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Abstract
Driven-dissipative quantummany-body systems have attracted increasing interest in recent years as
they lead to novel classes of quantummany-body phenomena. In particular,mean-field calculations
predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a
number of driven-dissipative quantummany-body systems. Using a clustermean-field and a self-
consistentMori projector approach, we explore the persistence of such limit cycles as short range
quantumcorrelations are taken into account in a driven-dissipativeHeisenbergmodel.

1. Introduction

Understanding the phases of quantummany-body systems is one of the central goals ofmodern physics. Phases
ofmatter emerging from cooperative behaviour in equilibrium systems have proven to be of fundamental and
technological importance, with notable examples including superconductors [1] and topologicalmaterials [2].
Recent advances have provided the opportunity to extend this field into the exploration of the phase diagrams of
non-equilibriumquantum systemswhere excitations which dissipate from the system are replenished using an
external driving field [3–5]. Experimental platforms, such as cavity arrays, superconducting circuits and
polaritonwaveguides, have introduced a new class of systemswhere the interplay between coherent driving and
incoherent dissipation has led to the discovery of novel phenomena. Bistability [6, 7] and crystallisation [8] in the
driven-dissipative nonlinear resonator arrays and synchronised switching in an array of coupled Josephson
junctions [9] provide a couple of examples where non-equilibriumphenomena are essential for the
understanding of quantumphotonic systems.

An intriguing possibility of a non-equilibriumphase that appears in driven-dissipative systems are limit
cycles, whereby the system enters a periodic trajectorywhich breaks the time-translation symmetry of themaster
equation.Mean-field studies suggest that limit cycles could exist in a range of non-equilibrium systems,
including optomechanical arrays [10], anisotropicHeisenberg lattices [11, 12], Rydberg lattices [13, 14] and
Bose–Hubbard lattices with cross-Kerr interactions [15, 16]. Experimentally realising limit cycles would not
only be the discovery of a new class of phases in driven dissipative quantummany-body systems but could also
have important technological applications, for example in synchronising quantummany-body devices[10, 17].

Existing predictions of the occurrence of limit cycles are almost exclusively based onGutzwillermean-field
approaches, which assume a factorised densitymatrix and ignore quantumfluctuations. It is therefore
important to investigate towhat extent these limit cycles are affected by quantum fluctuations or correlations
[18], which often play a significant role in determining the structure of exoticmaterials [8, 19]. Recently, Chan
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et al have shown that limit cycles persist in the anisotropicHeisenberg lattice evenwhenGaussianfluctuations
are taken into account [12].

In this work, we present simulations of the driven-dissipative anisotropicHeisenberg lattice using the self-
consistentMori projector [20] and clustermean-fieldmethods [21] in order to explore the role of short-range
fluctuations beyond theGaussian approximation.Within the limits of our approximation limit cycles in the
Heisenbergmodel disappear for reduced dimensionality and increasing cluster size respectively. Bothmethods
implicitly include fluctuations beyond theGaussian approximation [20, 22–24] demonstrating that higher-
order correlation functions have an important influence on the existence of limit cycles. The distinct approaches
of these two numericalmethods in simulating local quantum correlations complement each other and both
show a disappearance of the limit cycle phase of the driven-dissipative anisotropicHeisenbergmodel at low
coordination numbers.

2.Model

We investigate the long-time behaviour of the driven-dissipative anisotropicHeisenberg lattice, the phase
diagramofwhichwas first studied in [11]. The system consists of a regular d-dimensional lattice of two-level
sites with an energy splittingω0 which are coherently driven by an external drive field of strengthΩ and
frequencyωD.We consider such frequency to be resonant with the energy splitting of the two level system, that is
ωD=ω0,make the rotating-wave approximation andmove to a frame that rotates at frequencyω0, such that the
uncoupledHamiltonian is given by

å s=
W ( )H
2

, 1
i

i
x

0

where s s s s=a { }, ,i i
x

i
y

i
z are the Paulimatrices acting on site i andwe have set ÿ=1. Each site has z=2d

nearest neighbours which are coupled by an anisotropicHeisenberg term such that theHamiltonian of the full
system is given by
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where z is the coordination of the lattice and á ñi j, denotes nearest-neighbour interactions. The factor of z−1 in
the coupling term is required in order to ensure that the energy of the system is extensive. Additionally,
individual sites can spontaneously decay from the excited state to the ground state at a rate γ. This gives rise to a
Markovian dynamics that is ruled by the followingmaster equation in the Lindblad form
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whereR(t) is the densitymatrix of thewhole system andσ±i is the annihilation/creation operator for site i.
Avenues to realising thismodel in experiments with Rydberg atoms and trapped ions have been discussed
in [11].

3.Mean-field phase diagram

Obtaining a solution for equation (3) is impractical under almost all circumstances and approximationsmust be
made in order to determine the phase diagramof themodel. The simplest approximation is to ignore quantum
correlations between the individual two-level systems and treat interactions as though each site is coupled to the
mean-field generated by its nearest neighbours. Linear stability analysis of the fixed points of the resultantmean-
fieldmaster equationwas performed byChan et al [12] and, for completeness, we summarise some of their
results here.

Themean-field phase diagram indicates that an antiferromagnetic phase can be realised in this system.
Therefore, in order to allow the densitymatrix to break the translational symmetry of themodel, we divide the
sites into anA andB sublattice where all sites on theA sublattice interact only with theB sublattice and vice versa.
In themean-field approximation, the equations ofmotion for the reduced densitymatrices of theA andB
sublattice can then be simplified by replacing the anisotropicHeisenberg couplingwith an effective self-
consistent classical field generated by the site’s znearest neighbours
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thus excluding quantum correlations. Infigure 1, we reproduce a part of themean-field phase diagram.Within
this approximation, themodel supports uniform and antiferromagnetic phases whichwould also be expected in
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an equilibrium system.However, the inclusion of driving and dissipation allows for regions of the phase diagram
where the system enters a limit cycle [11, 12], see region LC infigure 1.

In the limit cycle phase, the sublattice symmetry of the system is broken and the local systemobservables of
the two sublattices oscillate periodically with a relative phaseπ. The limit cycles exist even though themean-field
Liouvillian is time-independent. Note that the breaking of the sublattice symmetry is due to the instability of the
mean-field solution and is not an artefact of assuming a bipartite lattice [11, 21]. In this paper, we explore how
the limit cycles predicted by thesemean-field calculations are affected by quantumfluctuations and correlations.

4.Methods

Weexplore the existence of limit cycle phases for themodel specified in equation (3) via twomethods, self-
consistentMori projectors and clustermeanfield.

4.1. Self-consistentMori projectormethod
The self-consistentMori projector approach solves for the reduced densitymatrices of individual lattice sites by
integrating out the correlations to give non-Markovian equations ofmotion for the reduced densitymatrices of
the system [20]. For the systemdescribed by equation (3), we start by partitioning the Liouvillian into local and
interaction parts

 = +˙ ( ) ( ) ( ) ( )R t R t R t , 5I0

where
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The equation ofmotion for the reduced densitymatrix ρn of site n, derived in [20], can be expressed as aDyson
series in I and is given by

Figure 1.Mean-field phase diagram for ={ } { }J J, 6.0, 2.0y z . The long-time behaviour of the system is separable into
antiferromagnetic (AFM), various uniform (U1 andU2) and limit cycle (LC) phases. Bistable regimeswhere both phases can be
reached depending on the system’s initial state are also present.
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where {·}Trn denotes the trace over all degrees of freedom except for those of site n, =(·) {·}P Trt
n

n

rÄ ¹⨂ ( )tm n m are the time-dependentMori projectors and  = - å Pt n t
n. Thefirst term in equation (9)

describes the free evolution of the nth site whilst the second term is the interaction of the site with themeanfield.
The third term is referred to as the Born term and is the first-order quantum correction to themean-field
prediction for the dynamics of ρn(t). Thefinal term is the sumover the remaining terms of the self-consistent
Mori projectorDyson series. Its explicit form can be found in appendix C of [20]. In order tomake simulation of
equation (9) tractable, wemake a truncation of theDyson series expansion by setting  =( )t 0m

n form�3,
corresponding to a Born approximation.Note that evenwith this truncation, equation (9)was found to give
more accurate results than standard perturbation theory to second order, see figure 3(d) in [20]where a second
order expansion in correlators [22, 25] is compared to self-consistentMori projector results in the Born
approximation.

With the truncation of equation (9) at second order in I , we partition the sites ontoA andB sublattices such
that
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and similarly for ρB(t). For simplicity, we have omitted the site index for the Pauli operators, which operate on
the relevant sublattice. The long-time behaviour of the system can then be calculated by time-integrating the
equations ofmotion over a sufficiently long time such that the transient behaviour has disappeared.

4.2. Clustermean-field theory
Approximate solutions to themaster equation becomemore accurate when reduced densitymatrices for
clusters consisting ofmultiple lattice sites are considered [20, 21]. Quantum correlationswithin these clusters
are then calculated exactly and inaccuracies are limited to interactions between clusters. The exponential scaling
of the dimension of theHilbert space with increasing coordination number unfortunatelymakes it impossible to
consider clusters for lattices with large z but, for low coordination number, simulating the reduced density
matrix of a cluster becomesmoremanageable as the size of the cluster’sHilbert space is reduced. However, when
using the self-consistentMori projectormethod for thismodel, evaluating the Born term in equation (9) for a
cluster is computationally difficult due to the large number of terms in the interaction Liouvillian. Nevertheless,
even in amean-field calculation, all correlations are taken into account for the internal quantumdynamics of the
cluster which interacts with themean-field exerted by its neighbouring clusters.

In the clustermean-field approximation, the densitymatrix of the lattice is divided into a product state of
contiguous clusters of sites  which are identical due to the translational symmetry of the lattice

r»( ) ⨂ ( )R t . 15
i

This densitymatrix then evolves according to the decoupled clustermean-field Liouvillianwhich can bewritten
as

    = + ( )( ), 16CMF

where   = å Îj j describes the evolution of the isolated cluster and the interactionwith themean-field of the
neighbouring clusters is described by the nonlinear Liouvillian  ( )which acts only on sites at the boundary of
the cluster. For the driven-dissipativeHeisenbergmodel, the boundary Liouvillian is given by
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where ( )tB j
eff is related to the average polarisation of the sites adjacent to the boundary  ( ) at time t. Clusters

containing an odd number of sites break the bipartite symmetry of the lattice and a pair of complementary
coupled clustersmust be used. For example, in order to perform calculations using a cluster size of 3× 3, the
lattice can be divided into two subclusters A and B where the four sites in the corners and the central site of A

are assigned to theA sublattice and B is the complement of A.

5. Results

Weapply themethods described in the previous section tofind the long-time behaviour of the driven-dissipative
Heisenberg lattice. At t= 0, the system is prepared in a product state, that we parametrise as
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where anA and anB are the components of two vectors within the unit sphere. For this initial state, we time-
integrate the equations ofmotion of the respective reduced densitymatrices using both the self-consistentMori
projectormethod and clustermean-field theory until t?γ−1, where the transient behaviour due to the product
state initialisation has decayed and the systemhas either entered into a limit cycle or has reached a time-
independent steady state.We performed the simulations for two sets of parameters: W{ }J J J, , ,x y z

= -{ }7.0, 6.0, 2.0, 1.0 and W = -{ } { }J J J, , , 6.4, 3.0, 6.0, 2.25x y z with γ=1which both correspond to
points in the parameter space wheremean-field calculations predict the steady state to be composed of limit
cycles.

5.1. Self-consistentMori projectormethod
We start by presenting the results calculated using the self-consistentMori projectormethod. The system
exhibits two distinct long-time behaviours whichwe show infigure 2, wherewe characterise the limit cycle using
the average polarisation of the sublattices s r{ }Tr z

A and s r{ }Tr z
B . For some initial states, after a transient

behaviour, the sublattice symmetry is restored and the system relaxes to a ferromagnetic stationary state.
However, for the other initial states, the system enters a limit cycle where the sublattice symmetry is broken and
the systemoscillates anharmonically.

Whether a random initial statewill enter the limit cycle phase depends strongly both on the system
parameters and the coordination number of the lattice. Figures 3 and 4 show the proportion of states which do
not enter the limit cycle phase as a function of the coordination number z from a sample of 50 initial states with
randomised anA and anB . In the limit  ¥z , the equations ofmotion become equivalent to themean-field
approximation as the prefactor of the Born term in equation (10) vanishes so all initial states enter into limit
cycles.Whilst this limit is unlikely to be experimentally practical, it does allow us to connect themean-field

Figure 2.An example of the dynamics of two sample initial product states for z=150 for W = -{ } { }J J J, , , 7.0, 6.0, 2.0, 1.0x y z . The
systemwas initiated in the randomproduct state where for the initial stateRI(0)which relaxes to a stationary steady state,

= - -{ }n 0.0911, 0.5318, 0.7725A and = - -{ }n 0.0007, 0.6958, 0.0654B and for the initial stateRII(0)which enters the limit cycle
phase,nA={0.2576, 0.1597, 0.1999} andnB={−0.4684,−0.4306,−0.4928}.
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result tomore accurate investigations as the coordination number of the system controls themagnitude of the
Born term and all higher order terms  ( )tm

n withm�3 in equation (9). As the coordination number of the
lattice decreases, quantum correlations includedwithin theMori projector expansion become relevant and
certain initial states will evolve towards a stationary ferromagnetic state. For the above parameters, wefind that
below a critical coordination number z*, the limit cycles are absent and there is no evidence of long-time
oscillatory behaviour for all initial states. The critical coordination number differs depending on the system
parameters but * >z 10 in both cases. In contrast to W = -{ } { }J J J, , , 7.0, 6.0, 2.0, 1.0x y z , for

W = -{ } { }J J J, , , 6.4, 3.0, 6.0, 2.25x y z all initial states enter limit cycles for *>z z .
In themean-field limit, we see that for these parameter sets, every initial state is attracted to a limit cycle. As

the coordination number of the systemdecreases, a proportion of these initial states instead are attracted to a
time-independent steady state. For *<z z , our numerical results indicate that the size of the attractor basin for
the limit cycle phase disappears and all initial states converge on a stationary solution. This result indicates that it
is not possible to enter into a limit cycle phase for experimentally realistic coordination numbers.

Whilst this transition is accompanied by a shift in the frequency of the limit cycle, it is not possible to
perform a quantitative analysis of this shift as higher-order terms in equation (9)may become relevant. For the

Figure 3. Frequency and proportion of initial states entering the limit cycle phase as a function of the coordination number for
W = -{ } { }J J J, , , 7.0, 6.0, 2.0, 1.0x y z . Below a critical dimension * »z 100, the limit cycle phase disappears and all initial states

relax to a paramagnetic stationary state. This transition is accompanied by a shift in the frequency of the limit cycle. The error in the
frequency is due to computational limitations which restricted the period of time over which the densitymatrix could be evolved
whilst the uncertainty in the proportion of initial states not entering a limit cycle is taken from the standard error of a Bernoulli
process.

Figure 4. Frequency of initial states entering the limit cycle phase as a function of the coordination number for
W = -{ } { }J J J, , , 6.4, 3.0, 6.0, 2.25x y z . The critical dimension is lower than for the parameters used infigure 3with * »z 50, but

below this value, all initial states still relax to a paramagnetic stationary state. For *>z z , all initial states enter into a limit cycle.
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parameters considered here, the truncated terms in theDyson series given in equation (9) scale as
 g~ a( ) ( )t Jm

n m and therefore convergence is not guaranteed as ga∣ ∣J 1 forα=x, y and z. Hence, the
difference in behaviour of the limit cycle frequency between the two parameter sets presented here for
coordination numbers close to the critical value z* cannot necessarily be expected to be a quantitatively reliable
prediction.While we cannot exclude the possibility that higher order termswould restore the limit cycle
behaviour, we do not expect that expanding equation (9) tofirst order in the couplings—which is themean-field
approximation—will bemore accurate than the expansion to second order that we consider here.

5.2. Clustermean-field theory
Nextwe investigate the existence of limit cycle phases in the driven-dissipative anisotropicHeisenbergmodel via
clustermean-field theory. Figure 5 shows the average polarisation of theA andB sublattices for a two-
dimensional lattice calculated using clustermean-field simulations of 2×2 and 3×3 clusters. Thewave
functionwas initiated in the product state given by equation (18) for = -{ } { }J J J, , 7.0, 6.0, 2.0, 1.0x y z .
Figure 5 shows that the limit cycles are not observed in the clustermean-field simulations. Such conclusions
extend to clustermean-field simulations for a three-dimensional lattice. Infigure 6, we show the average
polarisation for a 2×2×2 cluster. Once again, the system relaxes into a stationary steady state after an initial
transient and limit cycles are not observed.

For W = -{ } { }J J J, , , 6.4, 3.0, 6.0, 2.25x y z , clustermean-field theory shows that the limit cycle phase is
more robust as the system still exhibits periodic behaviour for a 2×2 cluster (seefigure 7). However, for a 3×3
cluster, once again the system relaxes to a stationary steady state.

6. Conclusions

Wehave used the self-consistentMori projector and clustermean-fieldmethods to simulate the evolution of a
driven-dissipative anisotropicHeisenbergmodel within a regimewheremean-field results predict that this
system should exhibit limit cycles. The approximations required for these twomethods are limited to calculating
local properties of the systembut have the advantage of including higher-order quantum correlation effects. For
a high coordination number, the self-consistentMori projectormethod agrees with themean-field prediction
and limit cycles are observed for any initial state. However, as the coordination number of the lattice is reduced, a
proportion of the initial states no longer enter the limit cycle phase and relax towards a ferromagnetic steady
state. Below a critical coordination number, for which * z 10 for the parameter sets whichwe have studied
here, the limit cycle phase disappears and all initial states relax towards the same steady state. Recently limit
cycles inmany-body systemswere associatedwith the appearance of time-crystalline behaviour [26]. Ourwork
seems to indicate that these effectsmay appear only in long-range systems or for high dimensions.

Figure 5.Time-evolution of the polarisation of the two-dimensional driven-dissipativeHeisenbergmodel using clustermean-field
theory for W = -{ } { }J J J, , , 7.0, 6.0, 2.0, 1.0x y z forwhich the systemwas initiated in the product stateRII(0) as defined infigure 2.
Simulations using 2×2 and 3×3 clusters both converge on a time-independent steady state in contrast to themean-field
prediction.
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Figure 6.Time-evolution of the polarisation of the three-dimensional driven-dissipativeHeisenbergmodel using clustermean-field
theory for W = -{ } { }J J J, , , 7.0, 6.0, 2.0, 1.0x y z forwhich the systemwas initiated in the product stateRII(0) as defined infigure 2.
Similarly to the two-dimensionalmodel, results from larger clusters do not exhibit limit cycles.

Figure 7.Time-evolution of the polarisation of the two-dimensional driven-dissipativeHeisenbergmodel using clustermean-field
theory for W = -{ } { }J J J, , , 6.4, 3.0, 6.0, 2.25x y z forwhich the systemwas initiated in the product stateRII(0) as defined in figure 2.
The limit cycles aremore robust than infigure 5, as they persist for 2×2 clusters, but the system relaxes to a stationary steady state for
3×3 clusters.
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