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Abstract: Although heat-related mortality has received considerable research attention, the 11 

impact of cold weather on public health is less well-developed, probably due to the fact that 12 

physiological responses to cold weather can vary substantially among individuals, age 13 

groups, diseases etc, depending on a number of behavioral and physiological factors. In the 14 

current work we use the classification techniques provided by the COST-733 software to link 15 

synoptic circulation patterns with excess cold-related mortality in 5 regions of England. We 16 

conclude that, regardless of the classification scheme used, the most oppressive conditions 17 

for public health in England are associated with the prevalence of the Easterly type of 18 

weather, favoring advection of cold air from continental Europe. It is noteworthy that there 19 

has been observed little-to-no regional variation with regards to the classification results 20 

among the 5 regions, suggestive of a spatially homogenous response of mortality to the 21 

atmospheric patterns identified.  In general, the 10 different groupings of days used reveal 22 

that excess winter mortality is linked with the lowest daily minimum/maximum 23 

temperatures in the area. However it is not uncommon to observe high mortality rates 24 

during days with higher, in relative terms, temperatures, when rapidly changing weather 25 

results in an increase of mortality. Such a finding confirms the complexity of cold-related 26 

mortality and highlights the importance of synoptic climatology in understanding of the 27 

phenomenon.  28 
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1. Introduction 33 

Extreme weather, in the form of heat waves or cold spells, is associated with adverse health 34 

effects in many regions of the world, where strong links between ambient temperature and 35 

increased mortality have been reported (Ferreira Braga et al., 2001; Basu and Samet, 2002; 36 

Donaldson et al., 2003; Basu et al., 2008; Basu, 2009; Guo et al., 2013; Urban et al., 2014; 37 
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Wang et al., 2014; Tsangari et al., 2016). However, the exact shape of the exposure-response 38 

curve has been found to vary with location and latitude, depending on a number of 39 

physiological and behavioral factors (Guo et al., 2014; Keatinge et al., 2000). Physiological 40 

factors include acclimatization to extreme ambient temperatures, as well as the ability of 41 

thermoregulation, while behavioral factors include the habits and lifestyle of population, the 42 

use of air-conditioning, the quality of housing, the time spent outdoors etc (Donaldson and 43 

Keatinge, 2003; Kovats and Kosatsky, 2009; Yu et al., 2012). 44 

According to Carson et al. (2006) and Astrom et al. (2013) a progressive reduction in 45 

temperature-related mortality has been reported in many regions of the world since the 46 

beginning of the twentieth century. Nevertheless, extreme ambient temperatures still pose 47 

a severe threat to public health (Morabito et al., 2012; Scarborough et al., 2012; Astrom et 48 

al., 2013), especially for the most vulnerable groups of population, such as the children, the 49 

pregnant women and the elderly (Hajat et al., 2007; Xu et al., 2013). Under the changing 50 

climate, the frequency, intensity and duration of heat waves are expected to increase, 51 

resulting in an increase of heat-related mortality (Huang et al., 2011; Hajat et al, 2014; 52 

Heaviside et al., 2016), whereas winter mortality is expected to decrease. However, the 53 

future of winter mortality is not completely understood (Wang et al., 2016). 54 

Cold spells have been long-known for their adverse health effects and their impact on 55 

mortality (Keatinge 2002). For instance, Curriero et al. (2002) have studied the sensitivity of 56 

population to cold weather in 11 cities in the United States, whereas Analitis et al. (2008) 57 

have studied the impact of cold spells on public health (in the form of cardiovascular, 58 

respiratory and cerebrovascular diseases) in 15 cities in Europe. In China, a severe cold spell 59 

in 2008 resulted in 148279 excess deaths, with the highest impact observed in southern and 60 

central China, where mortality increased by 44% (Ma et al., 2013; Xie et al. 2013; Zhou et al., 61 

2014). Similarly, the adverse health effects of cold weather have been studied in many areas 62 

of the Iberian Peninsula (Gomez-Acebo et al., 2010, Montero et al., 2010; Vasconcelos et al., 63 

2013) and Italy, where an unusual cold spell during 2012 resulted in a 25% increase in 64 

mortality among the elderly (75+ years of age) across 14 cities (de’ Donato et al., 2013). In 65 

England, winter temperature seasonality and cold spells linked to a severe negative phase of 66 

the North Atlantic Oscillation have been associated with increased risk of ischemic heart 67 

disease and myocardial infarction (McGregor 2005; Bhaskaran et al., 2010). 68 

The majority of studies described above use time series-based Poisson Regression and 69 

Generalized Additive Models (GAMs) and/or case-only or crossover studies to analyze the 70 

cold weather-related mortality. However, the climatology of winter mortality is less well-71 

developed, mainly due to the fact that winter mortality is very often confounded by social, 72 

economic, behavioral and physiological factors (Anderson and Bell 2009; Allen and Lee, 73 

2014). The objective of this paper is to shed light on the climatological associations between 74 

winter mortality and cold weather in the United Kingdom, by using synoptic classifications, 75 

and to explore the possible link between certain atmospheric patterns and winter mortality, 76 

so that the most oppressive conditions for public health can be recognized.  77 

 78 

 79 
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2. Data and Methods 80 

2.1 Area Description and Data Sources 81 

In the present study we focus on the United Kingdom, where cold spells are well-known to 82 

play an important role in the yearly variability of excess cold-related mortality (McGregor 83 

2005; Hajat and Kovats 2014). According to Healy (2003), the country presents the highest 84 

levels of excess cold-related mortality across Europe, with the cold-related mortality burden 85 

accounting for more than one order of magnitude more deaths than heat-related mortality 86 

(approximately 61 and 3 deaths per 100,000 population per year, respectively) (Vardoulakis 87 

et al., 2014).  88 

For the needs of the study, November to February daily temperature (surface mean, 89 

minimum and maximum, in °C) and mortality (all-cause deaths per day) data for the 26-yr 90 

period 1974-1999 were used. The data covered the following 5 official Office of National 91 

Statistics (ONS) regions in England: (a) Yorkshire and the Humber, (b) the West Midlands, (c) 92 

Northeast, (d) Northwest and (e) Southeast regions (Figure 1), as these were the only 93 

regions for which mortality data could be obtained. The above regions can be considered to 94 

represent the whole of England, as they capture the range of winter temperatures across 95 

England, and could therefore provide insights into any geographical variation of cold 96 

weather and adverse health effects. 97 

It is noted that the temperature data were obtained from one county-level meteorological 98 

station, representative of each region (Figure 1), namely, West Yorkshire (Yorkshire and the 99 

Humber), West Midlands (West Midlands), Tyne and Wear (Northeast), Greater Manchester 100 

(Northwest), and Hampshire (Southeast). Inevitably small temperature differences probably 101 

appeared among the different areas of each region. Nevertheless, the use of the county-102 

level meteorological stations for representing each region is probably the best option, under 103 

the circumstances, as no additional information is available on a number of important 104 

issues, such as whether the people travelled within the region (or even throughout the 105 

country) before dying, in which part of the region they resided etc. 106 

All data were obtained from the ONS and the mortality data were de-trended prior to the 107 

analysis. 108 

2.2 Methodology 109 

In order to link winter mortality and prevailing weather systems, the COST-733 Action 110 

(http://www.cost733.eu) classification tool (v. 2.0) was used. This software uses a number of 111 

well-established classification methods to provide synoptic classification schemes for 112 

Europe. For the purposes of the present study, Domain 4 of this software, including 432 cells 113 

defined by the 47-62°N and 18-8°E coordinates, and covering the British Isles, Benelux and 114 

N. France area was used. For the needs of the study the following 10 available grouping 115 

techniques were used: (a) 2 schemes using the Leader Algorithm, namely the ERP (based on 116 

the pressure gradient metric; Erpicum et al., 2008) and the LND (based on the correlation 117 

coefficient metric; Lund, 1963), (b) 4 Principal Component Analysis (PCA) schemes, namely 118 

the KRZ (S-mode without rotation), the PCT (T-mode with oblique rotation), the PTT (T-mode 119 

with VARIMAX rotation) and the PXE (S-mode with VARIMAX rotation) and (c) 4 Optimization 120 
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Algorithms, namely the CAP (principle components cluster analysis), the CKM which is a k-121 

means by dissimilar seeds, the PXK (K-means reassigned extreme scores) and the SAN 122 

(simulated annealing and diversified randomization clustering).  123 

The Leader Algorithm counts the number of elements with similarity to the key-124 

pattern exceeding a certain threshold, in order to find the so-called “leader”, i.e. 125 

representative key-patterns for each group. A T-mode PCA recognizes typical 126 

patterns and uses loadings to describe the degree of realization, while an S-mode 127 

PCA locates temporal variability through typical modes. Finally, the Optimization 128 

Algorithms are non-hierarchical methods, in the sense that the various groups can be 129 

split up to minimize the within-group variance. A complete description of the 130 
aforementioned classification schemes, together with their advantages and disadvantages 131 
can be found in Philipp et al. (2010, 2014). 132 
 133 

 134 
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Figure 1. Office of National Statistics study regions.  135 

 136 

The grouping techniques described above were used to associate synoptic circulations and 137 

winter mortality and το investigate any evidence of weather signals. The groupings were 138 

carried out with a 4 days sequence length (i.e. a 4-days averaging), using mean sea-level 139 

pressure as the classification variable. The 4 days sequence length was used, as winter 140 

mortality can manifest itself in a time distributed way, often referred to as the “lag effect” 141 

(Gasparini et al., 2010; Allen and Sheridan, 2014; Zeka et al., 2014), as opposed to heat-142 

related mortality which has an acute response (Gosling et al., 2009). The various 143 

classification schemes used resulted in a number of classes (9 or 10 depending on the 144 

specific configuration used) with distinct synoptic circulation patterns. Then, mortality data 145 

were summarized across the different synoptic circulations. 146 

Next, we used the PI sign-test (Duckstein et al., 1993; Paschalidou and Kassomenos, 2016) to 147 

check the frequency of excess mortality in the various classes: 148 

𝑃𝐼𝑖 = 100 × (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡ℎ𝑠 𝑖𝑛 𝐶𝑖 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠⁄

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝐶𝑖 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠⁄
− 1) (1) 149 

where Ci stands for the different classes. In Eq. 1, values of PI equal to 0 denote mortality is 150 

equally spread among classes, whereas positive/negative PI values show that the occurrence 151 

of deaths is more/less frequent under the conditions of the specific classes. PI values equal 152 

to −100 indicate “mortality-free” classes. 153 

Finally, centroid maps produced by the COST-733 software were discussed, in order to study 154 

the synoptic winter mortality climatology. 155 

 156 

 157 

3.  Results and Discussion 158 

3.1 Presentation of the classes 159 

During the 26-y period 1974-1999 a total of 2916300 all-cause casualties were recorded in 160 

the 5 regions studied. The number of deaths per year for each of the five regions is 161 

presented in Figure 2. Not surprisingly the biggest number of fatalities for most of the years 162 

appears in the Northwest region (194.6 deaths per year), where, according to the Office of 163 

National Statistics, this is the most populated region (approximately 498 inhabitants per 164 

Km2). A closer look reveals a progressive reduction in winter mortality for all five regions of 165 

England. Although not all of the incidents can be attributed/related to cold weather, the 166 

general decreasing trend is in agreement with Carson et al. (2006) and Astrom et al. (2013) 167 

who reported descending trends in cold-related mortality for London and Stockholm, 168 

respectively. Such a decreasing trend probably reflects the changing vulnerability of the 169 

population due to improvements in infrastructure, lifestyle, technology, and general health. 170 

According to Vardoulakis et al. (2014), the decreasing trend is projected to continue due to 171 

climate change and to reach approximately 42 deaths per 100,000 population per year in the 172 
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UK, whereas the heat-related mortality burden is expected to increase to approximately 9 173 

deaths per 100,000 population per year by the 2080s.  174 

 175 

 176 

 177 

Figure 2. The number of deaths per year for each of the five regions 178 

 179 

Tables 1-5 present the results of all 10 classification techniques performed for each one of 180 

the 5 regions studied, namely the number of days per class, the maximum/minimum/mean 181 

surface temperature (in °C) and the total number of deaths. It appears that for each 182 

classification scheme there are a number of classes that reflect the most oppressive 183 

conditions, in terms of excess winter mortality. This finding is highlighted in Figure 3, where 184 

the PI index for each classification scheme is shown for the Northwest region (figures for the 185 

rest of the regions are omitted). 186 

Specifically for the Northwest region ERP classes C6 and C8 reflect the most oppressive 187 

conditions for public health, as they present the biggest PI values (Figure 3). It is noteworthy 188 

that these classes feature the lowest maximum (4.7 °C and 4.5 °C, respectively), as well as 189 

the lowest minimum temperatures (0.3 °C and -2.3 °C, respectively), confirming that winter 190 

mortality is associated with low temperatures (Keatinge 2002). Similar is the pattern for the 191 

Southeast (Table 2), the West Midlands (Table 3), the Yorkshire and Humber (Table 4) and 192 

the Northeast region (Table 5), where classes C6 and C8 presenting the lowest 193 

maximum/minimum temperatures are linked with the highest PI values (figures not shown). 194 

This finding is in agreement with results provided by Dimitriou et al. (2016) who defined 195 

atmospheric pathways linked with winter low temperature episodes (LTE) in the same 5 196 

regions of England for the same time period and revealed associations with excess mortality 197 

rates. According to them, a statistically significant increase in mortality was calculated for 198 

LTE days across all 5 regions studied. LND class C3, with PI value equal to 9.04, appears to be 199 

the most dangerous for public health in the Northwest region. This class comprises 10% of 200 

the total winter days (November – February) for the period studied and is linked with the 201 
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lowest maximum and minimum temperatures in the region (4.6 °C and 0.4 °C, respectively). 202 

The pattern of the highest mortality being linked to the lowest temperatures is repeated in 203 

the Southeast (Table 2), the West Midlands (Table 3), the Yorkshire and Humber (Table 4) 204 

and the Northeast region (Table 5). 205 

Among the 4 PCA classifications schemes in the Northwest region, namely KRZ, PCT, PTT and 206 

PXE, KRZ class C7, PCT class C8, PTT class C3 and PXE class C9 (Figure 3) appear to be linked 207 

with the most adverse effects on public health. These classes comprise 10%, 9%, 20% and 208 

8%, respectively, of the total winter days studied. Although KRZ class C7 presents some of 209 

the lowest maximum and minimum temperatures (5.5 °C and 1.0 °C, respectively), classes 210 

PCT C8, PTT C3, PXE C9 are associated with slightly higher maximum (6.7 °C, 6.9 °C and 7.8 211 

°C, respectively) and minimum temperatures (2.4 °C, 2.1 °C and 3.3 °C, respectively). Similar 212 

is the situation in the Southeast (Table 2), the West Midlands (Table 3), the Yorkshire and 213 

Humber (Table 4) and the Northeast region (Table 5), where the highest levels of winter 214 

mortality are not always linked to the lowest temperatures. This finding does not come as a 215 

surprise, as Hajat and Kovats (2014) state that a significant number of cold-related deaths 216 

are linked to moderate temperatures. Additionally, Gasparrini and Leone (2014) conclude 217 

that 70% of cold-related mortality in London is observed during days with temperature 218 

higher than 5 °C and not necessarily during days with the absolute minimum temperatures. 219 

Such a pattern could also mean there is a temperature range (zone), centered around the 220 

lowest temperatures, that could cause the excess mortality. In the presence of various 221 

confounding factors, it can be the slightly higher temperatures that are linked to excess 222 

mortality. Furthermore, Dimitriou et al. (2016) concluded that in some cases mortality in the 223 

5 regions studied is linked to rather increased winter temperatures associated with long-224 

distance west-to-east flows, resulting in rapidly changing weather, as opposed to stable 225 

conditions linked with blocking to the east. Rapidly changing atmospheric pressure and/or 226 

temperature have been longed blamed for adverse health effects. For instance Dawson et al. 227 

(2008) showed that rapid falls in atmospheric pressure are associated with increased risk of 228 

morbidity due to hemorrhagic stroke in Glasgow. Finally, the excess mortality during days 229 

with relatively higher temperatures could be explained as lagged mortality after a period of 230 

cumulative exposure to oppressive cold weather. 231 

With regards to the 4 optimization algorithm classification schemes, CAP class C2, CKM class 232 

C2, PXK class C10 and SAN class C4 are associated with the most dangerous conditions for 233 

public health, in terms of winter mortality in the North west region. These classes comprise 234 

8%, 10%, 6% and 9%, respectively, of the total winter days studied and present some of the 235 

lowest maximum (6.1 °C, 5.1°C, 4.2°C and 5.9°C, respectively) and minimum temperatures 236 

(1.3 °C, 0.3°C, 0.0°C and 1.2 °C, respectively) in the region (Table 1). Almost identical is the 237 

pattern observed for the Southeast (Table 2), the West Midlands (Table 3), the Yorkshire and 238 

Humber (Table 4) and the Northeast region (Table 5), where CKM C2 and PXE C10 are 239 

associated with the lowest temperatures and the highest levels of excess mortality, while 240 

classes CAP C2 and SAN C4 also present some of the lowest maximum/minimum 241 

temperatures. 242 

On the whole, the pattern of the “most dangerous” classes described above is repeated 243 

almost identically (Tables 2-5), confirming the adverse impact of the specific classes’ 244 
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climatology on winter mortality. Specifically, there appears to be little-to-no regional 245 

variation with regards to the most oppressive classes among the 5 regions, suggesting a 246 

spatially homogeneous response of mortality in the 5 regions to atmospheric patterns. 247 

 248 

   249 

(a) (b) 250 

  251 

(c)                                                                                            (d) 252 
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  254 

(e)                                                                                            (f) 255 

  256 
(g)                                                                                            (h) 257 

  258 
(i)                                                                                            (j) 259 

 260 

Figure 3. The PI index together with the minimum and maximum temperature for the 10 261 

classification schemes, in the Northwest region 262 
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 264 

Table 1. The number of days for each class, together with the maximum/minimum/mean 265 

temperature (in °C) and the total mortality for each classification scheme in the Northwest 266 

region. The classes showing the most oppressive (in terms of excess mortality) conditions 267 

are given in bold 268 

 

CLASSES 

1 2 3 4 5 6 7 8 9 10 

          

ERP 

Total days 168 628 595 499 765 223 219 21 8 - 
Max T 6.5 6.4 9.4 6.7 9.1 4.7 8.1 4.5 9.6 - 
Min T 1.7 1.4 4.2 1.1 3.6 0.3 2.3 -2.3 3.4 - 
Mean T 3.9 3.9 6.7 3.8 6.3 2.5 5.2 1.1 6.5 - 
Tot Mort 31947 124778 111856 93629 149910 47095 43041 4363 1609 - 

LND 

Total days 680 472 304 439 262 210 330 209 220 - 
Max T 9.6 6.8 4.6 9.0 7.3 6.1 8.1 8.2 6.4 - 
Min T 4.2 1.1 0.4 3.4 2.1 0.7 3.0 2.9 1.6 - 
Mean T 6.8 3.8 2.5 6.1 4.7 3.3 5.4 5.4 3.9 - 
Tot Mort 129048 90018 64493 85280 50174 38938 65891 40257 44129 - 

KRZ 

Total days 617 427 564 291 180 275 324 222 226 - 
Max T 9.5 9.6 8.9 7.0 6.9 6.3 5.5 5.3 4.9 - 
Min T 4.0 3.9 3.5 2.1 1.8 0.7 1.0 0.6 -0.5 - 
Mean T 6.6 6.7 6.1 4.5 4.3 3.5 3.2 2.9 2.1 - 
Tot Mort 119727 80782 106438 58426 34948 52308 67312 44105 44183 - 

PCT 

Total days 503 554 237 433 343 298 207 294 257 - 
Max T 8.2 9.9 5.2 8.7 5.9 7.4 7.4 6.7 6.6 - 
Min T 2.5 4.5 -0.0 3.0 1.3 2.3 2.1 2.4 1.0 - 
Mean T 5.3 7.1 2.5 5.8 3.5 4.7 4.7 4.5 3.8 - 
Tot Mort 95618 105781 45797 84069 69608 56364 40329 60680 49983 - 

PTT 

Total days 1129 916 612 195 87 65 59 19 44 - 
Max T 8.9 7.9 6.9 5.9 5.7 4.4 5.5 5.7 6.2 - 
Min T 3.5 2.3 2.1 0.1 1.5 -0.7 0.2 1.9 1.7 - 
Mean T 6.1 5.0 4.4 3.0 3.5 1.8 2.9 3.7 3.9 - 
Tot Mort 216301 173800 125246 38556 17281 13224 11746 3667 8406 - 

PXE 

Total days 551 525 346 238 301 329 217 185 235 199 
Max T 9.1 9.0 8.2 7.5 8.9 6.4 5.1 4.7 7.8 5.6 
Min T 3.6 3.6 2.7 2.2 3.2 1.5 0.6 -0.9 3.3 0.2 
Mean T 6.2 6.2 5.4 4.8 6.0 3.9 2.8 1.9 5.5 2.8 
Tot Mort 107381 99379 65435 44911 57300 66602 44163 36497 49106 37453 

CAP 

Total days 304 236 297 388 504 391 306 245 455 - 
Max T 4.9 6.1 7.4 8.9 9.9 6.6 7.4 7.4 8.4 - 
Min T -0.2 1.3 1.7 3.7 4.3 1.7 1. 8 2.8 2.9 - 
Mean T 2.3 3.6 4.4 6.2 7.0 4.1 4.5 5.0 5.6 - 
Tot Mort 60566 49194 56365 74291 94865 74240 57921 49670 91117 - 

CKM 

Total days 480 303 392 437 228 244 338 398 306 - 
Max T 9.8 5.1 8.6 5.9 6.2 6.8 7.8 9.4 7.8 - 
Min T 4.2 0.3 3.5 0.9 0.4 2.3 2.1 3.8 2.7 - 
Mean T 6.9 2.6 5.9 3.4 3.3 4.5 4.9 6.5 5.2 - 
Tot Mort 91837 62454 74400 83732 43103 50026 63817 75999 62861 - 

PXK Total days 524 576 361 315 294 240 279 216 134 187 
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Max T 9.2 9.6 6.9 5.9 7.8 5.9 9.1 7.3 5.5 4.2 
Min T 3.9 3.8 1.6 1.3 2.5 -0.1 4.1 2.2 0.4 0.0 
Mean T 6.5 6.6 4.2 3.5 5.1 2.9 6.5 4.6 2.9 2.1 
Tot Mort 100649 110011 67851 64430 57054 46569 56638 40252 25910 38866 

SAN 

Total days 267 278 435 269 481 397 241 369 389 - 
Max T 5.0 6.8 9.1 5.9 9.9 6.5 6.8 8.3 8.3 - 
Min T -0.1 0.9 3.8 1.2 4.3 1.5 2.3 2.5 3.1 - 
Mean T 2.4 3.9 6.3 3.5 7.0 4.0 4.5 5.3 5.6 - 
Tot Mort 52056 52509 82886 56561 90857 75553 48906 69807 79093 - 

 269 

 270 

Table 2. The number of days for each class, together with the maximum/minimum/mean 271 

temperature (in °C) and the total mortality for each classification scheme in the Southeast 272 

region. The classes showing the most oppressive (in terms of excess mortality) conditions 273 

are given in bold 274 

 

CLASSES 

1 2 3 4 5 6 7 8 9 10 

          

ERP 

Total days 168 628 595 499 765 223 219 21 8 - 
Max T 6.7 7.3 9.7 7.8 9.9 5.8 9.3 5.2 9.9 - 
Min T 1.3 1.6 4.1 1.2 4.4 0.6 3.2 -1.7 4.8 - 
Mean T 4.0 4.5 6.9 4.5 7.1 3.2 6.2 1.8 7.4 - 
Tot Mort 29083 113117 101300 85760 135453 42677 39016 4041 1351 - 

LND 

Total days 680 472 304 439 262 210 330 209 220 - 
Max T 10.5 7.7 5.1 9.6 8.2 7.5 8.7 8.4 6.9 - 
Min T 4.9 1.1 0.1 3.8 2.3 1.2 3.5 2.3 1.7 - 
Mean T 7.7 4.4 2.6 6.7 5.2 4.4 6.1 5.4 4.4 - 
Tot Mort 116564 81544 59361 76712 45858 35848 59039 37060 39810 - 

KRZ 

Total days 617 427 564 291 180 275 324 222 226 - 
Max T 10.1 10.3 9.9 7.9 7.7 7.3 6.2 5.7 5.7 - 
Min T 4.7 4.6 3.7 2.4 1.7 0.7 1.1 0.2 -0.2 - 
Mean T 7.4 7.4 6.8 5.2 4.7 4.0 3.6 3.0 2.7 - 
Tot Mort 108337 73092 96225 52793 31596 47971 61142 40668 39975 - 

PCT 

Total days 503 554 237 433 343 298 207 294 257 - 
Max T 9.2 10.5 5.8 9.1 6.5 9.4 7.6 7.7 7.1 - 
Min T 2.7 5.0 0.0 3.6 1.3 3.4 1.5 2.8 0.6 - 
Mean T 5.9 7.8 2.9 6.3 3.9 6.4 4.6 5.3 3.8 - 
Tot Mort 85756 95384 41881 76030 63905 51719 36807 54511 45804 - 

PTT 

Total days 1129 916 612 195 87 65 59 19 44 - 
Max T 9.7 8.9 7.5 6.3 5.3 4.2 5.7 7.2 7.8 - 
Min T 4.1 2.6 2.5 -0.5 0.4 -1.2 -0.7 2.2 2.4 - 
Mean T 6.9 5.8 5.0 2.9 2.9 1.5 2.5 4.7 5.1 - 
Tot Mort 195843 157534 113137 35195 15898 12060 10967 3408 7756 - 

PXE 

Total days 551 525 346 238 301 329 217 185 235 199 
Max T 9.2 10.3 8.8 8.6 10.0 6.9 5.3 5.0 8.9 7.1 
Min T 3.6 4.5 2.8 2.5 3.8 1.4 0.2 -1.2 4.2 0.9 
Mean T 6.4 7.4 5.8 5.6 6.9 4.1 2.7 1.9 6.5 4.0 
Tot Mort 97191 90147 59714 41312 51378 59669 41000 33167 43995 34224 
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CAP 

Total days 304 236 297 388 504 391 306 245 455 - 
Max T 5.1 6.6 8.1 9.3 10.7 6.6 8.8 8.7 9.9 - 
Min T -0.7 1.5 1.6 3.6 5.1 0.9 2.4 3.7 4.2 - 
Mean T 2.2 4.1 4.9 6.5 7.9 3.7 5.6 6.2 7.1 - 
Tot Mort 55807 44633 50976 67652 86231 68440 52366 44297 81397 - 

CKM 

Total days 480 303 392 437 228 244 338 398 306 - 
Max T 10.2 5.6 8.9 5.9 7.1 8.1 9.1 10.5 9.5 - 
Min T 4.3 0.2 2.8 0.2 0.6 2.9 2.7 5.0 3.9 - 
Mean T 7.5 2.9 5.9 3.0 3.8 5.5 5.9 7.8 6.7 - 
Tot Mort 83487 57170 67766 77098 39309 44952 57822 68459 55735 - 

PXK 

Total days 524 576 361 315 294 240 279 216 134 187 
Max T 10.1 10.1 8.9 6.6 7.8 6.6 10.1 7.9 5.7 4.7 
Min T 4.6 4.4 2.5 1.5 1.6 -0.2 4.9 2.1 -0.1 -0.2 
Mean T 7.3 7.2 5.7 4.1 4.7 3.2 7.6 5.0 2.8 2.2 
Tot Mort 91464 98332 61997 58484 52393 42294 50316 36931 23794 35792 

SAN 

Total days 267 278 435 269 481 397 241 369 389 - 
Max T 5.2 7.9 9.4 6.4 10.6 6.4 8.2 9. 6 9.9 - 
Min T -0.8 1.4 3.5 1.3 5.1 0.8 3.0 3.2 4.5 - 
Mean T 2.2 4.6 6.5 3.8 7.8 3.6 5.6 6.4 7.2 - 
Tot Mort 47851 47860 75383 51313 82461 69667 43936 62842 70485 - 

  275 

 276 

Table 3. The number of days for each class, together with the maximum/minimum/mean 277 

temperature (in °C) and the total mortality for each classification scheme in the West 278 

Midlands region. The classes showing the most oppressive (in terms of excess mortality) 279 

conditions are given in bold 280 

 

CLASSES 

1 2 3 4 5 6 7 8 9 10 

          

ERP 

Total days 168 628 595 499 765 223 219 21 8 - 
Max T 6.0 5.9 9.2 6.7 9.0 4.1 8.4 3.7 9.5 - 
Min T 1.3 0.7 3.7 0.7 3.3 -0.7 2.4 -3.2 3.9 - 
Mean T 3.7 3.3 6.4 3.7 6.1 1.7 5.4 0.3 6.7 - 
Tot Mort 29845 116735 104550 88387 139961 44267 39737 4064 1445 - 

LND 

Total days 680 472 304 439 262 210 330 209 220 - 
Max T 9.8 6.7 3.7 8.8 7.3 6.2 7.5 7.6 5.6 - 
Min T 4.1 0.5 -0.8 2.9 1.8 0.6 2.3 1.8 0.8 - 
Mean T 7.0 3.6 1.4 5.9 4.6 3.4 4.9 4.7 3.2 - 
Tot Mort 119301 84370 61017 80150 47426 36725 60577 38265 41161 - 

KRZ 

Total days 617 427 564 291 180 275 324 222 226 - 
Max T 9.4 9.7 9.1 6.5 6.6 6.2 4.7 4.5 4.6 - 
Min T 3.7 3.7 3.2 1.4 1.0 0.1 0.1 -0.4 -1.1 - 
Mean T 6.6 6.7 6.1 4.0 3.8 3.2 2.4 2.1 1.7 - 
Tot Mort 111239 75406 99424 54524 32449 49479 63008 41766 41697 - 

PCT 

Total days 503 554 237 433 343 298 207 294 257 - 
Max T 8.2 9.9 4.8 8.5 5.0 8.1 7.0 6.1 6.2 - 
Min T 2.1 4.3 -0.5 2.5 0.3 2.3 1.3 1.7 0.0 - 
Mean T 5.2 7.1 2.1 5.5 2.7 5.2 4.2 3.9 3.1 - 
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Tot Mort 88913 97377 43577 78502 65671 53097 37997 56526 47331 - 

PTT 

Total days 1129 916 612 195 87 65 59 19 44 - 
Max T 8.9 7.9 6.1 5.4 4.8 3.5 4.9 5.6 6.4 - 
Min T 3.3 1.9 1.3 -1.2 0.6 -1.5 -0.7 1.2 1.3 - 
Mean T 6.1 4.9 3.7 2.1 2.7 1.0 2.1 3.4 3.8 - 
Tot Mort 201008 163368 116871 36531 15871 12596 11175 3625 7946 - 

PXE 

Total days 551 525 346 238 301 329 217 185 235 199 
Max T 8.5 9.4 8.2 7.7 9.1 5.7 4.0 4.3 7.4 5.6 
Min T 2.8 3.5 2.3 1.9 2.9 0.5 -0.3 -1.6 2.8 0.1 
Mean T 5.7 6.4 5.2 4.9 6.0 3.1 1.8 1.3 5.1 2.8 
Tot Mort 100058 92345 60778 42617 53952 62290 41721 34375 45394 35461 

CAP 

Total days 304 236 297 388 504 391 306 245 455 - 
Max T 4.1 5.3 7.3 8.8 10.1 5.9 7.6 6.9 8.6 - 
Min T -1.3 0.4 1.1 3.1 4.2 0.8 1.6 2.2 2.8 - 
Mean T 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 - 
Tot Mort 57387 45961 52057 69065 88769 70506 54470 46064 84713 - 

CKM 

Total days 480 303 392 437 228 244 338 398 306 - 
Max T 9.8 4.2 8.4 5.2 6.1 6.2 7.9 9.6 8.0 - 
Min T 3.9 -0.8 2.8 0.0 0.0 1.6 1.9 3.7 2.5 - 
Mean T 6.8 1.7 5.6 2.6 3.0 3.9 4.9 6.7 5.3 - 
Tot Mort 85158 58853 69340 79306 40510 46487 60019 71098 58219 - 

PXK 

Total days 524 576 361 315 294 240 279 216 134 187 
Max T 9.5 9.4 7.3 5.0 7.2 5.7 9.0 7.1 4.9 3.3 
Min T 3.8 3.5 1.5 0.4 1.3 -0.6 3.8 1.4 -0.2 -1.2 
Mean T 6.6 6.5 4.5 2.7 4.2 2.6 6.4 4.2 2.4 1.0 
Tot Mort 93500 102361 63739 60352 54026 43780 51847 37852 24621 36913 

SAN 

Total days 267 278 435 269 481 397 241 369 389 - 
Max T 4.5 6.7 8.9 4.9 9.9 5.8 6.4 8.5 8.6 - 
Min T -1.2 0.7 3.2 0.2 4.1 0.7 1.6 2.3 3.0 - 
Mean T 1.7 3.7 6.1 2.6 7.1 3.3 4.0 5.4 5.8 - 
Tot Mort 49316 49347 76534 52617 85053 71745 45588 65541 73249 - 

 281 

 282 

Table 4. The number of days for each class, together with the maximum/minimum/mean 283 

temperature (in °C) and the total mortality for each classification scheme in the Yorkshire 284 

and Humber region. The classes showing the most oppressive (in terms of excess mortality) 285 

conditions are given in bold 286 

 

CLASSES 

1 2 3 4 5 6 7 8 9 10 

          

ERP 

Total days 168 628 595 499 765 223 219 21 8 - 
Max T 5.8 5.1 8.9 6.0 8.3 3.3 7.2 3.7 8.8 - 
Min T 1.3 0.5 3.7 0.5 2.8 -1.0 1.4 -2.5 2.9 - 
Mean T 3.5 2.8 6.3 3.3 5.6 1.1 4.3 0.6 5.9 - 
Tot Mort 30140 119958 106700 90792 144469 45468 41495 4138 1568 - 

LND 

Total days 680 472 304 439 262 210 330 209 220 - 
Max T 3.7 0.5 -0.6 2.5 1.5 0.3 1.8 1.7 0.4 - 
Min T 6.4 3.3 1.3 5.3 4.1 2.8 4.4 4.5 2.6 - 
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Mean T 6.4 3.3 1.3 5.3 4.1 2.8 4.3 4.5 2.6 - 
Tot Mort 124020 87017 61840 81906 48071 37413 63035 39129 42296 - 

KRZ 

Total days 617 427 564 291 180 275 324 222 226 - 
Max T 8.8 8.9 8.2 5.8 5.9 5.6 3.9 4.1 3.9 - 
Min T 3.3 3.3 2.8 0.9 0.7 0.1 0.0 -0.2 -1.0 - 
Mean T 6.1 6.1 5.5 3.3 3.3 2.8 2.0 2.0 1.5 - 
Tot Mort 115461 77954 102629 55713 33247 49994 64012 43063 42654 - 

PCT 

Total days 503 554 237 433 343 298 207 294 257 - 
Max T 7.4 9.3 4.2 8.0 4.5 6.9 6.6 5.2 5.7 - 
Min T 1.9 3.8 -0.5 2.4 0.2 1.6 1.4 1.2 0.1 - 
Mean T 4.7 6.5 1.9 5.2 2.3 4.3 4.0 3.2 2.8 - 
Tot Mort 91360 101983 44293 80378 66391 54625 38984 58080 48634 - 

PTT 

Total days 1129 916 612 195 87 65 59 19 44 - 
Max T 8.2 7.1 5.4 4.9 4.6 3.3 4.7 4.3 4.9 - 
Min T 2.8 1.7 0.9 -0.9 0.9 -1.2 -0.4 0.3 0.4 - 
Mean T 5.5 4.4 3.1 2.0 2.8 1.1 2.2 2.3 2.7 - 
Tot Mort 207230 167469 119964 37516 16464 12831 11287 3686 8281 - 

PXE 

Total days 551 525 346 238 301 329 217 185 235 199 
Max T 8.2 8.5 7.5 6.8 8.0 5.1 3.8 3.9 6.3 4.8 
Min T 2.6 3.0 2.2 1.2 2.6 0.2 -0.2 -1.3 2.1 -0.2 
Mean T 5.4 5.8 4.9 4.0 5.3 2.7 1.8 1.3 4.2 2.3 
Tot Mort 103835 95659 63495 43292 54536 63661 42432 35274 46401 36142 

CAP 

Total days 304 236 297 388 504 391 306 245 455 - 
Max T 3.7 4.5 6.6 8.4 9.3 5.8 6.5 5.8 7.5 - 
Min T -0.8 0.0 1.1 2.9 3.7 1.2 1.1 1.3 2.1 - 
Mean T 1.5 2.3 3.9 5.6 6.5 3.5 3.8 3.6 4.8 - 
Tot Mort 58646 46856 54418 71220 92768 71004 55650 47255 87078 - 

CKM 

Total days 480 303 392 437 228 244 338 398 306 - 
Max T 9.1 3.7 8.1 5.1 5.6 5.2 6.9 8.6 6.9 - 
Min T 3.5 -0.8 2.8 0.5 -0.1 0.8 1.4 2.9 1.8 - 
Mean T 6.3 1.4 5.5 2.8 2.7 3.0 4.1 5.8 4.3 - 
Tot Mort 88769 60331 71328 80227 41823 47427 61493 73613 59716 - 

PXK 

Total days 524 576 361 315 294 240 279 216 134 187 
Max T 8.6 8.8 6.2 4.2 6.9 5.2 8.1 6.7 4.5 2.9 
Min T 3.2 3.2 1.0 0.0 1.3 -0.6 3.2 1.6 -0.2 -1.0 
Mean T 5.9 6.0 3.6 2.1 4.1 2.3 5.6 4.1 2.1 0.9 
Tot Mort 96474 105760 65761 61338 55939 44816 53528 38712 24843 37557 

SAN 

Total days 267 278 435 269 481 397 241 369 389 - 
Max T 4.2 6.1 8.6 4.3 9.3 5.6 5.2 7.3 7.5 - 
Min T -0.6 0.4 3.2 -0.2 3.6 1.0 0.8 1.7 2.2 - 
Mean T 1.8 3.3 5.9 2.1 6.4 3.3 3.0 4.5 4.9 - 
Tot Mort 50373 50491 79640 53780 88491 72329 46762 67780 75083 - 

 287 

 288 

Table 5. The number of days for each class, together with the maximum/minimum/mean 289 

temperature (in °C) and the total mortality for each classification scheme in the Northeast 290 

region. The classes showing the most oppressive (in terms of excess mortality) conditions 291 

are given in bold 292 
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CLASSES 

1 2 3 4 5 6 7 8 9 10 

          

ERP 

Total days 168 628 595 499 765 223 219 21 8 - 
Max T 7.1 6.3 9.9 6.9 9.0 4.9 7.8 5.1 9.7 - 
Min T 2.7 2.0 4.6 1.7 3.8 0.9 2.2 -0.9 4.1 - 
Mean T 4.9 4.2 7.2 4.3 6.4 2.9 5.0 2.1 6.9 - 
Tot Mort 31723 121646 110930 93821 148527 46415 43598 4411 1486 - 

LND 

Total days 680 472 304 439 262 210 330 209 220 - 
Max T 9.7 7.0 5.1 8.9 7.6 6.2 7.8 8.4 6.2 - 
Min T 4.3 1.8 1.4 3.6 2.5 1.4 2.9 2.9 2.3 - 
Mean T 7.0 4.4 3.3 6.2 5.0 3.8 5.3 5.7 4.2 - 
Tot Mort 128481 90218 62648 84060 50113 38281 64093 40887 43774 - 

KRZ 

Total days 617 427 564 291 180 275 324 222 226 - 
Max T 9.5 9.6 8.9 6.7 6.8 6.6 5.6 5.7 5.3 - 
Min T 4.0 4.2 3.7 2.2 2.2 1.5 1.8 1.6 0.8 - 
Mean T 6.7 6.9 6.3 4.5 4.5 4.0 3.7 3.6 3.0 - 
Tot Mort 118771 80666 106411 57162 34675 52260 64751 44071 43788 - 

PCT 

Total days 503 554 237 433 343 298 207 294 257 - 
Max T 8.2 10.0 5.7 8.9 5.9 7.3 7.7 6.5 6.7 - 
Min T 2.9 4.5 1.3 3.6 1.8 2.4 2.7 2.9 1.3 - 
Mean T 5.6 7.2 3.4 6.3 3.9 4.8 5.2 4.7 4.0 - 
Tot Mort 94384 105703 45399 82492 68026 56254 39882 59317 51099 - 

PTT 

Total days 1129 916 612 195 87 65 59 19 44 - 
Max T 8.9 8.0 6.7 6.1 6.5 5.1 6.1 5.8 6.1 - 
Min T 3.7 2.8 2.6 0.7 2.8 0.9 1.3 2.3 1.3 - 
Mean T 6.3 5.4 4.6 3.4 4.7 3.0 3.7 4.1 3.7 - 
Tot Mort 214404 173334 121906 39016 16864 13065 11724 3781 8463 - 

PXE 

Total days 551 525 346 238 301 329 217 185 235 199 
Max T 9.2 9.0 8.5 7.5 8.8 6.4 5.6 5.3 7.3 5.8 
Min T 3.7 3.8 3.3 2.0 3.5 2.1 1.8 0.5 3.2 1.1 
Mean T 6.5 6.4 5.9 4.7 6.2 4.2 3.7 2.9 5.3 3.4 
Tot Mort 106007 99439 65893 44744 57061 65197 43109 36551 47607 36946 

CAP 

Total days 304 236 297 388 504 391 306 245 455 - 
Max T 5.3 5.8 7.7 9.3 9.9 7.5 7.3 6.8 7.9 - 
Min T 1.1 1.5 2.4 3.9 4.3 2.8 2.2 2.7 2.9 - 
Mean T 3.2 3.7 5.0 6.6 7.1 5.1 4.8 4.8 5.5 - 
Tot Mort 60164 47475 56192 73555 94323 73811 57479 48893 90664 - 

CKM 

Total days 480 303 392 437 228 244 338 398 306 - 
Max T 9.9 5.2 9.1 6.8 6.5 6.3 7.6 8.9 7.5 - 
Min T 4.3 1.0 3.9 2.3 1.3 2.4 2.4 3.6 2.8 - 
Mean T 7.1 3.1 6.5 4.5 3.9 4.4 5.0 6.3 5.2 - 
Tot Mort 90601 61076 73705 83262 43222 48212 63799 76486 62193 - 

PXK 

Total days 524 576 361 315 294 240 279 216 134 187 
Max T 9.4 9.6 6.8 5.8 8.0 6.2 8.7 7.7 5.7 4.8 
Min T 3.8 4.2 1.9 1.8 2.7 0.9 4.1 2.9 1.3 1.1 
Mean T 6.6 6.9 4.4 3.8 5.4 3.6 6.4 5.4 3.5 2.9 
Tot Mort 100529 108783 67380 62707 57836 46159 54956 40145 25587 38473 

SAN 
Total days 267 278 435 269 481 397 241 369 389 - 
Max T 5.7 6.9 9.5 5.6 9.9 7.3 6.4 8.0 7.9 - 
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Min T 
1.2 1.8 4.1 1.5 4.3 2.7 2.3 2.7 

3.1 
- 

Mean T 3.4 4.3 6.8 3.6 7.0 5.0 4.3 5.4 5.5 - 
Tot Mort 52010 52670 81556 54696 90012 75071 47937 70319 78283 - 

 293 

3.2 Analysis of the atmospheric patterns 294 

In order to study the climatology of the most oppressive, as defined above, classes for the 295 

five regions studied, centroid maps of the surface atmospheric pressure regimes are given in 296 

Figure 4. It appears that all Figure 4 maps more-or-less depict the same circulation patterns, 297 

i.e. the most dangerous class, in terms of excess winter mortality for each classification 298 

scheme is characterized by weak (rather shallow) low atmospheric pressure systems located 299 

west (and sometimes southwest, for example see ERP class 6 and LND class 3) of the British 300 

Isles, whereas anti-cyclonic conditions prevail over Scandinavia and west continental Europe 301 

for almost all cases. It is also noteworthy that the semi-permanent Icelandic Low seems to 302 

be absent in all 10 classification schemes. 303 

This type of weather is known as the Easterly type and is generally characterized by 304 

anticyclones over Scandinavia (sometimes extending towards Iceland) and depressions 305 

circulating over the western North Atlantic, as well as the Bay of Biscay, where the Azores 306 

Anticyclone is generally absent (Lamb, 1950). The aforementioned Easterly type of weather 307 

is associated with low temperatures in autumn, winter and spring and sometimes extremely 308 

low temperatures with occasional snow in southern districts, snow or sleet showers in 309 

eastern and northeastern districts, and dry conditions in western regions (Lamb, 1950). In 310 

terms of air masses’ movement, the Easterly type of weather is associated with advection of 311 

air originating from continental Europe. These flows are characterized by subsidence of 312 

several hundred hPa before they land (Walsh et al., 2001) and they are responsible for the 313 

low temperatures observed in England, as opposed to relatively warm and humid air 314 

originating from the Atlantic. Walsh et al. (2001) and Cattiaux et al. (2013) state that this 315 

atmospheric pattern is related to a negative phase of the North Atlantic Oscillation, as well 316 

as to positive pressure anomalies over the Arctic.  317 

 318 
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  319 
(a)                                                                                            (b) 320 

  321 
(c)                                                                                            (d) 322 

  323 
(e)                                                                                            (f) 324 
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  325 
(g)                                                                                            (h) 326 

   327 
(i)                                                                                            (j) 328 

Figure 4. Centroid maps of surface atmospheric pressure for the most oppressive conditions, 329 

as described by ERP class 6 (a), LND class 3 (b), KRZ class 7 (c), PCT class 8 (d), PTT class 3 (e), 330 

PXE class 9 (f), CAP class 2 (g), CKM class 2 (h), PXK class 4 (i), SAN class 4 (j). 331 

 332 
According to Dimitriou et al. (2016), easterly flows in England are very often associated with 333 

unfavorable conditions for public health, as the advection of very cold continental air from 334 

northern/eastern Europe that continues for several days, results in low temperatures and 335 

excess mortality. This type of weather is very often associated with a blocking pattern over 336 

Western Europe or increased pressure over Eastern/Northern Europe. Specifically for the 337 

northwest region, Dimitriou et al. (2016) found that easterly short-range flows were linked 338 

to a 5.3% increase in winter mortality. 339 

 340 
 341 

4. Conclusions 342 
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The objective of the present work has been to study the link between atmospheric patterns 343 

and cold-related mortality at the daily time-scale in England, in order to shed light on the 344 

climatology of health outcomes. In doing so, 10 different classification methods provided by 345 

the COST-733 tool were used. The use of the specific classification techniques brought a new 346 

perspective to the understanding of the climatological associations between mortality and 347 

winter weather, and appears to be a valuable addition to the suite of tools available for 348 

climate/health data analysis. 349 

Our results showed that the most unfavorable conditions for public health in the 5 regions of 350 

England were associated with Easterly weather, which is known to favor advection of cold 351 

air originating from continental Europe. The fact that little-to-no variation among the 5 352 

regions was observed, when grouping the days to form the most oppressive classes for 353 

public health, suggested a spatially homogeneous response of the population to the specific 354 

atmospheric patterns identified. 355 

Not surprisingly, in most of the cases examined through the different classification schemes, 356 

excess mortality was linked to the lowest daily minimum/maximum temperatures in the 5 357 

regions, in agreement with previous researchers. Nevertheless in a number of cases high 358 

mortality rates were associated with relatively higher temperatures, probably due to rapidly 359 

changing weather. This finding is indicative of the complexity of cold-related health 360 

outcomes and highlights the role of synoptic climatology on confounding the relationship 361 

between temperature and mortality. 362 

On the whole, the results provided here show that although cold-related health outcomes 363 

can be fatal, they can also be predictable and preventable (Ghosh et al., 2014), as policy-364 

makers can be informed appropriately and design intervention strategies towards allocating 365 

resources and reducing the adverse health effects of cold weather. In any case further 366 

analysis is needed to clarify how the various climatic elements can increase population 367 

vulnerability. Additionally, further analysis with more recent data is needed, where due 368 

consideration should be given to how to control for regional variation due to socioeconomic 369 

differences. 370 

 371 
 372 
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