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29 .
ABSTRACT: We study the entanglement structure of states dual to multiboundary wormhole
32 geometries using tensor network models. Perfect and randem tensor networks tiling the hyperbolic
plane have been shown to provide good models of the.entanglement structure in holography. We
35 extend this by quotienting the plane by diserete isometries to obtain models of the multiboundary
states. We show that there are networks where the entanglement structure is purely bipartite,
38 extending results obtained in thedarge temperature limit. We analyse the entanglement structure

in a range of examples.
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1 Introduction

Multiboundary wormhole geometries are auseful laboratory for studying the relation between
the entanglement structure of GET states andythe bulk geometry. In [1], an investigation of
the entanglement structure of a class of asymptotically AdS 2 + 1 dimensional spacetimes with
n asymptotic boundaries was initiated; these are dual to states in n copies of the CFT on
ST x R. These solutions weredfittoduced in [2-5], and their holographic study was initiated by
[6-8]. The CFT states are given/by & path integral on a Riemann surface ¥ with n boundaries.
The entanglement struéture of these states has a complicated dependence on the moduli of the
Riemann surface, exhibiting regions of multipartite entanglement but also regions where bipartite
entanglement between different copies is dominant. In [9], the entanglement structure in a region
of large moduli, wheresthe CFT states involve highly excited states on each S! x R factor, was
explored in more detail. This is effectively a regime of high temperature, although the reduced
density matrix in@ single copy of the CFT is not necessarily thermal. The structure in this
regime is dominated by local, bipartite entanglement between subregions on each boundary on a
scale set by the effective temperature. There can be a multipartite component in this regime, but

it is agsociated just with a single thermal volume, so it is a small part of the overall state.

It is difficult to gain more insight into the entanglement structure for more generic moduli

from _the full CF'T path integral. This motivates the study of tensor network models, which
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share many of the entanglement and geometrical features of the full state.® Other approaches to
multiboundary wormholes have recently been explored in [17, 18]; see also the interesting work

on multipartite entanglement in tensor networks [19].

The models we consider were introduced in [20-22] to model the relation of the entanglement
structure of the vacuum state to global AdS, explicitly exhibiting the ideas of code subspaces in
[23]. They are based on tiling the hyperbolic plane with perfect or random tensors, and were
shown to reproduce the Ryu-Takayanagi formula for entanglement entropies. Following [24], we
consider discrete quotients of the tiled plane, and use the tensor network on the quotient space
as a model of the CFT states dual to such multiboundary geometries. In these models, we,can
explore intermediate regions in the moduli space of Riemann surfaces, and study the entanglement

structure of the corresponding states.

Surprisingly, we find that even at generic values of the moduli, there ean be tilings where the
entanglement structure is purely bipartite. Although this result ptesumably reflects the limited
resolution of the discrete tensor network models, it is interesting @s.it provides explicit illustration
of the way in which a connected multiboundary state can be builthup from purely bipartite
entanglement. In these cases, the state is distillable to a state containing just Bell pairs. For other
tilings, there is a residual multipartite component, and we'attempt to characterise the multipartite
structure in its entanglement using negativity of the reduced density matrices, comparing to a
random state on the same Hilbert space. Further characterisation of this multipartite component
is an interesting challenge for further work. Our computations are for low bond dimension, and it

would also be interesting to see how they extend to higher bond dimension.

In the next section, we review previous work on multiboundary wormholes. In section 3, we
construct tilings of the Riemann surface X forudiscrete values of the moduli by quotienting tilings
of the hyperbolic plane by discrete isometries. We discuss the discrete analogue of horizons and
the causal shadow region in these tilings, and show that in some cases there is no causal shadow
region. In section 4, we review thé tensor, network models built on the tilings of the hyperbolic
plane. In section 5, we apply these.methods to the tilings of the Riemann surface > and analyse

the entanglement structure of the r\esulting states.

2 Holographic Multiboundary Wormholes

The holographic deseription/of multiboundary wormholes generalises the relation between the
thermofield double state
_8
ITFD) =) e 2" |E); |E), (2.1)
E

!The most tebust model of the holographic entanglement structure are MERA networks [10, 11], which provide
a good description of the ground state in conformal field theories, and have been related to holographic descriptions
of the state [12-15]. A MERA version of the quotient giving BTZ was constructed in [16]. However, it appears
difficult te extend this construction to the more general quotients we are interested in with multiple generators.

We,will therefore focus our attention on more phenomenological models.
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in two copies of the CFT and the eternal black hole [25]. This state is obtained as the result of a
Euclidean CFT path integral on a cylinder of length 3/2 (taking the S* to have period 27). The
trace over one copy gives a thermal density matrix, at inverse temperature 5. At sufficiently high
temperatures (small ), the dominant bulk saddle for these boundary conditions is a Euclidean
black hole. Analytically continuing to Lorentzian time, the two copies of the CFT live on the two
boundaries of the black hole, and the entanglement of the state (2.1) is essential to.account, for

the connectedness of the bulk geometry.

In [1], this picture was extended to consider the role of the entanglement mythe CEFT
in multiboundary wormhole geometries. In 2 4+ 1 dimensions, such geometriesican easily be
constructed by considering quotients of vacuum AdS3;. The Euclidean quotients we are interested
in are usefully described by writing the Euclidean AdSs, equivalently H2, in a ceerdinate system

ds® 2 2 2

»— = dty + cosh” tpdX - (2.2)

Faas
where tp is Euclidean time and d¥? is the unit-radius metric on H?» Theeternal BTZ black hole
arises as a quotient by a discrete subgroup I' of the SL(2, R)dsometry group of this H? generated
by a single hyperbolic element [26]. This converts H? into@eylinderwith two boundaries, with a
hyperbolic metric. The more general quotients we are, interested,in correspond to considering
discrete subgroups I" generated by k hyperbolic elementss: These geometries were introduced in [2—
5]. The resulting surface ¥ = H?/I" is a smooth Riémann sutfiice with genus g and n boundaries.
This Riemann surface has 6g — 6 + 3n moduligswhich are engoded in the choice of discrete group I'.
Since the quotient acts on the surfaces of constantitz, we can define a corresponding Lorentzian
geometry by analytically continuing ty — —it. This has n asymptotically AdS regions, connected
by a collapsing wormhole which generalises thexEinstein-Rosen bridge in the eternal black hole.
Topological censorship implies that associated to each boundary of the geometry is a horizon
27, 28]. The absence of local degreesiof freedom implies that the geometry in the exterior regions

outside the horizons is exactly the BTZ geometry exterior to a black hole.

We want to understand thestzucture of the dual CF'T state which encodes this geometry,
and specifically its entanglements Theé holographic description of these geometries was initiated
in [6-8]. The conformalybéundary ofithis spacetime lies at ty — +00, and consists of two copies
of the surface . The CFT path integral over this surface has a rich phase structure [1, 29]. In
a region of the moduli space, the dominant bulk contribution comes from the multiboundary
wormbhole (2.2), where the spatial slices are the Riemann surface 3. Thus, in this region of moduli
space the t = 0 bulk geometry X corresponds to a CF'T state on the n boundaries obtained by a
path integral on X

For the BTZ black hole, the entanglement structure of the state (2.1) is purely bipartite. In
the high temperature limit, this has a particularly simple structure: high temperature is small (3,
so the cylinderis short, and if we consider scales larger than the thermal scale 3 on the spatial
circle, the path integral simply identifies states on the two boundaries. This local character of the

entanglement was verified in [30] by considering mutual informations between subregions on the
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Figure 1: The surface ¥ as a quotient of the Poincaré disc for the pair-ef pants. The pairs of
labeled geodesics (blue and red in colour version) are identified by the action of I'. The region of
the Poincaré disc bounded by these geodesics provides a fundamentalbdomain for the quotient. Bj,
By and By = By U B;_ become the desired three circular boundaries. There are corresponding
minimal closed geodesics Hs, Hy and H; = H;, U H;_. Thelengths L, of these geodesics fully

characterize the geometry of .

. &
two boundaries.

The next simple example is the three-boundary wormhole or pair of pants, whose Euclidean
geometry is obtained by quotienting by a group [''generated by a pair of hyperbolic elements
g1,92. A fundamental domain of theddentification on H? is the region bounded by a pair of
geodesics identified by g; and a pair of geddesics bounded by g¢s, as depicted in figure 1. This
surface has three moduli, corresponding to the lengths of the three minimal closed geodesics
shown in the figure. In the Lorentzian spacetime, these geodesics become the bifurcation surfaces
of the event horizons in each asymptotic region. The CFT path integral on the pair of pants is
hard to do analytically, but it’simplifiesfin limits of the moduli space. In [1] the entanglement
properties of the dual state were studied in the “puncture limit”, where the minimal geodesics
are short.

In [9], the structuré inthe “high-temperature” limit, where the geodesics are long, was studied.
This leads to particular simplifications. For the three-boundary wormhole, the “high-temperature”
limit is defined by scaling-the sizes of all of the horizons to infinity, whilst fixing their ratios,
which then characterise the high temperature geometry. The geometry outside the horizons
are high-temperature BT7Z solutions, which justifies the name, although the CFT state on the
boundaries is not thermal. Since the exterior cylinders are BTZ, they behave in the same way as
before: .«eonsidering scales above the thermal scale, the state on the boundary is identified with
the state on the horizon. There is a causal shadow region between the horizons, but its volume is

fixed in"AdS.units by the Gauss-Bonnet theorem, so as the horizons become long, the distance
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between them shrinks over almost all of the horizon. The causal shadow region is thus effectively
a seam which connects the horizons of the exterior regions and whose shape is determined by the
ratios of the moduli. Thus, in the high-temperature limit we infer that the path-integral just
identifies states across this seam, so that intervals in different boundaries which are opposite each
other across the shadow region are maximally entangled, and again the resulting entanglement
structure is almost entirely bipartite and local. This behaviour is depicted in figure.2. There
could be some residual multipartite component, but this would only involve a subregion of order

the thermal scale on each boundary.

Note the figure depicts the regime where the horizons are all roughly ofithe same length. If
we take Ly > Ly > Ls, this is the regime Ly < Lo + L3, referred to in [9] asithe “wheel” regime,
after the figure on the right side of figure 2. The alternative regime L; >L5+ L3is referred to as
the “eyeglass” regime. The entanglement remains primarily bipartite in'this regime, but there are
regions of boundary 1 which are entangled with other regions of boundasy 1| rather than with

one of the other boundaries.

The result generalises easily to wormholes with more boundaries.and topology behind the
horizon. Any Riemann surface can be decomposed into pairs,of pants, sewn together across
minimal geodesics. There is a region of the moduli space where all the minimal geodesics involved
in the sewing are long, and the individual pairs of pants‘are in the high-temperature configuration
described above. The path-integral then identifies states ACLoss the regions between minimal
geodesics, again generating a local bipartite entanglement structure which can be characterised

by appropriate compositions of the diagrams ofwhich figure 2 ¢) is an example.

3 Hyperbolic Tilings & Quotients

The tensor network models of [20,722] are based on tiling the hyperbolic plane with perfect
or random tensors. We want toftake a quotient of these networks by a discrete isometry of
the network to obtain a model.of Qle multiboundary wormholes. We can usefully seperate the
geometrical aspects of chooging a tiling of the hyperbolic plane and its quotients by discrete

isometries from the choiceof tensors,/so we will first discuss the geometric aspects in this section.

Introducing a regular tiling of the hyperbolic plane provides us with a natural discretization of
H?. A particular choice of tiling will preserve some discrete subgroup of the SL(2,R) isometries
of H?, and we can_quotient by some of these isometries of the tiling to obtain discretizations of
the Riemann surface ¥ for some discrete values of the moduli. In this section, we describe the

tilings and quotients, and define analogues of the horizons in the tiling.

As in [24], we describe the tilings in terms of Coxeter groups [31-33]. A constant curvature
connectedsRiemann surface can be tiled by repeated reflections of a seed triangle about its edges.
If the interior@ngles of the seed triangle are given by =, % and % for p,q,r € Z* then the set of
all refleetionsdn its edges form a Coxeter group, denoted [r,p, ¢]. The triangulation of a space

obtained by repeated reflection of a seed triangle in its edges is referred to as a Coxeter tiling,
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: :
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(b) (c)

Figure 2: The geometry of the pair-of-pants in the high temperature limit and the resulting
entanglement structure. a) the pair-of-pants geometry with the threescoloured boundaries
indicated and labelled 1-3, the black lines depict the horizons pertaining to ea¢h exterior region,
and are labelled H,, a = 1,2,3. The interior of the horizons is thé"causal shadow region. b)
Cartoon of a) in the high-temperature limit, with fixed ratios of the moduli.\T he exterior cylinders
shrink (the strips should be thought of as being extremely thin,we've exaggerated them here)
and the distance between the horizons across the causal shadow region is,small almost everywhere.
The black lines represent identifications between horizons whichiis true to exponential accuracy
away from the junctions. c) The resulting entanglement strueture can be depicted with this
“wheel” diagram: the path integral locally identifies the states in portions of the three boundaries.
States localised in some boundary interval are putified by,am interval of the same size on the
opposite side of the seam, which may lie on _any of the three boundaries, as the ratios of the

moduli are varied. The resulting entanglement structureis almost entirely bipartite.

and the Coxeter group forms the discrete isometries of the tiling. By the Gauss-Bonnet theorem,

for hyperbolic spaces, the required seed triangle must have

1 11
44 <1 (3.1)
pq T

The [r, p, q] tilings satisfying (3.1){118 H? with a regular array of g-gons. These Coxeter tilings
underly the tensor networks ¢onsidered in [20, 22, 24]. An example hyperbolic tiling is illustrated

in figure 3. The edges of the gsgons are geodesics in H?, so the volume of each g-gon is of order
the AdS scale.

The tensor networks considered in [20-22] are constructed by thinking of the tiling as a graph,
and taking the tensorinetwork to be the dual graph. That is, each g-gon face in the tiling is
replaced by a vertexdn thetensor network, which has ¢ legs, connecting it to the tensors in the
adjacent faces, across the edges of the tiling. There are uncontracted legs at the boundary of the

hyperbolic plane.

Thetiling,is invariant under reflections in any of these edges, forming the Coxeter group
associated withithe tiling. We can quotient by any subgroup of this group. In the construction of
the Riemann surface X in the previous section, we considered quotients by hyperbolic elements,

which identified pairs of geodesics in the hyperbolic plane. We can obtain such hyperbolic elements
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|

Figure 3: The [2,4,6] tiling of the hyperbolic plane H?. One of the seéd triangles is indicated,
the whole tiling is covered by the action of reflecting the seed aleng its edges. The black, primary

tiling lines divide the network into a regular array of hexagons.

by combining a pair of reflections in distinct geodesics [24]."We can see that this follows by

considering AdS3 as the hyperboloid embedded in Ry,
X+ X3 -X2EX2=1" (3.2)

the t = 0 slice corresponds to X3 = 0. Now consider the'two hyperplanes P, and P, with corre-
sponding normals n; = (0,0, 1,0), ny = (cosh(#),sinh(Z), 0,0) respectively. Under a reflection in

the hyperplane with normal n, a point’ X*transforms as
X=X=2n-X)n (3.3)

So that under the pair of subsequent reflections, first in P, and then in P, the t = 0 slice is

preserved whilst the Xy and X, are Lorentz boosted, by

()g'o >\ (— cosh(n) sinh(n) > <X0> . (3.4)
X, cosh(n) —sinh(n) Xs

Thus, the hyperbeliéelement identifying any pair of geodesics which form edges of the tiles
will be an isometry,of the tiling. We can thus quotient by discrete groups I' composed of such
hyperbolic elementsito obtain a tiling of a Riemann surface > = H?/T", and hence (considering
the dual graph) a ténsor network with the topological structure of ¥. We can construct this
tiling only forpsome discrete choices of the moduli of the Riemann surface, as given a tiling,
the area of the tiles, and hence the distance between the geodesics to be identified, is fixed by
the Gauss=Bonnet/theorem. In [24], this approach was used to obtain tilings and hence tensor
networks corresponding to the BTZ geometry. We now want to generalize this to multiboundary

wormholes. Oar detailed analysis will focus mainly on the pair of pants. An illustrative example

of .the construction is given in figure 4.
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Figure 4: An illustration of the quotient operation in the [2,4,6] tiling. We'take r4, gypaé to be
the reflections in the geodesics labelled in the left-hand diagram. Quotienting by I generated by
g1 = rarp gives the tiling of BTZ shown in the middle diagram. Quotienting by I' generated by
g1 = rarp and go = rpre gives the tiling of the pair of pants shown indthe right=hand diagram.
The unshaded region is a fundamental region for the identification in both cases.
~

Despite the discretization of the moduli of ¥, the minimal geodesics /will not generally lie
along edges of the tiling. Thus, it is important to identify the analoguies in the tiling of these
minimal geodesics. We will take this to be the minimal closedypath along the edges of the tiling
homologous to each boundary. This is natural because/onee,we introduce the tensors in each
tiling, this path will cut across the links between tensots.? This will lead to degeneracy in some
cases, where there can be multiple paths of the sameflength al~0ng the edges. Some examples are

illustrated in figure 5.

An interesting feature is that in some cases there is then no causal shadow region in the tiling;
the minimal length paths in the network can coincides We will see below that this leads to tensor
networks where the entanglement is entirely. bipartite. In the continuum, there is of course still a
causal shadow for these choices of ¥, whieh,partially covers some tiles, so this could be viewed
as just a discretization error, butiwe argue that it is actually an interesting feature. It implies
that in the context of the tensor network models, it is possible to have a network on the pair
of pants that gives rise to a state with only bipartite entanglement, providing further evidence
that multipartite entanglement is Mot,an essential component in obtaining multiply connected
geometries. These explicit examples help us to understand how the geometry arises from purely

bipartite entanglement:

4 Tensor Networks & Holography

We now turn to the specifie tensor network models we use, following [20, 22]. We obtain a
network from the tiling'by considering the dual graph, with a network vertex in each tile and legs

connecting the vertices in adjacent tiles. In general, a network is used to define a quantum state

ZNote that this'is slightly different from the prescription in [24], where the BTZ horizon in the example in
figure 4 was identified with a tensor in the network, as the actual minimal geodesic runs along the middle of the
tile. For the:nmeore general case we consider, it is more natural to take the definition above, even though this leads

toran. artificial degeneracy in the BTZ case.
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Eyeglass

Wheel

Eyeglass

Wheel

Figure 5: Illustrations, of three-boundary tilings obtained by quotienting the tilings of the
hyperbolic plane indicated by each column, and with discrete moduli in the regimes indicated
by each row. The unshadedregion is a fundamental region for the identification. The minimal
closed paths along tile.boundaries homologous to each conformal boundary are indicated. The
cases with two paths of the same colour, where one is dashed, represent degeneracies in the choice
of closed path. The second group of examples show cases where there is no causal shadow; the

minimal closed paths eoincide, so the entanglement between different regions is entirely bipartite.

by first associating a tensor 7;, ; to each vertex in the network, with the rank of the tensor

equal to.the number of legs at the vertex. We then associate a state |T') in a tensor product
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Hilbert space H = ®,H,, with the tensor,

IT) =Y Toinlith © - @ i)y (4.1)

i
where |ig) is a basis for the kth factor with iy = 1,..., D where Dy is the dimension of Hy,
which we will take to be some constant x for all legs, called the bond dimension. Taking the
product over all the vertices defines a product state [{T'}) = ®v|T"). For each lég joining two

vertices, we make a projection onto the maximally entangled state

A= LS e o (),
i) = 2 3l la) (42)

in the associated Hilbert spaces. This defines a state in the Hilbert space associated to the

uncontracted legs,
IT) = @4y (i3 {T}), . (4.3)
where the product runs over all the contracted legs, which could. include self-contractions in

general.

If we take the network constructed from the dual graphiof axCoxeter tiling of H?, the remaining
uncontracted legs are located at the boundary of the hyperbolic plane. Given a choice of tensor
at each vertex, this defines a state on the boundary‘legs. This is referred to as a holographic
state. In an alternative construction, a ¢ + 1 legged tensor is’associated to each vertex, leaving
one uncontracted leg at each vertex in the network, which are referred to as bulk legs, in addition
to the uncontracted boundary legs. This network can be viewed as a map from the Hilbert space
Hpuic of the bulk legs to the Hilbert space Hpomdary 0f the boundary legs. This model can be
used to study the encoding of local bulk eperatorsiin the boundary Hilbert space, so it is referred

to as a holographic code.

Holographic states realise a disereteversion of the Ryu-Takayanagi formula [34], relating the
entanglement entropy of some subset of the boundary legs to the length of a cut in the bulk.
Suppose we have two boundary regions A4 and AC, and a cut v4 in the bulk, which is a path in
the bulk along edges of the tilingg which cuts through tensor legs, separating the network into two
components, such that 6né component has boundary v4 U A and the other has boundary 4 U A°.
Then the number of legs-jq4| along the cut provides an upper bound for the entanglement entropy

of the reduced density matrix on A in the holographic state given by the network [20]:

Sa < |yallny, (4.4)

where x is thesbond dimension. We obtain the tightest bound by considering the minimal cut,
which we can think'of as the network analogue of a minimal surface. This bound is saturated if
the two.components of the network are isometries from v4 to A and from 4 to A¢. This then
realises a latti¢e version of Ryu-Takayanagi, relating the entropy to the length of the minimum
cut. There can be degenerate minimal cuts in the networks, though this does not alter the bound

44-as in such cases, the minimal cuts are of equal length.

— 10 —
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Figure 6: Some examples of topologically interesting holographic states constructed from
quotients of various coxeter tilings. The fundamental domain betweenseolour-coded pairs of
identified cuts is the unshaded region in each case. These are holographic states representing
the three-boundary wormhole (left), a torus wormhole (centre) and’a fou\r—boundary wormhole
(right).

Applying the same prescription to the quotient tilings,swe can build tensor networks on a
Riemann surface ¥, giving states and codes for multiboundary. geometries. A selection of examples

are illustrated in figure 6.

4.1 Perfect Tensors &

In [20], the tensors at each vertex were taken toibe perfectitensors. A perfect tensor is a 2n index
tensor T such that for any division of its indices inte.a set A and its complement A such that
Dim(Ha) < Dim(Hc), T is proportional.to anisometry from H4 to Hc. That is, the map
from H 4 to H 4o preserves the inner produet up to an overall factor. If we denote the indices in

A by a collective index a, and théindices in A%by b, the condition is

ST, Tye = Cooe (4.5)
bl
N
for some constant C'. The isgpmetry property implies that we can convert an operator acting on
‘H 4 into an operator acting omv#H 4c; given an operator O acting in H 4, we define

-1
0= 6TOTT (4.6)

acting in H e, so that 'O = OT. In a holographic code, this enables us to rewrite an operator
acting on a bulk leg as an operator acting on some subspace of the boundary Hilbert space, by
using the perfect ténsors in the network to push the operator outwards, as illustrated in figure 7.
This provides a tensor network realisation of bulk reconstruction. Since we can use the perfect
tensor property to map the bulk leg to different subsets of the boundary legs, it can be mapped to

operators acting on different subspaces of the boundary Hilbert space, realising the ideas of [23].

In 20}, agreedy algorithm was introduced to identify the portion of the bulk that can be

reconstructed from a given region A of the boundary, not necessarily connected. This proceeds

— 11 —
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Figure 7: Bulk reconstruction for the holographic heptagen code.” Due to the fact that each
tensor is perfect, the local bulk operator O acting on the bulk leg of the yellow-highlighted tensor
can be pushed to a non-local boundary operator in multiple ways. Two examples are indicated,
whereby the operator is pushed, on the one-hand, to-the operator O, acting on the connected
interval shown in green, and on the other hand to'theoperator O, acting on the disconnected
interval shown in red. At each vertex, the tensor is proportional to an isometry from the outgoing
legs to the ingoing legs, so we can push the operator back from the outgoing legs to the ingoing

legs.

by taking some initial region that can be reeomnstructed from the boundary region (consisting of
tensors in the asymptotic region) and iteratively adding to this region a tensor with more than
half of its legs connected to tensors already in the region, until there are no more such tensors.
The boundary of this region is_a eut of the network referred to as the greedy geodesic v4. In
the case of the holographic state; the eollection of tensors G4 lying between A and v, define
an isometry from v4 to A. For‘holographic codes, we have an isometry from v, and the bulk
Hilbert space in G4 to A. This gives a tensor network realisation of the idea of the bulk wedge
associated with a given boundaty region. Since G4 defines an isometry, we can view moving from
the boundary regiom' A to v4 as a process of distillation, extracting the degrees of freedom in A

which are entangléd swithyA¢"

If we divide the boundary into several different regions, there will be a greedy geodesic
associated to each of them, and the union of the different wedges G4 may not cover the whole
network. The remaining portion was called in [20] the residual multipartite region, and can be
thought of as encoding the entanglement between the different boundary regions. We expect the

causal'shadow region in our quotient networks to play a similar role.

It was also shown in [20] that for holographic states, for any connected region A on the
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boundary of a simply-connected perfect tensor network of non-positive curvature, the lower bound

in (4.4) is saturated, so that the lattice Ryu-Takayanagi formula holds.

4.2 Random Tensors

In [22], a different approach was taken based on selecting the individual tensors in the network
independently at random from a suitable distribution. This corresponds to taking the state at

the individual vertices (4.1) to be a Haar random state.

In the limit of large bond dimension Y, the calculation of the second Renyi entropy averaged
over the randomness was mapped to a partition function of an Ising spin system. This was used

to show that these random tensor networks also satisfy a lattice Ryu-Takayanagi formula.

Random tensors are not perfect tensors, but it was shown that _in.the limit of large bond
dimension, they are approximately perfect tensors. This is essentially because the Page theorem
[35] says that a random tensor is approximately an isometry from amy subset of less than half
of its indices to the remaining set. The maximum entanglement entropy of the reduced density
matrix on an n-dimensional share of a state in an (m + n)-dimensional Hilbert space is

m

Smax = Log(m) 5~

- (4.7)

13 m

where the “...” terms refer to terms subleading in' °*. For agHaar random state of dimension
n = xN, defined by an N-legged tensor 7" with bond dimension x, (4.7) implies that the reduced
density matrix on any subset of M < % legs 1s approximately maximally mixed and hence the map
from the M legs to the remaining (N — M) legs is an approximate isometry. This approximate
isometry is sufficient for results similar tosthe perfect tensors to apply; we can map local bulk
operators in a holographic code to operators acting on subspaces of the boundary, and given a

boundary region there is a corresponding bulk region which is reconstructable.

5 Multiboundary Netwaorks

5.1 BTZ

We now apply these gensor network constructions to the tilings obtained for multiboundary
geometries in section 3. If we consider first the BTZ black hole, there is a single identification.
Asymptotically fafrom theblack hole, the network will look like the network for H?. The region
outside a large black hole was already analysed qualitatively in [20]. For holographic states,
the networkdying betwéen the minimal closed path and the boundary will be an (approximate)
isometry, so we can think of the network legs lying across the minimal closed path as representing
the distilled entanglement between the two asymptotic regions. This minimal closed path provides
a minimal cut4n the network, where we take the region A to be the whole of one of the boundaries.

In this case the entanglement is entirely bipartite, with each leg across the cut corresponding to
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LK

),

Figure 8: BTZ networks exhibiting tiling artifacts. The network shown on the left has two
equal-length minimal cuts, being either of the orange, dashed cuts. The‘continuumrhorizon is not
a mirror of the tiling underlying this network. The network in the centre has a unique minimal
cut, but has a bipartite residual region consisting of the 6 tensors lying inbétween the pink greedy
geodesic (being a pair of disconnected cuts). Due to the identification, there are too few legs
crossing the greedy geodesic to be able to push it to the minimal cuts, The network on the right
exhibits the behaviour we expect; there is a unique minimal eut that is reached by the greedy
geodesic so that we can distill all of the entanglement betweenthe two boundaries to Bell pairs

crossing the minimal cut.

&
a pair of Hilbert spaces in the maximally entangled state (4.2) - the analogue of a Bell pair for

systems of dimension Y.

Our choice of a minimal closed path as the analogue of the horizon introduces some minor
differences from the analysis of [24]. “As prévieusly noted, some choices of BTZ tiling lead to
degenerate minimal closed paths, as in the'left example in figure 8. This is just a failure of the
discretization; the actual minimal geodesic does not lie along the tile boundaries, so there are

degenerate approximations to it.

The greedy algorithm can.alsefail to reach all the way to the minimal closed path, so the
greedy geodesic associated to ome beundary may be different from the minimal closed path,
leading to the appearance of'@ non-trivial bipartite residual region, as depicted in the central
example in figure 8. The failure of the greedy geodesic to reach the minimal closed path arises
because of closed loops in the network, where the number of legs pointing “out” towards the
boundary is smaller than the number of other legs. Since we haven’t yet reached the minimal
closed path, the'number of legs pointing “out” must overall be less than the number of legs
pointing “in”, but the legs around the identification can lead to situations where the exterior legs

do not contain enough’information to reconstruct the tensors in the shadow region.

Self-contractions of tensors within the network are an interesting special case which are a
new feature of.the quotient networks. For the perfect tensors, the self-contracted tensor is no
longer ‘an isometry from a subset of the remaining legs to the other legs. For sufficiently generic

perfect tensors, it is however still an approximate isometry from less than half the remaining legs
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a) c)

oe
A

Figure 9: Reconstruction with loops and self-contractions within tensor networks. for a) there is

not enough information on the lower legs for the greedy algorithm topushiacross the loop (green),
in either the random or perfect tensor case. b) There is enough informafion on the lower legs of
the central tensor for the greedy algorithm to push onto the loop using the arrow assignment
depicted. c) The self-contracted tensor is not an isometry from the upper to the lower legs. d)
there are sufficiently many legs below for the self-contracted tenser to be an approximate isometry

from the upper to the lower legs in the large y limit.

to the other subset of remaining legs. This feature ¢an inhibitabulk reconstruction by preventing

greedy geodesics from crossing loops in order to reach’ a minimal cut, as depicted in figure 9.

For closed loops, each tensor remains a perfe¢t. tensor, but if there are the same number of
legs below and above a loop, there will not be enough information in the legs below the loop to
be able to push onto the loop itself and subsequently be able to reconstruct the outgoing legs, as
depicted in figure 9 a). If there are more legs below, we can push onto the loop and push past it,

as in figure 9 b).

5.2 Multiboundary Wormhole

Considering a more general ' Riémann surface Y., the portion of the network between a given
boundary and the minimal cut hemologous to this boundary is the same as for BTZ; thus, this
defines an isometry fromithe minimal cut to the boundary, and we can distill the state on the
boundary to a state on the'legs crossing the cut, which describes the entanglement with the
other regions. Henee, the causal shadow region lying between these minimal cuts encodes the
entanglement betweéen the different boundaries. For the three boundary case, this causal shadow

region will encode the résidual tripartite entanglement between the three boundaries.

As noted in segtion 3, we can have examples where there is no causal shadow region. In
this case, we cammow see that the entanglement in the holographic state is entirely bipartite,
encoded in the maximally entangled states (4.2) on each leg crossing the cuts. This is similar to

the entanglement structure seen in the high temperature limit of the CFT path integral, but it is
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Figure 10: Purely bipartite tensor network states for low-T thrée-boundary wormholes. The
fundamental domain is the unshaded region, and the minimal cuts homologous to each region are
colour-coded. In each case, there is no multiparty residual region, and states across the minimal
cuts are identified. The set of Bell pairs corresponding to states identified across each cut are
depicted below each network; coloured lines guide the gye to,recognise across which minimal
cuts states are identified. These reproduce, schematically, the known structure of the high-T

entanglement. R

surprising that we can find cases where the ‘entanglementsis entirely bipartite, and that this can
occur even for generic moduli. Examples of this\behaviour for the wheel and eyeglass regimes are
illustrated in figure 10.

In other cases, there will be a tripartite tesidual region, and we can ask about the importance
of this region and the nature of itg.entanglement. It is interesting to first make contact with
our previous work in the high-temperature limit. We can do so by carefully choosing a low-T
network and then letting the quotient mirrors retreat to produce a high-T network with large
horizons. What we expect tofind it this Timit is that the minimal cuts associated to each of the
three boundaries become identified for most of their length up to an AdS scale tripartite residual
region consisting of only a.small' mumber of tensors, whose size remains fixed in this limit. One
example of this behayiour, is illustrated in figure 11. Note however that it requires a choice of
network to realise these expected features; in other cases the causal shadow grows (or disappears

altogether) due tosthe tilingsartefacts illustrated in figure 8.

The main interest in studying the tripartite residual region in these tensor network models,
however, isthat weiean study the structure for small values of the discrete moduli, where the
network in'the causal shadow region is of modest size, and we can hope to analyse the resulting
state on the legs:€rossing the horizon, and directly address questions about the nature of the
entanglement.  An example is shown in figure 12. However, even for the smallest values of

the moduliswe are in a regime where there is no full classification of multipartite entanglement
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Figure 11: Taking the high-T limit of a low-T three-boundary network.-Fer'convenience, only
half of the tiling (left) is displayed, the non-visible half (the mirror image of what is depicted) is
located on the opposite side of the black mirror. We can take a high-T:imit by letting the red,
blue and black mirrors retreat, increasing the length of each horizon by the same amount. This
produces a wheel network in which the horizons have approximately‘equal lengths. Notably, the
tripartite residual region representing the causal shadew, being the central tensor (along with
it’s unseen reflection) between the coloured cuts, igfimvariant in the limit. This accords with
our intuition that the size of the causal shadow is/fixed duefo the Gauss-Bonnet theorem. As
the minimal cuts become larger, they become, identified for most of their length, giving rise to
the entanglement structure depicted in the cartoon (right). Bell pairs are identified across the

minimal cuts, up to the pair tensors depicted, inhabiting the tripartite residual region.

structures, so there is a shortage of general expectations to compare to. In [1], the entanglement
entropies obtained from holographic calculations were found to be consistent with those expected
for random states in a reduced Hilbert spaee. This motivates us to compare the results obtained
for the network in the causal shadow region to those for a Haar-random state on the legs crossing

the minimal cuts, drawn as a blob inhe right panel of figure 12.

We characterise thé states byseonsidering the entanglement entropy associated to each of the
asymptotic regions, and.by eensidering the logarithmic negativity for pairs of regions [36, 37].

The logarithmic negafivity for. a density matrix p on a Hilbert space Ha ® H 4c is defined as [38]
L =1log(2N +1) (5.1)

where N is gherentanglément negativity defined to be,

) - 1

N, = e .

(5.2)

and where p’4/is the partial transpose of the density matrix p on the factor A. If p has components

Paba'y, The components of the partially transposed density matrix are (p74)ap o = (074wt ap-
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Figure 12: (Left) The tripartite residual region of a network representing a very low temperature
three-boundary wormhole. The coloured region containing circular boundary nodes depict the
three different boundaries, and the cuts of the same colour indicate,the herizon corresponding to
each boundary. We compare the entanglement structures of the tensor network state and a state

in the same Hilbert space defined by a Haar random states(zight).

The logarithmic negativity (5.1) provides an uppersoundifor the distillable entanglement, or
the number of Bell pairs that can be distilled betweefi thesfactor A and its complement [39].
Consider a Hilbert space of dimension x (stich as the state defined by an N-legged tensor with
bond-dimension x), the maximum number of Bellypairs that could be ideally distilled from this
state is Npen = N logy(x). When we have L < Ngg it indicates that there can be some component

of the entanglement between A and A% whichuis.intrinsically multipartite.

Results comparing the entanglement structure of tripartite residual regions for low-temperature
wormholes built from a selection of tilings are shown in figure 13. We find that the distinction
between these networks and random blobsidepends strongly on the tiling. Not surprisingly, for
choices of tilings where the causal shadow contains a single tensor, the results are as for a Haar
random state, as is the case for the examples shown in figure 14. In contrast, networks for which
the causal shadow region’contains amultiple tensors generically exhibit distinct entanglement
structure, as with the networks shown in figure 13. The right-hand plots of figure 13 correspond
to non-vanishing logarithmicnegativities on a single boundary factor. This is qualitatively unlike
the GHZ state, for ‘which the logarithmic negativity on any single factor vanishes, and suggests
the presence of some bipartite entanglement even in the state in this tripartite residual region.
The fact that the logarithmic negativities do not reach their maximum value however implies a
degree of infrinsically multipartite entanglement, as we expect. Though our results correspond
only to relatively low bond-dimension, we expect the results for high bond-dimension should be
at least qualitatively similar insofar as the entanglement structure of tensor network states is

primarily dependent on the set of contractions within it.

It is also interesting to take a holographic code network, and consider the reconstruction of
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Figure 13: Results comparing the entanglement structures of triparfite residual regions (high-
lighted regions of each network) of very low-temperature networks built out of Haar random
tensors. We compare a pair of networks in each of the eyeglass (A and'B) and wheel (D and E)
regimes with a corresponding random states (C and F reSpectively) with the same number of
external legs. We construct a state for each of A-F by choosingyeach tensor on the light blue
factor independently at random from a Haar randomsensemble with bond dimension 3. We plot
the average value of the entropy and logarithmic negatiyvity, averaged over 100 random tensors, in
each case; error bars are barely perceptible. An the cases illustrated, the entanglement structure

for the networks is quantitatively distinct to arandom state.

Figure 14: Networks for low=T three-boundary wormholes for which the causal shadow (unshaded)

is presicely a Haar random state, in the eyeglass (left) and wheel (right) regimes.

operators in the cauisal shadow region in terms of boundary operators. This requires us to push the
operator back to the boundary through the tensors in the network. If there are self-contractions
on the tensors,this ¢an lead to obstructions, but in general we find results that are consistent with
the expectation that we can reconstruct an operator in this region from a subset of the boundary
including.more than half the legs along the boundary of the causal shadow region. An example is

given in figure 15.
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1

2

Figure 15: A holographic septagon code for three-boundary, wormhole in the wheel regime.
Dangling bulk legs are indicated by thicker lines. The réd and green arrow assignments depict
our attempts to reconstruct the operator bulk site at the centre. The red arrow assignment
corresponds to choosing the 1 and 2 for which we can reconstrugt the central site. The green arrow
assignment attempts to reconstruct the central site from just boundary 1 and 3’ (half of boundary
3) and fails. The code thus behaves like a quantum secret sharing scheme, for which access to
information, here pertaining to local bulk information, is only accessible with a sufficiently large

share in hand; in this case being a sufficiently large portion of the boundary.

We can also consider cases with more boundaries. These will then contain internal cycles,
which can lead to important differencesfrom the Haar random blob structure for the multipartite
residual region. Short internal cyeles constrain the maximum value of the entropy associated to
a given subregion to less than thestypical maximal value. One example is the four-boundary
wormhole with a short internal cyele. In the continuous case it is easy to see that sufficiently short
internal cycles are dominant RT surfaces, as illustrated in figure 16 (left). In a corresponding
network this amounts to.a censtraint on the maximum entropy of the state on a set of boundaries
for which the internal cycle is shorter than it’s corresponding greedy geodesic, as illustrated in
figure 16 (right).

Another example with internal topology is the torus wormhole. We find that networks
constructed emtilings of the torus wormhole exhibit the expected features of their continuum
analogues, up to tiling artefacts like those shown in figure 8. In particular, we expect the torus
networkssto have @ minimal cut homologous to the boundary that wraps the throat of the
torus. Behinddthis region is the causal shadow with the topology of a torus. We expect that for

low-temperature torus wormholes, the causal shadow region is reconstructible only with the entire
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Figure 16: A four boundary wormhole with horizons H,, a = 1,...4 (¢yan, brewn, pink, purple)
and internal cycles I, b = 1,2 (orange,blue) depicted. Here, I} < Hy % Hy, H3 + H, and so
I, is the RT surface for regions 1 & 2 and regions 3 & 4. A correspond\ing holographic state
(right) is depicted, with colour-coded horizons and emphasised internal cy€les indicated. Having
|I1| < |Hy|+ |Hs| constrains S(1U2) < |I1]Inx = 31nx. In gontrast, for a Haar random blob we
would have S(1U2) < In(dim(H; @ Hz)) = 5lnx.

boundary, whereas for higher temperatures we expeetsto be able to reconstruct information in
the causal shadow with only subsets of the boundary. Examples of this behaviour are illustrated
in figure 17 a) and b).
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