 × 10−5 3.77 3.81 4.54 4.71
H2 10−5 7.58 7.62 8.77 9.63
H3 3 × 10−6 14.51 14.51 16.02 18.26

0.66 H1 3 × 10−5 2.81 2.83 3.25 3.48
H2 10−5 5.23 5.26 5.84 6.51
H3 3 × 10−6 9.57 9.59 10.26 11.85

1.00 H1 3 × 10−5 1.86 1.91 2.20 2.60
H2 10−5 3.73 3.75 4.00 4.65
H3 3 × 10−6 6.53 6.55 6.80 8.10

the brightest samples of luminous red galaxies (LRGs) typically
used in the analysis of the Sloan Digital Sky Survey (e.g. Martı́nez
et al. 2009; Kazin et al. 2010). Lower densities as those of H2,H3

are typical of galaxy groups or clusters of varying richness (Koester
et al. 2007).

4 R ESULTS

In this section, we present and discuss our main results obtained
for the correlation function of DM and various halo samples at
different epochs, both in position and in redshift space. We study the
different components affecting the clustering of haloes separately. In
Section 4.1, we study the clustering of the underlying matter density
field, while in Section 4.2 we analyse the correlation function of
haloes, derive the halo bias and assess its properties in the different
models.

4.1 Clustering properties of the matter density field

We first study the clustering of the smooth density field of the
underlying matter component of our simulations. Although this
statistic is not directly accessible via astronomical observations, it
is noteworthy to study the properties of ξm, since it can be related and
interpreted in a straightforward manner to the underlying theoretical
model. Fig. 2 presents the real-space correlation functions of the DM
distributions at the four redshifts considered. In each case, the black
line and shaded area correspond to the mean value and 1σ scatter
for the �CDM model. The corresponding scatter of the MOG runs
is of the same order and scale dependence as the fiducial �CDM
case and hence it is not shown explicitly in the plot for clarity.
The different points and colour lines correspond to the three f(R)
models considered. The bottom panels in each case show the relative
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Figure 2. Real-space correlation function of the matter density field, ξm(r), for the four models considered. For the GR case, we plot both the mean value
(black line) and the 1σ scatter (shaded area) over the six realizations. For the different f(R) models, we only plot the corresponding mean values (colour lines
and symbols, as indicated). The corresponding scatter is of the same order and scale dependence as the GR one; hence, we omit it for clarity. We plot the
correlation function scaled by r2 to better visualize the function at large scales, where its amplitude is low. Each plot corresponds to a different epoch, as
indicated. In each case, the lower panels show the relative differences with respect to the GR case.

difference of the three f(R) models with respect to the �CDM
case.

We can already infer a number of interesting points from the
data shown in Fig. 2. First, we observe that the amplitude of clus-
tering grows on all scales monotonically with cosmic time. This
is a well-known result observed in all classes of cosmologies with
hierarchical initial cold dark matter power spectra.

One important feature illustrated by Fig. 2 is the fact that the
baryon acoustic oscillations (BAO) peak scale is not affected by
MOG. It is apparent from the plot that all models show this peak
at a scale rpeak � 110 h−1 Mpc. This corroborates our expectation
that the expansion history of the f(R) models is identical to that
of �CDM when the ratio c1/c2 is fixed according to equation (8).
However, the position of the peak, and hence the cosmological
information that can be extracted from it, could in principle be
affected by non-linear effects acting differently in GR and f(R)
models. To test this, we did a fit to our results using the simple
model commonly used to analyse observations from galaxy redshift
surveys (see e.g. Anderson et al. 2014). This model accounts for
the non-linear damping of the BAO through the parameter �NL,
and measures a possible change in the BAO scale with respect to
the fiducial value through the parameter α. We find that we recover
the correct value of α = 1 (and hence of the BAO scale) to within

2 per cent without any significant difference between models. We
do not find either any significant difference for �NL, with values
typically in the range �NL = 7–12 h−1 Mpc.

While the BAO peak scale is preserved, we can clearly notice in
Fig. 2 that all four considered models experience growth of clus-
tering that differ from each other, with differences varying in mag-
nitude and scales at which they appear. At relatively early times,
the scalaron fifth force did not have enough time to significantly
alter the growth of structures. This is clearly indicated by the results
in the bottom-right panel, where at z = 1 all models show matter
clustering consistent with each other. However, as the cosmic evo-
lution progresses, we can observe a weak change of the correlation
function amplitude in the f(R) models.

The F4 model at z = 0 manifests a large excess at r � 35 h−1 Mpc
when compared to �CDM and the two other f(R) models. This
is followed by a lower amplitude of ξm in the regime from
r � 50 h−1 Mpc up to the BAO peak. This behaviour reflects the fact
that the f(R) models, and especially F4 (which is only very weakly
screened), are characterized by a scale-dependent growth rate
f ≡ d ln D+/d ln a (Koyama et al. 2009). Such a strongly enhanced
matter clustering at small scales comes with a price of matter that
was more effectively evacuated from the interiors of large cosmic
voids (Li et al. 2012b; Cai et al. 2015). The overall effect is very
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Figure 3. Ratio of the redshift-space to the real-space matter correlation functions, g(x) = ξs
m(s=x)

ξr
m(r=x) . As in previous figures, each plot corresponds to a different

epoch, and lower panels show the relative differences with respect to GR. The shaded area corresponds to the 1σ scatter for the GR case. The dotted lines in
the main panels illustrate the linear theory prediction gL(x) for each model. The horizontal black line shows the constant prediction for �CDM according to
equation (15), while the other lines show the scale-dependent predictions for F6 (blue), F5 (green) and F4 (orange) obtained using equations (16) and (17).

strong in F4, which is indicated by a significantly altered slope
of ξm at 20 � r/( h−1 Mpc) � 90. The F5 model shows a much
weaker discrepancy with respect to the GR case. There is a hint of
the amplitude of ξm being lower than that of �CDM at scales of
r ∼ 60 h−1 Mpc, similar to the F4 case. At smaller scales, however,
the F5 model results follow closely those of �CDM, as expected
from the stronger screening in this case. Similar behaviour (with
weaker discrepancies) is found generally for the F4 and F5 models
at z = 0.66 and 0.25. At z = 0.25, we see that the relative ampli-
tudes of the MOG models versus �CDM at intermediate scales are
slightly larger than expected from the global trends. However, this
is a small variation that could be due to a statistical fluctuation. The
matter clustering of the F6 model is, at all redshifts, consistent with
the �CDM case.

To study the effect of redshift-space distortions in the matter
density field, we plot in Fig. 3 the ratio of the redshift- to real-space
correlation functions g(x) ≡ ξ s

m(s = x)/ξ r
m(r = x). The results here

can be compared to those of Jennings et al. (2012), who studied the
effect of redshift-space distortions in f(R) cosmologies using power
spectrum statistics for the same set of simulations as used in this
work.

In each case, we compare our results to the corresponding lin-
ear theory predictions. For the �CDM model, this corresponds

to a constant ratio g, given by the Kaiser formula (Kaiser 1987;
Hamilton 1992),

gGR
L = 1 + 2

3
f + 1

5
f 2 , (15)

where f, the linear growth rate,2 can be approximated in �CDM
by f ≈ �0.55

M (z). For our cosmogony g ≈ 1.35 at z = 0, growing
to g ≈ 1.69 at z = 1. For the case of the f(R) models, however,
the growth rate depends on scale so the predicted ratio does also
depend on scale. Koyama et al. (2009) computed the corresponding
Fourier-space growth rates for each of our models as a function of
wavenumber f(k). We use these to compute the configuration-space
linear prediction gL(x) for each model as follows. First, from the
real-space linear power spectrum P r

L (k), we obtain the correspond-
ing redshift-space power spectrum P s

L(k) using the Kaiser formula,

P s
L(k) =

[
1 + 2

3
f (k) + 1

5
f (k)2

]
P r

L (k) . (16)

2 Not to be confused with the non-linear Lagrangian function f(R).
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We use the P r
L (k) for each model and redshift obtained by Koyama

et al. (2009). We obtain the corresponding real- and redshift-space
linear correlation functions using the standard Fourier transform

ξ r,s
L (x) = 4π

∫ +∞

0
P r,s

L (k)
sin(kx)

kx

k2dk

(2π)3 , (17)

and compute the linear prediction for the g(x) ratio directly as
gL(x) = ξ s

L(s = x)/ξ r
L(r = x). In each panel of Fig. 3, we show

as dotted lines the linear theory predictions calculated in this way
for GR and our three MOG models.

Fig. 3 illustrates that on scales x � 80 h−1 Mpc the ratios g(x)
for all models follow remarkably well the corresponding linear
predictions in each case. This may seem to be in contradiction
with the results of Jennings et al. (2012) that showed clearly the
damping of the clustering due to virial motions at small scales (k �
0.05 h Mpc−1, see e.g. their fig. 4). However, note that in this work
we only consider scales x ≥ 10 h−1 Mpc. In the case of �CDM,
we expect this damping effect to appear only at smaller scales
in configuration space (see e.g. Scoccimarro 2004). Our results
indicate that this is the case also for the f(R) models.

The results for F5 and F6 in Fig. 3 agree to a good approximation
with the measured g(x) for �CDM. This is due to the fact that the
excess clustering predicted by the scale-dependent growth rates of
f(R) appears typically at scales x � 20 h−1 Mpc for these models –
as shown by the linear theory predictions (dotted lines) –, while we
study mostly larger scales. In fact, we can observe that F5 deviates
from GR at the smallest bin studied, x = 16 h−1 Mpc. F4 is clearly
an outlier here, showing a clear enhancement in the ratio g(x) with
respect to GR at scales x � 50 h−1 Mpc. This was to be expected: as
we have already mentioned, this model is nearly unscreened; hence,
its growth rate is larger than the �CDM one over a large range of
scales. In the case of F5 and F6, on the other hand, the screening
mechanism makes the deviations in the growth factor f(k) with
respect to GR to appear only at smaller scales (k � 0.01 h Mpc−1),
as shown by fig. 1 of Jennings et al. (2012).

The analysis of the redshift- to real-space matter correlation func-
tion ratios also reveals interesting behaviour around the BAO fea-
ture. In real space, the BAO feature has the form of a relatively sharp
peak in the correlation function centred at the BAO scale (see Fig. 2).
In redshift space, the peculiar velocities introduce an smoothing of
this BAO feature. This means that the amplitude near the centre
of the peak is reduced, and this power is moved to the scales cor-
responding to the tails of the peak. When plotting the ratio g(x)
as in Fig. 3, this results in the observed dip centred at the BAO
scale (x � 110 h−1 Mpc), and a peak at slightly smaller scales
(x � 90 h−1 Mpc). This behaviour is observed for the four mod-
els – GR and f(R) – considered. The apparent larger differences
between all models that appear at the peak and dip scales are ar-
tificially enhanced due to noise, since we take here a ratio of two
very small quantities. In this case, the noise is not expected to be
Gaussian, so the simple error estimation we used does not fully
account for it.

4.2 Clustering of haloes

Now we turn to analyse the clustering properties of DM haloes.
We computed the redshift-space correlation functions ξ h(s) for our
three halo populations H1,H2 and H3 described in Section 3.2. We
show our results for the four redshifts considered in Fig. 4. Each of
the main panels shows the correlation function for the three pop-
ulations in the four gravity models considered. The lower panels
show the relative difference for the three f(R) models with respect

to �CDM, separately for each halo population. As explained in
Section 3, the ξ h(s) we computed correspond to the statistic that can
be measured from samples of luminous galaxies or galaxy groups
and clusters in real observations. We could therefore compare di-
rectly our theoretical results with observational data. Hence, any
significant difference we see in Fig. 4 can in principle serve as a
way to discriminate between �CDM and the f(R) models.

The four panels of Fig. 4 (corresponding to four different red-
shifts) show the same main property of the clustering of our three
halo populations in the four models considered. The least abundant
halo samples (H3) show the highest amplitude of the correlation
function, while inversely the highest number density sample (H1)
exhibits the lowest ξ h(s) amplitudes, with the intermediate sample
lying in between. This is expected, as higher number density corre-
sponds to lower (average) halo mass (see Table 2) and hence weaker
clustering (lower bias parameter).

We focus now on the differences between models observed in the
different ξ h(s). For the four considered epochs, the F6 model is very
close to the GR data. Hence, the clustering of the three halo popula-
tions is statistically indistinguishable in these two models. F4 and F5
show more pronounced differences in all cases. These differences
can be appreciated more clearly (especially for F4) for populations
H1 and H2. This is partly due to the fact that for population H3 the
number of tracers is low; hence, the statistical error is the highest.
In general, we observe that the halo correlation functions for these
two MOG models are significantly lower than the corresponding
�CDM ones for scales s � 60−80 h−1 Mpc (or even larger scales
in some cases for F4). It is interesting to note the difference in be-
haviour of the F5 and F4 models. For F5, the departure from the GR
signal consists typically of a global change in the amplitude of ξ h(s)
for each halo population and redshift. This change in amplitude is
visible for redshifts z ≥ 0.25 but disappears at z = 0. In the case
of F4, the deviation from GR seems to grow monotonically with
time reaching the maximum at z = 0. Moreover, in addition to the
change in amplitude, we also observe for F4 a change in slope at
scales s � 60 h−1 Mpc with respect to the �CDM case. This dif-
ference in slope is most clearly visible also at the lowest redshifts
z ≤ 0.25. These differences in the clustering of haloes across red-
shifts reflect most likely a combination of many different effects:
variations in the overall matter clustering (Fig. 2), discrepancies in
the magnitude of the redshift-space distortions (Fig. 3) and finally
a deviation in halo bias (see equation 12). To infer deeper into this,
below we study the halo bias characteristics of our halo populations
and the differences between our models.

Following equation (12), we measure the redshift-space halo bias
from the simulations using the estimator

bh(s) =
√

ξh(s)

ξm(s)
. (18)

We focus here only on the redshift-space bias as this is the theo-
retical quantity relevant for comparison with typical observational
measurements of ξ in galaxy surveys. However, our results for the
real-space bias are very similar to the ones presented here, with only
a global change in the amplitude.

Fig. 5 presents the bias as a function of scale s for our three halo
populations. We only plot b(s) for s ≤ 110 h−1 Mpc to avoid scales
where either ξm(s) or ξ h(s) become negative. As a complementary
plot, we also show in Fig. 6 the bias, averaged over a range of
scales s ∈ [24, 52] h−1 Mpc, as a function of the number density
of the halo population. We chose these scales as in that range the
bias is reliably measured and approximately constant in the case
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Figure 4. Redshift-space correlation functions of the different halo samples considered, ξh(s), for our four models. As in Fig. 2, the function amplitudes were
rescaled by s2. As in previous figures, each plot corresponds to a different redshift and the shaded area corresponds to the 1σ scatter for the GR case. In the
main panels, the different groups of lines correspond, from bottom to top, to the halo populations H1,H2 and H3. The three lower panels in each plot show
the relative differences with respect to GR for the indicated halo population.

of �CDM, as shown in Fig. 5. At smaller scales, the non-linear
evolution of the density and velocity fields becomes important, and
a simple linear bias description breaks down. The rapidly increasing
b(s) value observed at s � 20 h−1 Mpc is a hint of this non-linear
behaviour. The weak scale dependence observed at large scales,
where s > 80 h−1 Mpc, may also be due to non-linear effects near
the BAO peak. However, at these scales, the scatter is large due to
cosmic variance and low amplitudes of both matter and halo ξ (s),
so these effects are not statistically significant here.

The f(R) halo samples are characterized always by a bias that is
either smaller than or equal to the fiducial GR case. If we recall that
in f(R) haloes tend to be, on average, more massive than in GR, this
result may seem surprising. If we look at a population of haloes at
fixed virial mass, in f(R) there will be many haloes that originate
from smaller density peaks than their equivalent z = 0 mass cousins
in GR. Since the initial conditions are the same within the ensemble,
haloes that originate from smaller peaks (lower Jeans mass), which
are characterized by lower bias, are in f(R) shifted towards higher
masses and then compared with the fiducial GR case that originate

from rarer peaks (hence higher bias). This is consistent with the
picture seen in Fig. 6, where we observe that differences in bias are
higher for higher redshift, just as the differences in mass functions
in Fig. 1. Another feature of the f(R) halo bias seen in Fig. 5 is
its stronger scale dependence than in the �CDM case. This can be
especially seen for F4, where at 20 ≤ s/( h−1 Mpc) ≤ 60 the bias is
increasing with scale. Similar but much weaker behaviour can also
be observed for F5 at z = 0.66.

Once we have studied the differences in halo bias, we can bet-
ter interpret the differences in the halo correlation function ξ h(s)
observed between the f(R) models F4 and F5 and the �CDM case
(Fig. 4). For the case of the F4 model, it is clear that the steeper
slope and excess clustering at small scales observed for both ξm(r)
(Fig. 2) and g(x) (Fig. 3) are compensated by a significantly smaller
bias (and positive scale dependence). This results in the ξ h(s) having
in all cases a smaller amplitude than the �CDM case, but with only
a mild change of slope (except at z = 0). A similar explanation can
be given for the halo correlation functions in the F5 model, although
the differences with respect to �CDM in this case are smaller.
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Figure 5. Redshift-space halo bias as a function of scale s for different halo populations. As in previous figures, each plot corresponds to a different redshift
and the shaded area corresponds to the 1σ scatter for the GR case. In the main panels, the different groups of lines correspond, from bottom to top, to the bias
of halo populations H1,H2 and H3. The three lower panels in each plot show the relative differences with respect to GR for the indicated halo population.

5 O BSERVATIONAL TESTS USING
CL USTERING STATISTICS

The results shown in Section 4.2 indicate that for both F4 and F5
halo samples of the same number density n̄ can be characterized
typically by significantly different values of the correlation function
ξ h(s) than our fiducial GR model. In principle, as our halo samples
can be directly related to samples of luminous galaxies or groups in
real surveys (with the caveats discussed in Section 3), these ξ h(s)
are observable quantities. Hence, they could be used to discrimi-
nate between GR and these MOG models. However, the differences
in ξ h(s) seen in Fig. 4 could be degenerate with changes in the
�CDM clustering due to variations of the cosmological parame-
ters, and in particular σ 8. Therefore, one would need to combine
the ξ h(s) measurements with other model-independent determina-
tions of these parameters. An alternative would be to measure di-
rectly the halo bias and use the differences between models seen
in Figs 5 and 6. Bias cannot be directly obtained from two-point
statistics, but there exist estimates based on weak lensing observa-
tions (McKay et al. 2001; Covone et al. 2014; van Uitert et al. 2016)

and on higher order statistics of the galaxy distribution (e.g. Verde
et al. 2002; Gaztañaga et al. 2005; McBride et al. 2011; Arnalte-Mur
et al. 2016). However, these methods infer bias from observations
in a model-dependent way; hence, all the systematic effects were
checked only against the assumed �CDM cosmology.

In this section, we explore a way in which we can nevertheless use
the two-point clustering of haloes to test observationally the studied
f(R) models. We try to define a statistic based on the clustering
of haloes that (i) can differentiate between �CDM and different
f(R) models, following our results in Section 4.2, and (ii) can be
measured from observations in a way that is as model independent
as possible (i.e. does not depend on the clustering properties of the
matter density field). As the differences between models observed
above vary with both scale and halo population, the best way to
define such a statistic is to combine the correlation functions ξ h(s)
for different populations and at different scales.

Hence, we define the relative clustering ratio R for a halo popu-
lation H as a function of scale s as

R(s,H|Href, sref ) = s2ξh(s|H)

s2
refξh(sref |Href )

, (19)
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Figure 6. Redshift-space halo bias estimated over the range s ∈
[24, 52] h−1 Mpc as a function of the halo density used for selection of the
populations. In addition to the samples used elsewhere in this work, we also
show for completeness the result for the sample with n̄ = 10−6 h3 Mpc−3.
The results for three different redshift snapshots, z = 0, 0.66 and 1.0, are
shown as indicated by the labels. We omit here the results for z = 0.25 for
clarity.

where Href is a reference halo population and sref is a reference
scale (kept fixed). Here we use the term s2/s2

ref to rescale the cor-
relation functions in order to have comparable values as a function
of sref. As we show below, this new statistic can be predicted theo-
retically for each model using the results of Section 4.2. It can also
be directly measured from observations – with the caveats men-
tioned in Section 3 to identify a halo population with a class of
observed objects. The way to compute R in a given survey is to
first identify the relevant populations equivalent to H and Href and
obtain the corresponding catalogues of objects. One then computes
the redshift-space correlation function for each of these catalogues
using a standard estimator (e.g. Landy & Szalay 1993). The cluster-
ing ratio R is finally computed using directly equation (19) above.
In this way, R will be independent of the amplitude of the matter
correlation function, σ 8. Furthermore, as both populations H and
Href are extracted from the same volume (same survey), the effects
of sampling variance of the R ratio will be additionally suppressed.

Here, we choose for the reference population Href = H1, the
sample with the highest spatial abundance, n̄ = 3 × 10−5 h3 Mpc−3.
The scale-dependent differences between models in ξ h(s) can appear
in different ways inR depending on the value of sref used. Therefore,
sref can be chosen, in principle, to maximize the differences between
models. Here, we show our results for two reference scales: sref = 16
and 64 h−1 Mpc. These two values were chosen to span the range of
scales where the discrepancies are more clearly observed in Fig. 4,
while avoiding larger scales where errors can grow significantly.

In Figs 7 and 8, we plot the clustering ratioR for our two reference
scales, sref = 16 and 64 h−1 Mpc, respectively. The clustering ratio
R for the H1 population is a special case, as this is the population
we use as reference for our calculations. In this case, R(s) is just
the halo correlation function ξ h(s) normalized to its amplitude at
s = sref. As the difference between the halo correlation functions of
F5 and GR was just a constant shift in the amplitude, this difference
completely disappears in the case of R. For the F4 model, however,
this difference with respect to GR has a dependence on scale, and
therefore we also see a significant deviation in R at z = 0, 0.25 for
both values of sref.

When we consider different samples (H2 and H3), the situa-
tion changes, as here the R depends also on the relative bias be-
tween different populations. For sref = 16 h−1 Mpc (Fig. 7), F5

presents some departures from GR, exhibiting lower values of R
for s � 40 h−1 Mpc at z ≤ 0.66. These departures are small (only
a few per cent), but significant for H2. As these scales (and sref)
correspond to the mildly non-linear regime, this could be due to
the non-linear effects scaling differently with halo mass in F5 and
GR. This discrepancy could be used, in principle, to discriminate
between the F5 model and �CDM. However, given the small size
of the effect, this would be difficult in practice due, e.g. to possible
systematic errors.

Moving to the larger reference scale sref = 64 h−1 Mpc (Fig. 8),
the results for F5 are completely consistent with GR. This indicates
that the F5 signature at linear scales is reduced to a global change
in the amplitude of clustering. On the other side, we obtain here
deviations from GR that are large and statistically significant for
the least screened f(R) model, F4. These deviations grow with de-
creasing redshift, attaining relative changes of ∼20 per cent at the
smallest scales for all halo populations. For z ≤ 0.25, the statisti-
cal significance of these deviations is ∼2σ–5σ . This indicates that
R(s,H|H1, sref = 64 h−1 Mpc) can be used to render constraints
for strongly deviating models like F4. As expected from all our pre-
vious results, for all the considered snapshots and reference scales,
the R of F6 are statistically consistent with GR.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have analysed the real- and redshift-space two-point clustering
statistics of DM and haloes in a series of simulations employing the
structure formation in the �CDM and f(R) cosmological models.
We have also introduced a new statistic – the halo relative cluster-
ing ratios R(s,H|Href, sref ). We have fixed our analysis on three
halo populations constructed by implementing fixed number den-
sity cuts at n̄ = 3 × 10−5, 10−5 and 3 × 10−6 h3 Mpc−3 (denoted,
respectively, H1,H2 and H3). Hence, our halo populations mimic
in a general sense spatial selection effects similar to those found in
volume-limited samples from redshift galaxy surveys. The number
densities we use are typical of samples of very luminous galaxies,
or of groups and clusters of galaxies. We can summarize our most
important findings in the following points.

(i) In all models, the clustering amplitude of DM grows mono-
tonically with time. At high redshifts, the matter clustering is indis-
tinguishable among models. At later times (z � 0.66), our strongest
model – F4 – shows significant deviations of the amplitude and slope
of ξm at small and intermediate scales, while ξm of both F5 and F6
remain mostly consistent with �CDM. In all models, the BAO peak
scale is the same and is not affected in any significant way by the
fifth force.

(ii) The ratio, g(x), of redshift- to position-space matter corre-
lation functions of F5 and F6 is compatible at large scales (x ≥
25 h−1 Mpc) with the �CDM results. F4 is a strong outlier here,
showing significant deviations up to x ∼ 50 h−1 Mpc. All four mod-
els show good agreement with the respective linear theory predic-
tions in the range 15 � x/( h−1 Mpc) � 80.

(iii) The differences of the redshift-space two-point correlations
of haloes are bigger than in the case of the DM density field. In
general, the halo correlation functions of the F4 and F5 models are
lower than those of GR. This is more clearly observed for the H1

and H2 samples, because of the larger errors in H3 (due to sparse
sampling). The strong F4 model is an outlier at all epochs, with the
strongest signal at z = 0. However, for the F5 model, the ξ h reaches
its maximal departure from GR at intermediate and high redshifts,
z ≥ 0.25.
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Figure 7. Relative clustering ratio R(s,H|Href , sref ) for different halo populations, for the case in which the reference sample is Href = H1, and the reference
scale is set to sref = 16 h−1 Mpc. As in previous figures, each plot corresponds to a different redshift and the shaded area corresponds to the 1σ scatter for the
GR case. In the main panels, the different groups of lines correspond, from bottom to top, to the clustering ratio obtained for halo populations H1,H2 and H3.
The three lower panels in each plot show the relative differences with respect to GR for the indicated halo population.

(iv) Halo bias in all f(R) models and for all halo populations
is always lower than in GR or consistent with the fiducial model.
Again, F4 is an outlier here at all scales and epochs. The F6 model
halo bias is fully consistent with the GR predictions, while for F5
the most significant differences appear again at intermediate and
high redshifts.

(v) Finally, we considered the relative clustering ratios R to con-
struct a largely model-independent observational clustering probe.
The F4 model halo clustering ratios depart significantly from the
GR model for all our samples, especially when using as reference
scale sref = 64 h−1 Mpc and at z ≤ 0.25. Again, F6 is characterized
by too small differences from GR to be statistically distinguishable
in any way. However, the R of the mild F5 model at redshifts of
z ≤ 0.66 and for sref = 16 h−1 Mpc is showing a small but significant
signal at scales s � 40 h−1 Mpc.

Our results indicate that only in the case of the unrealistically
strong and not screened F4 model, one can expect a clear, strong
and significant signal visible in both the matter and halo clustering.

This signal for F4 is also clear in the clustering ratiosR. This means
that this model could be tested using only the two-point clustering
of haloes in a model-independent way. On the other end of the
spectrum, the highly screened F6 model is always very close to GR
for all our statistics and samples and at all epochs. Hence, these
models are indistinguishable from each other, at least when one is
concerned with the two-point clustering statistics. For the physi-
cally interesting F5 model, we have found only small differences
with respect to GR in the clustering ratios R. It shows, however, a
significant signal in the raw halo correlation functions ξ h(s), which
can be summarized as changes in a constant linear bias as a func-
tion of halo population and redshift (Fig. 6). The predicted signal is
strongest for redshifts z ≥ 0.25. Two-point clustering observations
cannot be used to measure the bias on their own. However, our
results suggest that they could be used in combination with other
probes (e.g. an independent measurement of σ 8) to put constraints
on the F5 model.

Our results yield the hope that growing observational data will be
able to constrain this class of f(R) models using galaxy clustering.
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Figure 8. Same as Fig. 7, for the case in which the reference scale is set to sref = 64 h−1 Mpc.

Two near-term projects that may have the potential to perform these
tests are the DESI (Levi et al. 2013; DESI Collaboration et al. 2016)
and J-PAS (Benitez et al. 2014) surveys, which will cover a large
fraction of the sky (14 000 deg2 and 8500 deg2, respectively). Both
projects will target different classes of galaxies up to redshifts z � 1,
therefore covering the range of redshifts studied in this work. Given
the expected number density, it will be possible to select samples of
galaxies (e.g. LRGs) that can be related to the halo populations we
studied. It will also be possible to use for these tests catalogues of
galaxy groups and clusters from these surveys. Ascaso et al. (2016)
showed that it will be possible to detect reliably in J-PAS clusters
corresponding to halo masses of M � 3.6 × 1013 h−1 M up to
z � 0.7 (assuming a �CDM cosmology). This selection would
match our H1 sample at the lowest redshifts. Slightly further in
the future, another survey suitable for this type of analysis will be
Euclid (Laureijs et al. 2011). Euclid will observe galaxies over a
significantly larger volume, thus reducing the statistical error of the
clustering measurements. However, its spectroscopic survey will be
limited to higher redshifts than those studied in this work (z � 0.9),
where we expect the differences in clustering between the GR and
f(R) to be smaller.

We therefore expect that our method will be able to constrain
the particular Hu & Sawicki (2007) model considered here down
to |fR0| � 10−5 using data from these near-future surveys. This is
competitive with possible constraints using other known methods.
DESI Collaboration et al. (2016), for example, forecast that in the
ideal case DESI will be able to measure the growth rate f at scales
k ≤ 0.1 h Mpc−1 to a precision of � 2–4 per cent for redshifts z ∈
[0.6, 1.0] (see their tables 2.3 and 2.4). For comparison, Jennings
et al. (2012) show that the maximum expected change in f with re-
spect to GR at these scales and redshifts is � 5 per cent (� 1 per cent)
for |fR0| ∼ 10−5 (|fR0| ∼ 10−6). Therefore, this type of measurements
could yield constraints of the same order as those achievable using
the clustering ratios R. Alternatively, Cataneo et al. (2015) predict
that it will be possible to obtain even better constraints when future
surveys allow for the detailed measurement of the cluster and group
mass function to higher redshifts (z ∼ 2).

Our analysis of the g(x) ≡ ξ s
m(x)/ξ r

m(x) ratios showed, however,
that one needs to take caution when trying to extract the growth
rate f from just the halo/galaxy/matter clustering signal. Although
the scale-dependent growth rates predict an enhancement in the
redshift-space clustering in f(R) models, this is only seen at relatively
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small scales, x < 20 h−1 Mpc (x < 50 h−1 Mpc in F4). At these small
scales, we will find deviations from linear theory due to the effect
of virial motions, and one should take into account the predicted
enhanced peculiar velocities in MOG models (Hellwing et al. 2014;
Zu et al. 2014; Sabiu et al. 2016). That means that, in order to use
the growth rate inferred from galaxy redshift catalogues to constrain
this class of models, it is necessary to model these effects in detail,
and to test the analysis method with realistic MOG mocks (Barreira,
Sánchez & Schmidt 2016). This problem is largely alleviated in the
case where we only consider redshift-space related quantities, such
as the halo correlation function ξ h(s) or especially the clustering
ratios R, and so avoid the necessity of modelling precisely the
connection between position- and redshift-space objects. In sum, we
advertise here to use R(s,H|Href, sref ) to study and constrain f(R)
models using the redshift-space clustering of galaxies as measured
by modern galaxy surveys.
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A. V., Naab T., Oser L., 2010, ApJ, 710, 903
Navarro I., Van Acoleyen K., 2007, J. Cosmol. Astropart. Phys., 2, 22
Oyaizu H., 2008, Phys. Rev. D, 78, 123523
Oyaizu H., Lima M., Hu W., 2008, Phys. Rev. D, 78, 123524
Peebles P. J. E., 1980, The large-Scale Structure of the Universe. Princeton

Univ. Press, Princeton, NJ
Perlmutter S. et al., 1999, ApJ, 517, 565
Planck Collaboration XIII, 2016, A&A, 594, A13

Puchwein E., Springel V., 2013, MNRAS, 428, 2966
Puchwein E., Baldi M., Springel V., 2013, MNRAS, 436, 348
Raveri M., Baccigalupi C., Silvestri A., Zhou S.-Y., 2015, Phys. Rev. D, 91,

061501
Reid B. A., Spergel D. N., Bode P., 2009, ApJ, 702, 249
Riess A. G. et al., 1998, AJ, 116, 1009
Robotham A. S. G. et al., 2011, MNRAS, 416, 2640
Sabiu C. G., Mota D. F., Llinares C., Park C., 2016, A&A, 592, A38
Sakstein J., 2013, Phys. Rev. D, 88, 124013
Sakstein J., 2015, Phys. Rev. D, 92, 124045
Schaye J. et al., 2010, MNRAS, 402, 1536
Schaye J. et al., 2015, MNRAS, 446, 521
Schmidt F., Lima M., Oyaizu H., Hu W., 2009a, Phys. Rev. D, 79, 083518
Schmidt F., Vikhlinin A., Hu W., 2009b, Phys. Rev. D, 80, 083505
Schrabback T. et al., 2010, A&A, 516, A63
Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
Sotiriou T. P., Faraoni V., 2010, Rev. Mod. Phys., 82, 451
Spergel D. N. et al., 2007, ApJS, 170, 377
Suyu S. H. et al., 2013, ApJ, 766, 70
Szapudi I., Colombi S., 1996, ApJ, 470, 131
Umetsu K., Zitrin A., Gruen D., Merten J., Donahue M., Postman M., 2016,

ApJ, 821, 116
van Daalen M. P., Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS,

415, 3649
van Daalen M. P., Schaye J., McCarthy I. G., Booth C. M., Dalla Vecchia

C., 2014, MNRAS, 440, 2997
van Uitert E., Gilbank D. G., Hoekstra H., Semboloni E., Gladders M. D.,

Yee H. K. C., 2016, A&A, 586, A43
Verde L. et al., 2002, MNRAS, 335, 432
Vogelsberger M. et al., 2014, MNRAS, 444, 1518
Weinberg N. N., Kamionkowski M., 2003, MNRAS, 341, 251
Wilcox H., Nichol R. C., Zhao G.-B., Bacon D., Koyama K., Romer A. K.,

2016, MNRAS, 462, 715
Will C. M., 2014, Living Rev. Relativ., 17, 4
Winther H. A. et al., 2015, MNRAS, 454, 4208
Wojtak R., Hansen S. H., Hjorth J., 2011, Nature, 477, 567
Zehavi I. et al., 2011, ApJ, 736, 59
Zhao G.-B., Li B., Koyama K., 2011, Phys. Rev. D, 83, 044007
Zheng Z., Zehavi I., Eisenstein D. J., Weinberg D. H., Jing Y. P., 2009, ApJ,

707, 554
Zu Y., Weinberg D. H., Jennings E., Li B., Wyman M., 2014, MNRAS, 445,

1885

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 467, 1569–1585 (2017)

http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1308.0847
http://arxiv.org/abs/astro-ph/0108013

