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Abstract. We propose a new filter, a smooth-k space filter, to use in the Press-Schechter
approach to model the dark matter halo mass function which overcomes shortcomings of
other filters. We test this against the mass function measured in N-body simulations. We
find that the commonly used sharp-k filter fails to reproduce the behaviour of the halo mass
function at low masses measured from simulations of models with a sharp truncation in the
linear power spectrum. We show that the predictions with our new filter agree with the
simulation results over a wider range of halo masses for both damped and undamped power
spectra than is the case with the sharp-k and real-space top-hat filters.
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1 Introduction

The standard ACDM scenario has achieved great popularity due to its ability to reproduce
cosmological observations on large scales (above galactic and subgalactic scales). This model
has a nearly scale invariant primordial power spectrum and cold (non-interacting and mas-
sive) dark matter particles. These two assumptions mean that matter fluctuations are present
on all scales. However, some possible shortcomings on small scales have been identified in
the standard ACDM model (e.g. the mismatch in the number of satellites predicted by CDM
and observed in the Milky Way; see [1] for a recent review on these problems) although it is
possible they can be solved within the standard paradigm by invoking e.g. baryonic physics
[2-5]. These difficulties have renewed interest in non-standard cosmological models which
predict damped matter fluctuations on subgalactic scales; we will refer to these as damped
models. The damping on such scales can be achieved by relaxing one of the assumptions
characterising standard ACDM, and then damped models can be divided into two broad
classes: those involving modifications of the primordial power spectrum (accomplished e.g.
by having broken scale invariance during inflation) [6-12] and those that suppress power at
late times through some non-standard DM mechanism, e.g. thermal velocities (the so-called
warm dark matter models) [13-26], DM interaction and self-interaction [27-30] or macro-
scopic wave-like behaviour (as in ultra-light axion DM [31]). The models in the second class
are usually dubbed non-cold DM (hereafter nCDM).

Regardless of the nature of the process producing damping on small scales, the common
impact of these models on structure formation is a reduction in halo abundance at low masses
(see e.g. [13, 29, 32—40]). Analytical approaches, such as Press-Schechter (PS) [41-44], need
to be modified from those used in standard ACDM, in order to predict the downturn in the
halo mass function at low masses in damped scenarios. The common way to achieve this is
to change the filter used to smooth the matter distribution from a spherical top-hat in real
space (generally used in standard ACDM) to a sharp-k space filter [35, 45] (see also [42]).

Here we show that when applied to damped scenarios (especially those with abrupt
truncations of the linear spectra above some wavenumber) the PS approach with a sharp-k
space filter fails to reproduce the behaviour of the halo mass function measured in N-body
simulations at low masses. We present a solution to this problem by introducing a new filter



-3.0f
—-3.5¢ I :
[
P ~ ! :
™ ' I
[
& -4.0} . | ]
I
:" —45L — CDM : I ]
= - - (i) Thermal WDM | |
%o — (i) Fantastic WDM : I
— _sol — (iif) Truncated at Ky | : ]
= = (iv) Truncated at ks : :
= = (v) Truncated at kig/9 : l
I
—-5.5¢ (vi) Oscillatory WDM | | |
[
(vii) Funny inflation | :

0.0 0.5 1.0

log(k/ (h Mpc™'))

Figure 1. Initial linear matter power spectra generated at z = 199 for different models as labelled.
The black vertical dotted line represents the half-mode wavenumber k; o for the thermal WDM power
spectrum (green). Further details on the power spectra can be found in [46].

function which gives better agreement with the simulation results than the sharp-k space
filter.

The paper is structured as follows. In Section 2 we briefly discuss the linear power
spectra and the simulations used. In Section 3 we introduce the standard PS approach
together with a description of the sharp-k space filter. In Section 3 we also show how this
filter is not accurate enough for some of the models studied here. Section 4 is devoted to
the introduction of our new filter function (which we call the smooth-k space filter). Some
results using our filter are presented in Section 5. Finally, conclusions are given in Section 6.

2 Linear power spectra and simulations

The linear damped power spectra considered in this analysis are those presented in detail
in [46] plus a new spectrum (which we call “funny inflation”). The seven power spectra are
shown in Figure 1, with that from standard ACDM for comparison. Here, we present the
matter power spectra at z = 199 normalised as A(k) = k*P(k)/(27°). The spectrum for
standard ACDM is generated using CLASS [47, 48], with a standard scale-invariant primordial
power spectrum, PY™ = A(k/ k:p)nsfl, where A is the amplitude of the scalar adiabatic
perturbations, n, is the spectral index and k, is the pivot scale. The matter power spectrum
from the funny inflation model (see case (vii) in Figure 1) is generated using as input a
primordial power spectrum that is damped on small scales. This damping can be achieved
by considering particular inflaton models [6-12]. Here, we use the parametrisation adopted



in [12] for a suppressed primordial spectrum,
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where 10™“ describes the power suppression and k, is the wavenumber at which the sup-
pression appears. We choose a =1 and k, = 5Mpc_1. We use CLASS to obtain the matter
density fluctuations starting from this damped primordial spectrum. We note that the form
of this power spectrum is similar to that of a mixed DM model [49], which means that the
results obtained in the next sections for this spectrum are expected to be also valid for mixed
DM models. For details on how we construct the damped power spec‘cra1 for the cases (i-vi)
in Figure 1, see section 2 in [46].

The above initial power spectra are used to generate N-body initial conditions (using
2LPTic [50]), which are then evolved using the Gadget-2 code [51]. The simulations are
mainly performed in a cubic box of length L = 25 h_lMpC using N = 512° particles. However,
for some of the spectra in Figure 1, we also run higher resolution simulations with L = 10
h_lMpc and N = 512, We choose these pairs of { N, L} for our simulations since we want to
resolve the structures on scales near the half-mode wavenumber of the power spectrum for a
thermal WDM candidate with mass mywpy = 2 keV (see Figure 1). The Nyquist frequency of
the simulation is ky, =7 N1/3/L (this specifies the value up to which we can trust the P(k)).
The gravitational softening length € is set to be 1/40-th of the mean interparticle separation,
L/N /3 The outputs of the simulations are processed using ROCKSTAR [52] (which is a
phase-space friends-of-friends halo finder) to extract halo statistics. As a definition of the
halo mass, we use the mass My, contained in a sphere of radius rygy, within which the
average density is 200 times the critical density of the universe at the specified redshift. The
(differential) halo mass function is always presented as F'(Mygg, 2) = dn/dlog(Mygy), where
n is the number density of haloes with mass M.

3 Press-Schechter analytical approach

Some aspects of the non-linear evolution of structure can be captured using analytical meth-
ods. The well known PS approach is used to predict some important characteristics of
structure formation, such as the halo mass function [41-43]. This method is based on the
simplified assumption that if the initial density contrast in a spatial region is larger than some
threshold so that the region collapses to a singularity by redshift z, then this region corre-
sponds to a halo that formed and virialised at z [41] (for a review see [44]). The threshold
can be calculated using a spherical or elliptical collapse model [43].
In this approach, the starting point to calculate the differential halo mass function is
given by
dn dlog(v)

15
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'The three characteristic wavenumbers, ki3, ky/5,K19/20, in Figure 1 are defined as follows. k;,, is the
half-mode wavenumber for the thermal WDM power spectrum (green curve), i.e. the wavenumber at which
the WDM transfer function (see Eq. (3.13) below) is suppressed by 50% relative to ACDM, T' = 1/2. While
kys5 and kig /o0 are the wavenumbers at which 7' = 4/5 and T' = 19/20 respectively, i.e. at these wavenumbers
the transfer function is suppressed by 20% and 5% with respect to standard ACDM.



where n is the halo number density, M is the halo mass and p is the average density of the
universe. f(v) is the first-crossing distribution [42]. Assuming an ellipsoidal collapse model
[43], f(v) is well approximated by

fw) =4 ﬁ (14 (@) ") e, (3.2)

with A =0.3222, p=10.3 and? q = 1. In the above formula, v is defined to be
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where d. = 1.686 and D(z) is the linear growth factor normalised such that D(z = 0) = 1.
02(R) is the variance of the density perturbations on a given scale R,
4’k
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where P(k) is the linear matter power spectrum at z = 0 and W (k|R) is a filter function
in Fourier space. The filter function is not fixed a priori, so it could be chosen to suit the
particular cosmological model and power spectrum. In CDM, it is generally chosen to be a
top-hat function in real space,

5. if z<R
Ween_tiac (2| R) = { 47R’ - 3.5
Top Hat( | ) { 0 if >R ( )
which in Fourier space becomes (see Figure 2(a)),
~ 3 (sin(kR) — kRcos(kR
WToprat(k‘|R) = ( ( ) ( )) . (36)

(kR)?

Other choices made in the literature include the Gaussian function and the sharp- filter (see
e.g. [42, 44]). In general, the filter function is associated with a volume, Vy;,. In the case of
a real space top-hat function, the filter in real space describes a sphere of radius R, so the
filter volume is Vi = A R? /3, leading to a straightforward relation between the scale radius
R and the enclosed mass M(R) of the virialised object, M(R) = 47pR®/3. For other filters,
there is either no fixed radius in real space (e.g. for the case of a Gaussian filter) or there is
a divergent integral (for a sharp-k space filter) [53], so the mass-radius relation is calibrated
using N-body simulations [42].

*We note that although ¢ = 1 is expected from a standard ellipsoidal collapse, the authors in [43] observed
that the number of the haloes with masses M > 10 Mg /h in CDM is underpredicted, so they artificially
calibrated the value to ¢ = 0.707 to match N-body simulation results. Here we will maintain the standard
parametrisation where ¢ is set to unity for two reasons: (1) the volume of our simulations is too small to
contain a statistically relevant sample of such massive haloes and (2) when using a sharp-k filter it was shown
in [35, 38] that ¢ = 1 gives a better match with simulations.
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Figure 2. (a) Some filters in Fourier space described in Section 3 and 4 (as labelled by the key).
(b) The same as (a) but we have multiplied R by ¢ (or ¢) to take into account the differences in the
mass definitions for the filters (discussed in Section 4). (¢) The associated predictions for the halo
mass function for the linear power spectrum truncated at kyg/o0 (see case (v) in Figure 1). The black

dashed line shows the asymptotic behaviour (o Ril) of the real space top-hat filter at small radii.

3.1 Sharp-k space filter

The PS approach with a real space top-hat filter function works very well for standard
ACDM (see e.g. [35, 38, 40, 44, 45]), but it predicts an excess of low-mass haloes when
applied to models with a cut-off in the power spectrum at small scales [35, 38, 45]. This
can be understood using the following argument. If the linear power spectrum P(k) has a
cut-off at high wavenumbers, its amplitude decreases faster than that of CDM (i.e. faster
than ~ k~%). In the limit of small radii R, the variance (see Eq. (3.4)) becomes constant
(irrespective of the filter used) because the cut-off in the linear power spectrum ensures



negligible contributions to the integral from high wavenumbers. However at small radii, the
halo mass function predicted by Eq. (3.1) varies according to the derivative of the variance
[35],

do®
dlog(M) D ’ (3.7)

whose behaviour strongly depends on the filter used. For a real space top-hat filter function,
we find (see also [35]) that do”/dlog(M) o< R? for R — 0, so Eq. (3.7) goes as

lim _am o lim i
R=0 dlog(M) ~ Rr=0 \ R?

dn 1
Jim - - .
R0 (dlog(M))TopHat *R (3:8)

irrespective of the linear P(k) considered. This behaviour is shown in Figure 2(c) (note we
discuss 2(a) and 2(b) later), where we show the halo mass function predicted by a top-hat
filter for the linear power spectrum truncated at kyg/99 (case (v) in Figure 1), and we also

display the asymptotic behaviour of this halo mass function at small radii, i.e. R, This
means that the halo mass function with a top-hat filter diverges at small radii, while it should
decrease and become negligible for damped models.
To solve this issue at small masses it was proposed e.g. in [35, 45] (see also [42]) to use
a sharp-k space filter, .
WSharp—k(k’R) =0 (1 - kR) ) (39)

where © is the Heaviside step function (see Figure 2(a)). With this filter, Eq. (3.1) can be

simplified to
dn 1 p P(1/R)
o = = fv)—~5—"2, 3.10
<d10g(M)>Sharp—k 127T2 M f( )R3 UZ(R) ( )

and it is interesting to see that for small radii,

dn 1
li — —P(1/R 3.11
RIL% <dlog<M)>Sharp—k b R6 ( / ), ( )

so the halo mass function remains dependent on the linear power spectrum. If P(1/R) goes
to zero more rapidly than R® for R — 0, the halo mass function becomes negligible at small
radii. This is true in general for a damped spectrum, e.g. the linear power spectrum of a
thermal WDM candidate at small radii displays the approximate behaviour

Pypu(1/R) ~ R 727 = R0, (3.12)

since Pypu (k) = Popw (k) T?(k), where T(k) is the transfer function given by [13, 16]
(k) = (1+ (ak)ﬁ)7 , (3.13)

with 8 = 2v and v = —5/v. n, is the primordial spectral index. For this WDM model, Eq.
(3.11) goes as ~ R'™ ™™ for R — 0. This example can be found in [35]. The sharp-k space
filter in real space reads

1 (sin(z/R) — (z/R)cos(x/R))

Waharp—k(Z|R) =
Sh P k‘( | ) 27T2R3 (LU/R)E}

: (3.14)



and the integral of Wgp,,p,— over all space (which defines the volume of W) diverges loga-
rithmically. This means that there is not a well-defined volume in the case of the sharp-k
filter, and thus no well-defined mass M associated with the scale R. However, due to the
spherical symmetry of the filter, M should be proportional to R3, and so we can write

M(R) = %ﬁp(cm?’, (3.15)
where ¢ is a free parameter to be calibrated using N-body simulations. In [38], it was found
that ¢ = 2.5 gives the best match between the analytical and the numerical results.

We have compared the analytical predictions at z = 0 using PS for the models shown in
Figure 1 with the (differential) halo mass functions extracted from N-body simulations in a
cubic box of length L = 25 h_lMpc using N = 512° particles (see Section 5 for details on how
the halo catalogues have been cleaned). The results are summarised in Figure 3. The pink
lines show the analytical predictions using a sharp-k filter. As we can see, the sharp-k space
filter gives reasonably good agreement with N-body results for the four smooth linear power
spectra (thermal, fantastic, oscillatory WDM and funny inflation). On the other hand, it fails
to reproduce the low-mass behaviour of the halo mass functions extracted from simulations
for the three sharply-truncated power spectra. Indeed, the PS approach in the case of a
truncated P(k) predicts a step-like transition to zero below some mass scale, while N-body
results show a smoother behaviour at small masses.

We can understand why for initial truncated power spectra a sharp-k filter predicts
a sharp transition to zero below a certain mass in the halo mass function, by looking at
the general behaviour of this filter for small R (see Eq. (3.11)). We have constructed a
given truncated power spectrum, P, .(k), by truncating the linear thermal WDM spectrum,
Pierm (k) (case (i) in Figure 1), above a certain wavenumber k; (for the cases analysed here k;
takes the values {ky /9, ky4/5, k19/20}, see [46] for details). Following this construction, Pyype (k)
can be written in general as

k

Ptrunc(k) = Ptherm(k) S <1 - ]C) ) (316)
t

so that at k = k; there is a step-like transition and P, ,.(k) = 0 for k£ > k;. Plugging Eq.

(3.16) in Eq. (3.11), we obtain that, for a truncated power spectrum, the analytical halo

mass function at small radii behaves as

<dloZT(L]\4)>Sh " ;GPtherm(l/R) C (1 —(R kt)’1> : (3.17)

so it has a step-like transition to zero below R = 1/k;, and then for haloes with R < 1/k;
(see Eq. (3.15) for the radius-mass relation) the above function is exactly zero.

We note that the above discussion is strictly true only when using linear truncated
power spectra (see Eq. (3.16)) in Eq. (3.11). If, instead of using the linear perturbation
theory power spectrum to compute the halo mass function, as is standard practice, we used
the non-linear power spectrum (calculated e.g. by using higher-order perturbation theories
[54]), the resulting halo mass function with a sharp-k filter could give non-zero values also for
haloes with R < 1/k,. However, it is well known that cosmological high-order perturbation
approaches are not accurate at wavenumbers larger than k& ~ 0.1hMpcil, see e.g. [H4].
These scales are well below the power spectrum truncation scale considered here, e.g. for the
truncated at k19/99 power spectrum we have kyg/50 ~ 6 h Mpc*1 (see Figure 1). Furthermore,



we found that the non-linear power spectra in the models considered here are remarkably
similar to one another at low redshift [46], whereas there are clear differences in the halo mass
functions (which can be identified with the differences in the linear theory power spectra).
Hence, here we will always compute the PS halo mass function by using linear power spectra.

4 Smooth-k space filter

Given the above failure to reproduce the halo mass function of a truncated power spectrum,
it is interesting to ask if there is some other filter which gives better agreement with N-body
simulations. In this section, we show the results of using a new filter function W, which we
call the smooth-£ space filter. We show below that this new filter gives competitive and, for
truncated P(k), better matches to the N-body results than the sharp-k filter.

We start by looking at the general behaviour of the filter functions in Fourier space (see
Figure 2(a)). As we can see, the asymptotic behaviour of the top-hat and sharp-k filters is
W(& = 0)=1and W(¢ = 00) = 0, where £ = kR. Moreover, the sharp-k filter has a sudden
transition at & = 1. We smooth this discontinuity (hence the filter name of “smooth-k”
space) by replacing the Heaviside step function with a function which is continuous around

£=1,

Wsmoothfk(kﬂR) = (1 + (kR)B)_l ’ (41)

where 8 > 0 is a free parameter. Two examples of this filter are shown in Figure 2(a)
corresponding to difference choices for the value of the parameter B Finally, as with the
sharp-k filter, we need to find the mass-radius relation for our filter using N-body simulations,
so that M(R) = 4?’Tﬁ(éR)g, and ¢ is the other free parameter of our model.

This new filter introduces two free parameters, which will be fitted against the results
of N-body simulations. The interesting feature of this new filter is that depending on the
set of the parameters used, the shape of the new filter can be made to match closely that
of other standard filters. For example, in Figure 2(c), we show how different filters predict
the halo mass function in the truncated at kjg/5) model (case (v) in Figure 1). We can see

that if {B = 2,¢ = 3.15}, the halo mass function predicted by our filter matches very well
that from the real-space top-hat filter (i.e. it goes as R! at small masses). On the other
hand, if {B = 100, ¢ = 2.5}, the smooth-k space filter prediction displays (almost) the same
sharp truncation predicted by the sharp-k space filter. This characteristic behaviour of the
smooth-k space filter can be understood by looking at Figure 2(a), where the shape of the
filter for different parameter sets is displayed. Indeed, when B — 00, the smooth-k space
filter becomes a sharp-k space filter, while for smaller 3, the width of the step (i.e. the
range of & where the function is different from zero or unity) in the filter function becomes
broader. However, since the smooth-k space with {B = 2,¢ = 3.15} and the top-hat filter
are characterised by different mass definitions, in figure 2(a) it is not clear why they give the
same halo mass function predictions. In figure 2(b), we have rescaled the radius R such that
for the smooth-k space and sharp-k space filters the new variable R is R = ¢R and R = cR
respectively, while maintaining R = R for the top-hat filter. In this way the definition of the
enclosed mass for all the filters will be the same, M(R) = 47/3 5 R®. After this rescaling, it
is clear that at low £ the smooth-k filter with {B = 2,¢ = 3.15} and the top-hat filter are
very similar to one another, and so they predict similar halo mass functions at low masses.
Concluding this section, we discuss why we expect results from our new filter to be in
better agreement with N-body simulations of truncated power spectra than those from using



the sharp-k space filter. As we did for the sharp-k space filter, we analyse the behaviour of
the analytical halo mass function at small radii for a truncated power spectrum. To do so,
we use the asymptotic expression (see Eq. (3.7)) for R — 0, which depends on the derivative
of the variance o”(R). For a truncated power spectrum, Pi..(k) (see Eq. (3.16)), the
derivative of the variance takes the form,

dWSmooth—k: (k ’ R)
dR

do® ke ~
) (8 R/O k~dk Ptherm(k) WSmooth—k(k‘R)

dlog(M ’ (42)

The integral depends on the derivative of the filter function, i.e. on how fast is the transition
of the filter function from zero to unity. The width of the region of wavenumbers for which
the derivative of W is non-zero depends on the width of the step in W, which, in turn,
depends on B The larger the value of B the steeper the step is, and so the interval of k
where the derivative is non-null is smaller. As long as R > 1/k; the interval of wavenumbers
for which the derivative of W is non-zero always overlaps with the interval of integration,
k € [0,k], so that the above integral will always be non-zero no matter how large B is
chosen. On the other hand, when R < 1/k, (at small masses), the width of the interval of
k for which dW /dR is non-null matters. This is because for R < 1/k;, the center of this
interval is at high wavenumbers (k > k;). So, if it is not sufficiently broad, the interval of
k for which the derivative is non-null possibly has no overlap with the integration interval,
and then the above integral would be zero. Indeed, for B — oo the integral is equivalently
zero for R < 1/k,, as we found for the sharp-k space filter. On the other hand, if the range
of values for which the derivative is non-zero is broader, more wavenumbers in k € [0, k]
will contribute to the above integral, enhancing the value of the halo mass function at low
masses (R < 1/k;) with respect to the case of the sharp-k space filter. In the next section we
will show which parameters of the smooth-£ space filter give a sufficient enhancement of the
analytical halo mass function at low masses to match the results from N-body simulations.

5 Results with the new filter

Before showing the results from our new filter, we briefly discuss the cleaning process adopted
here to remove spurious haloes from the halo catalogues extracted from the simulations.
N-body simulations of damped models display the effects of artificial fragmentation, with
regularly-spaced clumps (spurious haloes) along filaments, the distance between which reflects
the initial interparticle separation [13, 29, 32-40]. For this reason, some of the haloes at low
masses are unphysical, and need to be identified and removed.

An estimate of the mass below which spurious haloes are likely to be found was suggested
in [32],

My, =101 pd ky 2y (5.1)

where p is the mean density of the universe, d is the mean interparticle separation and ke is
the wavenumber at which the dimensionless matter power spectrum, A(k) = k*P(k)/(27°),
has its maximum®. However, not all haloes with masses below this limit are unphysical, and

there could be some spurious haloes with masses above this limit. In order to identify haloes
which are unphysical, we use the method in [36] to clean the halo catalogues. This method

3In simulations of thermal WDM, if thermal velocities are added to the gravitational-induced velocities
of the computational particles, M, is shifted to higher masses due to the extra noise introduced in the
simulations because of thermal velocities [55].



refines the criterion in [32] by excluding possible unphysical haloes also using the shape of
the initial Lagrangian region (proto-halo) from which the simulation particles have evolved
to form a given halo at late times. To decide if a halo is genuine or not, this method uses
the sphericity of the proto-halo, defined as the ratio between the minor and major axes of
the proto-halo region, s = ¢/a. Haloes with sphericity below s);,, = 0.165 are considered to
be spurious [36]. We clean the halo catalogues in our simulations by considering a halo to be
spurious (and then removed) if one of these conditions is satisfied:

e the sphericity of the proto-halo is s < sy;,,, or
e the halo mass is M}, < 0.5 Mj;y,.

The results from N-body simulations are displayed in Figure 3, where we show the N-
body results as symbols: circles are from uncleaned halo catalogues, while crosses represent
results after the cleaning. We note that Eq. (5.1) depends on the damped P(k) via kpeq,
which is different for different models. So, the lowest mass displayed in the various cleaned
catalogues (0.5 Mj;,,,) is expected to be different for different initial linear power spectra. The
results of using this new filter are shown as black lines in Figure 3. We find that the smooth-£
space filter with {B = 4.8,¢ = 3.30} consistently gives better matches to the N-body results
than the sharp-k space for the models studied here. In the case of truncated spectra, replacing
the sharp-k filter with a smoother function smooths the step-like behaviour in the analytical
halo mass function and gives much better matches to the simulations as we expect from the
discussion in the previous section.

To reinforce our statement that our filter works better in the case of truncated P(k),
we have also run simulations with higher resolution for the thermal WDM and truncated at
k19,20 power spectra. We choose L = 10 h! Mpc and N = 512° as parameters for the high
resolution simulations. The halo mass functions measured at z = 0 from these simulations
are shown in Figure 4. As can be seen from this figure, there is no appreciable difference
between the sharp-k and the smooth-k space filters for the thermal WDM, both filters are in
agreement with the N-body results (at least for the masses resolved in our analysis). However,
in the case of the truncated at k9,59 power spectrum there is an appreciable difference in the
halo mass function predicted by the smooth-k space filter with respect to that obtained with
the sharp-k space filter, and the former gives a better match to the N-body results. We note
also that the high resolution simulation result in the case of the truncated spectrum agrees
with the low resolution simulation, i.e. that there are some structures below R < 1/kyg/29-
These structures are clearly physical and not due to numerical noise.

6 Conclusions

Several models with damped matter fluctuations have been proposed as possible solutions to
the small scale problems of the standard cosmological paradigm. The common characteristic
of these models is a reduction in halo abundances at low masses. It is well known that for
these models the standard PS analytical approach with a spherical top-hat filter is unable
to reproduce the downturn in the halo mass function, so a sharp-k space filter is generally
used in the literature. We have shown that the sharp-k space filter is not accurate enough
to reproduce results coming from initial damped power spectra with a sharp truncation at
small scales. Indeed, when using the linear power spectrum to calculate halo abundances, the
PS approach with a sharp-k space filter predicts no structure at all below some mass scale
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Figure 3. Halo mass function at z = 0 for various models with damped initial power spectra (as
labelled). Circles are results from N-body simulations in a cubic box of length L = 25 h™'Mpc using
N = 5123 particles. The lines are the theoretical predictions using two filters: sharp-k space filter
(pink) and smooth-k space filter with {3 = 4.8,¢ = 3.30} (black). Note that in this Figure all the
halo mass functions are shifted above or below the one for the thermal WDM (which is the only one
in the right position) to make the results clearer.

for these models, while the N-body simulations clearly display some structures. We have
presented a solution to this problem via the identification of a new filter function (which
we call the smooth-k space filter), which gives always good agreement with the N-body
simulations. This new filter has two free parameters, {B, ¢}, that have been tuned to give
the best match with simulations. Once the halo catalogues have been cleaned, we have found
that {B = 4.8,¢ = 3.30} give the best predictions for the halo mass function, and it works
very well in predicting the halo mass function for the seven P(k) in Figure 1. However,
we note that in the case of thermal WDM there are no appreciable differences between the
predictions using the smooth-k space and the sharp-k space filter. Both filters predict halo
mass functions that are in agreement with N-body results at the mass scales probed by our
analysis.

In general, this filter is expected to give good predictions for a generic damped model
whose linear power spectrum has a half-mode wavenumber around or above those of the P (k)
considered here. This is because larger half-mode wavenumbers imply colder spectra (more
similar to CDM), and then the halo aboundances are less reduced at the scales relevant
for structure formation. Our filter is also expected to work for linear power spectra with
smaller half-mode wavenumbers than those in Figure 1. However, we have not analysed
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Figure 4. Halo mass function at z = 0 for (a) thermal WDM and (b) the truncated at kig,99
power spectrum model. Circles are uncleaned results from uncleaned catalogues measured from N-
body simulations for a cubic box of length L = 25 (low resolution, in green) and 10 h™*Mpc (high
resolution, in red) respectively, with N = 512° particles. Crosses represents results from cleaned
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linear power spectra with damping at smaller wavenumber, so we do not know to what
extent the filter predicts halo statistics in these models. Nevertheless, we note that damped
linear power spectra with smaller half-mode wavenumbers than those considered here are
strongly disfavoured by the current Lyman-« constraints (see e.g. [56, 57] for constraints on
thermal WDM). Therefore, our results can be considered to be general in the sense that they
can be applied to all the damped models which are not already ruled out by astrophysical
constraints. We also note that the PS approach with the smooth-k space filter works well for
models which predict a plateau in the transfer function at large wavenumbers (such as mixed
DM models or some models coming from non-standard primordial power spectra) instead of
a strong damping.
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