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Abstract 30 

The measurement and tracking of body movement within musical performances can provide 31 

valuable sources of data for studying interpersonal interaction and coordination between 32 

musicians. The continued development of tools to extract such data from video recordings 33 

will offer new opportunities to research musical movement across a diverse range of settings, 34 

including field research and other ecological contexts in which the implementation of 35 

complex motion capture systems is not feasible or affordable. Such work might also make 36 

use of the multitude of video recordings of musical performances that are already available to 37 

researchers. The present study made use of such existing data, specifically, three video 38 

datasets of ensemble performances from different genres, settings, and instrumentation (a pop 39 

piano duo, three jazz duos, and a string quartet). Three different computer vision techniques 40 

were applied to these video datasets—frame differencing, optical flow, and kernelized 41 

correlation filters (KCF)—with the aim of quantifying and tracking movements of the 42 

individual performers. All three computer vision techniques exhibited high correlations with 43 

motion capture data collected from the same musical performances, with median correlation 44 

(Pearson’s r) values of .75 to .94. The techniques that track movement in two dimensions 45 

(optical flow and KCF) provided more accurate measures of movement than a technique that 46 

provides a single estimate of overall movement change by frame for each performer (frame 47 

differencing). Measurements of performer’s movements were also more accurate when the 48 

computer vision techniques were applied to more narrowly-defined regions of interest (head) 49 

than when the same techniques were applied to larger regions (entire upper body, above the 50 

chest or waist). Some differences in movement tracking accuracy emerged between the three 51 

video datasets, which may have been due to instrument-specific motions that resulted in 52 

occlusions of the body part of interest (e.g. a violinist’s right hand occluding the head whilst 53 

tracking head movement). These results indicate that computer vision techniques can be 54 

effective in quantifying body movement from videos of musical performances, while also 55 

highlighting constraints that must be dealt with when applying such techniques in ensemble 56 

coordination research.  57 

 58 
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1. Introduction 67 

The extraction and quantification of human movement data from musical performances offers 68 

a range of potential uses to researchers of musical interaction. Movement data from 69 

performers can be instrumental to research on interpersonal synchrony and entrainment 70 

between musicians, leader-follower relationships within an ensemble, and musical gestural 71 

analysis, to name just a few examples. Extraction of such data from video recordings can be 72 

particularly useful in situations where more complex or costly motion capture technologies 73 

are not feasible, such as field research and various other ecological performance contexts 74 

(e.g., gigs at nightclubs, rehearsals in music practice rooms, ritual ceremonies and religious 75 

events, etc.). One area that offers a variety of promising techniques for extracting features of 76 

human movement from video is the field of computer vision (Moeslund and Granum, 2001). 77 

The work of computer vision scientists is focussed around developing computational methods 78 

that perform similar tasks to the human visual system using digital images and videos, 79 

including object recognition, event detection, object tracking, and motion estimation (Forsyth 80 

and Ponce, 2002). 81 

Researchers have recently begun to test the efficacy of computer vision techniques for 82 

capturing and indexing human body movements during social motor coordination tasks 83 

(Romero et al., 2016) and dance (Solberg and Jensenius, 2016). The work of Romero et al. 84 

(2016) suggests that computer vision methods, as applied to video recordings, can perform 85 

similar tracking of body movements to more expensive techniques, such as motion capture 86 

(MoCap) systems or Microsoft Kinect, under certain conditions. This is advantageous, as 87 

specialised MoCap technologies are not only costly, but can also be invasive in that markers 88 

need to be fixed to a person’s body (or for some systems a specialised suit needs to be worn), 89 

time-consuming in terms of set-up and calibration procedures, and difficult to implement in 90 

ecological settings outside of specialised motion capture laboratories. Previous research has 91 

revealed that the conditions under which computer vision methods applied to video most 92 

closely approximate MoCap tracking in terms of body movement quantification include a 93 

fixed video camera angle (e.g., no zooming or panning), stable lighting within the recording 94 

setting, no other movements occurring in the background, and the separation of participants 95 

in space so as to avoid occlusions or the movements of one participant being included in the 96 

analysis space of another (Paxton and Dale, 2012; Romero et al., 2016). However, limitations 97 

of the use of computer vision methods for motion tracking include that these methods have 98 

previously proved more feasible for tracking large-scale, full-body movements than 99 

movements of individual body parts (Paxton and Dale, 2012; Romero et al., 2016) and only 100 

measure movements in two dimensions (cf. MoCap and sensors such as accelerometers, 101 

which measure movements in three dimensions). Additionally, computer vision techniques 102 

are generally applied to data sources with a lower temporal resolution than MoCap 103 

technologies; standard video recordings tend to be recorded at a frame rate of around 25 104 

frames per second (fps), whereas MoCap data is often recorded in the range of 100 to 200 105 

fps.  106 

Music performance serves as another highly relevant case for testing the capabilities of 107 

computer vision techniques, as group music making employs a variety of movement cues to 108 
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facilitate the coordination of timing and expressivity between performers. This coordination 109 

of timing and expressivity is sometimes referred to as interpersonal entrainment (Clayton et 110 

al., 2005). When producing video recordings of musical performances it is also often possible 111 

to implement solutions to minimise some of the challenges to the application of computer 112 

vision techniques listed above. For instance, the lighting and camera angle may be able to be 113 

fixed to a standardised setting throughout a performance and the performers may be situated 114 

within the performance space such that they do not occlude one another (at least in small 115 

ensembles). 116 

Coordination in musical ensembles is achieved through the use and integration of both 117 

auditory (instrumental and vocal sounds) and visual (body movement and eye contact) cues. 118 

The accuracy of temporal coordination in the auditory domain is typically in the order of tens 119 

of milliseconds in expert ensemble performance (e.g., Keller, 2014; Rasch, 1988; Shaffer, 120 

1984). The movements that produce these sounds, such as finger movements of a pianist or 121 

bowing movements of a violinist, often evolve at similarly short timescales. In addition to 122 

these instrumental, sound-producing movements that are required in performance, musicians 123 

also make use of a variety of communicative and sound-facilitating movements that can serve 124 

to coordinate timing and expressive intentions between performers (Jensenius et al., 2010). 125 

These ancillary movements (e.g., head nods, body sway) typically evolve over longer 126 

timescales than instrumental movements (e.g. in the order of seconds; Davidson, 2009; 127 

Wanderley et al., 2005). Importantly, systematic relationships have been observed between 128 

coordination at the level of ancillary body movements and musical sounds (Keller and Appel, 129 

2010; Ragert et al., 2013). Thus, the analysis of such movements can provide information 130 

about the overall level of interpersonal coordination within an ensemble performance. In 131 

contrast to acoustic features and instrumental movements, ancillary body movements tend to 132 

generalise across performers regardless of the instrument played and are also prevalent in 133 

vocal performance. Additionally, the fact that ancillary movements tend to take place across 134 

longer timescales than instrumental movements allows them to be tracked within video 135 

recordings despite its lower temporal resolution in comparison to MoCap. Therefore, it is of 136 

great interest to music researchers to measure and analyse ancillary movements from video 137 

recordings of musical performances.  138 

There are a variety of areas within the field of music performance research that may benefit 139 

from the use of computer vision techniques to measure movement data with a view to 140 

quantifying interpersonal coordination. For instance, such techniques could be applied to 141 

study temporal relationships between performers within commercial video recordings of 142 

classical or popular music, or to quantify corporeal interactions between a music or dance 143 

therapist and his/her clients. Ethnomusicologists often make video recordings of musical 144 

performances in ecological settings in which access to sophisticated technologies such as 145 

motion capture is not feasible. Indeed, a large amount of archival material of video recordings 146 

of music performances from across the world already exists. For example, the JVC Video 147 

Anthology of World Music and Dance (JVC, Victor Company of Japan, 1990) comprises 148 

some 30 volumes of field recordings from across the world and the Ethnographic Video for 149 

Instruction & Analysis (EVIA) Digital Archive Project (http://www.eviada.org/default.cfm) 150 
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is a repository of ethnographic videos, including many music performances, which aims to 151 

preserve these materials for the long-term in a digital, online format. As such, if video-based 152 

analysis methods prove to be fruitful in providing new insights about musical interaction, a 153 

large amount of useful research could be done that makes use of such existing video archives 154 

(with the appropriate permissions and taking account of ethical considerations), which could 155 

thereby minimise the costs that are necessarily incurred when collecting new data. The 156 

present study served as a test case in this regard, as it also made use of existing data—in this 157 

case, three existing datasets in which both video and motion capture recordings had been 158 

collected (as reported in Glowinski et al., 2013, Moran et al., 2015, and one previously 159 

unpublished dataset). Our study was therefore able to test whether computer vision 160 

techniques could be used to quantify body movements from video recordings that had 161 

originally been obtained for other research purposes.  162 

The computer vision field offers a diverse range of possible techniques for tracking moving 163 

elements and changes in image sequences that were considered for use in the present study. 164 

As the majority of materials in our datasets of musical performances presented a situation in 165 

which only the to-be-tracked targets (the performers) were moving, we first considered 166 

background subtraction techniques. These techniques aim to distinguish an object(s) (in this 167 

case, the performers) in the foreground from a static background and perform further 168 

processing (e.g., tracking or motion detection) on the foreground object. The background 169 

subtraction-based technique that we applied was frame differencing. Frame differencing is 170 

one of the oldest and most widely-used computer vision techniques, which measures the 171 

overall change in pixels within the foreground from one frame to the next (Wren et al., 1997; 172 

see also Jensenius et al., 2005, for an implementation for studying musical gestures). We then 173 

explored two techniques that provide more detailed information on the direction of motion of 174 

each performer. Specifically, we employed a technique based on the variation of the motion 175 

field, known as optical flow (Farnebäck, 2003), and a technique based on pattern similarity 176 

calculation, known as kernelized correlation filters (hereafter referred to as KCF; Henriques 177 

et al., 2015). Optical flow is a technique that has been widely applied within the computer 178 

vision literature (e.g. Fleet and Weiss, 2006; see also Latif et al., 2014, for an application in 179 

studying interpersonal coordination), whereas KCF is a comparatively recently developed 180 

technique. Both of these techniques were used to track the direction of movement of the 181 

performers by providing both horizontal and vertical position data of each performer within 182 

each frame.  183 

To summarise, in the present project we applied three automated computer vision techniques 184 

(frame differencing, optical flow, and KCF) to a set of video recordings of musical 185 

performances comprising a variety of performers, performance settings, instrumentations, and 186 

musical styles. The aims were 1) to test the robustness of the computer vision techniques for 187 

capturing body movements across the different performance conditions and 2) to test how 188 

closely these techniques were able to capture the actual motion of performers, as indexed by 189 

motion capture data from the same performances. Finally, as previous studies comparing 190 

motion capture data to computer vision techniques have primarily examined full-body 191 

movements (e.g. Romero et al., 2016), we extended this area of research to include analysis 192 
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of video data within predefined regions of interest (i.e., head, upper body) to test whether the 193 

video analysis techniques could also be effective in quantifying movements of specific parts 194 

of the body. If it was found that computer vision techniques could be effectively applied to 195 

measure movement in specific body parts such as the head, this would suggest that in some 196 

cases it may be possible to differentiate sound-producing, instrumental movements from 197 

sound-facilitating, ancillary movements of musical performers by isolating a part of the body 198 

that does not play a role in both types of movement (e.g., a guitar or cello player does not 199 

typically use head movements to produce sounds but rather for communicative purposes).  200 

2. Methods 201 

2.1 Materials 202 

The project made use of three existing datasets (see Figure 1), in which both video recordings 203 

and MoCap data of the same musical performances had been collected for other research 204 

purposes.
1
 The first dataset (previously unpublished and hereafter referred to as the “Piano 205 

Duo”) comprised seven songs performed by singer-songwriters Konstantin Wecker and Jo 206 

Barnikel. Wecker has been described as one of Germany’s most successful singer-207 

songwriters, with a career spanning 40 years at the time of the recording, and Barnikel is a 208 

leading film and TV composer who had been accompanying Becker on recordings and 209 

concert tours for over 15 years.  210 

The second dataset consisted of three performances by jazz duos, a subset of the Improvising 211 

Duos corpus described in Moran et al., 2015. In this subset (hereafter referred to as “Mixed 212 

Instrument Duos”), two duos performed free jazz improvisations and one performed a jazz 213 

standard (Autumn Leaves [J. Kosma, 1945]). Performers in these duos were recruited on the 214 

basis of public performance experience of around 10 years in their respective styles. Data 215 

from five of the six performers from this dataset were analysed in respect of performers’ 216 

permissions on data reuse. 217 

The third dataset (“String Quartet”) comprised eight recordings by the Quartetto di Cremona 218 

string quartet performing the first movement of Schubert’s String Quartet No. 14 (“Death and 219 

the Maiden”; Glowinski et al., 2013). Two of these recordings featured only the first violinist 220 

performing his part alone. For the other six recordings, two of the four performers were 221 

selected for whom the least occlusions were observed (i.e. another player was not moving in 222 

front of him/her regularly). In total, the three datasets allowed for the analysis of 33 cases of 223 

10 different performers playing six different instruments (see Table 1).   224 

 225 

-INSERT FIGURE 1 ABOUT HERE- 226 

 227 

                                                 
1
 In all instances the primary focus of the original research was on the collection of MoCap data, thus the 

performance settings were optimised for MoCap data collection and video was collected as a secondary measure 

for reference purposes only.   
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For each of the three datasets, the recordings were made in the same room under similar 228 

performance conditions (e.g. all string quartet recordings were made with performers situated 229 

in a similar position on the same stage using the same video camera and MoCap system). The 230 

Piano Duo and Mixed Instrument Duos were both recorded at the Max Planck Institute in 231 

Leipzig, Germany, using a Vicon Nexus 1.6.1 optical motion capture system with ten 232 

cameras and a sampling rate of 200 Hz. A SONY HDR-HC9 camera was used to make the 233 

video recordings. The video files were recorded in AVI format at a frame rate of 25 fps and 234 

frame size of 720 x 576 pixels. The String Quartet was recorded at Casa Paganini Research 235 

Centre (University of Genova, Italy), using a Qualisys Oqus300 motion capture system with 236 

eleven cameras and a sampling rate of 100 Hz. A JVC GY-HD-251 camera was used to 237 

capture video of the performances. The video files were recorded in AVI format at a frame 238 

rate of 25 fps and frame size of 720 x 576 pixels. 239 

 240 

-INSERT TABLE 1 ABOUT HERE- 241 

 242 

2.2 Analysis 243 

2.2.1 Motion capture data 244 

All MoCap data were processed using the MoCap Toolbox (Burger and Toiviainen, 2013) in 245 

Matlab. Each dataset was first rotated in order to orient the MoCap data to the same 246 

perspective as the camera angle of the video recording. This was done manually by 247 

inspecting animations generated from the MoCap data in comparison to the video recording 248 

(see Figure 2). Once the optimal rotation was achieved, a subset of markers was selected 249 

from each performer, comprising one marker from the head and one from the torso or each 250 

shoulder (if a torso marker was not present, as was the case for the String Quartet). If 251 

multiple markers were present for a specific body part (e.g. four head markers), the marker 252 

for which the least amount of data points were missing was selected. Markers were also 253 

selected in consideration of the camera angle of the video. For instance, if only the back of 254 

the head of a performer was visible in the video, a marker from the back of the head was 255 

selected. The three-dimensional coordinates from each selected marker were saved for further 256 

analysis. The horizontal and vertical coordinates of the MoCap data are subsequently referred 257 

to as the x- and y-dimensions respectively, which were compared to the two-dimensional data 258 

that were derived from the video recordings by the computer vision techniques.  259 

 260 

2.2.2 Video data 261 

The computer vision techniques (frame differencing, optical flow, and KCF) were 262 

implemented in EyesWeb XMI 5.6.2.0 (http://www.infomus.org/eyesweb_ita.php). The first 263 

step when applying each technique was to manually define relevant regions of interest (ROIs) 264 

on which to apply the technique to each video. A rectangular ROI was selected around each 265 
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performer whilst ensuring that only that individual performer was serving as the main source 266 

of motion in the ROI (see Figure 2). This was generally achieved to a high standard, although 267 

there were a few cases in which the hands or bows of another performer occasionally moved 268 

into the ROI in the  Piano Duo and String Quartet. Two sets of ROIs were defined for each 269 

performer in each video—a larger ROI that comprised the upper body (from the mid-chest or 270 

the waist up to the top of the head, depending on how much of the performer could be seen in 271 

the video
2
) and a smaller ROI around the head only. Frame differencing and optical flow 272 

were both applied using the same sets of upper body and head ROIs for each video. A slightly 273 

different set of upper body and head ROIs were defined for KCF, due to the way this 274 

technique is implemented. In typical implementations of KCF, the entire ROI moves 275 

dynamically throughout the process of tracking the performer. Conversely, frame 276 

differencing and optical flow were applied on static ROIs that do not move during the 277 

analysis process. As such, larger ROIs were needed that could encompass the whole range of 278 

movement of a performer for frame differencing and optical flow, whereas KCF is more 279 

suited to smaller ROIs since the ROI shifts from frame to frame.  280 

In frame differencing, the foreground, i.e. the moving element(s) of interest (in this case, the 281 

performers), is separated from the background and further processing is performed on the 282 

foreground. In the present study, frame differencing was implemented using the Pfinder 283 

algorithm of Wren et al. (1997). A version of this algorithm has previously been implemented 284 

in EyesWeb for studying interpersonal musical coordination in Indian duos (Alborno et al., 285 

2015). The Pfinder algorithm uses adaptive background subtraction, in which the background 286 

model that is subtracted from the foreground is constantly updated throughout the analysis 287 

process. The speed at which the background model is updated is determined by the alpha 288 

constant, which was set in the present study to 0.4, following an optimisation process in 289 

which this parameter was manually adjusted to a range of values and tested on a subset of the 290 

present videos. The analysis that was performed on the foreground elements measures the 291 

overall Quantity of Motion (QoM) in each ROI for each frame, which is computed based on 292 

the number of pixels that change in the foreground from one frame to the next. This analysis 293 

produces one column of output values for each performer.  294 

Optical flow is the distribution of apparent velocities of movement of brightness patterns in 295 

an image. In optical flow, characteristics such as edges or angles are identified within each 296 

section of the video frame. In the next frame, such characteristics are sought again. A speed is 297 

then associated to each pixel in the frame; the movement is determined by the ratio between 298 

the distance in pixels of the displacement of the characteristic in question and the time 299 

between one frame and another. The version of optical flow that was implemented in the 300 

present study is known as dense optical flow
3
 and is based on the algorithm of Farnebäck 301 

                                                 
2
 In some cases the waist of a performer could not be seen, as it was behind their instrument (e.g. for some 

pianists).  
3
 Traditional optical flow methods (e.g. as implemented by Lucas and Kanade (1981)) compute optical flow for 

a sparse feature set, i.e. using only specific parts of the image, such as detected corners. Dense optical flow, as 

implemented by Farnebäck (2003), performs optical flow computation on all pixels in the image for each frame. 

The use of dense optical flow can increase the accuracy of the optical flow results, with a tradeoff of slower 

computation speed.  
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(2003). This technique has previously been implemented in EyesWeb in work of Alborno et 302 

al. (2015) on Indian music duos, as well as to develop a “virtual binocular” installation in 303 

which users' movements are tracked and estimated by computation of optical flow on the face 304 

(Camurri et al., 2010). A similar optimisation procedure was followed to that used for frame 305 

differencing in which the “pyramid layers” parameter was adjusted to a range of values and 306 

tested on a subset of the present videos. This parameter allows for the tracking of points at 307 

multiple levels of resolution; increasing the number of pyramid layers allows for the 308 

measurement of larger displacements of points between frames but also increases the number 309 

of necessary computations. The optimal value that was selected for this parameter was 12. 310 

The resulting output that was provided by the optical flow analysis was two columns of data 311 

per performer, which represent movement of the barycentre of the ROI along the x- 312 

(horizontal) and y- (vertical) axes. The barycentre of the ROI is computed based on pixel 313 

intensities. The video image is converted to greyscale and the barycentre coordinates are 314 

calculated as a weighted mean of the pixel intensities within the ROI; this is done separately 315 

for the x- and y-dimensions. 316 

KCF is a relatively recently developed tracking technique (Bolme et al., 2009), based on 317 

older correlation filter methods (Hester, 1980), that works using pattern similarity 318 

calculations on a frame-by-frame basis. KCF was implemented in EyesWeb
4
 in the present 319 

study using the OpenCV C++ implementation
5
 of the algorithm of Henriques et al. (2015). 320 

When the KCF algorithm is initialised, a visual tracker is placed at the centre pixel of the pre-321 

defined ROI for the first frame of the video. In the second frame, similarity and classification 322 

computations are performed by searching for the set of pixels with the maximum correlation 323 

to the initial tracker position in terms of its multi-channel RGB colour attributes, and so on 324 

for each subsequent frame. In effect, this allows the technique to track the movement of the 325 

performers across the ROI. Similarly to optical flow, the output of the KCF analysis is two 326 

columns of data per performer, which represent movement of the barycentre of the ROI along 327 

the x- and y-axes. In this case, since the ROI moves dynamically with the performer, the 328 

barycentre that is used is the geometric barycentre at the intersection of the two diagonals of 329 

the rectangular ROI.   330 

2.2.3 Motion capture and video comparison 331 

As video data collection was not the primary focus of the original studies, the video and 332 

MoCap data were not synchronised with an external timecode. As such, these two data 333 

sources were aligned in the present study using automated cross-correlational methods. Each 334 

video analysis output from EyesWeb was cross-correlated with its corresponding MoCap 335 

target (e.g. the x-coordinate of the head from the optical flow analysis within the head ROI 336 

was cross-correlated with the x-coordinate of the MoCap head marker). This allowed us to 337 

determine the optimal lag time for each trial, which was defined as the lag at which the 338 

maximum correlation value between the video and MoCap data was reached. The median 339 

optimal lag time from all cross-correlational analyses from the same video (taking account of 340 

                                                 
4
 The KCF block has recently been released within the Image Processing Library of EyesWeb. 

5
 http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html 
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analysis of all position data from both performers in each video) was taken as the optimal lag 341 

time for that particular video. The median optimal lag time across all video and MoCap 342 

pairings in the dataset was 0.05 seconds (range = -0.10 to 0.42 seconds). Before computing 343 

any statistical comparisons between the video and MoCap data, the MoCap data were down-344 

sampled to match the lower sampling rate of the videos at 25 fps, and all video and MoCap 345 

data outputs were de-trended and normalised. Figure 2 depicts the data preparation and 346 

extraction process for video and MoCap for one example performance from the Mixed 347 

Instrument Duos.  348 

 349 

-INSERT FIGURE 2 ABOUT HERE- 350 

 351 

3. Results 352 

The main focus of the subsequent data analysis was to compare the efficacy of the three 353 

computer vision techniques (frame differencing, optical flow, and KCF) for measuring body 354 

movements of musical performers across the three different datasets ( Piano Duo, Mixed 355 

Instrument Duos, and String Quartet)
6
 and two sets of ROIs (upper body and head). For the 356 

upper body ROI, we compared the outputs of the computer vision analyses to the coordinates 357 

of the torso marker from the MoCap data (or the right shoulder marker, in the case of the 358 

String Quartet
7
) for each trial. For the head ROI, we compared the computer vision data to 359 

the coordinates of the MoCap head marker.  360 

Since frame differencing provides a single, overall estimate of movement of each performer 361 

(rather than two-dimensional tracking), the optical flow, KCF, and corresponding MoCap 362 

data were converted from Cartesian (x and y) to polar (radial and angular) coordinates. We 363 

then computed the absolute change of the radial coordinate on a frame-by-frame basis for 364 

each trial; this absolute change measure was used in subsequent comparisons to the one-365 

dimensional frame differencing results. Both the resultant absolute change data and the QoM 366 

data from frame differencing were kernel smoothed in R using the Nadaraya–Watson kernel 367 

regression estimate with a bandwidth of 1.
8
 The video and MoCap data for each trial were 368 

then compared using correlations (Pearson’s r); a summary of these comparisons is reported, 369 

by dataset, in Table 2.
9
 These descriptive statistics suggest that the two-dimensional tracking 370 

methods (optical flow and KCF) tend to perform more accurately than the more coarse-371 

                                                 
6
 Although the primary research question is focused on evaluating and comparing the three computer vision 

techniques within the two ROIs, “dataset” is also included as an independent variable in subsequent analyses to 

take account of the fact that the three datasets vary on a number of parameters, including setting, recording 

session, lighting, camera angle, and instrumentation.  
7
 This analysis was also tested with the left shoulder marker and the average of the left and right shoulder 

markers, however these analyses revealed similar patterns of results and did not increase the overall correlations. 
8
This smoothing procedure was applied because both the video and MoCap data contained small random 

fluctuations, which were smoothed without tampering with the overall shape of the trajectories. Filtering had a 

minor positive effect on the overall results (mean increase in video/MoCap correlation values of 0.07).  
9
Median values (rather than means) are reported as descriptive statistics throughout this paper due to some non-

normal data distributions and the relative robustness of the median to the presence of statistical outliers. 
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grained method (frame differencing) and that performance of all three computer vision 372 

techniques is improved when concentrated on a smaller ROI (head, as compared to upper 373 

body).  374 

 375 

-INSERT TABLE 2 ABOUT HERE- 376 

 377 

For the data using the upper body ROI, a 3x3 mixed ANOVA was conducted to test the 378 

effects of computer vision technique (frame differencing, optical flow, KCF) and dataset 379 

(Piano Duo, Mixed Instrument Duos, String Quartet) on accuracy of overall movement 380 

measurement (as indexed by the correlation of each video analysis output with the MoCap 381 

data; see Table 2). Prior to entering the correlation values as the dependent variable in the 382 

ANOVA, these values were subjected to a Fisher z-transformation to normalise the 383 

distribution. The ANOVA revealed significant main effects of computer vision technique 384 

(F(2, 60) = 16.51, p < .001, ηp
2
 = .355) and dataset (F(2, 30) = 15.41, p < .001, ηp

2
 = .507), as 385 

well as a significant technique by dataset interaction (F(4, 60) = 18.82, p < .001, ηp
2
 = .557). 386 

Bonferroni-corrected, paired-samples t-tests indicated that optical flow provided a more 387 

accurate measure of performers’ movements than both frame differencing (t(32) = 3.67, p = 388 

.003) and KCF (t(32) = 3.38, p = .006); no significant difference was found between the 389 

frame differencing and KCF techniques. Tukey HSD tests revealed that overall movement 390 

measurements were more accurate for the Piano Duo than both the Mixed Instrument Duos 391 

(mean difference = 0.528, SE = 0.152, p = .004) and the String Quartet (mean difference = 392 

0.583, SE = 0.110, p < .001); no significant difference was found between the Mixed 393 

Instrument  Duos and the String Quartet. Bonferroni-corrected, independent-samples t-tests 394 

indicated that the optical flow technique exhibited more accurate performance for the Piano 395 

Duo than the Mixed Instrument Duos (t(17) = 4.06, p = .009) and the String Quartet (t(26) = 396 

6.80, p < .001). The KCF technique also achieved more accurate performance for the Piano 397 

Duo than the String Quartet (t(26) = 3.39, p = .018).  All other pairwise comparisons of the 398 

three datasets by computer vision technique failed to reach statistical significance.  399 

An analogous 3x3 mixed ANOVA was conducted for the data using the head ROIs. A 400 

significant effect of computer vision technique was found (F(2, 60) = 24.23, p < .001, ηp
2
 = 401 

.447), with no significant effect of dataset (F(2, 30) = 3.14, p = .058, ηp
2
 = .173). The 402 

technique by dataset interaction term was statistically significant (F(4, 60) = 5.59, p = .001, 403 

ηp
2
 = .272). Bonferroni-corrected, paired-samples t-tests revealed that optical flow and KCF 404 

both provided more accurate measures of performers’ movements than frame differencing 405 

(t(32) = 3.88 , p = .001 and t(32) = 8.38, p  < .001, respectively) and KCF provided a more 406 

accurate measure than optical flow (t(32) = 2.77, p = .027). Bonferroni-corrected, 407 

independent-samples t-tests indicated that the optical flow technique achieved more accurate 408 

performance for the Piano Duo than the String Quartet (t(26) = 4.42, p = .001). All other 409 

pairwise comparisons of the three datasets by computer vision technique failed to reach 410 

statistical significance.  411 
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Finally, we compared performance of the computer vision techniques between the upper 412 

body ROI versus the head ROI. A paired-samples t-test indicated that movement 413 

measurement was more accurate overall when restricted to a smaller ROI (the head) than a 414 

larger ROI (upper body), t(98) = 2.54, p = .013.  415 

We next looked in more detail at tracking in the horizontal versus vertical dimensions for 416 

both optical flow and KCF, as compared to the MoCap data. These results are displayed in 417 

Table 3, broken down by tracking dimension. Paired-samples t-tests for both the optical flow 418 

(upper body ROI: t(32) = 6.22, p < .001; head ROI: t(32) = 5.21, p < .001) and KCF data 419 

(upper body ROI: t(32) = 6.82, p < .001; head ROI: t(32) = 5.77, p < .001) indicated that 420 

tracking by the computer vision techniques was significantly more accurate in the horizontal 421 

than the vertical dimension. To probe this difference further, we explored whether the overall 422 

lower performance in vertical movement tracking might be due to the computer vision 423 

techniques also picking up on the missing, third dimension (depth) in which movement can 424 

be made, in addition to the vertical dimension. It is plausible that this might especially be the 425 

case when a performer is orthogonal to the video camera, and thus movement forward and 426 

backward appears in the video as increases or decreases in the size of the performer. We 427 

conducted two sets of regression analyses in which 1) the vertical dimension of the MoCap 428 

data was used as a predictor of the vertical dimension of the video data and 2) the vertical 429 

dimension of the MoCap data and the depth dimension of the MoCap data were used as 430 

predictors of the vertical dimension of the video data. We then computed the change in 431 

adjusted R
2 

values between the two regression analyses. For optical flow analysis, the 432 

adjusted R
2 

values for the Mixed Instrument Duos and String Quartet only increased on 433 

average by 0.03 and 0.06 respectively when taking the third MoCap dimension into account. 434 

In both of these datasets the performers were viewed from the side or were situated 435 

diagonally with respect to the camera (see Figure 1). However, in the Piano Duo, where the 436 

performers were seated orthogonally to the camera (see Figure 1), the R
2 

values of the 437 

regression models increased on average by 0.22 when the depth dimension of the MoCap 438 

data was added as a predictor in addition to the vertical dimension. Although all of the 439 

increases in adjusted R
2 

values were statistically significant (Mixed Instrument Duos: t(9) = 440 

2.59, p = .029; String Quartet: t(27) = 3.92, p = .001;  Piano Duo: t(27) = 3.99, p < .001), the 441 

raw adjusted R
2 

values indicate that the inclusion of the depth dimension made the most 442 

substantial contribution to explaining the previously unaccounted variance in the  Piano Duo. 443 

A similar pattern emerged for the KCF data (adjusted R
2
 change values:  Piano Duo = 0.13, 444 

Mixed Instrument Duos = 0.03, String Quartet = 0.06). This change was statistically 445 

significant within the  Piano Duo (t(27) = 3.95, p = .001) and String Quartet datasets (t(27) = 446 

3.44, p = .002) but not the Mixed Instrument Duos (t(9) = 2.12, p = .063). 447 

 448 

-INSERT TABLE 3 ABOUT HERE- 449 

 450 

4. Discussion 451 
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The results of the present study indicate that the quantification of movement of musical 452 

performers from video using computer vision techniques closely approximates measurements 453 

from more sophisticated and costly technologies such as motion capture systems under 454 

certain conditions. Specifically, frame differencing, optical flow, and KCF techniques all 455 

achieved generally high correlations with MoCap data collected from the same musical 456 

performances, with median correlation values of .75 to .94, depending on the ROI, dataset, 457 

and computer vision technique. These results are in line with the work of Romero et al. 458 

(2016), who found specifically that frame differencing methods could provide a close 459 

approximation to MoCap data when tracking movement during social coordination tasks 460 

involving tapping, pointing, and clapping. It should also be noted that the promising results of 461 

the present study were obtained despite the fact that the video datasets were originally 462 

collected as a secondary measure to MoCap and the performance settings were not optimised 463 

with video data collection or computer vision analysis in mind. This suggests that the 464 

performance of these computer vision techniques might improve even further when working 465 

with video data that is optimised for the present research purposes, but also that existing 466 

video corpora that have been compiled for other aims could still provide promising data 467 

sources for subsequent research in which quantification of movement from video is required.  468 

Our results also extend previous research (e.g., Paxton and Dale, 2012; Romero et al., 2016) 469 

by suggesting that the more recently developed, two-dimensional tracking techniques (optical 470 

flow and KCF) tend to outperform the older method of frame differencing. In addition, 471 

tracking of the head within the head ROI was more accurate overall than tracking of the torso 472 

within the upper body ROI. The KCF technique in particular displayed marked performance 473 

improvements in comparison to the other two techniques when constrained to the head ROI 474 

as compared to the upper body. A plausible explanation for the improved performance within 475 

the head ROIs is that the larger ROIs set around the upper body contain a variety of sources 476 

of movement, including not just torso movement but head movement and, in some cases, 477 

hands, bows of stringed instruments, etc., thereby resulting in decreased tracking accuracy of 478 

the torso. Researchers aiming to make use of larger ROIs (such as the upper body ROI from 479 

our study) to address particular research questions in the future might note that we were still 480 

able to provide a reasonable approximation of overall movement of musical performers as 481 

compared to MoCap data. However, it can be difficult to differentiate between various 482 

sources of movement within a large ROI, for example, sound-producing/instrument-specific 483 

movements (e.g., movement of the violin bow or shifting of the left hand up and down the 484 

neck of a cello) versus sound-facilitating/ancillary gestures (e.g., head nods or swaying 485 

together in time). Thus, ROI size should be taken into account in future research when the 486 

objective is to track movement from specific body parts or to measure only specific types of 487 

movement. On the other hand, if the objective is to provide an overall estimate of a 488 

performer’s movement and there is no need to clarify the body part from which the 489 

movement originates or its expressive/functional purpose a larger ROI could still be suitable.  490 

Within the present study the two-dimensional computer vision techniques exhibited greater 491 

precision in tracking horizontal than vertical movement. This seems to be at least partially 492 

explained by the missing dimension (depth) that cannot be precisely tracked by video 493 
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analysis methods in the same way as afforded by MoCap. The implication of this finding is 494 

that studies which aim to track precise directionality of vertical movement such as head nods 495 

might encounter a certain degree of measurement error, whereas horizontal movements such 496 

as side-to-side swaying can be tracked with a greater degree of spatial precision. However, 497 

combining these two tracking dimensions into polar coordinates (as in Table 2) tends to 498 

provide a good approximation of the overall movement of a performer, with median 499 

correlations above .80 for the upper body ROI and above .90 for the head ROI in both optical 500 

flow and KCF. Another possible avenue for future research would be to record video of 501 

musical performances using multiple camera angles in an attempt to recover the missing third 502 

dimension that cannot be measured from the present video data. 503 

Some differences between the three datasets emerged, particularly in regard to the upper body 504 

ROI. In general, measurements of performers’ movements were more accurate for the  Piano 505 

Duo than the String Quartet and, in some cases, the Mixed Instrument Duos. This may be 506 

due, at least in part, to the fact that within the String Quartet dataset and certain examples 507 

from the Mixed Instrument Duos (cellist and double bassist), the bows of the violinist/violist 508 

and the left hands of the cellist/double bassist often entered the ROIs and created an extra 509 

source of motion that could be picked up by the computer vision techniques. This was the 510 

case even when the ROI was focused around the head, as the bow or left hand sometimes 511 

occluded the face. These cases provide examples of a discrepancy in differentiating the 512 

sound-producing, instrumental movements of a performer from ancillary movements of the 513 

head, and highlight that the specific demands and idiosyncrasies of performing on certain 514 

instruments should be taken into account when conducting research that aims to quantify 515 

musicians’ movements from video. In the case of the string quartet, a different camera angle 516 

could be considered to avoid occlusions within the ROI. Or, depending on the research 517 

question of interest, other body parts could be tracked that do not present this occlusion 518 

problem, for instance, the tapping of performers’ feet in time to the music.  519 

It should also be noted that some of the differences in movement tracking/quantification 520 

accuracy between the three datasets could have arisen from differences in the video source 521 

material, such as lighting, camera angle, and distance of the performers from the camera. 522 

Future research should aim to test the independent contributions of each of these factors. 523 

Additionally, there may have been fundamental differences between the types of ancillary 524 

movements that performers in the different datasets made, which could be affected both by 525 

the instrument being played and the musical style itself (e.g. free jazz improvisation and 526 

notated string quartets might require different types of communicative gestures for different 527 

purposes). Although classifying movement types is beyond the scope of the present study, 528 

future research could also test whether certain classes of body movements are more 529 

accurately tracked than others. 530 

These results open new avenues for researchers of musical movement. In our own future 531 

research we aim to apply some of these computer vision techniques to examine how the 532 

relationships between the movements of co-performers stabilise or change over time and how 533 

these corporeal relationships affect audience appraisals of a performance. We also aim to 534 

conduct cross-cultural comparisons of what it means to “play in time together” within 535 
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different musical traditions, using music that is performed for a variety of different functions 536 

(e.g., rituals, dance, concert performance, etc.; Clayton, 2013). Additional possible 537 

applications of these computer vision techniques for future research could include the study 538 

of leader-follower relationships, the relationship between visual movement coordination and 539 

synchrony/asynchrony in the auditory modality, and studies of movement coordination 540 

differences between expert versus novice performers.  541 

 542 
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Figure captions 647 

Figure 1. Screenshots of one example video from each of the three datasets.  648 

Figure 2. An example of the data preparation and extraction process from the Mixed 649 

Instrument Duos. The left panel shows the selection of ROIs for the head of each performer 650 

and a corresponding head marker from the MoCap data. The right panel shows the KCF data 651 

and MoCap trajectories for the x- and y-coordinates of each performer’s head as time series.  652 
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Table 1. Summary of Performance Details for Each Dataset 672 

Dataset No. of 

video 

recordings  

No. of 

different 

performers  

No. of 

trials 

analysed* 

Instrumentation Mean 

Duration in 

seconds (SD) 

Piano Duo 7 2 14 two pianists/ 

vocalists 

119.68 (1.78) 

Mixed 

Instrument 

Duos 

3 5 5 cellist, soprano 

saxophonist, 

double bassist, 

two pianists 

76.08 (43.14) 

String Quartet 8 3 14 violinist, 

violist, cellist 

125.74 (22.92) 

Total 18 10 33 6 instruments 115.11 (27.70) 
*Note: A trial was defined as one video-recorded performance by one performer.  673 
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Table 2. Median Correlations between the Computer Vision and Motion Capture Data  695 

Region of 

Interest 

Dataset Number 

of trials 

FD: Median 

correlation 

(SD) 

OF: Median 

correlation 

(SD) 

KCF: Median 

correlation (SD) 

Upper Body Piano Duo 14 .80 (0.14) .98 (0.07) .89 (0.09) 

 Mixed 

Instrument Duos 

5 .71 (0.16) .85 (0.06) .80 (0.07) 

 String Quartet 14 .77 (0.08) .75 (0.26) .77 (0.25) 

 All Datasets 33 .75 (0.13) .87 (0.22) .84 (0.20) 

Head Piano Duo 14 .73 (0.18) .94 (0.03) .95 (0.06) 

 Mixed 

Instrument Duos 

5 .72 (0.17) .92 (0.13) .92 (0.18) 

 String Quartet 14 .83 (0.13) .80 (0.21) .94 (0.07) 

 All Datasets 33 .79 (0.16) .91 (0.17) .94 (0.10) 
Note: FD = Frame Differencing, OF = Optical Flow, KCF = Kernelized Correlation Filters; x- and y-coordinates 696 
are combined into polar coordinates for motion capture, OF, and KCF data 697 
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Table 3. Median Correlations between the OF/ KCF and Motion Capture Data, by Dimension 716 

Technique Region of 

Interest 

Dataset Number 

of trials 

Median 

correlation, x-

dimension 

(SD) 

Median 

correlation, y-

dimension (SD)  

OF Upper Body Piano Duo 14 .98 (0.06) .93 (0.45) 

  Mixed Instrument 

Duos 

5 .85 (0.05) .66 (0.55) 

  String Quartet 14 .74 (0.25) .39 (0.28) 

  All Datasets 33 .87 (0.22) .65 (0.41) 

 Head Piano Duo 14 .94 (0.03) .82 (0.22) 

  Mixed Instrument 

Duos 

5 .91 (0.11) .85 (0.05) 

  String Quartet 14 .81 (0.20) .57 (0.17) 

  All Datasets 33 .92 (0.16) .75 (0.21) 

KCF Upper Body Piano Duo 14 .86 (0.10) .62 (0.34) 

  Mixed Instrument 

Duos 

5 .79 (0.07) .45 (0.51) 

  String Quartet 14 .75 (0.24) .33 (0.41) 

  All Datasets 33 .80 (0.19) .55 (0.41) 

 Head Piano Duo 14 .96 (0.04) .60 (0.28) 

  Mixed Instrument 

Duos 

5 .91 (0.17) .78 (0.09) 

  String Quartet 14 .93 (0.07) .80 (0.17) 

  All Datasets 33 .94 (0.09) .78 (0.22) 
Note: OF = Optical Flow, KCF = Kernelized Correlation Filters 717 
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