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Abstract Erlandsson and Zakeri gave a very precise description of theMargulis region asso-
ciated to cusps of hyperbolic 4-manifolds associated to screw-parabolic maps. We give some
bounds on the asymptotic shape of these regions that improve on the results of Erlandsson
and Zakeri. We also describe similar regions coming from work of Waterman. Finally, we
generalise these results to complex hyperbolic 2-space.
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1 Introduction

1.1 Background and motivation

Let � be a discrete subgroup of PSL(2,C) and suppose that �∞, the stabiliser of ∞ in
�, contains the translation A(z) = z + t where, without loss of generality, t is a positive
real number. The Margulis lemma implies that there is a universal ε > 0 so that the horoball
(based at∞) inH3

R
where the hyperbolic translation length of A is less than ε has the property

that this horoball is disjoint from all its images under elements of � not fixing ∞. That is,
this horoball is precisely invariant under �∞ in �. The Shimizu-Leutbecher lemma, which
is a particular case of Jørgensen’s inequality, quantifies this statement. Specifically, it says
that if �∞ contains A(z) = z+ t then the horoball Ht = {

(x1, x2, x3) : x3 > t
}
is precisely

invariant under �∞ in �.
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In higher dimensions there are parabolic isometries fixing ∞ that are not translations.
These screw motions translate along an axis and rotate the orthogonal complement of this
axis. Of particular interest are those where the rotation has infinite order. Given such a screw
motion A acting on Hn

R
with n ≥ 4, Ohtake [9] showed that for any horoball H in Hn

R
, one

may construct a discrete group � containing A and an element B so that B(H) ∩ H �= ∅.
The key point is the centre of the isometric sphere of B must be a long way from from the
axis of rotation of A. Waterman [12] quantified this and showed that the permissible radius
R of an isometric sphere is bounded by a function that asymptotically is a linear function of
the distance r from the axis of rotation. A sub-horospherical region based at ∞ is a region
contained in a horoball in Hn

R
based at ∞ but which does not itself contain a horoball. It is

straightforward to use Waterman’s result to construct a precisely invariant sub-horospherical
region whose boundary function is asymptotically a linear function of the distance from the
axis of rotation as well; see Proposition 3.8 or [3].

In a beautiful paper, Erlandsson and Zakeri [2], following earlier work by Susskind [11],
have considered the case of real hyperbolic 4-space H4

R
. They consider discrete groups

containing a screw parabolic map A with rotation angle 2πα, where α is irrational. By
examining the continued fraction expansion ofα, they are able to show that there is a precisely
invariant sub-horospherical region whose boundary function grows asymptotically like the
square root of the distance to the rotation axis.

Roughly speaking, the argument is the following. The sub-horospherical regions corre-
sponding to a power Aq of A is a bowl whose cross-section is a hyperbola. As the powers
q of A increase, so the heights of the centres of these bowls increase. However, the closer
2πqα comes to being a multiple of 2π , the flatter the bowls become. Therefore, very far from
the axis of A, a better bound may be obtained by considering extremely flat bowls that may
be very high (see Figure 1 of Susskind [11] for example). The precise relationship between
the size of q with the height and the degree of flatness of the bowls is determined by the
continued fraction expansion of the irrational number α.

The sub-horospherical region constructed by Erlandsson and Zakeri is quite complicated
and depends heavily on the continued fraction expansion of the rotation angle. Therefore,
they are only able to give the asymptotic behaviour of the boundary of their sub-horospherical
region, mostly without constructing actual functions or constants. The purpose of this paper
is to give a sub-horospherical region that is slightly smaller than the one constructed by
Erlandsson and Zakeri, but which is given by a reasonably well behaved function. This
enables us to give much better information about the asymptotic behaviour of such a region.

Precisely invariant sub-horospherical regions coming from generalisations of Shimizu’s
lemma in complex hyperbolic space H2

C
have been given by Cao and Parker [1] (see also

Jiang and Parker [7] and Kamiya and Parker [8] for different statements along similar lines).
It is natural to ask whether Erlandsson and Zakeri’s methods can be applied in this case.
This was done by Ren et al. [10], who give a sub-horospherical region whose boundary is
asymptotically linear in the distance to the axis.We use similar methods to the real hyperbolic
case to give complex hyperbolic estimates which improve those given by Ren, Wang and
Xie. We also exhibit an unbounded sequence of points in the Margulis region that all lie on
the same horosphere.

1.2 Summary of results for real hyperbolic 4-space

Suppose that A ∈ Isom(H4
R
) is parabolic. This means its only fixed point lies on ∂H4

R
. Using

the upper half space model of H4
R

= {
(x1, x2, x3, x4) ∈ R

4 : x4 > 0
}
, we may assume

without loss of generality that A fixes the point ∞. This means that it acts on the upper
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half space as a Euclidean isometry without fixed points. Such maps are either translations
or else they are screw motions, which means there is a Euclidean line � ∈ ∂H4

R
so that A

translates along � and rotates the orthogonal complement of �. Applying Euclidean isometries
if necessary, we may assume that � is the x3 axis. In which case, it is convenient to use
cylindrical polar coordinates (r, θ, v, u), which correspond to

(
r cos(θ), r sin(θ), v, u

) ∈ R
4.

In these coordinates:

H4
R

=
{
(r, θ, v, u) : u > 0

}
.

Using the normalisation given above, we may define the screw parabolic map A = Aα,t :
H4

R
−→ H4

R
by

A = Aα,t : (r, θ, v, u) 	−→ (r, θ + 2πα, v + t, u). (1)

Note that this differs from equation (7) of [2] since Erlandsson and Zakeri assume that t = 1.
We prefer to keep t arbitrary and to give formulae that are homogeneous in r, v (that is in
t) and u. Let Uqα,qt be the region in H4

R
where, for an integer q ≥ 1, the map A±q moves

points by a hyperbolic distance at most ε. This region is given by:

Uqα,qt =
{
(r, θ, v, u) ∈ H4

R
: u > c(ε)

√
4 sin2(πqα)r2 + q2t2

}

where c(ε) = 1/2 sinh(ε/2); compare equation (9) of [2]. We take ε to be (at most) the
Margulis constant for H4

R
(see Sect. 3.1 for detailed definitions of the above quantities).

Following Erlandsson and Zakeri (equation (10) of [2]) define the boundary function
Bα,t (r) by

Bα,t (r) = c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t2 (2)

(Note that this formula is homogeneous in r, v and u since t behaves like v and Bα,t (r)
behaves like u. More precisely, for all k > 0 we have Bα,kt (kr) = kBα,t (r).) From this, we
define the sub-horospherical region

Tα,t =
⋃

q≥1

Uqα,qt =
{
(r, θ, v, u) ∈ H4

R
: u > Bα,t (r)

}
.

The geometrical meaning of Tα,t is that the point (r, θ, v, u) lies in Tα,t if and only if there is
a power Aq of Amoving this point a hyperbolic distance at most ε. In other words, Tα,t is one
component of the corresponding Margulis region (see Sect. 3.2 for more details). Erlandsson
and Zakeri prove the following theorem about the boundary function:

Theorem 1.1 (Theorem A of Erlandsson and Zakeri [2])

(1) For every irrational α and t > 0, the boundary function Bα,t satisfies the asymptotic
upper bound

Bα,t (r) ≤ const.
√
r

for large r . Moreover, when r ≥ √
2 q27 one can take the constant to be at most

c(ε)
√

(8π2 + 1)24π t/
√
3 < 1000

√
t

where ε is the Margulis constant and c(ε) = 1/
(
2 sinh(ε/2)

)
.
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(2) If α is Diophantine of exponent ν ≥ 2, then Bα,t satisfies the following lower bound for
large r

Bα,t (r) ≥ const. r1/(2ν−2).

Note that in both cases the constant depends on t , but this is not immediately apparent
from [2] since the authors have normalised t = 1. Using scaling by loxodromic maps fixing
∞ it is clear how to make the constants depend on t so that the formulae are homogeneous
(that is Bα,kt (kr) = kBα,t (r) for all k > 0).

As well as the Margulis region, we want to have a region which does not depend on ε. We
show, Proposition 3.8, that for any discrete group � with �∞ = 〈A〉, for all q ∈ Z−{0} with
4| sin(πqα)| < 1/2 the sub-horospherical region Ûqα,qt is precisely invariant under �∞ in
� where

Ûqα,qt =
{

(r, θ, v, u) ∈ H4
R

: u >

√
4 sin2(πqα)r2 + q2t2


R

(
4| sin(πqα)|) .

}

where 
R(X) is the following function of X ∈ [0, 1/2]:


R(X) =
(
1 + √

1 − 2X
)2 − X2

4
,

Now let T̂α,t be the union of the regions Ûqα,qt over all q ≥ 1 for which 4| sin(πqα)| < 1/2.
That is

T̂α,t =
⋃

q

Ûqα,qt =
{
(r, θ, v, u) ∈ H4

R
: u > B̂α,t (r)

}

where

B̂α,t (r) = inf
q

√
4 sin2(πqα)r2 + q2t2


R

(
4| sin(πqα)|) . (3)

and the infimum is taken over all integers q ≥ 1 for which 4| sin(πqα)| < 1/2.
A key observation (see Lemma 3.1) is that the infimum in Eqs. (2) and (3) is attained

when q is the denomenator qn of one of the rational convergents of α. These denominators
are a strictly increasing sequence of integers. Given N ∈ N, it will be useful to consider a
constant λN so that qn/qn+1 ≤ λN for all n ≥ N . Since the qn are increasing, we may always
take λN = 1. See Sect. 2 below for more about the properties of rational convergents and
Sect. 3.3 for more about λN , together with some examples.

Theorem 1.2 Let ε denote the Margulis constant for H4
R
and let c(ε) = 1/

(
2 sinh(ε/2)

)
.

Let A = Aα,t : H4
R

−→ H4
R
be given by (1) where α is irrational and t > 0. Let pn/qn for

n ∈ N be the rational convergents of α. Given N ∈ N, suppose that λN ∈ (0, 1] is a constant
for which qn/qn+1 ≤ λN for all n ≥ N. Let Bα,t (r) and B̂α,t (r) be the boundary functions
defined by (2) and (3). Then

(1) For all r ≥ q2N t/2π we have

Bα,t (r) < c(ε)
√

(1 + λ2N )2π t
√
r .
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(2) Let α be Diophantine of exponent ν ≥ 2 and let K be the associated constant defined in
(12) below. Then

Bα,t (r) >
c(ε)(4K )1/νν1/2t (ν−1)/ν

(ν − 1)(ν−1)/2ν
r1/ν .

In particular, if ν = 2 then

Bα,t (r) > c(ε)
√
8Kt

√
r .

(3) Suppose that N is chosen so that qN > 8π . Then for all r ≥ q2N t/2π we have

B̂α,t (r) <

√
(1 + λ2N )2π tr


R

(
2
√
2π t/r

)

=
√
1 + λ2N

(√
2π t

√
r + 2π t + O(r−1/2)

)
.

(4) Let r0 > 0 be any positive constant. Then there exists a discrete group � for which
�∞ = 〈A〉 and a point (r, θ, v, u) ∈ H2

R
with r > r0 and u >

√
t/2

√
r that cannot lie

in any precisely invariant sub-horospherical region for �.

Weprove the different parts of this theorem in separate sections. Part (1) is Proposition 3.3,
part (2) is Proposition 3.5, part (3) is Proposition 3.9 and part (4) is Proposition 3.6.

Remark 1.3 (1) Comparing the constants from Theorem 1.1 (1) and Theorem 1.2 (1) with
λN = 1, we have

√
(8π2 + 1)24π t/

√
3√

4π t
=

√
(8π2 + 1)2

√
3 = 9.51454 . . . .

Therefore Theorem 1.2 (1) improves Theorem 1.1 (1) by a factor of 9.51454 . . ..
(2) Note that for ν > 2we have r1/ν > r1/(2ν−2) for all r > 1, and so, forDiophantineαwith

exponent greater than 2, Theorem 1.2 (2) improves the power of r in Theorem 1.1 (2).
(3) The example in Theorem 1.2 (4) and the upper bound from Theorem 1.2 (1) both give a

power of r1/2. Thus this exponent is sharp for any precisely invariant sub-horospherical
region. The upper bound follows from Erlandsson and Zakeri [2] and they also give
an unbounded sequence of points on the boundary of the Margulis region where the
boundary Bα,t (r) grows like r1/2. However, they do not rule out the possibility that
some other precisely invariant sub-horospherical region has slower growth than r1/2.

(4) The examples in Theorem 1.2 (4) only gives points (r, 0, 0, u) lying outside all precisely
invariant sub-horospherical regions for certain values of r . For ν > 2, the discrepancy
between the exponents of r in Theorem 1.2 (2) and (4) is a measure of how the boundary
function Bα,t (r) oscillates.

1.3 Summary of results for complex hyperbolic 2-space

A map A ∈ Isom(H2
C
) is parabolic if it has a unique fixed point that lies on ∂H2

C
. Using

the Siegel domain model of complex hyperbolic 2-space we may assume, without loss of
generality, that A fixes ∞. This means that A is either a Heisenberg translation or a screw
parabolic map. In the latter case there is a chain � through ∞ in ∂H2

C
so that A translates

along � and rotates the contact plane at all points of �. We giveH2
C
polar horospherical polar

coordinates:
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H2
C

=
{
(r, θ, v, u) ∈ C × R

2 : u > 0
}
.

Then, without loss of generality, we may suppose that � is the v-axis.
Using the normalisation above, we can then define the screw parabolic map A = Aα,t :

H2
C

−→ H2
C
by

A = Aα,t : (r, θ, v, u) 	−→ (r, θ + 2πα, v + t, u). (4)

Because of the way horospherical coordinates in complex hyperbolic space scale, we
now need formulae that are homogeneous in r2, v and u. We consider the following sub-
horospherical region

UC

qα,qt =
{
(r, θ, v, u) ∈ H2

C
: u > c(ε/2)2

(
4 sin(πqα)r2 + qt

)}
.

This is contained in the region where Aq has Bergman translation length at most ε. Taking
the union over such regions for all powers of A gives

TC

α,t =
⋃

q≥1

UC

qα,qt =
{
(r, θ, v, u) ∈ H2

C
: u > BC

α,t (r)
}

where BC
α,t is the complex hyperbolic boundary function

BC

α,t (r) = c(ε/2)2 inf
q≥1

(
4 sin(πqα)r2 + qt

)
. (5)

In this case, the statement about homogeneity is that BC

α,k2t
(kr) = k2BC

α,t (r) for all k > 0.
We also have versions of these sets that do not depend on ε. Define

T̂C

α,t =
{
(r, θ, v, u) ∈ H2

C
: u > B̂C

α,t (r)
}

where B̂C
α,t is the boundary function

B̂C

α,t (r) = inf
q

4 sin(πqα)r2 + qt


C(4| sin(πqα)|) (6)

and the infimum is taken over all integers q ≥ 1 for which 4| sin(πqα)| < (
√
2− 1)2. Here


C(X) = 1 − 3X + √
1 − 6X + X2

2
.

Ren, Wang and Xie gave the following complex hyperbolic version of Theorem 1.1:

Theorem 1.4 (Theorem 5 of Ren et al. [10]) For every irrational α and t > 0 the boundary
function BC

α,t satisfies the asymptotic upper bound

BC

α,t (r) ≤ const. r.

Moreover, one can take the constant to be at most 1.7 × 106
√
t when r ≥ 21/4 q7.

Our main results can be combined as:
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Theorem 1.5 Let ε > 0 be the Margulis constant forH2
C
and let c(ε/2) = 1/

(
2 sinh(ε/4)

)
.

Let A = Aα,t : H2
C

−→ H2
C
be given by (4) where α is irrational and t > 0. Let pn/qn

be the rational convergents of α. Given N ∈ N, let λN ∈ (0, 1] be a constant for which
qn/qn+1 ≤ λN for all n ≥ N. Let BC

α,t and B̂C
α,t be the boundary functions defined by (5) and

(6). Then

(1) For all r ≥ qN
√
t/4π we have

BC

α,t (r) < c(ε/2)2(1 + λN )2
√

π t r.

(2) Let u0 = 4c(ε/2)2λN t. Then there is an unbounded sequence of points on the horosphere
Hu0 of height u0 that lie in the Margulis region. That is, for any positive constant r0
there exists an integer q ≥ 1 and a point z = (r, θ, v, u0) on Hu0 so that r > r0 and
ρ
(
Aq(z), z

) ≤ ε.

(3) Let N be chosen so that qN > 4π/
(√

2 − 1
)2
. For all r ≥ qN

√
t/4π we have

B̂C

α,t (x) <
(1 + λN )2

√
π t r


C(2
√

π t/r)

= (1 + λN )
(
2
√

π t r + 12π t
) + O(r−1).

The proofs will be broken up into separate pieces. Part (1) is Proposition 4.3, part (2) is
Proposition 4.5 and part (3) is Proposition 4.8.

Remark 1.6 For certain powers q the translation length of Aq is not a monotone function.
The points constructed in Theorem 1.5 (2) only exist for particular values of r , which roughly
correspond to the minima of these translation lengths for some values of q . In Proposition 4.6
we give another unbounded sequence of points lying on horospheres whose heights tend to
infinity with the property that the Bergman translation length of Aqn at all these points is
greater than theMargulis constant for all partial convergents pn/qn of α. However, unlike for
real hyperbolic space, we do not know that the minimum Bergman translation length must
be attained for one of these powers. This means we cannot construct groups analogous to
those in Theorem 1.2 (4). Hence, it is not clear what the optimum exponent of r is among all
precisely invariant subhorospherical regions. Theorem 1.5 only says that this exponent lies
in the interval [0, 1].

2 Continued fractions and Diophantine approximation

One of the main tasks in our proofs is to estimate | sin(πqα)| for fixed irrational α as q ∈ N

varies. Following Erlandsson and Zakeri, we do this using the rational convergents coming
from the continued fraction expansion ofα.We now review the facts about continued fractions
and Diophantine approximation that we need. This material is well known and may be found
in many books. Our main reference is Hardy and Wright [5].

For any real number α the continued fraction expansion of α is

α = a0 + 1

a1 + 1
a2+ 1

a3+···

where an ∈ Z and an ≥ 0 for all n ≥ 1. We write this expansion as

α = [a0; a1, a2, a3, . . .].
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The real number α is rational if and only if the continued fraction expansion has finitely
many terms, that is some aN = 0. In what follows, we always assume α is irrational, which
means α has an infinite continued fraction expansion, and so an ≥ 1 for all n ≥ 1.

Given an irrational number α we can construct a sequence of rational numbers pn/qn ,
called the rational convergents of α, by truncating the continued fraction expansion α =
[a0; a1, a2, a3, . . .] after finitely many steps. That is

pn/qn = [a0; a1, a2, . . . , an]. (7)

In particular, p0/q0 = a0 and p1/q1 = a0 + 1/a1 = (a0a1 + 1)/a1. Thus q0 = 1 and
q1 = a1 ≥ 1. The rational convergents oscillate around α. In particular, Theorems 152 and
154 of Hardy and Wright [5] imply that for all m ≥ 1

p2m
q2m

<
p2m+2

q2m+2
< α <

p2m+1

q2m+1
<

p2m−1

q2m−1
. (8)

It is straightforward to verify that the rational convergents satisfy the following recursion
relations for n ≥ 2:

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2.

The following lemma is a simple consequence of the above recursion property:

Lemma 2.1 (1) q2m ≥ 2m and q2m+1 ≥ 2m for all m ≥ 0.
(2) If an ≥ a ≥ 2 for all n ≥ N then qn/qn+1 < 1/a ≤ 1/2 for all n ≥ N.

The significance of rational convergents is that they provide extremely good approxima-
tions to α. We will make use of the following strong approximation property.

Lemma 2.2 (Theorem 182 of Hardy and Wright [5]) Let α be an irrational number. Then
for all rational convergents pn/qn of α and all rational numbers p/q with 1 ≤ q < qn+1

|qnα − pn | ≤ |qα − p|
with equality if and only if p/q = pn/qn.

We remark that the statement of Theorem 182 of Hardy and Wright [5] only gives this
result for q < qn . However, in the proof they show that if qn−1 < q < qn then |qα − p| >

|qn−1α − pn−1|. This implies our statement by changing n to n + 1.
The following estimate of the error in approximating α by pn/qn will be crucial to our

arguments below.

Proposition 2.3 (Dirichlet, Theorem 171 of Hardy and Wright [5]) Let α be an irrational
number and let pn/qn denote the rational convergents of α. Then for all n ≥ 1 we have:

∣∣∣∣α − pn
qn

∣∣∣∣ ≤ 1

qnqn+1
. (9)

We also need a similar lower bound. This result follows from Theorem 163 and equation
(10.7.4) of Hardy and Wright [5], see also Lemma 2.7 (ii) of Erlandsson and Zakeri [2]:

Lemma 2.4 Let α be an irrational number and let pn/qn denote the rational convergents of
α. Then for all n ≥ 1 we have:

∣∣∣∣α − pn
qn

∣∣∣∣ >
1

2qnqn+1
.
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Our main application of Diophantine approximation will be to estimate the sine of small
angles. We use the following elementary lemma.

Lemma 2.5 For all 0 < x ≤ π/2 we have

2x/π ≤ sin(x) < x .

Thus we have:

Lemma 2.6 Let α be irrational and let pn/qn, with n ∈ N, be its rational convergents. Then
∣∣2 sin(πqnα)

∣∣ < 2π/qn+1. (10)

Proof Multiplying the inequality (9) from Dirichlet’s theorem by πqn , for n ≥ 1 we have
∣∣πqnα − πpn

∣∣ ≤ π

qn+1
≤ π

2
.

Since sin(x) is monotone increasing for 0 ≤ x ≤ π/2 we see that
∣∣2 sin(πqnα)

∣∣ = 2 sin
∣∣πqnα − πpn

∣∣ ≤ 2 sin(π/qn+1) < 2π/qn+1.

The last inequality follows from Lemma 2.6. ��
Since (8) implies α − p2m−1/q2m−1 < 0 < α − p2m/q2m , we can get information about

the sign of sin(πqnα). Combining this information with Lemma 2.6 yields:

−2π/q2m < 2 sin(πq2m−1α) < 0 < 2 sin(πq2mα) < 2π/q2m+1.

We also want to find lower bounds on the sine of small angles.

Lemma 2.7 Let α be irrational and let pn/qn, with n ∈ N, be its rational convergents. Then
∣∣2 sin(πqnα)

∣∣ ≥ 1/qn+1. (11)

Proof Using a similar argument to Lemma 2.6 only using the lower bound for |α − pn/qn |
from Lemma 2.4 gives:

| sin(πqnα)| > sin(π/2qn+1) > (2/π) · (π/2qn+1) = 1/qn+1.

��
A rational number is said to be a Diophantine number of exponent ν ≥ 2 if there exists a

constant K = K (α) > 0 only depending on α so that
∣∣∣∣α − p

q

∣∣∣∣ >
K

qν
(12)

for every rational p/q (where without loss of generality we take q > 0). Since (12) holds
for the case where q = 1, which is |α − p| > K for all p ∈ Z, we see that K < 1/2.

We defineDν to be the set of Diophantine numbers of exponent ν. A theorem of Liouville
(Theorem 191 of Hardy and Wright [5]) says that when α is an algebraic number α is
Diophantine and the exponent ν may be taken to be the degree of its minimum polynomial.
For example, if α is a quadratic irrational then there exists an integer a ≥ 1 so that an ≤ a
for all n ≥ 1. It is then not hard to show (see Theorem 188 of Hardy and Wright [5]) that for
any rational p/q we have

∣∣∣∣α − p

q

∣∣∣∣ >
1

(a + 2)3q2
.
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Lemma 2.8 Let α beDiophantine of exponent ν ≥ 2 and let K be the constant fromEq. (12).
Then for every q ∈ N

|2 sin(πqα)| >
4K

qν−1 .

Proof From Eq. (12) we see that for all rationals p/q

|πqα − πp| >
πK

qν−1 .

Since this is valid for all p ∈ Z we may assume the left hand side is at most π/2. Using the
monotonicity of the sine function on the interval (0, π/2] and Lemma 2.6, we have

|2 sin(πqα)| = 2 sin |πqα − πp| > 2 sin

(
πK

qν−1

)
≥ 2 · 2

π
· πK

qν−1 = 4K

qν−1 .

��

3 Real hyperbolic 4-space

3.1 Sub-horospherical regions

We use the upper half space model of real hyperbolic 4-space H4
R
and we give it cylindrical

polar coordinates (r, θ, v, u), which correspond to
(
r cos(θ), r sin(θ), v, u

) ∈ R
4. In these

coordinates:

H4
R

=
{
(r, θ, v, u) : u > 0

}
.

The (Poincaré) hyperbolic distance ρ
(
x1, x2) between points x1 = (r1, θ1, v1, u1) and x2 =

(r2, θ2, v2, u2) in H4
R
is given by

cosh2
(

ρ(x1, x2)

2

)
=

∣∣r1eiθ1 − r2eiθ2
∣∣2 + (v1 − v2)

2 + (u1 + u2)2

4u1u2
. (13)

For u0 > 0 the horosphere Hu0 and horoball Bu0 based at ∞ of height u0 are defined by:

Hu0 =
{
(r, θ, v, u) ∈ H4

R
: u = u0

}
, Bu0 =

{
(r, θ, v, u) ∈ H4

R
: u > u0

}
.

Let f (r, θ, v) be a positive function bounded away from 0. Then the sub-horospherical region
with boundary function f is the subset of H4

C
given by

{
(r, θ, v, u) ∈ H4

R
: u > f (r, θ, v)

}
.

Let A = Aα,t : H4
R

−→ H4
R
be the screw parabolic isometry of H4

R
defined by (1), that

is:

A = Aα,t : (r, θ, v, u) 	−→ (r, θ + 2πα, v + t, u)

Then for any q ∈ Z the qth power of A is

Aq : (r, θ, v, u) 	−→ (r, θ + 2πqα, v + qt, u) (14)

In what follows we will be especially interested in the case where α is irrational.
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Let � be a discrete subgroup of Isom(H4
C
) and write �∞ for the stabiliser of ∞ in �.

Using Theorem 2.5 of Erlandsson and Zakeri [2], if �∞ contains a screw parabolic map
Aα,t whose rotation angle 2πα is an irrational multiple of π then �∞ is (possibly a finite
extension of) an infinite cyclic group. The finite extension arises because there may be finite
order elliptic elements that pointwise fix the rotation axis of Aα,t . These elliptic elements
have no effect on precisely invariant regions far from the rotation axis. Thus, without loss of
generality, we may assume �∞ is infinite cyclic with generator A = Aα,t . Also, swapping
to A−1 if necessary, we assume t > 0.

A set V is said to be precisely invariant under �∞ in � if A(V ) = V for all A ∈ �∞
and B(V ) ∩ V = ∅ for all B ∈ � − �∞. For any discrete group � with �∞ = 〈Aα,t 〉, our
aim is to construct a sub-horospherical region depending only on α and t that is precisely
invariant under�∞ in�. To that end, thewewill consider sub-horospherical regionsV f whose
boundary functions fα,t depend only on r and not on θ or v. If V f is a precisely invariant
sub-horosherical region with boundary function fα,t (r) and if gα,t (r) is a function of r ≥ 0
depending on α and t for which gα,t (r) ≥ fα,t (r) for all r ≥ 0 then the sub-horospherical
region Vg with boundary function gα,t is contained in V f . Thus B(Vg) ∩ Vg = ∅ for all
B ∈ � − �∞. Since g is independent of α and t then Aq

α,t (Vg) = Vg for all q ∈ Z and so Vg

is also precisely invariant under �∞ in �.
For any k > 0 the Euclidean dilation Dk : H4

R
−→ H4

R
given by Dk(r, θ, v, u) =

(kr, θ, kv, ku) is a loxodromic isometry of H4
R
. We want to give formulae that are invariant

under such dilations. Therefore, we want to find formulae that are homogeneous in r, v and u.
In particular, fα,t (r) should be r times a function of r/t . We note that Erlandsson and Zakeri
normalise t = 1 and so produce inhomogeneous formulae. These can be made homogeneous
by inserting suitable powers of t according to this recipe.

3.2 The Margulis region and the Erlandsson–Zakeri boundary function

A celebrated result of Margulis says (in the case of H4
R
) the following. There is a universal

constant ε > 0 so that for any discrete group � of isometries of H4
R
and any x ∈ H4

R
if

�ε,x =
{
A ∈ � : ρ

(
A(x), x

)
< ε

}

then the subgroup �ε,x of � generated by the the set �ε,x contains a nilpotent subgroup of
finite index. Of course, for many points x ∈ H4

R
the group �ε,x is trivial (or finite). Let M be

the orbifold �\H4
R
and � : H4

R
−→ M = �\H4

R
the canonical projection. The ε-thin part

Mε of the orbifold M is the set of points�(x) ∈ M where �ε,x is infinite. Geometrically this
means that there is a homotopically non-trivial path from �(x) to itself with length at most
ε. Margulis’s theorem says that, again for this universal constant ε, the ε-thin part Mε of M
is the union of Margulis tubes around short geodesics or Margulis cusps around parabolic
fixed points.

We will be interested in the case of Margulis cusps where the group �ε,x contains a screw-
parabolic map A = Aα,t given by (1) with α irrational and t > 0. In this case the parabolic
fixed point is ∞ and �ε,x = �∞ is the cyclic group generated by A. Hence the Margulis
cusp is �∞\Tα,t where

Tα,t =
{
x = (r, θ, v, u) : ρ

(
Aq(x), x

)
< ε for some q ∈ Z

}
.
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Using Eq. (13) we see that the hyperbolic translation length of Aq at the point x = (r, θ, v, u)

is given by

sinh

(
ρ
(
Aq(x), x

)

2

)

=
√
4 sin2(πqα)r2 + q2t2

2u
. (15)

Hence, if Aq translates by a hyperbolic distance less than ε then

u > uqα,qt =
√
4 sin2(πqα)r2 + q2t2

2 sinh(ε/2)
.

We write c(ε) = 1/
(
2 sinh(ε/2)

)
. Note that since A is an isometry, the translation lengths of

Aq and A−q are the same; which may also be seen by sending q to −q in the above formula.
Thus, for a given q ∈ Z, the set on which Aq and A−q have translation length less that ε is

Uqα,qt =
{
(r, θ, v, u) ∈ H4

R
: u > c(ε)

√
4 sin2(πqα)r2 + q2t2

}
.

The set on which there exists a non-zero integer q so that Aq has translation length less that
ε is

Tα,t =
⋃

q≥1

Uqα,qt =
{
(r, θ, v, u) ∈ H4

R
: u > c(ε) inf

q≥1

√
4 sin2(πqα)r2 + q2t2

}
.

This sub-horospherical region is sent by the projectionmap� to the theMargulis cusp around
∞ associated to ε. Thus, it is enough to study the boundary function Bα,t (R) associated to
this region; see equation (10) of Erlandsson and Zakeri:

Bα,t (r) = c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t2.

Following Susskind [11], Erlandsson and Zakeri show that if � is any group of isometries of
H4

R
containing A = Aα,t then Tα,t is precisely invariant under �∞ in �.
For each value of r ≥ 0 the infimum of Bα,t (r) is attained for some value of q . Erlandsson

and Zakeri give a detailed and beautiful analysis of how the value of q where the minimum
is attained varies with q . Their starting point is the following lemma, which gives the link to
continued fractions:

Lemma 3.1 (Susskind [11]; Lemma 3.1 of Erlandsson and Zakeri [2]) If q ≥ 1 attains
the infimum in Bα,t (r) for some r ≥ 0 then q = qn is the denominator of some rational
convergent pn/qn of α.

3.3 An upper bound for the boundary function Bα,t(x)

The problem with the results in [2] is that the exact pattern of which rational convergents
correspond to q = qn attaining the minimum for some r is very complicated and depends
heavily on the arithmetic properties of α. It is then hard to extract geometrical information.
In contrast, we seek to give a universal upper bound on Bα,t (r) and so produce a smaller sub-
horospherical region, but one that works for all irrational α. As in Erlandsson and Zakeri’s
paper [2], we concentrate on what happens when r > r0 > 0 for some r0 (which depends on
α). One can always fill in the solid cylinder where r ≤ r0 with the function corresponding
to a particular value of q , say q = 1. Since our focus is on the behaviour of Bα,t (r) for large
r , we do not go into details of this process here.

The following simple lemma is the main tool we use to produce our estimates.
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Lemma 3.2 Let t > 0. Let α be irrational and let pn/qn, with n ∈ N, be its rational
convergents. Then for all r with

q2n t

2π
≤ r ≤ q2n+1t

2π

we have

4 sin2(πqnα)r2 + q2n t
2 <

(

1 + q2n
q2n+1

)

2π tr.

Proof Using Lemma 2.6 we have

4 sin2(πqnα)r2 + q2n t
2 <

4π2r2

q2n+1

+ q2n t
2

=
(

1 + q2n
q2n+1

)

2π tr +
(
2πr

q2n+1

− t

)
(
2πr − q2n t

)

≤
(

1 + q2n
q2n+1

)

2π tr.

The last inequality is a consequence of (2πr/q2n+1 − t) ≤ 0 ≤ (2πr − q2n t) for the given
range of r . ��

Therefore we have:

Proposition 3.3 Given N ∈ N, suppose that λN ∈ (0, 1] is a constant for which qn/qn+1 ≤
λN for all n ≥ N. Then for all r ≥ q2N t/2π we have

Bα,t (r) < c(ε)
√(

1 + λ2N

)
2π t

√
r .

In particular, taking N = 1 and λ1 = 1, for all r ≥ q21 t/2π we have

Bα,t (r) < c(ε)
√
4π t

√
r .

Proof Let r ≥ q2N t/2π . Since {qn} is a strictly increasing sequence of positive integers, then
there is an n ≥ N for which q2n t/2π ≤ r ≤ q2n+1t/2π . Therefore, using Lemma 3.2, we
have:

Bα,t (r) = c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t

≤ c(ε)
√
4 sin2(πqnα)r2 + q2n t

< c(ε)

√√√√
(

1 + q2n
q2n+1

)

2π t
√
r

≤ c(ε)
√

(1 + λ2N )2π t
√
r .

This is the desired result. ��
The only way the bound in Proposition 3.3 depends on α is through the constant λN ,

which may always be taken to be λN = 1. Given arithmetical information about α we can
often give a value of λN strictly smaller than 1. Here are four typical examples.
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Fig. 1 The graphs of the function from Proposition 3.3 (green) and the functions from [2] (red) in the case
of α = (√

5 + 1
)
/2 = [1; 1, 1, 1, . . .]. In this case we take qN = 2, λN = qN /qN+1 = 2/3 and t = 1.

(Compare Figure 2 of [2]). (Color figure online)

(1) Suppose α = [a0; a1, a2, . . .]with an ≥ a ≥ 2 for all n ≥ N . From Lemma 2.1 we have
qn/qn+1 < 1/a and so then we can take λN = 1/a.

(2) If α = (
√
5 + 1)/2 = [1; 1, 1, 1, . . .] then q0 = q1 = 1 and qn+1 = qn + qn−1. It is

easy to see that for all m ≥ 1:

1

2
= q1

q2
≤ q2m−1

q2m
<

√
5 − 1

2
<

q2m
q2m+1

≤ q2
q3

= 2

3
.

Thus, for all n ≥ 2 we have qn/qn+1 ≤ q2/q3 = 2/3. So we take λ2 = 2/3. We
use this in Fig. 1. Note that we could decrease λ to q2M/q2M+1 by only considering
n ≥ N = 2M and hence we can take λ2M arbitrarily close to

(√
5 − 1

)
/2.

(3) On the other hand, if α = (√
21 + 3

)
/6 = [1; 3, 1, 3, . . .] then q0 = 1, q1 = 3, q2m =

q2m−1 + q2m−2 and q2m+1 = 3q2m + q2m−1. We can then check that for all m ≥ 0:
√
21 − 3

6
<

q2m
q2m+1

≤ q0
q1

= 1

3
<

3

4
= q1

q2
≤ q2m+1

q2m+2
<

√
21 − 3

2
.

Therefore, we take λN = (√
21−3

)
/2. We use this in Fig. 2. In this case, q2m+1/q2m+2

tends to
(√

21− 3
)
/2 as m tends to infinity, so there is no possibility of decreasing λN .

(4) It is not always possible to improve λN = 1. For example, consider α = [a0; a1, a2, . . .]
where a2m = m and a2m+1 = 1. Then

q2m = mq2m−1 + q2m−2 > mq2m−1, q2m+1 = q2m + q2m−1 < q2m + q2m/m.
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Fig. 2 The graphs of the function from Proposition 3.3 (green) and the functions from [2] (red) in the case of
α = (√

21 + 3
)
/6 = [1; 3, 1, 3, . . .]. In this case we take qN = 4, λN = (√

21 − 3
)
/2 and t = 1. (Compare

Figure 3 of [2]). (Color figure online)

Thus q2m/q2m+1 > m/(m + 1) and so the minimum possible value of λN is 1.

3.4 A lower bound on the boundary function Bα,t(r)

We give a lower bound on Bα,t (r) when α is Diophantine of exponent ν ≥ 2. In particular,
this holds for algebraic numbers α with minimum polynomial of degree ν. Our lower bound
has better asymptotic behaviour than the lower bound from [2] whenever the Diophantine
exponent ν is greater than 2.

Lemma 3.4 Let t > 0 and let α be Diophantine of exponent ν ≥ 2 with K the constant from
(12). Then for all q ∈ N and all r > 0:

4 sin2(πqα)r2 + q2t2 >

(
4K

)2/ν
νt2(ν−1)/ν

(ν − 1)(ν−1)/ν
r2/ν .

Proof Using Lemma 2.8, for all q ∈ N, we have

4 sin2(πqα)r2 + q2t2 >
16K 2r2

q2ν−2 + q2t2.

The weighted arithmetic-geometric mean inequality (equation (2.5.2) of Hardy et al. [6])
states that if ai > 0 and pi > 0 with p1 + p2 = 1 then

p1a1 + p2a2 ≥ a p1
1 a p2

2 .
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We choose the weights p1 and p2 so that the powers of q cancel. That is

p1 = 1

ν
, p2 = ν − 1

ν
, a1 = 16K 2νr2

q2ν−2 , a2 = q2t2ν

ν − 1
.

Then

16K 2r2

q2ν−2 + q2t2 =
(
16K 2νr2

q2ν−2

)
1

ν
+

(
q2t2ν

ν − 1

)
ν − 1

ν

≥
(
16K 2νr2

q2(ν−1)

)1/ν

·
(
q2t2ν

ν − 1

)(ν−1)/ν

= (4K )2/ννt2(ν−1)/ν

(ν − 1)(ν−1)/ν
r2/ν .

This gives the result. ��
Using the definition ofBα,t (r) the following proposition follows directly fromLemma 3.4.

Proposition 3.5 Let t > 0 and let α be Diophantine of exponent ν ≥ 2 with K be the
constant from (12). Then

Bα,t (r) >
c(ε)(4K )1/νν1/2t (ν−1)/ν

(ν − 1)(ν−1)/2ν
r1/ν .

In particular, if ν = 2 then

Bα,t (r) > c(ε)
√
8Kt

√
r .

3.5 An example

The following example is inspired by the work of Ohtake [9]. He constructed discrete groups
generated by a screw parabolic map A fixing ∞ and an involution B not fixing ∞ with
isometric sphere S of arbitrarily large radius R. To do so, the distance r of the centre of S
from the axis of A must be large as well. We quantify the relationship between R and r in
terms of the Diophantine exponent ν of the rotation angle of A.

Proposition 3.6 Suppose that the screw parabolic map A = Aα,t has the form (1). Let
r0 > 0 be any positive constant. Then there exists a discrete group � for which �∞ = 〈A〉
and a point (r, θ, v, u) ∈ H2

R
with r > r0 and u >

√
t/2

√
r that cannot lie in any precisely

invariant sub-horospherical region for �.

Proof Consider the (Euclidean) hemisphere S of radius Rwhose centre, written in cylindrical
polar coordinates, is

(
r, θ, v, 0

) ∈ ∂H4
R
. For q ∈ Z, the image of S under Aq is the hemisphere

Aq(S) with radius R and centre
(
r, θ + 2πqα, v + qt, 0

)
. The distance between the centres

of S and Aq(S) is
√
4 sin2(πqα)r2 + q2t2.

If this distance is at least 2R then S and Aq(S) are disjoint or tangent. That is, we want:

4R2 ≤ 4 sin2(πqα)r2 + q2t2.

Let pn/qn be a rational convergent of α. Choose rn and Rn so that

Rn = qn+1t

2
, rn = qn+1t

2| sin(πqnα)| = Rn

| sin(πqnα)| . (16)
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Let Sn be the hemisphere with centre (rn, 0, 0, 0) ∈ ∂H4
R
and radius Rn . Note that

rn = qn+1t

2| sin(πqnα)| >
q2n+1t

2π

and so given r0 > 0 we can find n so that q2n+1t/2π > r0 and hence rn > r0.
We claim that Sn is disjoint from Aq(Sn) for all q ∈ Z − {0}:

(1) For all q ∈ Z with q ≥ qn+1 we have

4 sin2(πqα)r2n + q2t2 ≥ q2t2 ≥ q2n+1t
2 = 4R2

n .

Therefore Sn is disjoint from A±q(Sn).
(2) For all q ∈ Z with 1 ≤ q < qn+1 and for all p, Lemma 2.2 implies

|qnα − pn | ≤ |qα − p|.
We may assume that the right hand side is at most 1/2 and so

| sin(πqnα)| = sin |πqnα − πpn | ≤ sin |πqα − πp| = | sin(πqα)|.
Therefore

4 sin2(πqα)r2n + q2t2 ≥ 4 sin2(πqα)r2n ≥ 4 sin2(πqnα)r2n = 4R2
n .

Therefore Sn is disjoint from A±q(Sn).

Let Bn be an involution fixing (at least) the point zn = (rn, 0, 0, Rn) ∈ Sn and mapping the
exterior of Sn to its interior and vice versa. Since Sn is disjoint from Aq (Sn) for all q ∈ Z−{0},
a combination theorem argument shows that the group �n generated by A and Bn is discrete.
The point zn = (rn, 0, 0, Rn) cannot lie in any precisely invariant sub-horospherical region
for �n since it is fixed by Bn .

The point zn = (rn, 0, 0, Rn) lies on the horosphere of height u = Rn satisfying:

u2 = R2
n

= | sin(πqnα)|rn · qn+1t/2

≥ rn
qn+1

· qn+1t

2

= rnt

2
.

The inequality follows using Lemma 2.7. This completes the proof. ��
3.6 An explicit bound using Waterman’s theorem

In [12]Waterman gives a version of Shimizu’s lemma for real hyperbolic space of dimension
at least 4. He uses 2× 2 matrices over a Clifford algebra. ForH4

R
these are matrices over the

quaternions. In Waterman’s language, the point x ∈ H4
R
with cylindrical polar coordinates

(r, θ, v, u) corresponds to the quaternion v+r cos(θ)i +r sin(θ) j +uk and the map A given
by (1) is

AH =
(

λ λt
0 λ

)

where λ = cos(πα) + k sin(πα) (compare page 101 of Waterman [12]). Waterman denotes
the imaginary part of λ by λC . Thus, in our case, λC = k sin(πα) and |λC | = | sin(πα)|. In
our language, Waterman’s result says:
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Theorem 3.7 (Theorem 8 of Waterman [12]) Let � be a discrete subgroup of Isom(H4
R
)

containing a screw-parabolic map A written in the form (1). Suppose that 4| sin(πα)| < 1/2.
Let B be any element of� not fixing∞. Suppose that the isometric spheres of B and B−1 have
radius RB and centres B−1(∞) = (r+, θ+, v+, 0) and B(∞) = (r−, θ−, v−, 0) respectively.
Then

R2
B ≤

2
√
4 sin2(πα)r2+ + t2

1 + √
1 − 8| sin(πα)| ·

2
√
4 sin2(πα)r2− + t2

1 + √
1 − 8| sin(πα)| .

We now convert Waterman’s theorem into a statement about a precisely invariant sub-
horospherical region (compare with Section 2 of Erlandsson and Zakeri [3]). For 0 < X <

1/2 define


R(X) =
(
1 + √

1 − 2X
)2 − X2

4
. (17)

Note that for 
R is a decreasing function for 0 < X < 1/2

Proposition 3.8 Let � be a discrete subgroup of Isom(H4
R
) containing a screw-parabolic

map A written in the form (1). Let 
R be defined by (17). Suppose that 4| sin(πα)| < 1/2.
Define

Ûα,t =
{

(r, θ, v, u) ∈ H4
R

: u2 >
4 sin2(πα)r2 + t2


R

(
4| sin(πα)|) .

}

(18)

Then Ûα,t is precisely invariant under �∞ in �.

Proof The centres B−1(∞) = (r+, θ+, v+, 0) and B(∞) = (r−, θ−, v−, 0) of the isometric
spheres of B and B−1 may have very different values of r+ and r−. However, wewant a radius
that only depends on the r coordinate of the centre of the sphere. An elementary geometrical
argument shows that, for any R > 0, the map B sends the exterior of a sphere of radius R
centred at B−1(∞) to the interior of a sphere of radius R2

B/R centred at B(∞). Therefore,
we define the function �α,t (r) by

�α,t (r) = 2
√
4 sin2(πα)r2 + t2

1 + √
1 − 8| sin(πα)| .

Then Theorem 3.7 says that

R2
B ≤ �α,t (r+)�α,t (r−).

Thus, B sends the exterior of a sphere S+ of radius R+ = �α,t (r+) centred at B−1(∞) to
the interior of a sphere of radius R2

B/R+ = R2
B/�α,t (r+) centred at B(∞). By Waterman’s

theorem,

R2
B/�α,t (r+) ≤ �α,t (r−).

Hence B sends the exterior of S+ to the interior of a sphere S− of radius R− = �α,t (r−)

with centre (r−, θ−, v−, 0). Thus, it suffices to find a sub-horospherical region Ûα,t so that
for all (r0, θ0, v0, 0) ∈ ∂H4

R
− {∞}, the region Ûα,t is contained in the exterior of the sphere

S0 with radius R0 = �α,t (r0) centred at (r0, θ0, v0, 0). Consider such a sphere S0. Then for
all (r, θ, v, u) ∈ H4

R
on S0 we have

R2
0 = |reiθ − r0e

iθ0 |2 + (v − v0)
2 + u2.
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Then

u2 = R2
0 − |reiθ − r0e

iθ0 |2 − (v − v0)
2

≤ R2
0 − |reiθ − r0e

iθ0 |2

= 4
(
4 sin2(πα)r20 + t2

)

(
1 + √

1 − 8| sin(πα)|)2
− |reiθ − r0e

iθ0 |2

≤ 4
(
4 sin2(πα)

(
r + |reiθ − r0eiθ0 |

)2 + t2
)

(
1 + √

1 − 8| sin(πα)|)2
− |reiθ − r0e

iθ0 |2.

The last line is a quadratic polynomial in |reiθ − r0eiθ0 | with negative second derivative. A
brief calculation shows that this expression takes its maximum value when

|reiθ − r0e
iθ0 | = 16 sin2(πα)r

(
1 + √

1 − 8| sin(πα)|)2 − 16 sin2(πα)
.

Substituting this value back in, we find that

u2 ≤ 16 sin2(πα)r2
(
1 + √

1 − 8| sin(πα)|)2 − 16 sin2(πα)
+ 4t2

(
1 + √

1 − 8| sin(πα)|)2

≤ 4
(
4 sin2(πα)r2 + t2

)

(
1 + √

1 − 8| sin(πα)|)2 − 16 sin2(πα)

= 4 sin2(πα)r2 + t2


R

(
4| sin(πα)|) .

Thus, the sphere S0 with centre (r0, θ0, v0, 0) and radius R0 = �α,t (r0) lies in the exterior
of Ûα,t as required. ��

Following the discussion in Section 2 of Erlandsson and Zakeri [3], we now apply Propo-
sition 3.8 to all powers Aq of A with 4| sin(πqα)| < 1/2. In particular, if if pn+1/qn+1 is a
rational convergent of α with qn+1 > 8π then we have 4| sin(πqnα)| ≤ 4π/qn+1 < 1/2.

Proposition 3.9 Let N be a positive integer so that qN > 8π . Suppose that λN ∈ (0, 1] is
a constant for which qn/qn+1 ≤ λN for all n ≥ N. Let 
R be defined by (17). Then for all
r ≥ q2N t/2π we have

B̂α,t (r) <

√
(1 + λ2N )2π tr


R

(
2
√
2π t/r

)

=
√
1 + λ2N

(√
2π tr + 2π t + O(r−1/2)

)
.

Proof For each r ≥ q2N t/2π there is an n ≥ N so that

q2n t

2π
≤ r ≤ q2n+1t

2π
.

Using Lemma 3.2, for r in this interval we have

4 sin2(πqnα)2r2 + q2n t
2 ≤ (1 + q2n/q

2
n+1)2π tr ≤ (1 + λ2N )2π tr.
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Since qn+1 ≥ √
2πr/t , we also have

4| sin(πqnα)| < 4π/qn+1 ≤ 2
√
2π t/r .

Also, since r ≥ q2N t/2π > 32π t we have 2
√
2π t/r < 1/2. This means that 2

√
2π t/r is in

the domain of definition of 
R. Since 
R is a decreasing function, this means:


R

(
4| sin(πqnα)|) > 
R

(
2
√
2π t/r

)
.

Therefore, again for r in this interval, we have

B̂α,t (r) = inf
q

√
4 sin2(πqα)r2 + q2t2


R

(
4| sin(πqα)|)

≤
√
4 sin2(πqnα)r2 + q2n t

2


R

(
4| sin(πqnα)|)

≤
√

(1 + λ2N )2π tr


R

(
2
√
2π t/r

) .

Finally, we give the asymptotic behaviour of this function as r tends to ∞. It is easy to see
that 
R(X) = 1 − X + O(X2) and so 1/

√

R(X) = 1 + X/2 + O(X2). Thus

√
(1 + λ2N )2π tr


R

(
2
√
2π t/r

) =
√
1 + λ2N

(√
2π tr + 2π t + O(r−1/2)

)
.

��

4 Complex hyperbolic space

4.1 Background on complex hyperbolic space

The Siegel domain model of complex hyperbolic space (see Goldman [4]) is given in polar
horospherical coordinates by

H2
C

=
{
(r, θ, v, u) ∈ C × R

2 : u > 0
}
.

If z1 and z2 in H2
C
have coordinates z1 = (r1, θ1, v1, u1) and z2 = (r2, θ2, v2, u2) then the

complex hyperbolic (Bergman) distance ρ(z1, z2) between them is given by

cosh2
(

ρ(z1, z2)

2

)
=

∣∣r21 − 2r1r2eiθ1−iθ2 + r22 + u1 + u2 − iv1 + iv2
∣∣

4u1u2
.

We define complex hyperbolic horospheres, horoballs and sub-horospherical regions based
at ∞ in a manner similar to their real hyperbolic counterparts (see Goldman [4]).

In what follows we want to consider discrete subgroups of complex hyperbolic isometries
containing the screw parabolic map A given by:

A : (r, θ, v, u) 	−→ (r, θ + 2πα, v + t, u) (19)
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where t > 0 and α is irrational. For such a map its Bergman translation length ρ
(
A(z), z

)
at

z = (r, θ, v, u) is given by

cosh

(
ρ
(
A(z), z

)

2

)

=
∣∣2(1 − e2π iα)r2 + 2u − i t

∣∣

2u
. (20)

4.2 A sub-horospherical region contained in the Margulis region

TheBergman translation length of a screw parabolicmap acting on complex hyperbolic space
is rather more complicated than the analogous Poincaré translation length in the real case.
Therefore, we use the following lemma to find a smaller precisely invariant sub-horospherical
region.

Lemma 4.1 Suppose that z = (r, θ, v, u) ∈ H2
C
satisfies

u >
4| sin(πqα)|r2 + |qt |

4 sinh2(δ/4)

for some δ > 0. Then ρ
(
Aq(z), z

)
< δ.

Proof Using (20) we have

cosh

(
ρ
(
Aq(z), z

)

2

)

=
∣∣2(1 − e2π iqα)r2 + 2u − iqt

∣∣

2u

≤ 4| sin(πqα)|r2 + 2u + |qt |
2u

<
4 sinh2(δ/4)u + 2u

2u
= cosh(δ/2).

��
Let ε be the Margulis constant for H2

C
and, as before, let c(ε/2) = 1/2 sinh(ε/4). Then

we define

UC

qα,qt =
{
(r, θ, v, u) ∈ 2

C
: u > c(ε/2)2

(
4| sin(πqα)|r2 + |qt |)

}
.

Using Lemma 4.1 we see that for all z ∈ UC
qα,qt the screw parabolic map Aq has Bergman

translation length strictly smaller than ε. Hence UC
qα,qt is contained in the Margulis region

and the Margulis region also contains:

TC

α,t =
⋃

q≥1

UC

qα,qt =
{
(r, θ, v, u) ∈ H2

C
: u > BC

α,t (r)
}

with boundary function

BC

α,t (r) = c(ε/2)2 inf
q≥1

(
4| sin(πqα)|r2 + qt

)
.

This is the boundary function we want to estimate. A similar argument to Lemma 3.1 shows
that for each r the infimum is attained for some q which is the denominator qn of a rational
convergent of α. (However, we do not know such a result if we simply use the boundary
function given by constant Bergman translation length.) The following simple lemma is
analogous to Lemma 3.2.
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Lemma 4.2 Let t > 0. Let α be irrational and let pn/qn, with n ∈ N, be its rational
convergents. Then for all r with

qn

√
t

4π
≤ r ≤ qn+1

√
t

4π

we have

4| sin(πqnα)|r2 + qnt <

(
1 + qn

qn+1

)
2
√

π t r.

Proof Using Lemma 2.6, we have:

4| sin(πqnα)|r2 + qnt <
4πr2

qn+1
+ qnt

=
(
1 + qn

qn+1

)
2
√

π t r +
(
2r

√
π

qn+1
− √

t

) (
2r

√
π − qn

√
t
)

≤
(
1 + qn

qn+1

)
2
√

π t r.

The final inequality follows from the range of r we have chosen. ��

Therefore, we can prove our main theorem in the complex case, which is analogous to
Proposition 3.3.

Proposition 4.3 Given N ∈ N, let λN ∈ (0, 1] be a constant for which qn/qn+1 ≤ λN for
all n ≥ N. Then, for all r ≥ qN

√
t/4π we have

BC

α,t (r) < c(ε/2)2(1 + λN )2
√

π t r.

In particular, taking N = 1 and λ1 = 1, for all for all r ≥ q1
√
t/4π we have

BC

α,t (r) < c(ε/2)24
√

π t r.

Proof Once again, for each r ≥ qN
√
t/4π there is an n ≥ N so that qn

√
t/4π ≤ r ≤

qn+1
√
t/4π . On this interval we have

BC

α,t (r) = c(ε/2)2 inf
q≥1

(
4 sin(πqα)r2 + qt2

)

≤ c(ε/2)2
(
4 sin(πqnα)r2 + qnt

)

≤ c(ε/2)2(1 + qn/qn+1)2
√

π t r

≤ c(ε/2)2(1 + λN )2
√

π t r.

This gives the first estimate. The second follows by using λN ≤ 1. ��

We could also use an argument similar to Proposition 3.5 to give a lower bound on BC
α,t (r)

that grows like r2/ν when α is Diophantine of exponent ν. However, unlike in the real
hyperbolic case, BC

α,t (r) does not represent the boundary of the Margulis region, but only an
upper bound. In the next section we show that when estimating a lower bound, one cannot
do better than a constant function of r .
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4.3 Points in the Margulis region on the same horosphere

In this section we construct a horosphere containing an unbounded sequence of points in the
Margulis region. Therefore, any lower bound on the Margulis region in terms of r can be at
best constant. This construction is based on the following phenomenon. When sin(πα) and t
have opposite signs, the Bergman translation length of A = Aα,t is not a monotone function
of r . (Such a screw-parabolic map is sometimes called negatively oriented, see Kamiya and
Parker [8].) Since α − pn/qn < 0 when n = 2m − 1 is odd, we see that sin(πq2m−1α) is
negative; that is, it has the opposite sign to q2m−1t , which we always assume is positive.

Qualitatively, the Bergman translation length of Aq2m−1 on a given horosphere whose
height is small compared with q2m−1 has the following behaviour. As r ranges from 0 to ∞,
the translation length initially decreases to a minimum at some r = rmin

m and then grows. As
m increases, so the value of rmin

m tends to infinity. But crucially, as this happens, the minimum
translation length of Aq2m−1 remains uniformly bounded. Our goal will be to show that there
is a horosphere Hu0 so that this translation length is at most the Margulis constant. To do so,
we will find a sequence of points zm in Hu0 that leaves every compact set with the property
that for each zm the translation length of Aq2m−1 at zm is at most the Margulis constant. To
make the calculations slightly simpler we choose zm = (rm, θm, vm, u0) so that rm is not
rmin
m but some nearby value where the translation length is still uniformly bounded. This will
not affect the conclusion.

We begin with a simple lemma.

Lemma 4.4 Let α be irrational and let pn/qn be its rational convergents. Then for n ≥ 3
we have

| tan(πqnα)| ≤ 4/qn+1.

Proof This is proved in a similar way to Lemma 2.6. We use

|πqnα − πpn | ≤ π/qn+1.

For n ≥ 3 we have qn+1 ≥ 4 and so the right hand side is at most π/4. Finally, for
0 < x ≤ π/4 we have 0 < tan(x) ≤ 4x/π . ��

Now we can make the main construction of this section.

Proposition 4.5 Let u0 = 4c(ε/2)2λN t. For any positive constant r0 there exists an integer
q ≥ 1 and a point z = (r, θ, v, u0) on the horosphere Hu0 of height u0 so that r > r0 and
ρ
(
Aq(z), z

) ≤ ε.

Proof Using (20) we have

cosh

(
ρ
(
Aqn (z), z

)

2

)

=
∣∣2(1 − e2π iqnα)r2 + 2u − iqnt

∣∣

2u
.

We have

2(1 − e2π iqnα)r2 + 2u − iqnt

= 2r2
(
1 − cos(2πqnα)

) + 2u − 2ir2 sin(2πqnα)r2 − iqnt

= 4r2 sin2(πqnα) + 2u − 4ir2 sin(πqnα) cos(πqnα) − iqnt.
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Choose r so that
(
2(1 − e2π iqnα)r2 + 2u − iqnt

)
is real. This necessarily means that

4 sin(πqnα) cos(πqnα) < 0 and so n = 2m−1 is odd. Specifically, it means that r = r2m−1

where:

r22m−1 = q2m−1t

−4 sin(πq2m−1α) cos(πq2m−1α)
= q2m−1t

4| sin(πq2m−1α) cos(πq2m−1α)| . (21)

Note that

r22m−1 = q2m−1t

2| sin(2πq2m−1α)| >
q2m−1q2mt

4π
.

Hence, by choosing m large enough, we can make r2m−1 > r0 for any r0 > 0. Moreover,

2(1 − e2π iq2m−1α)r22m−1 + 2u − iq2m−1t = 4r22m−1 sin
2(πq2m−1α) + 2u

= 4q2m−1t sin2(πq2m−1α)

4| sin(πq2m−1α) cos(πq2m−1α)| + 2u

= q2m−1t | tan(πq2m−1α)| + 2u.

Let z2m−1 = (r2m−1, θ, v, u0) where r2m−1 is given by (21) and

u0 = 4c(ε/2)2λN t = λN t

sinh2(ε/4)
.

Assume n = 2m − 1 ≥ 3, then using Lemma 4.4, we have

2 sinh2
(

ρ
(
Aq2m−1(z2m−1), z2m−1

)

4

)

= cosh

(
ρ
(
Aq2m−1(z2m−1), z2m−1

)

2

)

− 1

=
∣∣2(1 − e2π iq2m−1α)r22m−1 + 2u0 − iq2m−1t

∣∣ − 2u0
2u0

= q2m−1t | tan(πq2m−1α)|
8c(ε/2)2λN t

≤ 4q2m−1/q2m
8c(ε/2)2λN

≤ 1

2c(ε/2)2

= 2 sinh2(ε/4).

Here λN ∈ (0, 1] is a constant so that q2m−1/q2m ≤ λN for all 2m − 1 ≥ N . Thus
ρ
(
Aq2m−1(z2m−1), z2m−1

) ≤ ε as claimed. ��
We remark that this result does not imply that there is an invariant horosphere. We now

show that we can find a sequence of points on horospheres whose height tends to infinity so
that Aqn has a Bergman translation length greater than the Margulis constant for all qn .

Proposition 4.6 Let m be a positive integer. Define r2m and u2m by

r22m = (q2m+1 + q2m−1)t

2
(| sin(2πq2m+1α)| + | sin(2πq2m−1α)|) , u2m = q2mt

4 cosh(ε/2)
.

Then for all n ∈ N the Bergman translation length of Aqn at z2m = (r2m, θ, v, u2m) satisfies
ρ
(
Aqn (z2m), z2m

)
> ε.
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Proof Using (20), we see that the Bergman translation length of Aq at the point z =
(r, θ, v, u) satisfies

cosh

(
ρ
(
Aq(z), z

)

2

)

=
∣∣2r2(1 − cos(2πqα)) + 2u − 2ir2 sin(2πqα) − iqt

∣∣

2u

>

∣∣2r2 sin(2πqα) + qt
∣∣

2u
.

We now estimate the right hand side for various values of q . We will use

| sin(2πq2m−1α)| >
1

2

(| sin(2πq2m−1α)| + | sin(2πq2m+1α)|) > | sin(2πq2m+1α)|.

(1) For 1 ≤ q ≤ q2m−1, using Lemma 2.2, we have
∣∣sin(2πqα)

∣∣ ≥ ∣∣sin(2πq2m−1α)
∣∣. This

includes all qn with n ≤ 2m − 1. This means that
∣∣2r22m sin(2πqα) + qt

∣∣

≥ 2r22m
∣∣sin(2πqα)

∣∣ − qt

≥ 2r22m
∣∣sin(2πq2m−1α)

∣∣ − q2m−1t

= (q2m+1 + q2m−1)t

| sin(2πq2m+1α)| + | sin(2πq2m−1α)|
∣∣sin(2πq2m−1α)

∣∣ − q2m−1t

= q2m+1t | sin(2πq2m−1α)| − q2m−1t | sin(2πq2m+1α)|
| sin(2πq2m+1α)| + | sin(2πq2m−1α)|

> (q2m+1 − q2m−1)t/2

≥ q2mt/2.

In the last line we used q2m+1 = a2mq2m + q2m−1 ≥ q2m + q2m−1.
(2) Suppose that q ≥ q2m+1 with

∣∣sin(2πqα)
∣∣ ≤ ∣∣sin(2πq2m+1α)

∣∣. This includes all qn
with n ≥ 2m + 1. In this case, we have

∣∣2r22m sin(2πqα) + qt
∣∣

≥ qt − 2r22m
∣∣sin(2πqα)

∣∣

≥ q2m+1t − 2r22m
∣∣sin(2πq2m+1α)

∣∣

= q2m+1t − (q2m+1 + q2m−1)t

| sin(2πq2m+1α)| + | sin(2πq2m−1α)|
∣∣sin(2πq2m+1α)

∣∣

= q2m+1t | sin(2πq2m−1α)| − q2m−1t | sin(2πq2m+1α)|
| sin(2πq2m+1α)| + | sin(2πq2m−1α)|

> q2mt/2.

(3) Suppose that q ≥ q2m and sin(2πqα) > 0, which includes q2m . In this case
∣∣2r22m sin(2πqα) + qt

∣∣ = 2r22m sin(2πqα) + qt > qt ≥ q2mt.

In each case we have

cosh

(
ρ
(
Aqn (z2m), z2m

)

2

)

>

∣∣2r22m sin(2πqnα) + qnt
∣∣

2u2m
>

q2mt

4u2m
= cosh(ε/2).

This completes the proof. ��
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Note that this proof works for all q except for those which satisfy both q > q2m−1 and
sin(2πqα) < −∣∣sin(2πq2m+1α)

∣∣ < 0. The main problem is that for these points we cannot
rule out the possibility that r22m is close to qt/

∣∣2 sin(2πqα)
∣∣, which would mean we could

apply an argument similar to Proposition 4.5 to find points (r2m, 0, 0, u0) in the Margulis
region for some universal u0. On the other hand, if we could show Proposition 4.6 for such
values of q , then we would have constructed points not in the Margulis region that lie on
horospheres of arbitrary height.

4.4 An explicit bound using the region of Cao and Parker

This section follows the ideas in Sect. 3.6 where Waterman’s bound on the radii of isometric
spheres is replaced by the following analogous statement forH2

C
. In Theorem 1.3 of [1], Cao

and Parker define

K = 1 + 2|e2π iα − 1| + √
1 − 12|e2π iα − 1| + 4|e2π iα − 1|2

2
.

and then show that the sub-horospherical region defined by

u >
|2(e2π iα − 1)r2 + i t |

K
+ 8|e2π iα − 1|2r2

K (K − 4|e2π iα − 1|)
is precisely invariant. This follows from their bound on the radii of isometric spheres analo-
gous to Theorem 3.7.

We choose to weaken the bound of this sub-horospherical region. We have

|2(e2π iα − 1)r2 + i t |
K

+ 8|e2π iα − 1|2r2
K (K − 4|e2π iα − 1|)

≤ 4| sin(πα)|r2 + t

K
+ 32 sin2(πα)r2

K (K − 8| sin(πα)|)
= 4| sin(πα)|r2

K − 8| sin(πα)| + t

K

≤ 4| sin(πα)|r2 + t

K − 8| sin(πα)| .

Therefore, we choose to use the region where

u >
4| sin(πα)|r2 + t

K − 8| sin(πα)| .

Note that

K − 8| sin(πα)| = 1 − 12| sin(πα)| +
√
1 − 24| sin(πα)| + 16 sin2(πα)

2
.

For 0 < X <
(√

2 − 1
)2 define


C(X) = 1 − 3X + √
1 − 6X + X2

2
=

(
1 + √

1 − 6X + X2
)2 − X2

4
(22)

so that K − 8| sin(πα)| = 
C

(
4| sin(πα)|). We note that 
C is a decreasing function of

X in the interval 0 < X <
(√

2 − 1
)2. Therefore the following theorem is a corollary of

Theorem 1.3 of [1]:
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Proposition 4.7 Let � be a discrete subgroup of Isom(H2
C
) containing A of the form (19).

Suppose that t > 0 and 4| sin(πα)| <
(√

2− 1
)2

where α is irrational. If 
C(x) is given by
(22) then define

ÛC

α,t =
{

(r, θ, v, u) ∈ H2
C

: u >
4 sin2(πα)r2 + t


C

(
4| sin(πα)|) .

}

.

Then ÛC
α,t is precisely invariant under �∞ in �.

Therefore, we define

B̂C

α,t (r) = inf
q

4 sin2(πqα)r2 + qt


C

(
4| sin(πqα)|)

where the infimum is taken over all positive integers q with 4| sin(πqα)| <
(√

2 − 1
)2.

Proposition 4.8 Let � be a discrete subgroup of Isom(H2
C
) containing A of the form (19),

where t > 0 and α is irrational. Let 
C(X) be given by (22). Let N be a positive integer
so that qN > 4π/

(√
2 − 1

)2
. Let λN ∈ (0, 1] be a constant so that qn/qn+1 ≤ λN for all

n ≥ N. Then for all r ≥ qN
√
t/4π we have:

B̂C

α,t (r) <
(1 + λN )2

√
π t r


C(2
√

π t/r)

= (1 + λN )
(
2
√

π t r + 12π t
) + O(r−1).

Proof Consider the interval

qn

√
t

4π
≤ r ≤ qn+1

√
t

4π

where n ≥ N . Using Lemma 4.2 we have

4| sin(πqnα)|r2 + qnt ≤
(
1 + qn

qn+1

)
2
√

π t r ≤ (1 + λN ) 2
√

π t r.

We also have

4| sin(πqnα)| < 4π/qn+1 < 2
√

π t/r.

Since qN > 4π/
(√

2 − 1
)2 we have

2
√

π t

r
≤ 2

√
π t

qn
√
t/4π

= 4π

qn
≤ 4π

qN
<

(√
2 − 1

)2
.

Therefore 2
√

π t/r is in the domain of definition of
C and since
C is a decreasing function,


C

(
4| sin(πqnα)|) > 
C

(
2
√

π t/r
)
.

Then:

B̂C

α,t (r) = inf
q

4 sin2(πqα)r2 + qt


C(4| sin(πqα)|)
≤ 4 sin2(πqnα)r2 + qnt


C(4| sin(πqnα)|)
≤ (1 + λN )2

√
π t r


C(2
√

π t/r)
.
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This gives the first statement. For the second, we want to estimate the asymptotic behaviour
of this function. It is easy to see that 
C(X) = 1 − 3X + O(X2) and so 1/
C(X) =
1 + 3X + O(X2). Hence

2
√

π t(1 + λN )r


C(2
√

π t/r)
= (1 + λN )

(
2
√

π t r + 12π t
) + O(r−1).
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