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Abstract Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is
currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic
core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic
flux ropes can lead to continuous forcing of the energy input to the Earth’s magnetosphere by strong
and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new
approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of
CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and
in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER
spacecraft for a CME event on 9–13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such
model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the
observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A
counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection
angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches
reasonably the observed Dstminimum and its time evolution, but the results are highly sensitive to the CME
axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real
time space weather forecasting and heliospheric data interpretation.

1. Introduction

We have recently seen the emergence of novel techniques to describe the evolution of coronal mass
ejections (CMEs) from the Sun to the Earth by combining CME parameters derived from observations with
geometrical and physics-based approaches; hence, they are appropriately called “semiempirical” models.
They either model the full propagation of the CME magnetic flux rope (MFR) and its deformation in the solar
wind (Isavnin, 2016) or use solar observations to set the type of MFR (e.g., Bothmer & Schwenn, 1998;
Marubashi et al., 2015; Mulligan et al., 1998; Palmerio et al., 2017) and subsequently simulate the Earth’s
trajectory through the structure (Kay et al., 2017; Savani et al., 2015, 2017). They can be seen as tools similar
to the forward modeling of the CME in coronagraphs (Thernisien et al., 2009) but aimed instead at producing
synthetic in situ observations. One crucially important aspect is that such approaches allow the long-lead
time prediction of the southward magnetic field component of the interplanetary magnetic field Bz, prefer-
ably in Geocentric Solar Magnetospheric (GSM) coordinates. Southward Bz is the prime requirement for
geomagnetic storms as it opens the subsolar magnetopause by magnetic reconnection allowing efficient
transfer of energy, plasma, and momentum to the magnetosphere (e.g., Dungey, 1961). During quiet solar
wind intervals, Jackson et al. (2015) showed the possibility to predict Bz variations of a few nT by a combina-
tion of a near-Sun magnetic field modeling technique with interplanetary scintillation. The Bz component is
steady and strong in CME MFRs, and thus, they drive the strongest geomagnetic storms (Huttunen et al.,
2005; Zhang et al., 2007). Accurate CME Bz predictions are currently not possible, but the ordered magnetic
fields in MFRs can be seen as a key that nature has given us to be able to forecast very strong geomagnetic
storms that could be very harmful to humankind (e.g., Oughton et al., 2017). We just need to figure out how to
use this key.

Semiempirical techniques simulate the CME evolution in a much simpler and computer efficient way than full
3-D magnetohydrodynamic solar wind models like Enlil, which include the interaction of the CME with the
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background wind (e.g., Odstrcil et al., 2004). There have been various
efforts to include the MFR in numerical simulations of CME eruption
and evolution (e.g., Manchester et al., 2008), but those cannot yet be car-
ried out in real time and do not yet give very accurate Bz forecasts
(review by Manchester et al. (2017)). Several efforts are currently under-
way to include the CME flux rope structures in numerical simulations for
real-time predictions, but results are not yet available. Semiempirical
models have two main strengths: (1) The models can be run on any
computer and are immediately suitable for predicting a space weather
event, even in real time, and (2) the researcher is able to quickly adapt
the model output to observations, narrowing the range of free para-
meters and enhancing future predictions based on the model. The
researcher has thus a strong control of the model output, at the expense
of having many free parameters that need to be set in order to produce
realistic results (e.g., Isavnin, 2016).

This paper introduces a new semiempirical method that we call Three-
Dimensional COronal Rope Ejection or 3DCORE. This is the first such
model that contains the interplanetary propagation including decelera-
tion, expansion, the measurement by a synthetic spacecraft at any given
heliospheric location, and production of a geomagnetic index from the
simulation. It is designed in such a way that it is aimed at real-time pro-
blem solving and does not contain a description of the 3D MFR that is
completely physically correct. In contrast to the aforementioned mod-
els, we place 2.5-D cross sections in the desired shape and do not
employ a complete 3-D MFR solution (e.g., Hidalgo et al., 2002;
Hidalgo & Nieves-Chinchilla, 2012; Nieves-Chinchilla et al., 2016). This

is essentially a work-around for the problems that are associated with deforming a 3-D physical solution of
CME MFRs. Here by putting magnetic field cross sections in the desired shape, we follow an inverse way of
looking at this problem compared to Isavnin (2016) and Wood et al. (2017), who fill an initial envelope shape
with magnetic field lines. It is currently unclear which method produces the most consistent results with
observations. Thus, there is a need to develop several versions of semiempirical 3-D MFRs to be able to figure
out the advantages and disadvantages of eachmodel and their ability to act as a tool to interpret heliospheric
observations as well as to predict CME effects in real time.

We can now test all these methods extremely well with observations. The European Union HELCATS project
(www.helcats-fp7.eu) has collected solar wind data sets and brought them into easy-to-use formats from
2007 to present. The HELCATS products include not only in situ data at multiple points by the missions
Venus Express, MESSENGER, STEREO, and Wind but also solar imaging, coronagraph, and heliospheric ima-
ging along with modeling like Thernisien et al. (2009) and Davies et al. (2012). Details on the catalogues that
contain these observations can be found in Möstl et al. (2017). Also concerning the upcoming missions
Solar Orbiter, Parker Solar Probe, BepiColombo, and the Cubesat for Solar Particles, semiempirical models will
likely form very valuable tools in heliophysics research for many years to come.

2. Method

Figure 1 shows the 3DCORE geometry (for the exact mathematical formulation, please see the supporting
information). The model in its first prototype form has these basic assumptions: (1) It consists of 2.5-D
Gold-Hoyle (e.g., Farrugia et al., 1999; Hu et al., 2014) circular cross sections forming the uniformly twisted flux
rope in 3-D as a global torus, with a global circular shape attached to the Sun. Note that the global circular
geometry resembles the so-called “harmonic mean” approach in the field of heliospheric imaging (Lugaz,
2010) if the flux rope axis is not inclined to the solar equatorial plane. The axial field has a value B0, and
the twist number τ is in the range of 1–20 turns per AU (Hu et al., 2014). A 2.5-D geometry means that the
axial component can vary within the cross section, but the magnetic field is invariant along a direction ortho-
gonal to the plane of the cross section. Everything is calculated in Heliocentric Earth Equatorial coordinates

Figure 1. Three-Dimensional Coronal ROpe Ejection prototype geometry.
The model envelope (orange) consists of a tapered torus that is attached
to the Sun at all times. The global shape as well as the cross section are
circular. The Sun is shown as a yellow circle (not to scale), and the Earth is
shown as a green dot.
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(HEEQ). (2) The circular torus is tapered, so the cross section has a varying radius along the torus, with its
largest cross-section extension at the torus apex that then decreases on both sides toward the Sun toward
zero. (3) The grid is variable. In this study it contains 10° steps in the ψ coordinate along the torus, so 36
cross sections in total, 10° steps along Φ around the axis, and between 1 and 20 points along the cross-
section radius, with constant distances of 0.01 AU in between radial points along the cross-section radius.
The total grid size thus varies for each simulation step: Near the Sun there are about 1.3 k grid points,
which rises to 25 k grid points beyond 1 AU. (4) The MFR is rotated to the given latitude, longitude, and
orientation calculated by rotations with the Euler-Rodrigues formulas. (5) The kinematics of the nose are
calculated with the drag-based model (DBM; Vršnak et al., 2013). (6) The rest of the MFR moves according
to self-similar expansion, with a constant angular width. Thus, the speed of the nose is scaled to each
point of the CME. (7) The MFR axial magnetic field declines with distance with a power law of �1.64
(Leitner et al., 2007) and does not vary along the ψ direction. (8) The torus cross-section diameter increases
following an almost linear expansion law (Leitner et al., 2007). The source code in Python is available for
download in section 6.

In practical applications, the launch time, initial CME speed, and the constant direction (latitude and longi-
tude in HEEQ) are derived either from STEREO/HI or COR observations. The MFR handedness and axial field
direction is derived from the CME source region magnetograms and extreme ultraviolet images. A subse-
quent global rotation of the flux rope in the corona is possible to any desired final orientation, which yields
all the MFR types known from in situ observations (Bothmer & Schwenn, 1998; Mulligan et al., 1998). During
the CME outward propagation in the simulation, a virtual spacecraft observes the CME MFR by detecting the
nearest magnetic field value in the simulation, which has to be under a certain distance threshold (here set to
0.05 AU). If no point of the MFR grid is close to the virtual in situ spacecraft below the threshold, the flux rope
is not detected. These synthetic magnetic field components are then converted from HEEQ to GSM coordi-
nates. This is done based on the methods described in Hapgood (1992). For Earth, the synthetic in situ mag-
netic field and speed output is then fed into the models by Burton et al. (1975) and O’Brien and McPherron
(2000). Thereby, a time series of the global magnetospheric disturbance storm time (Dst) index is produced.
Another, more sophisticated technique for this task was demonstrated by Temerin and Li (2006), which, due
to its complexity, will be coupled to 3DCORE in future updates.

3. Data

On 9 July 2013 14 UT, a large filament eruption occurred in the northern hemisphere on the Earth-facing side
of the solar disk, in a region of an otherwise quiet Sun. The dispersed magnetic fields accompanying the fila-
ment are a remnant of an active region that first appeared in April 2013. The subsequent slow CME impacted
both MESSENGER, which was 7° away from the Sun-Earth line, and the Sun-Earth L1 point, with a CME transit

Figure 2. Overview of solar observations. (a) Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA)
171 Å on 9 July 2013 14:29:24 UT, with the inverse-S shape of the filament indicated, pointing to a left-handed field
chirality. (b) Zoom-in on the filament channel in the northern hemisphere in SDO/AIA 304 Å on 9 July 2013 15:29:08 UT,
with visible flare ribbons brightening along both sides of the polarity inversion line. (c) SDO/Helioseismic and
Magnetic Imager magnetogram on 9 July 2013 14:30 UT, with the magnetic flux rope axial field of the expected flux
rope shown as an arrow.
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time of 73 hr, measured from its first appearance in STEREO/SECCHI/COR2 on 9 July 2013 16 UT to the shock
arrival at L1 on 12 July 2013 16:47. This is a single CME event that leads to a moderate geomagnetic storm at
Earth. At L1, around the time of CME impact, the solar wind speed was stable around 400 km s�1, and a high-
speed stream impacted the Earth only about 6 days after the CME, so this event is free of interactions from
other CMEs or high-speed streams.

Figure 2 shows the solar observations. In Figure 2a, in images in the Solar Dynamics Observatory (SDO)
Atmospheric Imaging Assembly 171 Å channel (Lemen et al., 2012), coronal loops are seen in the northern
hemisphere, accompanied by a large filament in SDO/Atmospheric Imaging Assembly 304 Å (Figure 2b),
spanning from northeast to the center of the solar disk. The filament spine clearly follows an inverse S-shape,
which is the signature of an MFR with left-handed chirality (see summary in Palmerio et al. (2017)). Thus, the
filament follows the hemispheric chirality rule. Figure 2c shows the photospheric magnetogram by the SDO
Helioseismic andMagnetic Imager (Scherrer et al., 2012). The leading westward polarity of photospheric mag-
netic fields underlying the filament channel is negative, consistent with Hale’s law for solar cycle 24 (e.g.,
Pevtsov et al., 2014). The axial field of such a left-handed flux rope, where the poloidal field is formed by
arcades connecting the polarities on either side of the polarity inversion line (PIL), is expected to point to
the southwest, as indicated by an arrow. The filament eruption starts on 9 July 2013 14 UT, and flare ribbons
along the entire filament length are visible (Figure 2b). The PIL and the posteruption arcades (not shown) are
straight and are both inclined at a position angle of 220° ± 5°. The position angle is measured counterclock-
wise from 0° pointing north, 90° to solar east in the solar equatorial plane, 180° to south and 270° to solar
west. The type of MFR that is later observed in situ is thus expected to be either west-south-east or north-
west-south (after Bothmer and Schwenn (1998) and Mulligan et al. (1998)).

In Figure 3, about 3 hr after the filament eruption, a CME is visible in both STEREO/SECCHI/COR2 corona-
graphs (Howard et al., 2008), pointing to solar west in STEREO-Behind imagery and to solar east in STEREO-
Ahead, indicating an Earth-directed eruption. Graduate cylindrical shell modeling (GCS; Thernisien et al.,
2009), focusing on the CME void and including both STEREO and the SOHO/LASCO coronagraph images
(Brueckner et al., 1995), gives an approximately linear speed profile with an average speed from 5.6 to 19 solar
radii of 575 ± 60 km s�1. The longitude (HEEQ) is�1° ± 5° and its latitude�1° ± 5°, so it is directed practically

Figure 3. Coronagraph modeling. (top row, left) STEREO-Behind/COR2, (middle) SOHO/LASCO/C2, and (right) STEREO-
Ahead/COR2 showing the appearance of the coronal mass ejection in coronagraphs. (bottom row) Graduate cylindrical
shell model shape overlaid on the same images.
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head-on to Earth. Compared with the approximate center of the filamen#t at N20E15, the direction W1S1
means that the CME has been roughly 20° deflected away from the source region, which is a usual
magnitude (Kay et al., 2016). All errors quoted are typical for the method. The CME is rather cone-shaped
than having a clear rope shape, and its tilt value is �18 ± 6° to the solar equator (equal to a position angle
of 252° ± 6°), but due to the near cone shape, this measure is rather not well defined. It thus seems that
the erupting flux rope axis directed at a PA of ~220° has rotated by about 30° from the low corona to
coronagraph distances of a few solar radii (axis at PA of ~250°).

The heliospheric imager (HI) on STEREO-B (Eyles et al., 2009) also observed the event up to about 28.5° away
from the Sun, giving a CME direction of �2° ± 10° longitude to the Sun-Earth line by the SSEF30 method,
which describes the CME front as a self-similarly expanding circle with 30° half width in longitude (e.g.,
Davies et al., 2012; Möstl et al., 2014). This is a clear Earth-directed CME. The CME propagates symmetrically
to the solar equator in north-south direction and does not show a strong deflection in latitude; thus, we
expect the CME to impact any planets near or in the ecliptic plane, which is close to the solar equatorial plane,
along the Sun-Earth line. The CME interplanetary speed from SSEF30 is 513 ± 21 km s�1, which forms an aver-
age speed for a heliocentric distance of 0.11 to 2.03 AU during the time of the HI observation. A detailed sum-
mary of the event is given on the HELCATS webpage referenced in section 6. Comparing GCS and HI results
shows that GCS is perfectly consistent with the SSEF30 results. Such a convergence between HI geometrical
modeling and GCS is typical (Möstl et al., 2014), so knowing the result from either method is a good proxy for
the results given by the other technique.

Figure 4 shows the situation in the heliosphere in early July 2013. The arcs in the left plot showmodeled CME
fronts based on HI observations, and the plots on right give an overview of available in situ interplanetary
magnetic field data. The CME modeling is again provided by the SSEF30 technique. The CME event we study
is the blue circle near Earth (which itself is the green dot), at the movie frame time 13 July 2013 00:00 UT,
which is shortly before Earth impact. In the arrival catalog ARRCAT, also provided by HELCATS and referenced
in section 6 and described in Möstl et al. (2017), the CME shock is predicted to impact MESSENGER at Mercury
at a heliocentric distance of 0.4548 AU on 11 July 2013 04:28 UT and to arrive at the L1 point near Earth on 13
July 2013 01:30 UT at 1.0066 AU. Indeed, in the right part of Figure 4 total magnetic field enhancements are
seen in the panels of the MESSENGER and Wind data.

Figure 4. Overview of interplanetary observations. (left) Solar equatorial plane, with planet and spacecraft positions given
by the color code at the bottom. The blue and red circles are coronal mass ejection (CME) fronts modeled with SSEF30
(Möstl et al., 2014), with the CME in question as a blue circle just before impacting Earth. The other CMEs are to be ignored.
(right) In situ magnetic field observations by MESSENGER and Wind show higher total fields and rotations in the
components during the CME impact, and no other in situ heliospheric observatory observed the event. Data gaps at
MESSENGER are caused by the spacecraft entering theMercurymagnetosphere. This figure is also available as an animation
covering 2007 to 2014; see Möstl et al. (2017) and the link in section 6.
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In the ICMECAT, the catalog of interplanetary in situ CME observations (Möstl et al., 2017), there is an ICME at
MESSENGER starting on 11 July 2013 01:05, which is only about 3 hr prior to the SSEF30 predicted arrival time.
This event was originally cataloged in situ by Winslow et al. (2015). In the right panel of Figure 4 the event is
visible, in spite of data gaps that arise because the periods when MESSENGER was traversing through
Mercury’s magnetosphere have been removed. The Wind spacecraft at L1 saw an ICME, also included in
ICMECAT, with a shock arrival on 12 July 2013 16:47, which is 9 hr earlier than the predicted arrival time. At
Wind, the event lasts for over 2 days until the end of 14 July 2013. The differences between predicted and
observed arrival times are well below the current lower limits for CME arrival time prediction of about 12
to 17 hr (e.g., Mays et al., 2015; Möstl et al., 2017; Tucker-Hood et al., 2015; Vršnak et al., 2014).

Given that there are no other candidate CMEs that explain the event at L1 and the predicted in situ arrival
times are well within the error bars, there is an unambiguous connection between the CME observations
in the corona, interplanetary space, and in situ data. This is of tremendous importance to accurately test
CME MFR models, because otherwise, solar and in situ observations may not be causally related and we
may arrive at incorrect conclusions. Heliospheric imaging observations proved very critical in this task as
without them linking CMEs, and interplanetary in situ CME observations can sometimes be very difficult
(e.g., Kilpua et al., 2014).

4. Results

We now apply the 3DCORE prototype to the CME event in question. A time resolution of 2 hr is used, and a
single run takes about 45 s on a personal computer. We use the initial conditions based on GCS, with
575 ± 60 km s�1 radial speed, the direction longitude and latitude both as�1° ± 5°, and the starting position
of the MFR nose on 9 July 2013 20:24 UT at 19.0 solar radii. The position angle of the MFR axis (i.e., the angle
measured counterclockwise from the solar north) is 252° ± 6°, as derived from GCS. In this study, we thus
assume that a rotation of 32° of the MFR axis from the PIL inclination to the GCSmodel orientation took place;
MFR axis rotations in this range have been shown to be often consistent with in situ observations (Marubashi
et al., 2015). The magnetic field in 3DCORE consists of circular Gold-Hoyle flux rope cross sections which have
a uniform twist, set in this study at a value of 5 turns/AU (e.g., Hu et al., 2014). The twist value may also be
taken from solar observations (e.g., Vemareddy et al., 2016), but this is not further pursued here. The MFR
has a left-handed chirality, as derived from solar observations in the previous section. The MFRmoves accord-
ing to the DBM (Vršnak et al., 2013), and we set the background solar wind speed to 400 km s�1, which is the
solar wind speed at L1 around the CME launch time. This is of course a rough approximation as it does not
include the varying solar wind conditions along the Sun-Earth line. For adding a variability to the background
solar wind, the speed values outside of the synthetic MFR are randomly taken from a normal distribution cen-
tered around 400 km s�1 with a standard deviation of 10 km s�1, and the magnetic field at MESSENGER is set
to 25 nT (at 1 AU to 5 nT), with a random variation of about 1 nT in the total field.

Now we have three parameters left that are a priori not well known, the drag parameter Γ [in units of
10�7 km�1] which is a part of DBM, the axial magnetic field B0 (in nT), and the MFR diameter D (in AU). In this
first prototype study, we constrain these values with MESSENGER data taken near the Sun-Earth line at a
heliocentric distance of 0.4548 AU. This is the reason why we have chosen the event as being a radial lineup
of two in situ observatories. We are fully aware that such constraints are currently not practicable for real time
CME forecasting. However, we have shown the potential for using magnetometer observations near the Sun-
Earth line previously from Venus orbit (Kubicka et al., 2016), and we need to study how such observations, if
available in real time, would enhance space weather forecasts. The idea of using near real-time data along the
Sun-Earth line for space weather forecasting has a long history (e.g., Lindsay et al., 1999) but could become
revived soon with the advent of interplanetary small satellites. In the next update of 3DCORE, we will pursue
better ways to a priori calculate these three parameters by looking at large interplanetary CME statistics for Γ
and B0 as well as a more sophisticated inclusion of interplanetary CME expansion for calculating D (e.g.,
Démoulin & Dasso, 2009).

The first major unknown is the drag parameter Γ in the DBM, which can range from 0.05 to 2 (Temmer & Nitta,
2015; Vršnak et al., 2013). CME kinematics and subsequent planetary arrival times depend drastically on the Γ
value. The observed flux rope arrival time at MESSENGER is 11 July 2013 01:57 (55 min later than the observed
shock arrival). To match this arrival time, Γ is set to 1.5 by manually optimization, changing only Γ and
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keeping all other parameters constant. In a next version of the model, a combination with the ElEvoHI model
(Rollett et al., 2016) could help to find the most appropriate values for Γ and the background solar wind
speed. The other unknowns concern the diameter D and the axial field strength, B0 of the flux rope, and
they are also set by manual optimization to their values extrapolated (with the power laws) at 1 AU as
D = 0.24 AU and B0 = 12 nT; by this choice the synthetic magnetic field profile at MESSENGER is in
approximate accordance with the MESSENGER magnetic field data.

Figure 5 shows the 3DCORE run with the parameters set as described in comparison to MESSENGERmagnetic
field data (Anderson et al., 2007), with the Mercury magnetic field removed (Winslow et al., 2013, 2015).
Figure 5a is the visualization of the 3DCORE torus. In Figure 5b, some notable similarities and differences
between the observed and simulated magnetic field components are visible. First, the removal of the
Mercury magnetosphere is clearly a disadvantage of the chosen CME event, as only a few solar wind data
intervals of the flux rope are available. Nevertheless, on the other hand, this demonstrates that even very
sparse data from along the Sun-Earth line can be used to constrain CME simulations.

The magnetic field component Bx is close to zero, in both the simulation and observation; By is positive
throughout the simulation but not in the beginning of the observation, whereas at the end of the MFR, on
late 11 July, the simulated By matches the observation. For the intervals when MESSENGER solar wind mag-
netic field data are available during the CME impact, the simulated Bz component roughly follows the obser-
vations. The takeaway message here is a rough consistency between the simulation and observation for the
arrival time, total field, and duration when the simulation has been constrained with the MESSENGER
observations. Although magnetic field observations from MESSENGER were limited, we can estimate that
the flux rope type and orientation that we derived from solar and coronagraph observations are roughly con-
sistent to those observed at Mercury.

Figure 6 demonstrates the synthetic field with 3DCORE and the observations at Earth L1 by Wind (Lepping
et al., 1995; Ogilvie et al., 1995) and includes the Dst index derived from the synthetic field and speed data
in comparison to the observed Dst taken from the OMNI2 data set (King & Papitashvili, 2005). The CME arrived
at Wind on 12 July, with an IP shock detected at 16:47 UT. The shock is quite weak, but the rotations typical of
an MFR structure are very well defined, seen as in Figure 6a. From visual inspection, the rope is of north-west-
south-type (+Bz at the leading edge, +By at the axis, and � Bz at the trailing edge in HEEQ), thus consistent

Figure 5. Three-Dimensional Coronal ROpe Ejection (3DCORE) synthetic magnetic field output for MESSENGER compared
to observations. (a) Visualization of the 3DCORE torus and spacecraft positions, with MESSENGER as a gray point, Earth as a
green dot, and the torus extending from the Sun (yellow dot) into interplanetary space. (b) The synthetic magnetic
field components in Spacecraft Equatorial coordinates (like Heliocentric Earth Equatorial coordinates but longitude
corrected for spacecraft): Bx red, By green, Bz blue, and total field black. The straight lines are observations, while the dashed
lines are the simulation. The magnetic field of Mercury has been removed from the data. The two vertical solid lines
show the start and end times of the magnetic flux rope in the observations. (c) Simulated bulk plasma speed. An animation
of panel (a) is available on Figshare and Youtube; see section 6.
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with the GCS modeling orientation. The consistency between the simulated (dashed lines) and observed
(solid lines) is quite good. We emphasize that we have set the initial conditions of the simulation with solar
observations and coronagraph modeling, and we have constrained three currently free simulation
parameters with MESSENGER in situ data. There was no information from the Wind spacecraft involved in
the modeling, and no fitting process to Wind in situ data was made. Some notable differences between
modeling and simulation are as follows: The magnetic field components Bz and By are not well modeled at
the beginning of the MFR, Bz is underestimated by the simulation near the end of the rope, and Bx is
slightly positive in the simulation, which is opposite to the observation but not of significant importance
for geoeffectiveness. The speed profile in Figure 6b, which is derived from the assumption of self-similar
expansion (see supporting information), is well consistent with the linear decrease of the MFR speed in the
observations, but the simulation underestimates the real speed by about 50 km s�1.

In Figure 6c, we show a comparison of the Dst index. The red and blue dashed lines are calculated only with
synthetic outputs of the magnetic field components, which are first converted to GSM coordinates, and with
the calculated bulk plasma speed. For conversion of the solar wind to Dst we use two models of Burton et al.

Figure 6. Three-Dimensional Coronal ROpe Ejection (3DCORE) output compared to Wind observations at Earth/L1 and Dst.
(a) Synthetic magnetic field components in Heliocentric Earth Equatorial coordinates (dashed lines) compared to
observations (solid lines). Field components are Bx (red), By (green), and Bz (blue), and the total field is black. The vertical
solid lines delimit the magnetic flux rope in the observations. (b) The bulk plasma speed at Wind (solid line) compared to
the simulation (dashed line). (c) Observed Dst (black dots) and calculated Dst (solid lines) with two methods from
OMNI2 speed and magnetic field data (see text). The simulated Dst is represented by the dashed lines, calculated from the
3DCORE speed and magnetic field data at Wind, after conversion of the simulated magnetic field to Geocentric Solar
Magnetospheric coordinates.
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(1975) and O’Brien and McPherron (2000), which lead to almost similar results for this studied event. The
observed Dst time profile is very well represented by the simulated Dst, giving a borderline moderate
geomagnetic storm. The minimum Dst occurs with both models on 14 July 22 UT, with minima of
�49 nT (Burton) and �57 nT (O’Brien). This is only 1 hr earlier compared to the observation, which
peaks at �73 nT, and has thus a difference of only about 20 nT to the simulation. We have also added
the Dst modeling using OMNI2 solar wind data (red and blue solid lines), which shows the Dst minimum
to be underestimated at around �100 nT. Such a slight mismatch is often seen with the Burton et al.
(1975) and O’Brien and McPherron (2000) models, which do not perfectly connect the L1 solar wind with
the Dst observations.

While these results seem promising, we clearly need to assess the sensitivity of the model output to the initial
conditions. Kay et al. (2017) showed that their method of creating synthetic MFR observations is highly sen-
sitive on the order of degrees for the orientation and direction of the CME. For our example, the possible
range in the MFR direction longitude (latitude) leading to a hit at Earth is approximately �15° to +60° (�5°
to +15°). Outside of this range, the MFR misses Earth. The difference for longitude and latitude is explained
by the MFR inclination of 252° being only 18° away from a purely east-west oriented axis; thus, a small change
in latitude will lead to amiss quicker than a similar change in longitude because the flux rope is much wider in
longitude in this case. However, both the timing andmagnitude of the geomagnetic response change widely
over these possible ranges. We think that a complete sensitivity analysis for every simulation parameter is
better suited for a CME MFR event, which has been fully observed at two radially separated locations in
the inner heliosphere (e.g., Good et al., 2015), but here we show the results of a first test concerning the
dependence of Dst on flux rope orientation.

In Figure 7 we show 3DCORE runs which differ only in the MFR axis orientation, keeping all other parameters
similar. The results of the first run can be seen in Figures 7a and 7d. Just by tilting the axis by�20°, the orien-
tation is more inclined to the solar equator at 232° position angle, and the Dst time profile strongly changes.
This run is also closer to the orientation of the filament neutral line on the Sun (axis at 220°), that is, what can
be assumed to be the intrinsic orientation of the MFR. Whereas the Dstminimum is very close to the observed
one, at around �75 nT, the simulated minimum (dashed lines) is now a plateau, which reaches the Dst

Figure 7. Dst model sensitivity on flux rope axis orientation. Torus visualization for two cases, where we have rotated the
magnetic flux rope axis orientation by (a) �20° and (b) +20° away from the 252° as given by Graduate cylindrical shell
modeling. Resulting Dst profiles compared to the simulation, with the axis at (c) 232° and at (d) 272°. The format is similar
to Figure 6c.
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minimum more than half a day earlier compared to observation, and persists at peak values. In the second
run in Figures 7b and 7d, the axis is tilted by +20° to a PA of 272°, so the flux rope axis is now almost perfectly
aligned with the solar equatorial plane. Consequently, the resulting Dst is almost 0, clearly inconsistent with
the observed values. These changes in Dst arise only from the change in synthetic Bz at Wind due to the dif-
ferent flux rope orientation, which also leads to slightly different trajectory through the synthetic flux rope.
We leave more detailed analyses concerning the effects of variations in input parameters on the Dst results
for future studies.

5. Conclusions

Forecasting the geomagnetic effects of solar storms (CMEs) is currently massively hindered by our inability to
predict the magnetic field configuration at the CME core, in particular their southward magnetic fields. Here
we have demonstrated how a new semiempirical model (3DCORE) can be used to predict the speed and field
components of a CME flux rope at 1 AU and derive the Dst index time series. The model is initiated by solar
extreme ultraviolet and magnetogram observations, as well as coronagraph modeling results. Heliospheric
imaging on STEREO was used to confirm the unambiguous connection of the solar eruption to 1 AU.

In its first prototype, we additionally need in situ magnetic field data from along the Sun-Earth line, provided
here by the MESSENGER spacecraft, to constrain three parameters of the MFR simulation—the magnitude of
the axial magnetic field B0, the flux rope diameter D, and Γ parameter describing solar wind drag. Then, we
propagate the model outward to 1 AU and find a good match between the synthetic and observed geomag-
netic Dst index, based only the synthetic data input which includes a routine HEEQ to GSM coordinate con-
version. Our simulation results conducted here can yield prediction lead times of 1 to 3 days, from the end of
the flux rope observation at MESSENGER to its beginning and end at Wind. Our study may also be taken as a
hint of the utility of having a solar wind monitor at or near the Sun-Earth line closer to the Sun than L1, but
more studies are needed that use semiempirical models such as presented here for Dst prediction, either only
with solar and coronal inputs or with combined solar, heliospheric imaging, and in situ inputs, to decide on
the viability of such sub-L1 monitors for real-time CME prediction in combination with physical modeling. We
would also like to emphasize that even with very limited and sparse in situ information <1 AU, a valuable
constraint of CME propagation models should be possible. This is also supported by several studies showing
that the deflection and rotation of CMEs largely take place during about first 10% of their journey from the
Sun to the Earth (e.g., Isavnin et al., 2014; Kay et al., 2016). These observations also support the usage of
3DCORE for space weather forecasting. 3DCORE uses CME direction and orientation (with the axial field given
by the source region) from the GCS reconstruction results around 20 solar radii away from the Sun, that is, at
the point where most dramatic change in CME geometrical parameters has already occurred.

The Dst results are sensitive to CME direction and orientation; thus, very accurate results on these parameters
are needed from observations (also shown by Kay et al. (2017)). This may be provided by a mission to the L5
point with multipoint coronagraph support (SOHO and STEREO) and an HI capable of polarization measure-
ments (DeForest et al., 2016). We have also shown that the polarity inversion orientation of the source region
is not a good predictor of the in situ orientation, and a rotation of about 30° is needed, which seems to have
happened between the photosphere and the corona. Thus, we find further evidence that deflection and rota-
tion of CMEs need to be taken into account close to the Sun (e.g., Kay et al., 2016). The point is that even
though 30° inclination difference does not sound significant, this difference has a strong influence on the
resulting magnetic field at L1 and consequently the predicted Dst index.

The processes of CME-CME interaction and merging are not included in the current 3DCORE version, and
there is a reaction of the model only to a single-speed background solar wind, but not a 3D wind. The current
three open parameters in themodel should be based on CME statistics and other more sophisticated physical
modeling regarding the origin, expansion, and propagation of CMEs. The initial flux and helicity content of
the flux ropemay be set by examining the preeruptive state of the flux rope with coronal magnetic field mod-
eling (e.g., Lowder & Yeates, 2017; Yeates, 2014) The circular cross section and global shape also limit the cur-
rent model applicability, which will be changed to different shapes such as ellipses or other deformed shapes
(e.g., Hidalgo et al., 2002; Janvier et al., 2014; Möstl et al., 2015; Owens, 2006) in future updates.

We introduced in this short report the 3DCORE technique because it acts as part of a principle that
we want to pursue in the following years in order to make advances on solving the Bz problem. The
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ultimate goal is to use solar, coronagraph, and HI observations in combination with L1 data to constrain the
3DCORE model parameter space in real time. A combination with the HI prediction model ElEvoHI (Rollett
et al., 2016) could be a step in this direction. This model is based on HI observations and provides, besides
the predictions of arrival time and speed, “side products” as the background solar wind speed, Γ, and kine-
matic profiles of the CME front. With 3DCORE, accurate L1 forecasts for up to 2 days in advance for the CME
flux rope as the CME is sweeping over Earth could be possible. Essentially, even in real time, the shock arri-
val already constrains much of the CME kinematics, which has strong effects on the possible speeds and
magnetic fields that arrive in the flux rope, given that the association with the remote observations is cor-
rect. 3DCORE is a technique that can easily produce many simulation runs quickly, and the runs that are
expected to most accurately predict the current event can be selected by machine learning algorithms.
These are based on the given solar and interplanetary inputs from many previous events and laws on
the behavior of CME MFRs that are far from stochastic (e.g., Bothmer & Schwenn, 1998; Marubashi et al.,
2015; Palmerio et al., 2017). The catalogues we have produced in HELCATS and others like the
Heliophysics Event Knowledgebase are data sets that will be used to train these kinds of algorithms.
Essentially, for such a system, it does not matter from where the in situ constraints come from, be it L1,
which makes prediction lead time shorter, or in the far future from closer to the Sun by simple solar wind
monitors near the Sun-Earth line, which, however, is expected to increase the prediction lead times consid-
erably compared to L1.

Additionally, it has not escaped our notice that 3DCORE forms an approach that can produce synthetic in
situ flux rope observations even when the spacecraft crosses the CME flux rope at a speed that is similar to
the CME propagation speed, which could lead to interesting observational effects as the CME flux rope is
not sampled along a 1-D but essentially along a 3-D trajectory. This will happen in the upcoming years
likely a few times with observations of the Parker Solar Probe spacecraft. It will approach the Sun to about
0.05 AU and spends enough time to likely observe a few CMEs at <0.3 AU during the primary mission.
Combined imaging and in situ observations by Parker Solar Probe, Solar Orbiter, and BepiColombo will
lead to further CME modeling constraints. 3DCORE and other semiempirical models (Isavnin, 2016; Kay
et al., 2017) will highly likely provide a valuable modeling context to interpret data returned by these
new, groundbreaking missions.

6. Sources of Data, Codes, and Supporting Information

Catalogues used, described in Möstl et al. (2017):

HIGeoCat: https://www.helcats-fp7.eu/catalogues/wp3_cat.html

Page for 2013 July 9:

CME: https://www.helcats-fp7.eu/catalogues/event_page.html?id=HCME_B__20130709_01

ARRCAT:

https://doi.org/10.6084/m9.figshare.4588324

https://doi.org/10.6084/m9.figshare.4588324.v1

https://www.helcats-fp7.eu/catalogues/wp4_arrcat.html

ICMECAT:

https://doi.org/10.6084/m9.figshare.4588315

https://doi.org/10.6084/m9.figshare.4588315.v1

https://www.helcats-fp7.eu/catalogues/wp4_icmecat.html

In situ data:

Wind: https://cdaweb.sci.gsfc.nasa.gov

MESSENGER: https://pds-ppi.igpp.ucla.edu

OMNI2 data for the Dst index:

description: https://omniweb.gsfc.nasa.gov/html/ow_data.html
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data: ftp://nssdcftp.gsfc.nasa.gov/pub/data/omni/low_res_omni/omni2_all_years.dat

3DCORE code:

https://doi.org/10.6084/m9.figshare.5450341

https://doi.org/10.6084/m9.figshare.5450341

Animation of Figure 4:

https://doi.org/10.6084/m9.figshare.4602253

https://www.youtube.com/watch?v=Jr4XRzGCaaQ

Animation of Figure 5a:

https://figshare.com/s/b21f14d2098022689ada (this movie is part of the 3DCORE code)
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