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GLOBAL WELL-POSEDNESS AND ATTRACTORS FOR THE

HYPERBOLIC CAHN-HILLIARD-OONO EQUATION IN THE

WHOLE SPACE

ANTON SAVOSTIANOV1 AND SERGEY ZELIK1

Abstract. We prove the global well-posedness of the so-called hyperbolic
relaxation of the Cahn-Hilliard-Oono equation in the whole space R

3 with the
non-linearity of the sub-quintic growth rate. Moreover, the dissipativity and
the existence of a smooth global attractor in the naturally defined energy space
is also verified. The result is crucially based on the Strichartz estimates for
the linear Scrödinger equation in R

3.
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1. Introduction

It is well-known that the Cahn-Hilliard (CH) equation

(1.1) ∂tu+∆x(∆xu− f(u) + g) = 0, x ∈ Ω, u
∣

∣

t=0
= u0,

where the unknown function u = u(t, x) is the so-called order parameter, f is a
given non-linear interaction function and g are the given external forces, is central
for the material sciences and many papers are devoted to the mathematical study
of this and related equations, see [4, 11, 12, 14, 16, 17, 19, 20, 21, 34, 36, 37, 40]
and references therein. The most studied is the case where the underlying domain
Ω is bounded. In this case a more or less complete theory of this equation including
the global well-posedness, dissipativity, existence of finite dimensional global and
exponential attractors for various classes of non-linearities (e.g., for fast growing or
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2 A. SAVOSTIANOV AND S. ZELIK

even singular ones) are available in the literature, see [12, 35, 40] and references
therein.

The case where the underlying domain is unbounded is more difficult and less
understood. The main problem here is the loss of dissipation in the low frequency
limit u0 = u0(εx), ε → 0, which prevents the solution semigroup to be dissipative
in a classical sense even in the case of finite energy solutions, see [15] for some
partial results on the long-time behavior of solutions for the viscous CH equations
in the whole space and [10, 52] for the non-dissipative bounds in the case of infinite-
energy solutions. We mention also the case of CH equation in a cylindrical domain
with Dirichlet boundary conditions considered in [7, 18] where the dissipation is
guaranteed by the Poincare inequality.

Therefore, in order to restore the dissipation mechanism, it seems reasonable
to consider the physically relevant modifications of the initial CH model. One of
the most convenient from the mathematical point of view model for that is the
Cahn-Hilliard-Oono (CHO) equation

(1.2) ∂tu+∆x(∆xu− f(u) + g) + αu = 0, u
∣

∣

t=0
= u0,

where the extra term αu with α > 0 models the non-local long-ranged interactions,
see [38, 41] for more details. The extra dissipation term αu does not change the type
of the equation and does not affect much the analytical properties of the solutions
on the finite time interval. However, the presence of this extra dissipation removes
the problem with low frequency modes and allows us to apply the weighted energy
theory and verify the global well-posedness and dissipativity even in the case of
infinite energy solutions, see [52] for more details.

Another interesting modification is the so-called hyperbolic relaxation of the CH
equation:

(1.3) ε∂2t u+ ∂tu+∆x(∆xu− f(u) + g) = 0, ε > 0, u
∣

∣

t=0
= u0, ∂tu

∣

∣

t=0
= u1

which has been introduced by P. Galenko in order to treat in a more accurate way
the non-equilibrium effects in spinodal decomposition, see [22, 23, 24, 25]. In con-
trast to the previous modification, the inertial term ε∂2t u changes drastically the
type of the equation (from parabolic to hyperbolic) and the analytical properties
of its solutions. Moreover, the nonlinearity ∆x(f(u)) becomes ”critical” even if the
equation is considered in the class of smooth solutions and ”supercritical” if the
estimate u(t) ∈ L∞(Ω) is not available. By this reason, despite the big current
interest to this equation, see e.g., [26, 27, 28, 29, 30, 32] and references therein,
a considerable mathematical theory (which includes global well-posedness, dissipa-
tivity, asymptotic smoothness, etc.) exists only in space dimension one or two, see
[26, 28, 29]. Moreover, to the best of our knowledge, the global well-posedness of
solutions for this problem in 3D is not known even in the case of bounded domain Ω
and globally bounded non-linearity f , so the so-called weak trajectory attractors are
used to study the long-time behavior of the considered equation, see [13, 31]. Some
exception is the case of very small ε > 0 where the smooth dissipative solutions can
be constructed using the perturbation arguments, see [30, 32].

The main aim of the present paper is to combine the CHO equation and the
hyperbolic relaxation mechanism mentioned above and consider the hyperbolic CHO
equation

(1.4) ∂2t u+ ∂tu+∆x(∆xu− f(u) + g) + αu = 0
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in the whole space Ω = R
3. In contrast to the previous contributors, we use not

only the proper energy estimates, but also the so-called Strichartz estimates which
are known to be crucial to study the non-linear wave or Scrödinger equations,
see [8, 9, 42, 46, 47, 48] and references therein. In particular, using the known
Stricharts estimates for the Schrödinger equations, we deduce the crucial control
u ∈ L4(t, t + 1;L∞(R3)) for the solutions of (1.4) which is sufficient to verify the
global well-posedness in the case of sub-quintic nonlinearity f :

(1.5) |f ′′(u)| ≤ C(1 + |u|3−κ), κ > 0,

satisfying some natural dissipativity assumptions. To be more precise, we consider
the hyperbolic CHO equation in the energy phase space

(1.6) E := [Ḣ1(R3) ∩ Ḣ−1(R3)]× Ḣ−1(R3), ξu := (u, ∂tu) ∈ E

and restrict ourselves to consider only the energy solutions ξu ∈ C(0, T ; E) which
possesses the additional regularity u ∈ L4(0, T ;L∞(R3)) which we referred as the

Strichartz solutions. Here and below Ḣs(R3) stands for the homogeneous Sobolev
space of order s in R

3. The main result of the present paper is the following
theorem.

Theorem 1.1. Let the non-linearity f satisfy the sub-quintic growth restriction

and some dissipativity assumptions stated in (3.2). Assume also that the extrenal

force g ∈ Ḣ1(R3). Then, for any initial data ξ0 = (u0, u1) ∈ E, equation (1.4)
possesses a unique global Strichartz solution u(t) and this solution satisfies the

following dissipative estimate:

(1.7) ‖ξu(t)‖E + ‖u‖L4(t,t+1;L∞) ≤ Q(‖ξu(0)‖E)e
−βt +Q(‖g‖Ḣ1),

where the positive constant β and monotone function Q are independent of the

solution u and time t ≥ 0.
Moreover, the Strichartz solution semigroup S(t) : E → E generated by equation

(1.4) possesses a global attractor in the energy space E and this attractor is bounded

in the more regular space

(1.8) E2 := [Ḣ3(R3) ∩ Ḣ−1(R3)]× [Ḣ1(R3) ∩ Ḣ−1(R3)].

Note that in the case of damped wave equations the similar results have been
recently extended to the case of general bounded domains and even with the critical
quintic nonlinearity, see [8, 9, 33]. However, in contrast to the wave equation (with

the solution operator eit(−∆x)
1/2

), the Strichartz estimates are more complicated for
the case of the Scrödinger equation (with the solution operator eit∆x), and cannot
be extended to general bounded domains without loss of regularity, see [6] and
references therein. In particular, this loss of regularity does not allow to obtain the
desired control of the L4(L∞) norm of the solution and prevents the straightforward
extension of Theorem 1.1 to the case of bounded domains, see Remark 6.1 for more
details.

The paper is organized as follows.
The classical Strichartz estimate for the linear Scrödinger equations is reminded

in Section 2. Based on this estimate, we deduce its analogues for the case of plate
equation as well as for the linear hyperbolic CHO equation (with f = 0). The
estimates obtained in this section are the key technical tools for our study of the
non-linear hyperbolic CHO equation.
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The global well-posedness for the Strichartz solutions of the non-linear hyperbolic
CHO equation is verified in Section 3. Moreover, the dissipative estimate (1.7) is
verified there. Note that the fact that the non-linearity f has a sub-quintic growth
rate is essentially used here. Similarly to [33], we verify the control of the Strichartz
norm through the energy norm of the solution and gain then the dissipativity of
the Strichartz norm just from the straightforward energy estimate. Note also that
the well-posedness is proved only in the class of Strichartz solution and we do not
know whether or not any energy solution is the Strichartz one.

The asymptotic compactness of the Strichartz solution semigroup S(t) in the
energy space E is verified in Section 4 using the so-called energy method, see [5, 39]
for more details.

The further regularity of the global attractorA (its boundedness in E2) is verified
in Section 5. Note that, even with the Strichartz estimate, the hyperbolic CHO
equation remains ”critical” and the proof of the further regularity of the attractor
is far from being trivial and the standard methods seem not working here. We over-
come this difficulty by using in a crucial way the asymptotic compactness verified
in the previous section.

Finally, in the concluding Section 6, we discuss various generalizations and open
problems related with the proved results.

2. Preliminaries: Energy and Strichartz estimates for the linear

plate equations

The aim of this section is to introduce a number of estimates for the linear Cahn-
Hilliard-Oono (CHO) equation which are crucial for what follows. We start with
recalling the known estimates for the linear homogeneous Schrödinger equation
which play the central role in deriving the Strichartz type estimates for the CHO
equation. Namely, consider the following equation in the whole space R

3:

(2.1) ∂tU − i∆xU = H(t), U
∣

∣

t=0
= U0,

where U = U(t, x) is the unknown complex valued function and H = H(t, x) and
U0 = U0(x) are given functions. We assume that

(2.2) U0 ∈ Ḣ1(R3), H ∈ L1
loc(R, Ḣ

1(R3)).

Here and below, we denote by Ḣs(R3) the homogeneous Sobolev spaces of order s,
in contrast to this, the usual non-homogeneous Sobolev spaces will be denoted by
Hs(R3) or W s,p(R3) (if p 6= 2), see [50] for more details concerning these spaces.

The solution of equation (2.1) can be written (at least formally) using the vari-
ation of constants formula:

(2.3) U(t) = eit∆xU0 +

∫ t

0

ei∆x(t−s)H(s) ds.

It is also well-known that formula (2.3) defines indeed a unique solution U ∈

Cloc(R, Ḣ
1(R3)) of equation (2.1). More delicate is the following Strichartz es-

timate for U .

Proposition 2.1. Let the initial data satisfies (2.2). Then, the solution U of

problem (2.1) belongs to L4
loc(R, L

∞(R3)) and, for any T > 0, the following estimate

holds:

(2.4) ‖U‖C(−T,T ;Ḣ1) + ‖U‖L4(−T,T ;L∞) ≤ CT (‖U0‖Ḣ1 + ‖H‖L1(−T,T ;Ḣ1)),
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where the constant CT may depend on T , but is independent of U0 and H.

For the proof of this result, see [6].
The next corollary which establishes that U ∈ L4

loc(R, C(R)) will be essentially
used in the sequel for verifying the regularity of the global attractor for the hyper-
bolic CHO equation.

Corollary 2.2. Let the assumptions of Proposition 2.1 hold. Then the solution of

equation (2.1) satisfies

(2.5) U ∈ L4(−T, T ;C(R3))

for any T > 0.

Proof. Indeed, let χN (ξ) be the characteristic function of a disk {N−1 ≤ |ξ| ≤ N}

and let the projector PN : Ḣs → Ḣs be defined as follows:

(2.6) (PNf)(x) := F−1
ξ→x(χNFx→ξf),

where Fx→ξ is a Fourier transform in R
3. Let also UN := PNU . This function

obviously solves

(2.7) ∂tUN − i∆xUN = HN (t) := PNH(t), UN

∣

∣

t=0
= PNU0.

Then, on the one hand, UN is C∞-smooth in x (since PNU0 and PNH are smooth
in x), so UN ∈ L4(−T, T ;C(R3)) for all N . On the other hand, since PNU0 → U0

in Ḣ1 and PNH → H in L1(−T, T ; Ḣ1), applying estimate (2.4) to the function
UN − UM , we see that UN is a Cauchy sequence in L4(−T, T ;C(R3)). Thus, (2.5)
is proved and the lemma is also proved. �

Remark 2.3. Arguing analogously, we see that the space C(R3) in (2.5) can be
replaced by the space C0(R

3) consisting of all continuous functions on R
3 tending

to zero as |x| → ∞.

We now switch to the so-called plate equation of the form

(2.8) ∂2t V +∆2
xV = ∆xH(t), V

∣

∣

t=0
= V0, ∂tV

∣

∣

t=0
= V1,

where

(2.9) V0 ∈ Ḣ1(R3), V1 ∈ Ḣ−1(R3), H ∈ L1
loc(R, Ḣ

1(R3)).

Then, the formal multiplication of the equation by ∆−1
x Vt gives the energy identity

(2.10)
1

2

d

dt
(‖∂tV ‖2

Ḣ−1 + ‖V ‖2
Ḣ1) = −(H, ∂tV )

(here and below, we denote by (U, V ) the usual inner product in L2(R3)). This
identity gives in a standard way the well-posedness of the equation in the class of
energy solutions

(2.11) ξV := (V, ∂tV ) ∈ Cloc(R, Ḣ
1 × Ḣ−1)

as well as the energy estimate

(2.12) ‖ξV (T )‖Ḣ1×Ḣ−1 ≤ CT (‖ξV (0)‖Ḣ1×Ḣ−1 + ‖H‖L1(−T,T ;Ḣ1)),
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where CT may depend on T , but is independent of V , see the case of linear CHO
equation below for more details. In order to obtain more delicate Strichartz type
estimates for this equation, we write down the variation of constants formula:

(2.13) V (t) = sin(∆xt)∆
−1
x V1 + cos(∆xt)V0 +

∫ t

0

sin(∆x(t− s))H(s) ds.

Using this formula and the result of Proposition 2.1 for the Schrödinger equation,
we obtain the following result.

Corollary 2.4. Let the assumptions (2.9) be satisfied. Then the solution V of the

plate equation (2.8) belongs to the space L4
loc(R, C(R

3)) and the following estimate

holds for any T > 0:

(2.14) ‖ξV (T )‖Ḣ1×Ḣ−1 + ‖V ‖L4(−T,T ;L∞) ≤

≤ CT (‖ξV (0)‖Ḣ1×Ḣ−1 + ‖H‖L1(−T,T ;Ḣ1)),

where CT may depend on T , but is independent of V .

Proof. Indeed, using that sin(z) = 1
2i (e

iz−e−iz) and cos(z) = 1
2 (e

iz+e−iz) together
with formula (2.3) and Proposition 2.1, we see that every term in (2.13) belongs to
L4(−T, T ;C(R3)), so the Strichartz part of estimate (2.14) holds. The energy part
of it follows from (2.12) and the corollary is proved. �

We now turn to the linear hyperbolic CHO equation of the form

(2.15) ∂2t u+ ∂tu+∆x(∆xu−H(t)) + αu = 0, ξu
∣

∣

t=0
= ξ0,

where α > 0 is a given parameter. The energy equality for this equation formally
reads

(2.16)
1

2

d

dt
(‖∂tu‖

2
Ḣ−1 + ‖u‖2

Ḣ1 + α‖u‖2
Ḣ−1) + ‖∂tu‖

2
Ḣ−1 = −(H(t), ∂tu).

This guesses that the phase space for the energy solutions should be

(2.17) E := (Ḣ1 ∩ Ḣ−1)× Ḣ−1, ‖ξu‖
2
E := ‖∂tu‖

2
Ḣ−1 + ‖u‖2

Ḣ1 + α‖u‖2
Ḣ−1

and the energy solution of (2.15) is a function ξu ∈ C(0, T ; E) which satisfies the

equation as an equality in Ḣ−1 + Ḣ−3. The next proposition gives the existence of
such solution as well as the validity of the energy identity (2.16).

Proposition 2.5. Let H ∈ L1(0, T ; Ḣ1) and the initial data ξ0 ∈ E. Then, there

exists a unique energy solution u of equation (2.15) and the energy identity (2.16)
holds for almost all t ≥ 0.

Proof. Note that H ∈ L1(0, T ; Ḣ1) and ∂tu ∈ L∞(0, T ; Ḣ−1), so the term (H, ∂tu)
is well-defined for any energy solution. However, in order to obtain (2.16), we need
to multiply the equation by ∆−1

x ∂tu and the terms (∂2t u,∆
−1
x ∂tu) and (∆xu, ∂tu) are

a priori not well-defined, so we need to use the standard approximation arguments
for justifying it. Namely, let the projector PN be the same as in the proof of
Corollary 2.2 and uN := PNu. Then, this function is smooth in x and solves
equation (2.15) with H replaced by HN := PNH . Thus, writing the energy identity
in the equivalent integral form for uN , we have

(2.18)
1

2
(‖ξuN (t)‖2E − ‖ξuN (s)‖2E) = −

∫ t

s

(HN (τ), ∂tuN (τ)) + ‖∂tuN(τ)‖2
Ḣ−1 dτ,
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for all 0 ≤ s ≤ t. Passing to the limit N → ∞ in this relation, we end up with the
integral equality equivalent to (2.16). Thus, the energy identity is verified and the
existence of a solution can be then proved using e.g. the Galerkin approximation
scheme based on the projectors PN , so the proposition is also proved. �

The next corollary gives the dissipative estimate for the solutions of (2.15).

Corollary 2.6. Let the assumptions of Proposition 2.5 hold. Then, the solution u
of equation (2.15) satisfies the following estimate:

(2.19) ‖ξu(t)‖E ≤ C‖ξu(0)‖Ee
−βt + C

∫ t

0

e−β(t−s)‖H(s)‖Ḣ1 ds,

where the positive constants C and β are independent of u and t.

Proof. Indeed, multiplying equation (2.15) by δ∆−1
x u, where δ > 0 is sufficiently

small (which is allowed since u ∈ Ḣ1 ∩ Ḣ−1), we have
(2.20)

δ
d

dt
((−∆−1

x ∂tu, u) +
1

2
‖u‖2

Ḣ−1)− δ‖∂tu‖
2
Ḣ−1 + δ‖u‖2

Ḣ1 + αδ‖u‖2
Ḣ−1 = −δ(H,u).

Taking a sum of this relation with the energy identity (2.16), we get

(2.21)
d

dt
(
1

2
‖ξu‖

2
E + δ(∂tu,−∆−1

x u) +
δ

2
‖u‖2

Ḣ−1)+

+ (1− δ)‖∂tu‖
2
Ḣ−1 + δ‖u‖2

Ḣ1 + αδ‖u‖2
Ḣ−1 = −(H, ∂tu+ δu).

Introducing Eu(t) :=
1
2‖ξu‖

2
E+δ(∂tu,−∆−1

x u)+ δ
2‖u‖

2
Ḣ−1

, we see that for sufficiently
small δ > 0,

(2.22) C−1‖ξu(t)‖
2
E ≤ Eu(t) ≤ C‖ξu(t)‖

2
E

for some C > 0. On the other hand, it follows from (2.21) that, for sufficiently
small β,

(2.23)
d

dt
Eu(t) + βEu(t) ≤ C‖H(t)‖Ḣ1Eu(t)

1/2

and the Gronwall inequality gives the desired estimate (2.19) and finishes the proof
of the corollary. �

The next corollary combines the obtained energy estimate with the Strichartz
estimate for the plate equation.

Corollary 2.7. Let the assumptions of Proposition 2.5 hold. Then, the solution u
of equation (2.15) belongs to L4(0, T ;C(R3)) for all T > 0 and satisfies the following

estimate:

(2.24) ‖ξu(t)‖E + ‖u‖L4(max{0,t−1},t;L∞) ≤

≤ C‖ξu(0)‖Ee
−βt + C

∫ t

0

e−β(t−s)‖H(s)‖Ḣ1 ds,

where the positive constants C and β are independent of u and t.

Proof. We interpret the hyperbolic CHO equation as a linear plate equation

(2.25) ∂2t u+∆2
xu = ∆xH̃(t), H̃(t) := H(t)−∆−1

x (∂tu(t) + αu(t)).
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Then, due to the energy estimate,

(2.26) ‖H̃‖L1(max{0,t−1},t;Ḣ1) ≤ C(‖H‖L1(max{0,t−1},t;Ḣ1) + ‖ξu(max{0, t− 1})‖E)

and, due to the Strichartz estimate (2.14) for the plate equation (2.25), we have

(2.27) ‖u‖L4(max{0,t−1},t;L∞) ≤ C(‖H‖L1(max{0,t−1},t;Ḣ1) + ‖ξu(max{0, t− 1})‖E)

and the desired estimate (2.24) is an immediate corollary of this estimate and the
dissipative energy estimate (2.19). Thus, the corollary is proved. �

3. The non-linear equation: global well-posedness and dissipativity

This section is devoted to study the nonlinear hyperbolic CHO equation

(3.1) ∂2t u+ ∂tu+∆x(∆xu− f(u) + g) + αu = 0, ξu
∣

∣

t=0
= ξ0.

Remind that the initial data is assumed to belong to the energy space E = (Ḣ1 ∩

Ḣ−1) × Ḣ1, the external force g lives in the space Ḣ1 and the nonlinearity f ∈
C2(R,R) satisfies the following dissipativity and growth restrictions

(3.2)











1. f(u).u ≥ 0;

2. F (u) ≤ Lf(u).u+K|u|2;

3. |f ′′(u)| ≤ C(1 + |u|3−κ);

where all constants involved are positive and 0 < κ ≤ 3 and F (u) :=
∫ u

0 f(v) dv.
We start with defining the proper class of solutions for equation (3.1).

Definition 3.1. A function u = u(t, x) is a Strichartz solution of problem (3.1) if,
for any T > 0,

(3.3) ξu ∈ C(0, T ; E), u ∈ L4(0, T ;C(R3))

and equation (3.1) is satisfied as an equality in Ḣ−1 + Ḣ−3.

Note that, due to the growth restriction on f , we have

(3.4) ‖f(u)‖H1 ≤ C(1 + ‖u‖4L∞)(1 + ‖u‖H1),

so, using the obvious embeddings

(3.5) H1(R3) ⊂ Ḣ1(R3), Ḣ−1(R3) ∩ Ḣ1(R3) ⊂ H1(R3),

we see that f(u) ∈ L1(0, T ; Ḣ1(R3)) for any Strichartz solution u of problem (3.1).
Thus, we may interpret the terms f(u)+ g as the external force for the linear CHO
equation (2.15). Then, due to Proposition 2.5, we have the energy identity

(3.6)
1

2

d

dt
‖ξu‖

2
E + ‖∂tu‖

2
Ḣ−1 = −(f(u), ∂tu) + (g, ∂tu) = −

d

dt
((F (u), 1)− (g, u)).

Therefore, any Strichartz solution of problem (3.1) satisfied the energy identity

(3.7)
1

2

d

dt

(

‖ξu‖
2
E + (F (u), 1)− (g, u)

)

+ ‖∂tu‖
2
Ḣ−1 = 0.

Note also that, due to the first assumption of (3.2), f(0) = 0, so, taking into the
account the third assumption, we see that

(3.8) |F (u)|+ f(u).u ≤ C(|u|2 + |u|6)

and the terms (F (u), 1) and (f(u), u) are well-defined for any energy solution u. The
next proposition gives the analogue of dissipative energy estimate for the nonlinear
hyperbolic CHO equation.
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Proposition 3.2. Let the assumptions (3.2) hold, the external force g ∈ Ḣ1(R3)
and u be a Strichartz solution of the hyperbolic CHO equation (3.1). Then, the

following dissipative energy estimate holds:

(3.9) ‖ξu(t)‖E ≤ Q(‖ξu(0)‖E)e
−βt +Q(‖g‖Ḣ1), t ≥ 0,

where the positive constant β and monotone function Q are independent of t ≥ 0
and the solution u.

Proof. As in the proof of Corollary 2.6, we multiply equation (3.1) by ∆−1
x (∂tu+δu)

(the multiplication on ∆−1
x u is allowed and the multiplication on ∆−1

x ∂tu is justified
above) and get

(3.10)
d

dt
(
1

2
‖ξu‖

2
E + δ(∂tu,−∆−1

x u) +
δ

2
‖u‖2

Ḣ−1 + (F (u), 1))+

+ (1− δ)‖∂tu‖
2
Ḣ−1 + δ‖u‖2

Ḣ1 + αδ‖u‖2
Ḣ−1 + δ(f(u), u) = −(g, ∂tu+ δu).

Using the first assumption of (3.2), we see that F (u) ≥ 0 and together with (3.8),
we have

(3.11) C−1‖ξu(t)‖
2
E ≤ Ēu(t) ≤ Q(‖ξu(t)‖E),

where Ēu(t) := 1
2‖ξu(t)‖

2
E + δ(∂tu(t),−∆−1

x u(t)) + δ
2‖u(t)‖

2
Ḣ−1

+ (F (u(t)), 1) and

δ > 0 is small enough. On the other hand, using the second assumption of (3.2),
we deduce from (3.11) that for sufficiently small β > 0,

(3.12)
d

dt
Ēu(t) + βĒu(t) ≤ C‖g‖2

Ḣ1

and the Gronwall inequality applied to this relation gives the desired estimate (3.9)
and finishes the proof of the proposition. �

As the next step, we want to obtain the analogue of the dissipative estimate
(3.9) for the Strichartz norm of the solution u. To this end, we need the following
key result.

Proposition 3.3. Let the assumptions of Proposition 3.2 hold and let u be a

Strichartz solution of problem (3.1). Then, the following estimate is valid:

(3.13) ‖u‖L4(0,1;L∞) ≤ Q(‖ξu(0)‖E) +Q(‖g‖Ḣ1),

where Q is a monotone function which is independent of u.

Proof. We treat the non-linearity f(u) in (3.1) as an external force and apply (2.24)
on a small time interval t ∈ [0, τ ] where τ ≪ 1 will be fixed later. Then, we get

(3.14) Yu(τ) := ‖ξu‖C(0,τ ;E) + ‖u‖L4(0,τ ;L∞) ≤

≤ C(‖ξu(0)‖E + ‖g‖Ḣ1 + ‖f(u)‖L1(0,τ ;Ḣ1))

for some constant C which is independent of u and τ . Using the subcritical (sub-
quintic) growth restriction for f(u), see (3.2) assumption 3, together with the fact
that f(0) = 0, we estimate the norm of f(u) as follows:

(3.15) ‖f(u)‖L1(0,t;Ḣ1) ≤ C‖(1 + |u|4−κ)|∇xu|‖L1(0,τ ;L2) ≤

≤ C(τ + ‖u‖4−κ
L4−κ(0,τ ;L∞))‖u‖L∞(0,τ ;Ḣ1) ≤

≤ C(τγ + τγ‖u‖4L4(0,τ ;L∞))‖ξu‖L∞(0,τ ;E) ≤ Cτγ(1 + Yu(τ)
4)Yu(τ),
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where γ = γ(κ) ∈ (0, 3/4] and C are independent of u and τ . Thus, we end up with
the following relation:

(3.16) Yu(τ) ≤ C(‖ξu(0)‖E + ‖g‖Ḣ1) + Cτγ(1 + Yu(τ)
4)Yu(τ).

Since Yu(0) = ‖ξu(0)‖E and Yu(τ) is continuous in τ , estimate (3.16) guarantees
(see, for example, [46], Chapter IV, Lemma 2.2) that there exists τ0 = τ0(‖ξu(0)‖E+
‖g‖Ḣ1) such that

(3.17) Yu(τ) ≤ 2C(‖ξu(0)‖E + ‖g‖Ḣ1), τ ≤ τ0.

Important point here is that the constant C is independent of u and τ0 depends
only on the norms of ξu(0) and g. This allows us to obtain the desired estimate
(3.13) on a big time interval t ∈ [0, 1] just by iterating (3.17) and using that the
energy norm of ξu(t) is under the control due to the energy estimate (3.9). Thus,
the proposition is proved. �

Corollary 3.4. Let the assumptions of Proposition 3.2 hold and u be a Strichartz

solution of problem (3.1). Then, the following estimate is valid:

(3.18) ‖ξu(t)‖E + ‖u‖L4(t,t+1;L∞) ≤ Q(‖ξu(0)‖E)e
−βt +Q(‖g‖Ḣ1),

where the positive constant β and the monotone function u are independent of t
and u.

Indeed, estimate (3.18) is an immediate corollary of the dissipative energy esti-
mate (3.9) and the control (3.13) of the Strichartz norm through the energy norm.

We are now ready to state the main result of the section.

Theorem 3.5. Let the assumptions of Proposition 3.2. Then, for every ξ0 ∈ E,
there exists a unique Strichartz solution u of problem (3.1) and this solution satisfies

the dissipative estimate (3.18).

Proof. Indeed, the dissipative estimate is already verified. Since the non-linearity f
is subcritical (κ > 0), the local existence of a Srtrichartz solution is straightforward
and can be done using the Banach contraction theorem. Moreover, the interval of
existence depends only on the energy norm of the initial data. Since the energy
norm is under the control due to (3.18), the global existence follows by the extension
of a local solution. Thus, we only need to verify the uniqueness.

Let u1 and u2 be two Strichartz solutions of equation (3.1) and let v = u1 − u2.
Then, this function solves

(3.19) ∂2t v + ∂tv +∆x(∆xv − [f(u1)− f(u2)]) + αv = 0.

Interpreting this equation as a linear hyperbolic CHO equation with the extrenal
forces f(u1)−f(u2) and applying estimate (2.24) on a small time interval t ∈ [0, τ ],
we have

(3.20) Yv(τ) := ‖v‖C(0,τ ;E) + ‖v‖L4(0,τ ;L∞) ≤

≤ C
(

‖ξv(0)‖E + ‖f(u1)− f(u2)‖L1(0,τ ;Ḣ1)

)

,

where the constant C is independent of u1, u2 and τ . Using the growth restrictions
(3.2) on the nonlinearity, we estimate the last term in the right-hand side of (3.20)
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as follows:

(3.21) ‖f(u1)− f(u2)‖L1(0,τ ;Ḣ1) ≤ C‖(1 + |u1|
4−κ + |u2|

4−κ)∇xv‖L1(0,τ ;L2)+

+ C‖(1 + |u1|
3−κ + |u2|

3−κ)|v|(|∇xu1|+ |∇xu2|)‖L1(0,τ ;L2) = I1 + I2.

Estimating the first term in the right-hand side (3.21) exactly as in (3.15), we have

(3.22) I1 ≤ Cτγ(1 + ‖u1‖
4
L4(0,τ ;L∞) + ‖u2‖

4
L4(0,τ ;L∞))Yv(τ),

where the constants γ = γ(κ) > 0 and C > 0 are independent of τ , u1 and u2. The
second term I2 can be estimated as follows:

(3.23) I2 ≤ C
(

τ3/4 + ‖u1‖
3−κ
L4−4κ/3(0,τ ;L∞)

+ ‖u2‖
3−κ
L4−4κ/3(0,τ ;L∞)

)

‖v‖L4(0,τ ;L∞)×
(

‖u1‖L∞(0,τ ;Ḣ1) + ‖u2‖L∞(0,τ ;Ḣ1)

)

≤ Cτγ
(

1 + ‖u1‖
3
L4(0,τ ;L∞) + ‖u2‖

3
L4(0,τ ;L∞)

)

×
(

‖u1‖L∞(0,τ ;Ḣ1) + ‖u2‖L∞(0,τ ;Ḣ1)

)

Yv(τ)

for some positive constants γ = γ(κ) ( the same as in (3.15)) and C which are
independent of τ , u1 and u2. Inserting the obtained estimates into the right-hand
side of (3.20) and using estimate (3.18) to control the norms of u1 and u2, we finally
arrive at

(3.24) Yv(τ) ≤ Cτγ (1 +Q(‖ξu1
(0)‖E) +Q(‖ξu2

(0)‖E))Yv(τ) + C‖ξv(0)‖E .

This estimate shows that there exists τ0 > 0 depending only on the energy norms
of the initial data for u1 and u2 such that

(3.25) Yv(τ) ≤ C‖ξv(0)‖E , τ ≤ τ0.

Thus, the uniqueness is proved and the theorem is also proved. �

Remark 3.6. Actually, estimate (3.25) gives a bit more than the uniqueness.
Indeed, iterating this estimate and using that the energy norms of u1 and u2 are
under the control, we have

(3.26) ‖ξu1
(t)− ξu2

(t)‖E + ‖u1 − u2‖L4(t,t+1;L∞) ≤ CeKt‖ξu1
(0)− ξu2

(0)‖E ,

where the constants C and K depend only on the energy norms for the intitial data
for u1 and u2. Thus, we have for free the Lipschitz continuity of the Strichartz
solution of (3.1) with respect to the initial data.

Note also that, analogously to the case of bounded domains, see [31], we may
define the class of so-called energy solutions which belong to the space L∞(0, T ; E)
and even prove their global existence and dissipativity. However, for the unique-
ness we have crucially used the extra regularity given by the Strichartz estimate.
Moreover, to the best of our knowledge, the uniqueness of energy solutions is an
open problem even in the case when the non-linearity f is globally bounded. In
particular, it is not known whether or not any energy solution is automatically a
Strichartz one.

4. The global attractor

As shown in the previous section, the hyperbolic CHO equation (3.1) is globally
well-posed in the energy phase space E in the class of Strichartz solutions. Thus,
the solution semigroup

(4.1) S(t) : E → E , S(t)ξ0 := ξu(t), t ≥ 0,
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where u(t) is a Strichartz solution of problem (3.1), is well-defined. Moreover, due
to estimate (3.18), this semigroup is dissipative in E . The main aim of this section
is to verify that this solution semigroup possesses a global attractor in E .

We start with reminding some basic fact from the attractor’s theory, see [2, 49]
for more details.

Definition 4.1. Let S(t) : E → E be a semigroup. A set B is an absorbing set for
this semigroup if, for any bounded set B ⊂ E there exists T = T (B) such that

(4.2) S(t)B ⊂ B

for all t ≥ T .
A set B is an attracting set for the semigroup S(t) if, for any bounded set B ⊂ E

and every neighbourhood O(B) of the set B there exists time T = T (B,O) such
that

(4.3) S(t)B ⊂ O(B)

for all t ≥ T .

Definition 4.2. Let S(t) : E → E be a semigroup. A set A ⊂ E is a global attractor

for the semigroup S(t) if the following conditions are satisfied:
1. The set A is compact in E ;
2. The set A is strictly invariant: S(t)A = A for all t ≥ 0;
3. The set A is an attracting set for the semigroup S(t).

To state the criterion for the attractor’s existence we need one more definition.

Definition 4.3. A semigroup S(t) : E → E is asymptotically compact if for any
bounded set B ⊂ E , any sequence of the initial data ξn ∈ B and any sequence of
times tn ≥ 0 such that tn → ∞ as n→ ∞, the sequence

(4.4) {S(tn)ξn}
∞
n=1

is precompact in E .

To verify the existence of a global attractor for the hyperbolic CHO equation,
we will use the following version of the attractor’s existence criterion, see [2, 49] for
the proof.

Proposition 4.4. Let the semigroup S(t) : E → E possess the following properties:

1. The operators S(t) : E → E are continuous in E for every fixed t;
2. The semigroup S(t) possesses a bounded attracting set;

3. The semigroup S(t) is asymptotically compact.

Then the semigroup S(t) possesses a global attractor A ⊂ E which is generated

by all complete trajectories of the semigroup S(t):

(4.5) A = K
∣

∣

t=0
,

where K ⊂ L∞(R, E) consists of all bounded functions u : R → E such that

S(h)u(t) = u(t+ h) for all t ∈ R and h ≥ 0.

We are now ready to state the main result of this section.

Theorem 4.5. Let the assumptions of Theorem 3.5 hold. Then, the solution semi-

group S(t) associated with the hyperbolic CHO equation (3.1) possesses a global
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attractor A in the energy phase space E which is generated by all complete bounded

Strichartz solutions of (3.1)

(4.6) A = K
∣

∣

t=0
,

where K ⊂ Cb(R, E) is a set of all Strichartz solutions of (3.1) which are defined

for all t ∈ R and bounded.

Proof. We need to check the assumptions of Proposition 4.4. The continuity of
the operators S(t) in E for every fixed t follows from estimate (3.26). The exis-
tence of a bounded attracting (and even absorbing) set for S(t) is guaranteed by
by the dissipative estimate (3.18). Thus, we only need to check the asymptotic
compactness.

To verify the desired asymptotic compactness, we will use the so-called energy
method, see [5, 39]. Indeed, let ξn ∈ E be a bounded sequence, tn → ∞ be a
sequence of times tending to infinity. We need to prove that S(tn)ξn is precompact
in E . To this end, we define a sequence un(t) of Strichartz solutions of the following
problems:

(4.7) ∂2t un+ ∂tun+∆x(∆xun− f(un)+ g)+αun = 0, ξun

∣

∣

t=−tn
= ξn, t ≥ −tn.

Thus, in order to prove the asymptotic compactness, we need to prove that the
sequence {ξun(0)} is precompact in E . We will do this in two steps. At step one we
prove that up to a subsequence ξun(0) converges weakly to ξu(0) for some complete
bounded solution u ∈ K and at step 2 we show that the energy ‖ξun(0)‖E converges
to the energy ‖ξu(0)‖E of the limit solution u and this will give the desired strong
convergence.

Step 1. Since the sequence ξn is bounded in E , the dissipative energy estimate
(3.18) gives the uniform boundedness of the corresponding solutions un:

(4.8) ‖ξun‖L∞(R,E) ≤ C, ‖un‖L4(T,T+1,L∞) ≤ C, T ∈ R,

where C is independent of n (to simplify the notations, we assume that un and
∂tun are extended by zero for t ≤ −tn). Thus, without loss of generality, we may
assume that

(4.9) ξun ⇁ ξu weakly star in L∞
loc(R, E) and un ⇁ u weakly star in L4

loc(R, L
∞)

and the limit function u satisfies estimates (4.8) as well, see [43]. In order to verify
that u ∈ K, we need to pass to the limit n → ∞ in equations (4.7). As usual, the
passage to the limit in the linear terms is immediate and only the non-linear term
f(un) may cause some problems. Thus, we only need to verify that, for every test

function φ ∈ C∞
0 (R, Ḣ1 ∩ Ḣ−1),

(4.10)

∫

R

(f(un(t)), φ(t)) dt →

∫

R

(f(u(t)), φ(t)) dt.

Moreover, since C∞
0 (R3) is dense in Ḣ1 ∩ Ḣ−1, it is sufficient to verify (4.10) for

the test functions φ ∈ C∞
0 (Rt × R

3
x) only. From the uniform estimate (4.8), we

conclude that f(un) is bounded in L1+ε(T, T + 1;L1+ε(BR
0 )) for some ε > 0 and

every R > 0 and T ∈ R (here and below, we denote by BR
0 the ball of radius R

centered at zero in R
3). Thus, without loss of generality, we may assume that

(4.11) f(un)⇁ ξ weakly in L1+ε
loc (Rt × R

3
x)
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and, to verify the convergence (4.10), we only need to check that ξ = f(u). In turn,
to check the last identity, we only need to verify that

(4.12) un(t, x) → u(t, x) almost everywhere in (t, x) ∈ R
4,

see e.g., [2, 49]. To verify (4.12), we note that, due to the obvious embeddings

(4.13) Ḣ1(R3) ∩ Ḣ−1(R3) ⊂ H1(R3), Ḣ−1(R3) ⊂ H−1(R3)

and the uniform boundedness (4.8), we know that

(4.14) ‖un‖L∞(R,H1(R3)) + ‖∂tun‖L∞(R,H−1(R3)) ≤ C

uniformly with respect to n → ∞. Let ψR = ψR(x) ∈ C∞
0 (R3) be the cut off

function such that ξR(x) = 1 for x ∈ BR
0 and ξR(x) = 0 for x /∈ B2R

0 . Then (4.14)
implies that

(4.15) ‖ξRun‖L∞(R,H1(B2R
0

)) + ‖∂t(ξRun)‖L∞(R,H−1(B2R
0

)) ≤ C

for some C which is independent of n. Thus, due to the compactness theorem, we
may assume without loss of generality that

(4.16) un → u strongly in C((T, T + 1)× L2(BR
0 ))

for all T ∈ R and R ∈ R+. Thus, passing to the subsequence once more if necessary,
we see that (4.12) indeed holds. Consequently, the convergence (4.10) also takes
place and we have proved that the limit function u is a Strichartz solution of
equation (3.1) and that u ∈ K.

To complete Step 1, we need to verify that

(4.17) ξun(0)⇁ ξu(0) in E .

Actually, the weak convergence un(0)⇁ u(0) is straightforward due to the proved

strong convergence (4.16) and the facts that un(0) are uniformly bounded in Ḣ1 ∩

Ḣ−1 and that C∞
0 is dense in Ḣ1 ∩ Ḣ−1. Thus, we only need to check that

(4.18) (∂tun(0), ψ) → (∂tu(0), ψ) for every ψ ∈ Ḣ1(R3).

To verify this, it is enough to check the convergence for ψN := PNψ only (where PN

is the projector introduced in the proof of Corollary 2.2). To this end, we introduce

the function Ψn(t) := (∂tun(t), ψN ). Then, since ψN ∈ Ḣs for every s ∈ R, we may
test equation (4.7) by ψN and get

(4.19)
d

dt
Ψn = −(∂tun, ψN )− (un,∆

2
xψN ) + (f(un),∆xψN )−

(g,∆xψN )− α(un, ψN ).

Therefore, due to the uniform bounds (4.8) for un and the growth restriction (3.2)
for the nonlinearity f ,

(4.20) ‖Ψn‖L∞(R) + ‖
d

dt
Ψn‖L∞(R) ≤ C,

where the constant C depends on N and ψ, but is independent of n. Therefore,
without loss of generality, we may assume that Ψn → Ψ := (∂tu, ψN ) strongly in the
space Cloc(R) and, in particular, that Ψn(0) → Ψ(0). Thus, the weak convergence
(4.17) is verified and Step 1 is completed.
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Step 2. We now verify that ‖ξun(0)‖E → ‖ξu(0)‖E . To this end, we will use the
following analogue of (3.10) for the solutions (4.7):

(4.21)
d

dt

(

1

2
‖ξun‖

2
E + δ(∂tun,−∆−1

x un) +
δ

2
‖un‖

2
Ḣ−1 + (F (un), 1)

)

+

β

(

1

2
‖ξun‖

2
E + δ(∂tun,−∆−1

x un) +
δ

2
‖un‖

2
Ḣ−1 + (F (un), 1)

)

+

+ (1 − δ −
β

2
)‖∂tun‖

2
Ḣ−1 + (δ −

β

2
)‖un‖

2
Ḣ1 + (αδ −

αβ

2
−
βδ

2
)‖un‖

2
Ḣ−1+

+ [δ(f(un), un)− β(F (un), 1)] + δβ(∂tun,∆
−1
x un) = −(g, ∂tun + δun).

Introducing the functionals
(4.22)

Ẽun(t) :=
1

4
‖ξun(t)‖

2
E + δ(∂tun(t),−∆−1

x un(t)) +
δ

2
‖un(t)‖

2
Ḣ−1 + (F (un(t)), 1)

and

(4.23) Hun(t) := (1 − δ −
β

2
)‖∂tun(t)‖

2
Ḣ−1 + (δ −

β

2
)‖un(t)‖

2
Ḣ1+

(αδ −
αβ

2
−
βδ

2
)‖un(t)‖

2
Ḣ−1+

+ [δ(f(un(t)), un(t)) − β(F (un(t)), 1)] + δβ(∂tun(t),∆
−1
x un(t))

we rewrite the identity (4.21) in the following form:

(4.24)
1

4
‖ξun(0)‖

2
E + Ẽun(0) =

(

1

4
‖ξun(−tn)‖

2
E + Ẽun(−tn)

)

e−βtn−

−

∫ 0

−tn

eβsHun(s) ds−

∫ 0

−tn

eβs(g, ∂tun(s) + δun(s)) ds.

We want to pass to the limit n → ∞ in this identity. To this end, we first fix
positive δ to be small enough that

(4.25)
1

4
‖ξv(t)‖

2
E + δ(∂tv,∆

−1
x v) +

δ

2
‖v‖2

Ḣ−1 ≥ 0

for all v ∈ E . Then, the weak convergence (4.17) implies that

(4.26)
1

4
‖ξu(0)‖

2
E + δ(∂tu(0),−∆−1

x u(0)) +
δ

2
‖u(0)‖2

Ḣ−1 ≤

≤ lim inf
n→∞

(

1

4
‖ξun(0)‖

2
E + δ(∂tun(0),−∆−1

x un(0)) +
δ

2
‖un(0)‖

2
Ḣ−1

)

.

Moreover, the convergence (4.16) implies that un(0, x) → u(0, x) almost everywhere
in R

3. Then, the Fatou lemma together with the fact that F (u) ≥ 0 give

(4.27) (F (u(0)), 1) ≤ lim inf
n→∞

(F (un(0)), 1)

and, therefore,

(4.28) Ẽu(0) ≤ lim inf
n→∞

Ẽun(0).

The first term in the right-hand side of (4.24) tends to zero due to the facts that
tn → ∞ and the energy norms of the initial data for un are uniformly bounded.
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Moreover, due to the facts that the solutions un are uniformly bounded in L∞(R, E)
and converge weakly star in L∞

loc(R, E), we have the convergence in the third term:

(4.29)

∫ 0

−tn

eβs(g, ∂tun(s) + δun(s)) ds→

∫ 0

−∞

eβs(g, ∂tu(s) + βu(s)) ds.

To pass to the limit in the term containing the functional H, we fix β > 0 to be
small enough that

(4.30) δf(u)u− βF (u) + βKu2 ≥ 0

(which is possible to do due to the 3rd assumption of (3.2)) and that

(4.31) (1− δ −
β

2
)‖∂tv‖

2
Ḣ−1 + (δ −

β

2
)‖v‖2

Ḣ1+

+ (αδ −
αβ

2
−
βδ

2
)‖v‖2

Ḣ−1 − βK‖v‖L2 + δβ(∂tv(t),∆
−1
x v(t)) ≥ 0

for all v ∈ E . Then, using the weak star convergence of un in L∞
loc(R, E) together

with the convergence almost everywhere and the Fatou lemma, we conclude that

(4.32)

∫ 0

−∞

eβsHu(s) ds ≤ lim inf
n→∞

∫ 0

−tn

eβsHun(s) ds.

Thus, passing to the limit n→ ∞ in the identity (4.24) and using (4.28),(4.29) and
(4.32), we have

(4.33)
1

4
lim sup
n→∞

‖ξun(0)‖
2
E + Ẽu(0) ≤

≤ −

∫ 0

−∞

eβsHu(s) ds−

∫ 0

−∞

eβs(g, ∂tu(s) + δu(s)) ds.

On the other hand, writing the analogue of the identity (4.24) for the limit solution
u ∈ K, we end up with

(4.34)
1

4
‖ξu(0)‖

2
E + Ẽu(0) = −

∫ 0

−∞

eβsHu(s) ds−

∫ 0

−∞

eβs(g, ∂tu(s) + δu(s)) ds.

Thus,

(4.35) lim sup
n→∞

‖ξun(0)‖E ≤ ‖ξu(0)‖E ≤ lim inf
n→∞

‖ξun(0)‖E ,

where the inequality in the right-hand side follows from the weak convergence (4.17).
This is possible only if we have the convergence of the norms

(4.36) ‖ξun(0)‖E → ‖ξu(0)‖E , n→ ∞

which together with the weak convergence (4.17) implies the strong convergence

(4.37) ξun(0) → ξu(0) in the energy space E

and finishes the proof of the theorem. �

Remark 4.6. Remind that the asymptotic compactness of the solution semigroups
associated with dissipative PDEs in unbounded domains are usually proved using
the so-called weighted energy estimates or/and the so-called tail estimates, see [1,
3, 35, 51] and references therein. However, in contrast to many examples considered
in [35], the hyperbolic CHO equation does not possess a weighted energy theory at
least in the form used in [35] and the weighted estimates require more regularity of
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the solutions. As we will see in the next section, the extra regularity of solutions
require in turn the asymptotic compactness (at least under the approach used
there). Thus, we do not see how to apply the weighted energy estimates for verifying
the asymptotic compactness of the hyperbolic CHO equation and are forced to use
the energy method instead.

Note also that despite the fact that the energy method is completely standard
nowadays, the application of it to the hyperbolic CHO equation is a bit delicate
due the presence of homogeneous Sobolev spaces for which we do not have the
embedding Ḣs1 ⊂ Ḣs2 for s1 > s2. By this reason, we give the detailed exposition
of the method in this section.

5. Smoothness of the global attractor

The aim of this section is to verify that under the global attractor A of the
hyperbolic CHO equation is actually more smooth and, in particular, is a bounded
set in the second energy space

(5.1) E2 := [Ḣ−1 ∩ Ḣ3]× [Ḣ−1 ∩ Ḣ1].

To verify this fact, we will essentially use the asymptotic compactness proved in
the previous section and its analogue for the space of trajectories.

Proposition 5.1. Let the assumptions of Theorem 4.5 hold and let K be the set

of all complete bounded Strichartz solutions of equation (3.1). Then the set K is

compact in the space Cloc(R, E) ∩ L
4
loc(R, C(R

3)):

(5.2) K ⊂⊂ Cloc(R, E) ∩ L
4
loc(R, C(R

3)).

Indeed, the assertion of the proposition is an immediate corollary of the Lipschitz
continuity of the solutions semigroup S(t), see (3.26) and the compactness of the
global attractor A in the phase space E .

The following simple corollary of the proved compactness is however crucial for
our method.

Corollary 5.2. Let the assumptions of Proposition 5.1 hold. Then, for every u ∈ K
and every ε > 0, there exist functions Aε(t) and Bε(t) such that u(t) = Aε(t)+Bε(t)
and

(5.3) ‖ξAε‖L∞(R,E) + ‖Aε‖L4(t,t+1;L∞) ≤ ε, t ∈ R

and Bε ∈ C1
b (R, H

2(R3)) with the estimate

(5.4) ‖Bε‖C1
b (R,E∩H2(R3)) ≤ Cε.

Moreover, the constant Cε is independent of u ∈ K.

Indeed, the assertion of the corollary follows in a straightforward way from the
compactness of K, its invariance with respect to time shifts and the Hausdorff
criterion. We just mention that the fact that u ∈ L4

loc(R, C(R
3)) (and even u ∈

L4
loc(R, C0(R

3)) according to Remark 2.3, not only L4
loc(R, L

∞(R3))) is crucial here
since the smooth functions are not dense in L∞(R3) and the approximation by
smooth functions does not work in L∞.

Analogously to this corollary, we also have the following result.
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Corollary 5.3. Let the assumptions of Proposition 5.1 hold. Then, for every

u ∈ K and every ε > 0, there exist functions Af ′

ε (t) and Bf ′

ε (t) such that f ′(u(t)) =

Af ′

ε (t) +Bf ′

ε (t) such that

(5.5) ‖Af ′

ε ‖L1(t,t+1;L∞) ≤ ε, ‖Bf ′

ε ‖W 1,∞(R×R3) ≤ Cε, t ∈ R,

where the constant Cε is independent of u ∈ K. Moreover, there exist functions

Af ′′

ε (t) and Bf ′′

ε (t) such that f ′′(u(t)) = Af ′′

ε (t) +Bf ′′

ε (t) and

(5.6) ‖Af ′′

ε ‖L4/3(t,t+1;L∞) ≤ ε, ‖Bf ′′

ε ‖L∞(R×R3) ≤ Cε, t ∈ R,

where Cε is also uniform with respect to u ∈ K.

Indeed, since f ′ and f ′′ are continuous, the sets f ′(K) and f ′′(K) are also compact
in the proper spaces and the approximation arguments work.

We are now ready to state the main result of the section.

Theorem 5.4. Let the assumptions of Theorem 4.5 hold. Then the global attractor

A of the Strichartz solution semigroup S(t) associated with the hyperbolic CHO

equation (3.1) is bounded in the second energy space E2.

Proof. We give here only the formal derivation of the control of the norm of A in
E2 which can be justified by approximating the time derivative v(t) := ∂tu(t) by
finite differences. Indeed, let u ∈ K be an arbitrary complete bounded trajectory.
Then, the function v(t) = ∂tu(t) solves

(5.7) ∂2t v + ∂tv +∆x(∆xv − f ′(u(t))v) + αv = 0.

We complete the proof of the theorem in 3 steps. At Step 1, we estimate the energy
norm of v through its Strichartz norm. Then, at Step 2, we use the Stricharz
estimate to verify that

(5.8) ‖ξv(t)‖E + ‖v‖L4(t,t+1;L∞) ≤ C,

where the constant C is independent of t ∈ R and u ∈ K. Finally, at Step 3, we
use the elliptic regularity to verify that u ∈ H3(R3) which will complete the proof.

Step 1. Energy estimate. We multiply equation (5.7) by ∂t∆
−1
x v + δ∆−1

x v and
integrate over x. Then, arguing as in the derivation of (2.21), we end up with

(5.9)
d

dt
Ev(t) + βEv(t) ≤ −δ(f ′(u(t)), v2(t)) − (f ′(u(t))v(t), ∂tv(t)).

The first term on the right hand side of (5.9) can be easily estimated as follows

(5.10) |δ(f ′(u), v2)| 6 C(1 + ‖u‖4L∞)‖v‖2L2 ≤ C(1 + ‖u‖4L∞)[Ev(t)]
1
2 ,

where at the last step we used [Ḣ−1, Ḣ1] 1
2
= L2 and uniform control of ‖∂tu‖Ḣ−1

on K.
To estimate the second term on the right hand side of (5.9) we rewrite it in the

form

(5.11) − (f ′(u)v, ∂tv) = (∇x(f
′(u)v),∇x∆

−1
x ∂tv) = (f ′(u)∇xv,∇x∆

−1
x ∂tv)+

+ (f ′′(u)∇xu v,∇x∆
−1
x ∂tv) = I1 + I2.
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Using Corollary 5.3, we further transform the first term I1 as follows

(5.12) I1 = (Af ′

ε (t)∇xv,∇x∆
−1
x v) + (Bf ′

ε (t)∇xv,∇x∆
−1
x ∂tv) ≤

≤ C‖Af ′

ε (t)‖L∞Ev(t)− (∇xB
f ′

ε (t)v,∇x∆
−1
x ∂tv)− (Bf ′

ε (t)v, ∂tv) ≤

≤ C‖Af ′

ε (t)‖L∞Ev(t)−
d

dt
(Bf ′

ε v, v) + Cε‖v‖L2‖∂tv‖Ḣ−1 + Cε‖v‖
2
L2 ≤

≤ (C‖Af ′

ε (t)‖L∞ + ε)Ev(t)−
d

dt
(Bf ′

ε v, v) + Cε[Ev(t)]
1/2,

where we have implicitly used the interpolation

(5.13) Cε‖v‖
2
L2 ≤ Cε‖v‖Ḣ1‖∂tu‖Ḣ−1

and the fact that the Ḣ−1-norm of ∂tu is uniformly bounded on K.
To estimate the second term I2, we note that, due to Corollaries 5.2 and 5.3, for

every ε > 0, we have

(5.14) f ′′(u)∇xu = Kε(t) +Dε(t)

and

(5.15) ‖Kε‖L4/3(t,t+1;L2) ≤ Cε, ‖Dε‖L∞(R×R3) ≤ Cε,

where the constant Cε is uniform with respect to u ∈ K. Therefore,

(5.16) I2 = (Kε(t)v,∇x∆
−1
x ∂tv) + (Dε(t)v,∇x∆

−1
x ∂tv) ≤

≤ ‖Kε(t)‖L2‖v(t)‖L∞‖∂tv‖Ḣ−1 + Cε‖v‖L2‖∂tv‖Ḣ−1 ≤

≤ εEv(t) + (‖Kε(t)‖L2‖v(t)‖L∞ + Cε)[Ev(t)]
1/2.

Inserting the obtained estimates in the right-hand side of (5.9) we end up with

(5.17)
d

dt

(

Ev(t) + (Bf ′

ε (t)v, v)
)

+ (β − C‖Af ′

ε (t)‖L∞)Ev(t) ≤

≤ (Cε + ‖Kε(t)‖L2‖v(t)‖L∞ + ‖u‖4L∞)[Ev(t)]
1/2.

We now fix Ēv(t) := Ev(t) + (Bf ′

ε (t)v, v) + L‖v‖2
Ḣ−1

, where the constant L = Lε is
such that

(5.18)
1

4
‖ξv(t)‖

2
E ≤ Ēv(t) ≤ C′

ε‖ξv(t)‖
2
E

(it is possible to find such L and Cε since Bε(t) is bounded). Then, using the fact

that the Ḣ−1 norm of v is under the control, we transform (5.17) to

(5.19)
d

dt
Ēv(t) + (β − C‖Af ′

ε (t)‖L∞)Ēv(t) ≤

≤ (Cε + C‖Kε(t)‖L2‖v‖L∞ + ‖u‖4L∞ + Cε‖A
f ′

ε (t)‖L∞)[Ēv(t)]
1/2,

where the positive constants β, C and Cε are independent of t and u ∈ K. Applying
the Gronwall inequality to (5.19) and using estimate (5.5) to control the norm of

Af ′

ε , we infer

(5.20) ‖ξv(T )‖
1
2

E ≤ C[Ēv(0)]
1/2e−βT +Cε +C

∫ T

0

e−β(T−s)‖Kε(s)‖L2‖v(s)‖L∞ ds,
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where the constant C is independent of ε. Using now the control (5.15) for esti-
mating the integral in the right-hand side, we arrive at

(5.21) ‖ξv(T )‖E ≤ C[Ēv(0)]
1/2e−βT + Cε + Cε sup

t∈R

‖v‖L4(t,t+1;L∞).

Finally, passing to the limit T → ∞ and using the invariance of K with respect to
time shifts, we infer that, for every ε > 0 there exists the constant Cε such that,
for every u ∈ K,

(5.22) ‖ξv(t)‖E ≤ ε sup
t∈R

‖v‖L4(t,t+1;L∞) + Cε, t ∈ R,

where Cε is independent of u ∈ K and t ∈ R.
Step 2. Strichartz estimate. We treat equation (5.7) as a linear one with the

external force f ′(u)v and apply the dissipative estimate (2.24) on the time interval
t ∈ [0, 1]:

(5.23) ‖v‖L4(0,1;L∞) ≤ C(‖ξv(0)‖E + ‖f ′(u)v‖L1(0,1;Ḣ1)) ≤

≤ Cε‖v‖L4
b(R,L

∞) + Cε + C‖f ′(u)v‖L1(0,1;Ḣ1),

where ‖v‖L4
b(R,L

∞) := supt∈R
‖v‖L4(t,t+1;L∞). Thus, we only need to estimate the

last term in the right-hand side:

(5.24) ‖f ′(u(t))v(t)‖L1(0,1;Ḣ1) ≤ ‖f ′(u(t))∇xv(t)‖L1(0,1;L2)+

+ ‖f ′′(u(t))∇xu(t)v(t)‖L1(0,1;L2) := J1 + J2.

Using the fact that the Strichartz norm of u is uniformly bounded together with
estimate (5.22), we may estimate the term J1 as follows:

(5.25) J1 ≤ ‖f ′(u)‖L1(0,1;L∞)‖v‖L∞(0,1;Ḣ1) ≤

≤ C‖ξv‖L∞(0,1;E) ≤ Cε‖v‖L4
b(R,L

∞) + Cε,

where the constant C is independent of ε and u ∈ K.
To estimate the term J2, we use again the splitting (5.14) with some new ε1 > 0

together with estimate (5.22):

(5.26) J2 = ‖Kε1v‖L1(0,1;L2) + ‖Dε1v‖L1(0,1;L2) ≤

≤ C‖Kε1‖L4/3(0,1;L2)‖v‖L4(0,1;L∞) + Cε1‖v‖L∞(0,1;L2) ≤

≤ Cε1‖v‖L4
b(R,L

∞) + Cε1‖ξv‖L∞(0,1;E) ≤ (Cε1 + Cε1ε)‖v‖L4
b(R,L

∞) + CεCε1 .

Inserting the obtained estimates into the right-hand side of (5.23) and fixing first
ε1 to be small enough and then ε ≤ ε1 in such way that Cε1ε ≤ ε1, we end up with

(5.27) ‖v‖L4(0,1;L∞) ≤ Cε1‖v‖L4
b(R,L

∞) + Cε1 ,

where the constant C is independent of ε1 both constantsC and Cε1 are independent
of u ∈ K. Since K is translation invariant, the last estimate (with sufficiently small
ε1) implies the desired estimate for the Strichartz norm:

(5.28) ‖v‖L4
b(R,L

∞) ≤ C, v = ∂tu, u ∈ K

which together with estimate (5.22) gives the desired estimate (5.8) and completes
the estimate of the energy norm of ∂tu.
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Step 3. Elliptic regularity. Estimate (5.8) guarantees that ∂2t u(t) = ∂tv(t) is uni-

formly bounded in Ḣ−1, so since αu(t) is also uniformly bounded in Ḣ−1 applying
the operator ∆−1

x to equation (3.1), we see that

(5.29) ∆xu(t)−f(u(t))−u(t) = −g−u(t)−∆−1
x (∂2t u(t)−∂tu(t)−αu(t)) := Hu(t)

and the right-hand side Hu(t) is uniformly bounded in Ḣ1. Moreover, using the
growth restriction (3.2) on the function f and the fact that f(0) = 0, we see that
|f(u)| ≤ C(|u| + |u|5) and, consequently, f(u) is uniformly bounded in H−1(R3).
Since ∆xu(t) and u(t) are also uniformly bounded in H−1(R3), then using the
obvious embedding

(5.30) Ḣ1(R3) ∩H−1(R3) ⊂ H1(R3),

we see that Hu(t) ∈ H1(R3) and

(5.31) ‖Hu(t)‖H1 ≤ C, u ∈ K.

Thus, we may use the classical maximal regularity in Sobolev spaces of the semi-
linear elliptic equation (5.29) to establish that u ∈ H3(R3) and

(5.32) ‖u(t)‖H3(R3) ≤ C, t ∈ R, u ∈ K.

This estimate, together with estimate (5.8) for the time derivative v = ∂tu gives
that ξu(t) is uniformly bounded in E2 and finishes the proof of the theorem. �

Remark 5.5. Arguing analogously, one may show that the actual regularity of
the global attractor A is restricted by the regularity of the non-linearity f and the
external force g. In particular, if they are both C∞-smooth, the attractor will be
C∞-smooth as well.

6. Generalizations and concluding remarks

In this concluding section, we discuss possible generalizations of the result ob-
tained above as well as the related open problems.

Remark 6.1. As we have seen, the global well-posedness of the hyperbolic CHO
equation is crucially related with the validity of the Strichartz estimate (2.4) for the
linear Schrödinger equation (2.1). In turn, this estimate follows from the standard
Strichartz estimate

(6.1) ‖U‖Lp(−T,T ;Lq(R3)) ≤ C‖U0‖Ḣs(R3),
2

p
+

3

q
=

3

2
− s

for the homogeneous Scrödinger equation: U(t) := eit∆xU0, see [6]. Thus, to apply
the above technique for general domains Ω, we need the analogue of estimate (6.1)
in Ω ⊂ R

3. However, to the best of our knowledge, the analogue of (6.1) is known
for the exterior domains Ω ⊂ R

3 only and for general bounded domain only the
estimate

(6.2) ‖U‖Lp(−T,T ;Lq(Ω)) ≤ C‖U0‖
Ḣ

s+ 1
p (Ω)

with a loss of 1
p derivatives is known, see [6]. Thus, in contrast to the case of

semilinear wave equations, see [8, 9, 33] and references therein, the well-posedness
result can be extended in a straightforward way to the case of exterior domains
Ω only. The extension of the result to the case of hyperbolic CHO in bounded
domains Ω is an interesting open problem which requires the additional non-trivial
arguments to be involved. We refer the reader to the recent paper [42] where the
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global solvability of cubic non-linear Schrödinger equation has been established
using the alternative method related with the so-called bilinear L2

t,x estimates, see
also references therein.

Remark 6.2. Another interesting open problem is to extend the obtained result to
the non-linearities f of the critical quintic growth rate. In contrast to the subcriti-
cal case, we do not have here the control (3.13) of the Strichartz norm through the
energy norm of the solution, so the global solvability becomes much more delicate
and the analogue of the so-called non-concentration estimates (see [45, 46, 47, 48])
should be verified for the case of the hyperbolic CHO equations in order to get the
desired global existence. Note also that these non-concentration estimates are the
main obstacles for developing the attractor theory for the quintic growth rate. In-
deed, if the global existence is known, one can use the so-called backward regularity
on the weak attractor in order to verify the asymptotic compactness analogously
to the quintic wave equation, see [33].

Remark 6.3. Finally, it worth mentioning that we did not use the dissipation
integral for the proof of main results, so these results can be easily extended to
the case of non-autonomous external forces g(t), e.g., in the sense of uniform or
pullback attractors. However, the existence of exponential attractors is more deli-
cate since, analogously to the Scrödinger equation, the hyperbolic CHO equation
does not possess a reasonable weighted energy theory (at least similar to the one,
developed in [3, 35, 51], see also the references therein). Thus, the standard meth-
ods of establishing the finite-dimensionality of a global attractor seem not working.
Nevertheless, some analogues of weighted estimates can be proved if the additional
regularity of the solution of difference between two solutions is known and based
on this observation, one can establish the finite-dimensionality of a global attractor
and the existence of exponential attractors, see the forthcoming paper [44] for more
details.
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