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Abstract

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine,

machine learning and credit scoring. The receiver operating characteristic (ROC) curve is a useful tool

to assess the ability of a diagnostic test to discriminate between two classes or groups. In practice

multiple diagnostic tests or biomarkers are combined to improve diagnostic accuracy. Often biomarker

measurements are undetectable either below or above so-called limits of detection (LoD). In this paper,

nonparametric predictive inference (NPI) for best linear combination of two or more biomarkers subject

to limits of detection is presented. NPI is a frequentist statistical method that is explicitly aimed at

using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify

uncertainty. The NPI lower and upper bounds for the ROC curve subject to limits of detection are

derived, where the objective function to maximize is the area under the ROC curve (AUC). In addition,

the paper discusses the effect of restriction on the linear combination’s coefficients on the analysis.

Examples are provided to illustrate the proposed method.

Keywords: Diagnostic accuracy; Limits of detection; Lower and upper probability; Imprecise probability;

Nonparametric predictive inference; ROC curve.

1 Introduction

Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine

learning and credit scoring. The receiver operating characteristic (ROC) curve is a useful tool to assess the

ability of a diagnostic test to discriminate between two classes or groups. However, one diagnostic test may

not be enough to draw a useful decision, thus in practice multiple diagnostic tests or biomarkers may be
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combined to improve diagnostic accuracy [1]. Another issue may occur when some biomarker measurements

are undetectable either below or above some limits, so called limits of detection (LoD). Several papers

considered combining biomarkers in order to improve the diagnostic accuracy, see e.g. [1, 2, 3, 4, 5]. Under

the normality assumption, Su and Liu [6] considered a linear combination of biomarkers to maximize the

area under the ROC curve while Liu et al. [7] extended their work to maximize the partial area under the

ROC curve. Pepe and Thompson [1] introduced a logistic regression based approach to combine biomarkers.

Perkins et al. [8, 9] generalized ROC curve inference for a single biomarker subject to a limit of detection.

They also introduced a best linear combination of two biomarkers subject to limits of detection [10]. Dong

et al. [11] proposed a method to estimate the multivariate normal distribution parameters taking the LoD

into account, and then utilized the linear discriminant analysis to combine biomarkers. They have also

described how to select and combine a subset of biomarkers based on the correlation distance to gain most

accuracy. As with all parametric estimation methods, departure from the specified underlying distribution

(e.g. the normality assumption) may lead to inaccurate estimation of the parameters [11]. On the other

hand, nonparametric methods such as the one proposed in this paper provide an alternative regardless of

the underlying distribution. For an extensive overview of the existing classical methods for combination

of biomarkers, we refer the reader to Kang et al. [5] and Dong et al. [11]. These contributions to the

literature are often either assuming some underlying distributions (e.g. normal) or focus on estimation

rather than prediction. Prediction may be more natural in this context as one is typically interested in

the performance (the accuracy) of diagnostic tests on detecting a specific condition for future patients. In

this paper, nonparametric predictive inference (NPI) for best linear combination of two or more biomarkers

subject to limits of detection is presented. NPI is a frequentist statistical method that is explicitly aimed

at using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify

uncertainty [12, 13]. First, we briefly define the ROC curve and the area under this curve, AUC.

Let D be a binary variable describing the disease status, i.e. D = 1 for disease (cases) and D = 0 for

non-disease (control). Suppose that X is a continuous random quantity of a diagnostic test result and that

larger values of X are considered more indicative of disease. X1 and X0 are used to refer to test results

for the disease and non-disease groups, respectively. The Receiver Operating Characteristic (ROC) curve

is defined as the combination of False Positive Fraction (FPF) and True Positive Fraction (TPF) over all

values of the threshold c, i.e. ROC = {(FPF(c),TPF(c)), c ∈ (−∞,∞)}, where FPF(c) = P (X0 > c) and

TPF(c) = P (X1 > c). An ideal test completely separates the patients with and without the disease for a

threshold c, i.e. FPF(c) = 0 and TPF(c) = 1. As the other extreme situation, if FPF(c) = TPF(c) for all

thresholds c, then the test has no ability to distinguish between the patients with and without the disease.

In many cases, a single numerical value or summary may be useful to represent the accuracy of a diagnostic
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test or to compare two or more ROC curves [14]. A useful summary is the area under the ROC curve,

AUC =
∫ 1

0
ROC(t) dt. The AUC measures the overall performance of the diagnostic test. Higher AUC

values indicate more accurate tests, with AUC = 1 for perfect or ideal tests and AUC = 0.5 for uninformative

tests. The AUC is equal to the probability that the test results from a randomly selected pair of diseased

and non-diseased subjects are correctly ordered, i.e. AUC = P
[
X1 > X0

]
[15]. So the AUC measures the

test’s ability to correctly classify a randomly selected individual as being from either the disease group or

the non-disease group.

To estimate the ROC curve for diagnostic tests with continuous results, the nonparametric empirical

method is popular due to its flexibility to adapt fully to the available data. This method yields the empirical

ROC curve which will be considered, in particular to compare with the NPI method introduced in this

paper. Suppose that we have test data on n1 individuals from a disease group and n0 individuals from

a non-disease group, denoted by {x1i , i = 1, . . . , n1} and {x0j , j = 1, . . . , n0}, respectively. Throughout

this paper we assume that the two groups are fully independent, meaning that no information about any

aspect related to one group contains information about any aspect of the other group. For the empirical

method, these observations per group are assumed to be realisations of random quantities that are identically

distributed as X1 and X0, for the disease and non-disease groups, respectively. The empirical estimator of

the ROC is R̂OC =
{(

F̂PF(c), T̂PF(c)
)
, c ∈ (−∞,∞)

}
with T̂PF(c) = 1

n1

∑n1

i=1 1
{
x1i > c

}
and F̂PF(c) =

1
n0

∑n0

j=1 1
{
x0j > c

}
, where 1{E} is an indicator function which is equal to 1 if E is true and 0 else. The

empirical estimator of the AUC is the well-known Mann-Whitney U statistic which is given by ÂUC =

1
n1n0

∑n0

j=1

∑n1

i=1

[
1
{
x1i > x0j

}
+ 1

21
{
x1i = x0j

}]
[14].

This paper is organized as follows. Section 2 provides a brief introduction to NPI. Section 3 presents

NPI for one biomarker subject to limits of detection, followed by generalizing the results to find the best

linear combination of two biomarkers subject to limits of detection in Section 4. Section 5 gives a matrix

representation of the results in Sections 3 and 4 which simplifies the presentation of the proposed method

when considering the general case of combining any finite number of biomarkers. Section 6 discusses the effect

of restriction on the linear combination’s coefficients in the analysis. Examples are provided to illustrate the

proposed method in Section 7. The paper ends with some concluding remarks in Section 8 and an appendix

presenting the proofs of the main results.

2 Nonparametric predictive inference

Nonparametric predictive inference (NPI) [12, 13] is based on the assumption A(n) proposed by Hill [16]. Let

X1, . . . , Xn, Xn+1 be real-valued absolutely continuous and exchangeable random quantities. Let the ordered
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observed values of X1, X2, . . . , Xn be denoted by x1 < x2 < . . . < xn and let x0 = −∞ and xn+1 = ∞ for

ease of notation. We assume that no ties occur; ties can be dealt with in NPI [13] but it is not relevant in this

paper. For Xn+1, representing a future observation, A(n) [16] partially specifies a probability distribution by

P (Xn+1 ∈ (xj−1, xj)) = 1
n+1 for j = 1, . . . , n+1. A(n) does not assume anything else, and can be considered

to be a post-data assumption related to exchangeability [17]. Inferences based on A(n) are predictive and

nonparametric, and can be considered suitable if there is hardly any knowledge about the random quantity of

interest, other than the n observations, or if one does not want to use such information. A(n) is not sufficient

to derive precise probabilities for many events of interest, but it provides bounds for probabilities via the

‘fundamental theorem of probability’ [17], which are lower and upper probabilities in interval probability

theory [18, 19, 20]. Augustin and Coolen [12] proved that NPI has strong consistency properties in the

theory of interval probability. In NPI, uncertainty about the future observation Xn+1 is quantified by lower

and upper probabilities for events of interest. Lower and upper probabilities generalize classical (‘precise’)

probabilities, and a lower (upper) probability for event A, denoted by P (A) (P (A)), can be interpreted as

supremum buying (infimum selling) price for a gamble on the event A [18], or just as the maximum lower

(minimum upper) bound for the probability of A that follows from the assumptions made [13]. This latter

interpretation is used in NPI, we wish to explore application of A(n) for inference without making further

assumptions. So, NPI lower and upper probabilities are the sharpest bounds on a probability for an event

of interest when only A(n) is assumed. Informally, P (A) (P (A)) can be considered to reflect the evidence in

favour of (against) event A.

NPI has been introduced for assessing the accuracy of a classifier’s ability to discriminate between two

outcomes (or two groups) for binary data [21] and for diagnostic tests with ordinal observations [22] and with

real-valued observations [23]. Recently, [24] generalized the results in [23] by introducing NPI for three-group

ROC analysis, with real-valued observations, to assess the ability of a diagnostic test to discriminate among

three ordered classes or groups. Coolen-Maturi [25] generalized the results in [22] by proposing NPI for

three-group ROC analysis with ordinal outcomes. Below we give a brief overview of NPI for two-group ROC

analysis following [23].

Suppose that {X1
i , i = 1, . . . , n1, n1 + 1} are continuous and exchangeable random quantities from the

disease group and {X0
j , j = 1, . . . , n0, n0 + 1} are continuous and exchangeable random quantities from

the non-disease group, where X1
n1+1 and X0

n0+1 are the next observations from the disease and non-disease

groups following n1 and n0 observations, respectively. As mentioned before, we assume that both groups

are fully independent. Let x11 < . . . < x1n1
be the ordered observed values for the first n1 individuals from

the disease group and x01 < . . . < x0n0
the ordered observed values for the first n0 individuals from the

non-disease group. For ease of notation, let x10 = x00 = −∞ and x1n1+1 = x0n0+1 =∞. We assume that there
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are no ties in the data, it can be easily generalized to allow ties [13]. The NPI lower and upper ROC curves

are ROC =
{(

FPF(c),TPF(c)
)
, c ∈ (−∞,∞)

}
and ROC =

{(
FPF(c),TPF(c)

)
, c ∈ (−∞,∞)

}
[23], where

TPF (c) =P (X1
n1+1 > c) =

∑n1

i=1 1
{
x1i > c

}
n1 + 1

, TPF (c) = P (X1
n1+1 > c) =

∑n1

i=1 1
{
x1i > c

}
+ 1

n1 + 1
,

FPF (c) =P (X0
n0+1 > c) =

∑n0

j=1 1
{
x0j > c

}
n0 + 1

, FPF (c) = P (X0
n0+1 > c) =

∑n0

j=1 1
{
x0j > c

}
+ 1

n0 + 1
,

and P and P are NPI lower and upper probabilities [12]. It is easily seen that FPF(c) ≤ F̂PF(c) ≤ FPF(c)

and TPF(c) ≤ T̂PF(c) ≤ TPF(c) for all c, which implies that the empirical ROC curve is bounded by the

NPI lower and upper ROC curves [23].

The NPI lower and upper AUC are defined as the NPI lower and upper probabilities for the event that

the test result for the next individual from the disease group is greater than the test result for the next

individual from the non-disease group, as given by [23]

AUC = P
(
X1
n1+1 > X0

n0+1

)
=

1

(n1 + 1)(n0 + 1)

n0∑
j=1

n1∑
i=1

1
{
x1i > x0j

}
, (1)

AUC = P
(
X1
n1+1 > X0

n0+1

)
=

1

(n1 + 1)(n0 + 1)

 n0∑
j=1

n1∑
i=1

1
{
x1i > x0j

}
+ n1 + n0 + 1

 . (2)

It is interesting to notice that the imprecision AUC−AUC = n1+n0+1
(n1+1)(n0+1) depends only on the two sample

sizes n0 and n1. Coolen-Maturi et al. [23] showed that equation (1) is actually the area under the ROC and

equation (2) is the area under the ROC.

3 Predictive inference for a single biomarker subject to limits of

detection

Biomarker measurements may be subject to limits of detection, e.g. due to instrumental limitation mea-

surements may be undetectable below or above certain limits. Perkins et al. [8] showed that ignoring these

measurements or even plugging in some replacement values can lead to biased estimates of the area under the

curve. In this section, NPI for ROC curve and the area under the ROC curve, AUC, for a single biomarker

subject to limits of detection are presented. The proposed method provides an alternative approach to treat

this issue, namely in our proposed NPI method the measurements that are below or above the limits of

detections are not removed or replaced by other values, instead only their numbers are taken into account to

derive the NPI lower and upper ROC curves and the area under these curves. We will show later via exam-
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ples in Section 7 how the proposed method captures the issue of the limits of detection and how it quantifies

the uncertainty via the lower and upper probabilities. But first we need to introduce some notation.

Let X be a biomarker whose measurements are affected by limits of detection Lx < Ux, for each group

these limits Lx < Ux divide the data into three parts. For the disease (non-disease) group, there are l1x (l0x)

observations which are only known to be less than Lx, u1x (u0x) which are only known to be greater than Ux,

while the r1x (r0x) ordered observations between Lx and Ux are fully known and denoted by

−∞ < Lx ≤ x1(1) < x1(2) < . . . < x1(r1x) ≤ Ux <∞,

−∞ < Lx ≤ x0(1) < x0(2) < . . . < x0(r0x) ≤ Ux <∞.

For ease of presentation, let x1(0) = x0(0) = −∞ and x1(r1x+1) = x0(r0x+1) = ∞. We should mention here that

−∞ and ∞ are just indicators of the range of possible values for X0
n0+1 and X1

n1+1, e.g. if biomarker results

are believed to be only positive numbers then one would set x1(0) = x0(0) = 0.

As we have limits of detection, we cannot use the A(n) assumption directly to derive the NPI lower and

upper ROC curves. Therefore, we need to use the generalized Att(n) assumption introduced by Maturi et

al. [26] for terminated data. The following theorem describes how the probability distribution for Xn+1 is

partially specified by so-called M -functions. We should mention here that the intervals on which M -functions

are defined can be overlapped and all M-function values must sum up to one. The concept of M -function is

similar to that of Shafer’s basic probability assignment [27].

Theorem 1. The assumption Att(n) is that the probability distribution for a real-valued random quantity

Xn+1, on the basis of the data terminated at two cut points Lx and Ux as described above, is partially

specified by the following M -function values:

MXn+1
(x(i), x(i+1)) =

1

n+ 1
, i = 0, 1, . . . , rx,

MXn+1(−∞, Lx) =
lx

n+ 1
and MXn+1(Ux,∞) =

ux
n+ 1

.

By applying the assumption Att(n) per group, i.e. Att(n1)
for the disease group and Att(n0)

for the non-disease
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group, we can derive the lower and upper bounds for FPF and TPF as follows:

FPF (c) = P (X0
n0+1 > c) =

1

n0 + 1

 r0x∑
i=1

1{x0(i) > c}+ 1{Ux > c} u0x

 ,
FPF (c) = P (X0

n0+1 > c) =
1

n0 + 1

 r0x∑
i=1

1{x0(i) > c}+ 1{Lx > c} l0x + u0x + 1

 ,
TPF (c) = P (X1

n1+1 > c) =
1

n1 + 1

 r1x∑
i=1

1{x1(i) > c}+ 1{Ux > c} u1x

 ,
TPF (c) = P (X1

n1+1 > c) =
1

n1 + 1

 r1x∑
i=1

1{x1(i) > c}+ 1{Lx > c} l1x + u1x + 1

 .
The NPI lower and upper ROC curves can be defined as

ROC = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}, (3)

ROC = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}. (4)

If all the biomarker measurements are observed, i.e. r0x = n0 and r1x = n1 [hence l0x = u0x = l1x = u1x = 0]

then we get the complete data case presented by Coolen-Maturi et al. [23].

The areas under the lower and upper ROC curves (AUC) are defined as the lower and upper probabilities

for the event X0
n0+1 < X1

n1+1 [23]. As the biomarker test results are subject to limits of detection, we cannot

use the results in [23]. Maturi et al. [26] introduced NPI for comparing two groups of real-valued data with

terminated tails, where we only know the number of observations beyond the terminated points. In this

paper, we are going to utilize the results in [26] for the areas under the lower and upper ROC curves by

using the M -functions introduced in Theorem 1. The areas under the lower and upper ROC curves in (3)

and (4) are given by the following theorem.

Theorem 2. The areas under the lower and upper ROC curves for a biomarker X, subject to limits of

detection, are

AUC = P (X0
n0+1 < X1

n1+1) =
1

(n0 + 1)(n1 + 1)

[ r1x∑
j=1

r0x∑
i=1

1{x0(i) < x1(j)}+ l0x(r1x + u1x) + r0xu
1
x

]
, (5)

AUC = P (X0
n0+1 < X1

n1+1) =
1

(n0 + 1)(n1 + 1)

[ r1x∑
j=1

r0x∑
i=1

1{x0(i) < x1(j)}+ (l0x + 1)(l1x + r1x) + (u1x + 1)(n0 + 1)

]
.

(6)
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The imprecision is the difference between AUC and AUC which reflects the amount of information available.

4 Predictive inference for best linear combination of two biomark-

ers subject to limits of detection

In medical applications, researchers may want to combine two biomarkers to improve diagnostic accuracy.

Improving the diagnostic accuracy is often done by maximizing the area under the ROC curve. In this

setting each subject has two biomarker measurements, where the two biomarkers, say X and Y , may be

subject to limits of detection. In this section, we extend the approach presented in Section 3 to combine

two biomarkers, subject to limits of detection, to improve the accuracy by maximizing the lower and upper

AUC. In addition to the notation introduced in Section 3 we need to introduce further notation as follows.

Suppose that {Y 1
i , i = 1, . . . , n1, n1 + 1} are continuous and exchangeable random quantities from the

disease group and {Y 0
j , j = 1, . . . , n0, n0 + 1} are continuous and exchangeable random quantities from the

non-disease group, where Y 1
n1+1 and Y 0

n0+1 are the next observations from the disease and non-disease groups,

respectively. Let Y be a biomarker whose measurements are affected by limits of detection Ly < Uy, for each

group these limits Ly < Uy divide the data into three parts. For the disease (non-disease) group, there are

l1y (l0y) observations which are only known to be less than Ly, u1y (u0y) which are only known to be greater

than Uy, while the r1y (r0y) ordered observations between Ly and Uy are fully known and denoted by

−∞ < Ly ≤ y1(1) < y1(2) < . . . < y1(r1y) ≤ Uy <∞,

−∞ < Ly ≤ y0(1) < y0(2) < . . . < y0(r0y) ≤ Uy <∞.

For ease of presentation, let y1(0) = y0(0) = −∞ and y1(r1y+1) = y0(r0y+1) = ∞. We can define the lower and

upper ROC curves and the corresponding areas under these curves for biomarker Y as in Section 3. Recall

that, for biomarker X (Y ), X1
n1+1 and X0

n0+1 (Y 1
n1+1 and Y 0

n0+1) are the next future observations from the

disease and non-disease group, respectively. Now we are interested in combining these future observations

by defining the scores T 0
n0+1 = α1X

0
n0+1 + α2Y

0
n0+1 and T 1

n1+1 = α1X
1
n1+1 + α2Y

1
n1+1. The objective is to

find the values of α1 and α2 that maximize the lower and upper areas under the ROC curves (i.e. maximize

the accuracy).

In order to introduce the corresponding M -functions for Tn+1 = α1Xn+1 + α2Yn+1, we have dropped

the superscripts here for ease of presentation, we need to define further notation. Given the four limits of

detection points Lx, Ly, Ux and Uy, the data structure with these four limits can be visualized as in Figure 1,
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−∞

Ly

Uy

∞

Lx Ux ∞

nll nrl nul

nlr nrr nur

nlu nru nuu

lx rx ux

ly

ry

uy

Figure 1: Data structure

where e.g. nll is the number of individuals whose X and Y measurements are below Lx and Ly, respectively.

Other quantities are defined similarly,

nll = #{x < Lx ∧ y < Ly}, nrl = #{Lx < x < Ux ∧ y < Ly}, nul = #{x > Ux ∧ y < Ly},

nlr = #{x < Lx ∧ Ly < y < Uy}, nrr = #{Lx < x < Ux ∧ Ly < y < Uy}, nur = #{x > Ux ∧ Ly < y < Uy},

nlu = #{x < Lx ∧ y > Uy}, nru = #{Lx < x < Ux ∧ y > Uy}, nuu = #{x > Ux ∧ y > Uy}.

This leads to the equalities lx = nll +nlr +nlu, rx = nrl +nrr +nru and ux = nul +nur +nuu, and similarly

for ly, ry and ur, and n = lx + rx + ux = ly + ry + uy. The data structure in Figure 1 can also be expressed

in a matrix format as

S =

lx rx ux


nlu nru nuu uy

nlr nrr nur ry

nll nrl nul ly

.

Let rT = nrr be the number of the observed values (available data) from both biomarkers X and Y ,

that is the test results of biomarker X that are between Lx and Ux and the test results of biomarker of Y

that are between Ly and Uy. Thus, the combined test results from both biomarkers are ti = α1xi + α2yi,

i = 1, . . . , rT where rT = nrr. Let t(i) be the ith value among ti, thus −∞ < α1Lx + α2Ly < t(1) < . . . <

t(rT ) < α1Ux + α2Uy < ∞. The probability mass specifications for Tn+1 = α1Xn+1 + α2Yn+1 are given by

the M -functions in Definition 1. This generalizes the assumption Att(n) in Theorem 1, we will denote the new
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generalized assumption as Att2(n).

Definition 1 (Assumption Att2(n)). The assumption Att2(n) is that the probability distribution for a real-valued

random quantity Tn+1 = α1Xn+1 + α2Yn+1, on the basis of the data terminated at the two cut points Lx

and Ux for X, and at the two cut points Ly and Uy for Y as described above, is partially specified by the

following M -function values:

MTn+1
(t(i), t(i+1)) =

1

n+ 1
, i = 0, 1, . . . , rT ,

where rT = nrr, t(0) = −∞ and t(rT+1) = ∞. Notice that
∑rT
i=0MTn+1

(t(i), t(i+1)) = rT+1
n+1 = nrr+1

n+1 . The

remaining M-functions are defined as

MTn+1
(Xn+1 ∈ (−∞, Lx), Yn+1 ∈ (−∞, Ly)) = MTn+1

(−∞, α1Lx + α2Ly) =
nll
n+ 1

,

MTn+1(Xn+1 ∈ (−∞, Lx), Yn+1 ∈ (Ly, Uy)) = MTn+1(−∞, α1Lx + α2Uy) =
nlr
n+ 1

,

MTn+1
(Xn+1 ∈ (−∞, Lx), Yn+1 ∈ (Uy,∞)) = MTn+1

(−∞,∞) =
nlu
n+ 1

,

MTn+1
(Xn+1 ∈ (Lx, Ux), Yn+1 ∈ (−∞, Ly)) = MTn+1

(−∞, α1Ux + α2Ly) =
nrl
n+ 1

,

MTn+1(Xn+1 ∈ (Lx, Ux), Yn+1 ∈ (Uy,∞)) = MTn+1(α1Lx + α2Uy,∞) =
nru
n+ 1

,

MTn+1
(Xn+1 ∈ (Ux,∞), Yn+1 ∈ (−∞, Ly)) = MTn+1

(−∞,∞) =
nul
n+ 1

,

MTn+1(Xn+1 ∈ (Ux,∞), Yn+1 ∈ (Ly, Uy)) = MTn+1(α1Ux + α2Ly,∞) =
nur
n+ 1

,

MTn+1
(Xn+1 ∈ (Ux,∞), Yn+1 ∈ (Uy,∞)) = MTn+1

(α1Ux + α2Uy,∞) =
nuu
n+ 1

.

By applying the assumption Att2(n) per group, i.e. Att2(n0)
and Att2(n1)

, we can define the NPI lower and upper

ROC curves as

ROC = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}, (7)

ROC = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}. (8)

where

FPF (c) =
1

n0 + 1

r0T∑
j=1

1{t0(j) > c}+ 1{α1Lx + α2Uy > c} n0ru
n0 + 1

+1{α1Ux + α2Ly > c} n0ur
n0 + 1

+ 1{α1Ux + α2Uy > c} n0uu
n0 + 1

. (9)
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FPF (c) =
1

n0 + 1

r0T∑
j=1

1{t0(j) > c}+ 1{α1Lx + α2Ly > c} n0ll
n0 + 1

+
1 + u0y + u0x − n0uu

n0 + 1

+1{α1Lx + α2Uy > c} n0lr
n0 + 1

+ 1{α1Ux + α2Ly > c} n0rl
n0 + 1

. (10)

TPF (c) =
1

n1 + 1

r1T∑
i=1

1{t1(i) > c}+ 1{α1Lx + α2Uy > c} n1ru
n1 + 1

+1{α1Ux + α2Ly > c} n1ur
n1 + 1

+ 1{α1Ux + α2Uy > c} n1uu
n1 + 1

. (11)

TPF (c) =
1

n1 + 1

r1T∑
i=1

1{t1(i) > c}+ 1{α1Lx + α2Ly > c} n1ll
n1 + 1

+
1 + u1y + u1x − n1uu

n1 + 1

+1{α1Lx + α2Uy > c} n1lr
n1 + 1

+ 1{α1Ux + α2Ly > c} n1rl
n1 + 1

. (12)

The lower and upper bounds for the area under these lower and upper ROC curves, AUC and AUC, are given

by Theorem 3, which is equivalent to finding the lower and upper probabilities for the event T 0
n0+1 < T 1

n1+1.

Theorem 3. The NPI lower and upper bounds for the area under the ROC curves, AUC and AUC, which

are equal to the lower and upper probabilities for the event T 0
n0+1 < T 1

n1+1, are given by

AUC =P (T 0
n0+1 < T 1

n1+1) =

r1T∑
i=1

1

n1 + 1

[
n0ll

n0 + 1
+ 1{α1Lx + α2Uy < t1(i)}

n0lr
n0 + 1

+1{α1Ux + α2Ly < t1(i)}
n0rl

n0 + 1
+

r0T−1∑
j=0

1{t0(j+1) < t1(i)}
1

n0 + 1

]
+

n1uu
n1 + 1

[
n0ll + n0lr + n0rl + n0rr

n0 + 1

]

+
n1ru
n1 + 1

[
n0ll

n0 + 1
+ 1{α1Ux + α2Ly < α1Lx + α2Uy}

n0rl
n0 + 1

+

r0T−1∑
j=0

1{t0(j+1) < α1Lx + α2Uy}
1

n0 + 1

]

+
n1ur
n1 + 1

[
n0ll

n0 + 1
+ 1{α1Lx + α2Uy < α1Ux + α2Ly}

n0lr
n0 + 1

+

r0T−1∑
j=0

1{t0(j+1) < α1Ux + α2Ly}
1

n0 + 1

]
,

AUC =P (T 0
n0+1 < T 1

n1+1) =
u1x + u1y − n1uu + 1

n1 + 1
+

[
n1rr + n1ll + n1lr + n1rl

n1 + 1

]{
l0x + l0y − n0ll + 1

n0 + 1

}

+

r1T∑
i=1

1

n1 + 1

[
1{α1Lx + α2Uy < t1(i)}

n0ru
n0 + 1

+ 1{α1Ux + α2Ly < t1(i)}
n0ur
n0 + 1

+

r0T∑
j=1

1{t0(j) < t1(i)}
1

n0 + 1

]

+
n1lr

n1 + 1

[
1{α1Ux + α2Ly < α1Lx + α2Uy}

n0ur
n0 + 1

+

r0T∑
j=1

1{t0(j) < α1Lx + α2Uy}
1

n0 + 1

]

+
n1rl

n1 + 1

[
1{α1Lx + α2Uy < α1Ux + α2Ly}

n0ru
n0 + 1

+

r0T∑
j=1

1{t0(j) < α1Ux + α2Ly}
1

n0 + 1

]
.
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The proof of Theorem 3 is given in Appendix A1.

When all the biomarker measurements are observed, i.e. r1T = n1rr = n1 and r0T = n0rr = n0 [hence

l0x = u0x = l1x = u1x = 0 and l0y = u0y = l1y = u1y = 0], then equations (9)-(12) are equal to

FPF (c) =P (T 0
n0+1 > c) =

∑n0

j=1 1{t0(j) > c}
n0 + 1

, FPF (c) = P (T 0
n0+1 > c) =

∑n0

j=1 1{t0(j) > c}+ 1

n0 + 1
.

TPF (c) =P (T 1
n1+1 > c) =

∑n1

i=1 1{t1(i) > c}
n1 + 1

, TPF (c) = P (T 1
n1+1 > c) =

∑n1

i=1 1{t1(i) > c}+ 1

n1 + 1
.

and the NPI lower and upper bounds for the area under the ROC curve, that are given in Theorem 3, can

be written as

AUC = P (T 0
n0+1 < T 1

n1+1) =
1

(n0 + 1)(n1 + 1)

n1∑
i=1

n0∑
j=1

1{t0(j) < t1(i)},

AUC = P (T 0
n0+1 < T 1

n1+1) =
1

(n0 + 1)(n1 + 1)

[
n1∑
i=1

n0∑
j=1

1{t0(j) < t1(i)}+ n1 + n0 + 1

]
.

which is equivalent to applying the approach proposed by Coolen-Maturi et al. [23] on the combined scores.

The question now is how to find the values α = (α1, α2) that maximize the NPI lower and upper AUC.

Our proposed method does not impose any restriction on the values of α1 and α2. For example, one could

maximize the AUC by maximizing α = (1, α), where α = α2/α1, which is similar to the way used by Pepe

and Thompson [1]. According to Pepe and Thompson [1], this maximization is implemented by searching

α, in which the area under the curve AUC corresponding to the combined test X + αY is evaluated for 201

equally spaced values of α ∈ [−1, 1]. For α < −1 and α > 1, AUC(γX + Y ) where γ = 1
α ∈ [−1, 1], thus

the AUC corresponding to the combined test γX + Y , is evaluated for another 201 equally spaced values of

γ = 1
α ∈ [−1, 1]. The optimal combination coefficient is α = (1, α) or α = (γ, 1) that maximizes the AUC.

As mentioned above, the proposed method in this paper can be used without any restriction on the values

of α1 and α2, however, for the examples in this paper, we propose to find the α = (α1, α2) that maximizes

the NPI lower and upper AUC such that α1, α2 ∈ [0, 1] and α1 + α2 = 1. The maximization is implemented

by searching α1 and α2, the AUC corresponding to the combined test α1X +α2Y (or α1Xn+1 +α2Yn+1 for

NPI) is evaluated for 101 equally spaced values for each α1 ∈ [0, 1] and α2 ∈ [0, 1] such that α1 + α2 = 1.

More discussion about the use of this restriction and its advantages is given in Section 6.

Before we illustrate our method via examples, we should look at the issue of data preparation and

processing. As we would like to combine two biomarkers, we should make sure that biomarker measurements

are comparable, e.g. have the same units and same value range, otherwise we need to rescale or normalize the
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data. There are many normalization methods available, e.g. to scale the data to be between any arbitrary

points a and b we can use

x̃ = a

(
xmax − x

xmax − xmin

)
+ b

(
x− xmin

xmax − xmin

)
. (13)

or we can standardize the data, using the mean x and the standard deviation s as x̃ = x−x
s . Alternatively, a

normalization method that is more robust against outliers is derived at by using x̃ = x−Q2

Q3−Q1
, where Q1, Q2

and Q3 are the first, the second (median) and the third quartiles, leading to normalized values with median

zero and interquartile range (IQR) equal to one.

The results presented in this section implicitly assumed that the two biomarker tests results are com-

parable or that some kind of normalization has been carried out. For example, one could normalize the

biomarker tests results (the disease and non-disease results combined per biomarker) using equation (13)

or replacing the min and the max by Lx and Ux instead, respectively. In the case of a single biomarker,

i.e. using the analysis presented in Section 3, we get the same results (lower and upper AUC) whether we

normalize the data or not (or e.g. taking the log or not). In fact we get the same results if we apply any

monotone function.

5 Results in matrix formulation

So far we have presented NPI for combining two biomarkers, our method can be easily extended for combining

more than two biomarkers as we will discuss below, but first we need to present the results introduced in

previous sections in matrix formulation. This matrix representation is particularly useful in presenting and

implementing (in statistical software such as R [28]) the method for combining several biomarkers.

The NPI lower and upper probabilities in Theorem 3 can be written in a matrix format as follows: Let

QL and QU be two matrices of order (rD=0
T + 9)× (rD=1

T + 9), where D = 1 and D = 0 refer to the disease

and non-disease group, respectively, such that

QL = q[j, i] =

 1 if IUD=0
j < ILD=1

i

0 otherwise
and QU = q[j, i] =

 1 if ILD=0
j < IUD=1

i

0 otherwise
,

where ILD and IUD are two vectors of order (rDT + 9) consisting of the lower- and the upper-end limits of

the intervals in Definition 1, respectively. Let MD be a vector of order (rDT + 9) consisting of the probability

13



mass functions (M -functions) corresponding to these intervals, that is

ILD =



tD(0)

tD(1)
...

tD
(rD

T
−1)

tD
(rD

T
)

. . . . . . . . . . . . .

−∞

−∞

−∞

−∞

α1Lx + α2Uy

−∞

α1Ux + α2Ly

α1Ux + α2Uy



, IUD =



tD(1)

tD(2)
...

tD
(rD

T
)

tD
(rD

T
+1)

. . . . . . . . . . . . .

α1Lx + α2Ly

α1Lx + α2Uy

∞

α1Ux + α2Ly

∞

∞

∞

∞



, MD =
1

nD + 1



1

1

...

1

1
. . . .

nD
ll

nD
lr

nD
lu

nD
rl

nD
ru

nD
ul

nD
ur

nD
uu



.

The NPI lower and upper bounds for the area under the ROC curves, in Theorem 3, can be written as

AUC = P (T 0
n0+1 < T 1

n1+1) =
(
MD=0

)tr
QLM

D=1,

AUC = P (T 0
n0+1 < T 1

n1+1) =
(
MD=0

)tr
QUM

D=1.

where (.)tr refers to the transpose of a matrix. The lower and upper ROC curves can be written in matrix

format as

FPF (c) = I{ILD=0
j >c}

(
MD=0

)tr
, FPF (c) = I{IUD=0

j >c}
(
MD=0

)tr
,

TPF (c) = I{ILD=1
i >c}

(
MD=1

)tr
and TPF (c) = I{IUD=1

i >c}
(
MD=1

)tr
.

where I{Aj} is an indicator vector of order (rDT +9) whose jth element is equal to 1 if Aj is true and 0 otherwise.

The NPI lower and upper ROC curves and the areas under these curves (AUC) for a single biomarker,

as introduced in Section 3, can also be written in a matrix format as above, where
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ILD =



xD(0)

xD(1)
...

xD(rDx −1)

xD(rDx )

. . . . . . .

−∞

Ux



, IUD =



xD(1)

xD(2)
...

xD(rDx )

xD(rDx +1)

. . . . . . .

Lx

∞



, MD =
1

nD + 1



, 1

1

...

1

1
. . .

lDx

uD
x



.

In this case, QL and QU are matrices of order (r0x + 3)× (r1x + 3) and they are defined as above.

This matrix representation is particularly useful in presenting the method for combining more than two

biomarkers. In general, if we have K biomarkers and we are interested in combining them to improve the

accuracy, that is Tn+1 =
∑K
j=1 αjZj,n+1, with αj ∈ [0, 1] and

∑K
j=1 αj = 1, then the two matrices QL and

QU will be of order (rD=0
T + 3K)(rD=1

T + 3K) and we need to define the vector MD of order (rDT + 3K), the

M -functions, as we did in Definition 1.

Let rT = nrr...r be the number of the observed values (available data) from all K biomarkers, that is the

test results of biomarker Zi that are between Lzi and Uzi for all i = 1, 2, . . . ,K. Thus, the combined test

results from all biomarkers are ti =
∑K
j=1 αjzj,i, where i = 1, . . . , rT and rT = nrr...r . Let t(i) be the ith

value among ti, thus −∞ <
∑K
j=1 αjLzj < t(1) < . . . < t(rT ) <

∑K
j=1 αjUzj < ∞. The probability mass

specifications for Tn+1 =
∑K
j=1 αjZj,n+1 are given by the following M -function values,

MTn+1
(t(i), t(i+1)) =

1

n+ 1
, i = 0, 1, . . . , rT ,

where t(0) = −∞ and t(rT+1) =∞. The remaining (3K−1) M -function values can be defined as in Definition

1, e.g.

MTn+1(Z1,n+1 ∈ (−∞, Lz1), Z2,n+1 ∈ (−∞, Lz2), . . . , ZK,n+1 ∈ (−∞, LzK )) =
nll...l
n+ 1

,

where nll...l is the number of individuals whose biomarker measurements Z1, Z2, . . . , ZK are less than

Lz1 , Lz2 , . . . , LzK , respectively, and so on. We will illustrate the proposed method for combining three

and four biomarkers, as introduced above, in Example 2. To this end, the data structures for combining

three and four biomarkers are given in Appendix A2.
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6 Evaluation

In this section, a simulation study is conducted to illustrate the proposed method for different scenarios. We

have simulated (X,Y )from the bivariate normal distribution, for n1 cases (disease) and n0 controls (non-

disease), with mean and variance-covariance matrix for the cases (disease) and for the controls (non-disease),

respectively,

µ1 =

µx
µy

 ,Σ1

1 ρ

ρ 1

 , µ0 =

0

0

 ,Σ0

1 ρ

ρ 1

 .
without loss of generality we assume that µx > µy > 0, and we considered ρ ≥ 0 to be of most practical

interest [1]. The ROC curve for biomarker X alone is equal to {ROCx(t) = Φ
(
µx + Φ−1(t)

)
; t ∈ (0, 1)} with

AUCx = Φ(µx/
√

2), The means of biomarker X measurements corresponding to AUCx = 0.6, 0.7, 0.8, 0.9 are

0.358, 0.742, 1.190, 1.812, respectively. The same can be defined for biomarker Y . According to Su and Liu [6],

the area under the ROC curve associated with α1X+α2Y is AUC∗ = Φ
(√

(µ1 − µ0)T (Σ0 + Σ1)−1(µ1 − µ0)
)

,

which is optimized at α∗opt = (Σ0+Σ1)−1(µ1−µ0), where Φ denotes the standard normal cumulative distribu-

tion function. For our setting, the area under the ROC curve associated with α1X+α2Y , with α1, α2 ∈ [0, 1]

and α1 + α2 = 1, can be written as

AUC = Φ

(√
(µx + µy)(µxα1 + µyα2)/(2 + 2ρ)

)
. (14)

which is optimized at

αopt =

α1

α2

 =
1

(µx − ρµy)2 + (µy − ρµx)2

(µx − ρµy)2

(µy − ρµx)2

 . (15)

When X and Y are equally accurate on their own, i.e. µx = µy = µ, the optimal linear combination is the

average of these two biomarkers, that is 0.5X + 0.5Y , otherwise the more accurate biomarker will be given

more weight in the optimal linear combination. The area under the curve in this case is AUC = AUC∗ =

Φ
(
µ/
√

1 + ρ
)
. So when two biomarkers of the same accuracy are combined, regardless whether they are

correlated or not, the values of AUC with and without restriction on the optimal α ( i.e. αopt and α∗opt) are

equal.

6.1 Restriction on the optimal α

Before we run our simulation study, we need to discuss the convenience of using this restriction on optimal

α, as in (14) and (15). The proposed NPI method can be used without any restriction on the optimal α as
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Figure 2: Fixed AUCy

in [1], as will be illustrated in Example 1. In this case the complexity of the calculations for the proposed

NPI method will be similar as for the method proposed by Pepe and Thompson [1]. We discuss below how

the restriction on the optimal α can reduce computational complexity and helps in deciding when combining

diagnostic tests does actually lead to improved accuracy.

First, with the restriction placed on the optimal α, we only search for the optimal α = (α1, α2) to be

between 0 and 1 such that α1 + α2 = 1, which is faster than the empirical search over all possible values as

discussed in [1]; further discussion is included at the end of Section 4.

In Figure 2 we have plotted the combined AUC for different values of AUCy with AUCx = 0.9, over all

possible values of ρ ≥ 0. The combined AUCs with restriction are represented by dashed lines while the

combined AUCs without restriction are represented by solid lines. As discussed above, when two tests of

the same accuracy (AUCx = AUCy = 0.9) are combined, the AUC values with and without restriction are

identical (the pink lines), where combining uncorrelated tests leads to more improvement in accuracy than

combining correlated tests (AUC = 0.965 for uncorrelated tests and AUC = 0.9 for correlated tests). Note

that there is of course no accuracy improvement by combining two perfectly correlated tests of the same

accuracy.

For other cases of combining two tests of different accuracy (AUCx = 0.9, 0.5 ≤ AUCy ≤ 0.9), there is

clear difference between the combined AUC with and without restriction. For example, the combined AUCs

without restriction have a U shape, meaning that the improvement in accuracy is high by combining two

uncorrelated tests, then it drops for increasing level of correlation, and then the improvement in accuracy

17



0.5 0.6 0.7 0.8 0.9

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

AUCy

A
U

C

Fixed ρ

0
0.25
0.5
0.75
0.9

Figure 3: Fixed ρ

picks up again and reaches peak values when the two tests are strongly correlated; more discussion about

this case can be found in Bansal and Pepe [29].

For the combined AUC with restriction on the optimal α, it holds that the more correlated the tests are

the less improvement in accuracy is achieved by combining them. In other words, the best improvement in

accuracy is obtained when two uncorrelated tests are combined. For example, if one combines a good test,

say with AUCx = 0.9, with a useless test, with AUCy = 0.5, then the combined AUC without restriction

takes the values AUC∗ = 0.9 if the two tests are uncorrelated and the value AUC∗ = 1 if the tests are

perfectly correlated, which is puzzling as if these tests are really correlated why one of them behaves so good

and the second behaves so badly. On the other hand, with the combined AUC with restriction, it takes the

values AUC = 0.9 if the tests combined are uncorrelated and AUC = 0.739 if they are highly correlated,

meaning that we are worse off by combining the two tests than considering the good test alone.

Another interesting point about using the combined AUC with restriction, from Figure 2, is that the

rate of reduction in improvement depends on the accuracy of the Y test (AUCy), that is if one combines

a good test, say AUCx = 0.9, with an average test, say AUCy = 0.8, then the reduction in improvement

if these two tests are highly correlated is smaller than the reduction in the improvement if one combines

two highly correlated tests, one of which is good with AUCx = 0.9 while the second is not that good, say

with AUCy = 0.6. Furthermore, for uncorrelated or weakly correlated tests, the improvement gained by

combining tests, using the combined AUC with restriction, is equal or greater than for the combined AUC

without restriction, meaning that we can find the optimal combination of uncorrelated or weakly correlated
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tests with much higher improvement by using the combined AUC with restriction.

In Figure 3 we have plotted the combined AUC for different values of ρ over all possible values of

0.5 ≤ AUCy ≤ 0.9, where AUCx = 0.9. The combined AUCs with restriction are represented by dashed

lines and the combined AUCs without restriction by solid lines. Figure 3 shows the same behaviours as

mentioned above, that is the combined AUC without restriction is U-shaped while the combined AUC with

restriction is monotone. Both combined AUCs agree when two tests of the same accuracy are combined,

where higher values of the combined AUCs are associated with uncorrelated tests. The combined AUCs

with and without restriction differ significantly when one combines tests of different accuracy. For fixed

ρ, the greater AUCy is, the greater improvement is achieved by the combined AUC with restriction, while

this nice property does not hold for the combined AUC without the restriction. For example, for ρ = 0.5

and AUCx = 0.9, the green lines in Figure 3, when AUCy = 0.50, 0.75, 0.90 the combined AUC without

restriction is 0.931, 0.900, 0.931, respectively, while the corresponding combined AUC with restriction is

0.825, 0.902, 0.931, respectively.

For uncorrelated tests, the combined AUC with restriction leads to overall greater improvement (higher

AUC) than the combined AUC without restriction. For the combined AUC with restriction, the rate of

improvement of combining uncorrelated tests is equal to the accuracy of test X (that is AUCx) if we

combined this test with a useless test (AUCy = 0.5), so basically the weight given to the useless test is zero.

The maximum value of Φ(
√

(2)Φ−1(AUCx)) = Φ(µx) is obtained if two unrelated tests of the same accuracy

are combined (AUCx = AUCy), in this case the optimal weights are (0.5,0.5).

6.2 Simulation study

The results of the simulation study are based on 1000 simulations for n1 = n0 = 50, 100, ρ = 0, 0.5, 0.75, and

for different values of µx and µy. First we have considered the case when there is no LoD, i.e. complete data,

then we have introduced some LoD per group, such as L and U to be equal to the 10th and 90th quantiles of

the simulated sample, respectively. The results of this simulation are given in Table 5 for the case ‘without

LoD’, and in Table 6 for the case ‘with LoD’.

From Table 5, for the case ‘without LoD’, we notice that NPI lower and upper AUCs always bound the

empirical one, this is because NPI approach is exactly calibrated [30, 31], in the sense that it never leads

to results that are in conflict with inferences based on empirical probabilities, in our case the empirical

AUC. We also notice that the empirical AUC is much closer to the upper AUC than to the lower AUC,

this may correspond to the fact the AUC is over optimistic when considering the predictive performance [5].

These two remarks highlight the merits of the proposed NPI methods, e.g. for the latter it captured the over

19



optimistic behaviour of the empirical AUC. We cannot, however, generalize this to the case ‘with LoD’, in

Table 6, the main reason is that the empirical AUC is calculated after removing the observations that are

subject to LoD, while in NPI method the number of these observations is taken into account to derive the

NPI lower and upper AUC.

For the case without LoD, Table 5, the values of the optimal α returned by the NPI method, are close

or sometimes identical to the optimal α returned by the empirical AUC, this is again due to the calibrated

property of the NPI. However, this is not the case for the inference with LoD, Table 6, as the values of the

optimal α returned by the NPI method are different from the empirical one, yet the optimal α corresponding

to the upper AUC is much closer to the empirical one than the one corresponding to the lower AUC. These

results are due to the same reasons discussed above (that is how the AUC is calculated, and the fact that

empirical AUC is over optimistic).

From Table 5, when two biomarkers of the same accuracy (the same AUC) are combined, the empirical

AUC and the lower and upper NPI AUCs all give equal weights to both biomarkers, that is αopt = (0.5, 0.5).

It is also interesting to see that if two uncorrelated tests with the same values of AUC are combined then

that leads to more improvement than combining two correlated tests of the same accuracy. In fact, this

holds regardless whether the two tests have the same accuracy or not, that is for the case ‘without LoD’,

combining two uncorrelated tests can lead to more improvement than combining two correlated tests. This

holds for the empirical AUC and the NPI lower and upper AUC. While the same holds for the case with

LoD, Table 6, for both the empirical AUC and upper AUC, it does not hold for the lower AUC. Considering

the lower AUC, one can achieve higher improvement by combining two correlated tests, this is due to the

fact that now we have less information in favour of the event of interest.

To study the robustness of the NPI proposed method, a simulation study from an asymmetric distribution

is performed. In our context the Gamma distribution is often used. As the NPI method is nonparametric,

in the sense that we do not make any assumption about the underlying distribution, it is expected that its

performance will not be affected by the choice of the underlying distribution.

Considering a biomarker X, the area under the ROC curve that is constructed from the Gamma distribu-

tions of the disease and non-disease groups with shape and scale parameters γ1x, β1
x and γ0x, β0

x, respectively,

is given by [8]

AUCx = Ψx

(
β1
x

β1
x + β0

x

)
,

where Ψx is the Beta cumulative distribution function with parameters (γ0x, γ
1
x). Similarly, one can define

the area under the ROC curve for biomarker Y , AUCy, that is constructed from the Gamma distributions
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of the disease and non-disease groups with shape and scale parameters γ1y , β1
y and γ0y , β0

y , respectively, as

AUCy = Ψy

(
β1
y

β1
y + β0

y

)
,

where Ψy is the Beta cumulative distribution function with parameters (γ0y , γ
1
y).

We have simulated (X,Y ) from the Bigamma distribution, for n1 cases (disease) and n0 controls (non-

disease), with shape and scale parameters set to γ1x = 1, β1
x = 1 and γ1y = 1, β1

y = 1 for the disease group. For

the non-disease group the shape parameters are set to (γ0x = 1, γ0y = 1), and the scale parameters (β0
x, β0

y)

are set to achieve AUCx = 0.6, 0.7, 0.8, 0.9, and AUCy = 0.6, 0.7, 0.8, 0.9, respectively. Following [32], the

Bigamma distribution was constructed using the Gaussian copula with correlation coefficient ρ = 0, 0.5, 0.75

and with the above specified Gamma marginal distributions.

The simulation results from the Bigamma distribution are summarized in Tables 7 and 8 in the appendix.

From these tables we observed the same results as the Normal distribution case which demonstrates the

robustness of the proposed NPI method.

7 Examples

Example 1 (Pancreatic cancer data set). In this example, we use the data set from a study of 90

pancreatic cancer patients and 51 control patients with pancreatitis [33]. Two serum markers were measured

on these patients, the cancer antigen CA125 and the carbohydrate antigen CA19-9. The marker values

were transformed to a natural logarithmic scale and are displayed in Figure 4. For ease of presentation,

let log(CA19-9) be the biomarker X and log(CA125) the biomarker Y . Three scenarios are considered

below. In scenario A, we consider the whole data set, i.e. without LoD. In scenario B, we introduce the

following LoD scheme, Lx = 4.5, Ux = 5000, Ly = 6 and Uy = 100, where (l0x = 5, r0x = 46, u0x = 0),

(l1x = 4, r1x = 77, u1x = 9), (l0y = 4, r0y = 45, u0y = 2) and (l1y = 1, r1y = 82, u1y = 7). In scenario C, we

have the LoD scheme Lx = 11, Ux = 5000, Ly = 6 and Uy = 80, where (l0x = 28, r0x = 23, u0x = 0),

(l1x = 11, r1x = 70, u1x = 9), (l0y = 4, r0y = 44, u0y = 3) and (l1y = 1, r1y = 78, u1y = 11). To make sure that our

biomarkers tests results are comparable we use the standardized values (i.e. with mean 0 and variance 1)

after the natural logarithmic transformation. The objective is to find the best linear combination of X and

Y which yields higher AUC value than either one alone.

Under these three scenarios, the values of α (α1 and α2) that maximize the empirical AUC and the NPI

lower and upper AUC are given in Table 1. For the sake of comparison we also obtained the empirical AUC

and the NPI lower and upper AUC for each biomarker. For scenarios B and C, the empirical AUC values are

calculated after discarding (removing) the observations that are below or above the LoD for each biomarker.
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Figure 4: Pancreatic cancer data set (Example 1)

Scenario Biomarkers α̂opt ÂUC αLopt AUC αUopt AUC

A X 0.8614 0.8347 0.8664
Y 0.7056 0.6830 0.7158
X + αY (1, 0.39) 0.8937 (1, 0.39) 0.8669 (1, 0.39) 0.8969
α1X + α2Y (0.720, 0.280) 0.8937 (0.720, 0.280) 0.8669 (0.720, 0.280) 0.8969

B X 0.8755 0.8328 0.8688
Y 0.6931 0.6809 0.7175
X + αY (1, 0.39) 0.8939 (1, 0.42) 0.7494 (1, 0.42) 0.9216
α1X + α2Y (0.724, 0.276) 0.8939 (0.705, 0.295) 0.7496 (0.705, 0.295) 0.9218

C X 0.8696 0.8068 0.9024
Y 0.6936 0.6792 0.7198
X + αY (1, 0.39) 0.9069 (1, 0.07) 0.6796 (1, 0.48) 0.9704
α1X + α2Y (0.724, 0.276) 0.9069 (0.931, 0.069) 0.6813 (0.675, 0.325) 0.9704

Table 1: Pancreatic cancer data set results (Example 1)

For the NPI lower and upper AUC, these observations are not removed but only their numbers are taken

into account. This is the reason why the empirical AUC is no longer always between the NPI lower and

upper AUCs. The data structures of these two scenarios are given below, for example for scenario B the

results are based on 71 cases and 41 controls while for scenario C the results are based on 62 cases and 22

controls.

SD=0
B =


0 0 0

3 41 2

1 4 0

 , SD=1
B =


0 7 2

1 71 5

0 4 0

 , SD=0
C =


0 0 0

1 22 0

3 22 3

 , SD=1
C =


0 6 3

1 62 7

0 10 1

 .

From Table 1, we can see that maximizing the AUC by finding the values (α1, α2) in α1X + α2Y , where

α1 + α2 = 1, gives slightly higher value for AUC compared to maximizing the AUC by finding the value

22



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPF

T
P

F

Empirical Lower Upper

ROCCA19−9

ROCCA125

Empirical Lower Upper

ROCT

Figure 5: Lower, empirical and upper ROC curves for scenario A (Example 1)

α in X + αY . For scenarios A and B, CA19-9 has been given around 70% weight while CA125 has been

given a weight of about 30%. For scenario C, the result is quite different, with the lower AUC maximized

by assigning higher weight to CA19-9 compared to CA125, while for the optimal upper AUC more weight

is given to CA125. The optimal values for the empirical, lower and upper AUCs are close to each other in

scenario A, i.e. without LoD.

For scenario A, combining two biomarkers leads to accuracy improvement, that is larger values of (em-

pirical, lower and upper) AUC compared to the AUC values of the individual ones, this is illustrated in

Figure 5, where T = 0.72X + 0.28Y . This improvement is quite small in comparison to using CA19-9 alone,

this may be due to the fact that we have combined a good biomarker (CA19-9) with an average biomarker

(CA125).

For scenarios B and C (both with LoD) we notice that the lower AUC for combining two biomarkers

is not greater than the individual lower AUC values, while the upper AUC for combining two biomarkers

is much greater than the individual upper AUC values, in fact it is much greater than the upper AUC of

combining two biomarkers for scenario A. This is because with LoD we have fewer observations for which both

biomarkers results are available, that is we have less evidence in favour (against) of the event of interest (AUC

here) for the lower (upper) AUC. Furthermore, the imprecision is larger for scenarios B and C compared to

scenario A, as with LoD we have fewer observations in which the biomarkers results are both available.

Example 2 (DMD data set). The data set used in this example results from a study to develop screening
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Figure 6: DMD data set (Example 2)

methods to identify carriers of a rare genetic disorder. Four measurements M1, M2, M3 and M4 were

made on blood samples. The data were first discussed by Cox et al. [34] and are available from Carnegie

Mellon University Statlib Datasets Archive at ftp://rcom.univie.ac.at/mirrors/lib.stat.cmu.edu/

datasets/.index.html. There are several samples for some patients, for which the averages are considered,

and five missing values are excluded from the analysis. The remaining sample, which is used in this example,

consists of 120 observations, 82 ‘normals’ and 38 ‘carriers’. The four measurements were transformed to a

natural logarithmic scale and are displayed in Figure 6. As in the previous example, we use the standardized

values after the natural logarithmic transformation in the analysis. From the correlation matrix given below,

we see that M1 is quite strongly correlated with M3 and M4, and M3 is quite strongly correlated with M4,

yet M2 is only weakly correlated with the other measurements.

Corr =

M1 M2 M3 M4


M1 1.000 0.115 0.644 0.642

M2 0.115 1.000 0.221 0.284

M3 0.644 0.221 1.000 0.561

M4 0.642 0.284 0.561 1.000

.

In this example we introduce the limits of detection as presented in Table 2, that is considering M1 with
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without LoD with LoD

Measurements L U (l0, r0, u0) (l1, r1, u1) ÂUC AUC AUC ÂUC AUC AUC
M1 20.5 400 (4,78,0) (0,33,5) 0.9034 0.8684 0.9082 0.8831 0.8684 0.9082
M2 66 106.5 (5,76,1) (0,35,3) 0.7526 0.7223 0.7640 0.7241 0.7220 0.7646
M3 6.8 37 (6,76,0) (0,33,5) 0.8232 0.7912 0.8310 0.7803 0.7912 0.8310
M4 115 347 (3,78,1) (0,34,4) 0.8789 0.8446 0.8848 0.8705 0.8434 0.8848

Table 2: DMD data set (Example 2)

LoD, we have 111 observations within LoD, 78 normals and 33 carriers. In this table we have calculated the

empirical, lower and upper AUC for the individual biomarkers, with and without LoD. For the case with

LoD, the empirical AUC values are calculated after discarding (removing) the observations that are below

or above the LoD for each biomarker. Obviously, the NPI lower and upper AUC values bound the empirical

AUC for the case without LoD, while this is not necessary for the case with LoD as we have discussed before.

From this table we notice that M1 has the largest accuracy (AUC), then M4 and M3, and M2 has the

smallest accuracy. From NPI perspective, as AUCM1 > AUCM3 > AUCM2 we can say that there is a strong

indication that M1 is better than M2 and M3, and as we have AUCM1 > AUCM4 and AUCM1 > AUCM4

we can say that there is a weak indication that M1 is better than M4, for more details about using NPI for

pairwise and multiple comparisons we refer to [35].

Measurements α̂opt ÂUC αLopt AUC αUopt AUC

Without LoD
α1M1 + α2M2 (0.609 , 0.391) 0.9535 (0.609 , 0.391) 0.9178 (0.609 , 0.391) 0.9552
α1M1 + α2M3 (0.750 , 0.250) 0.9178 (0.750 , 0.250) 0.8835 (0.750 , 0.250) 0.9209
α1M1 + α2M4 (0.551 , 0.449) 0.9313 (0.551 , 0.449) 0.8965 (0.551 , 0.449) 0.9339
α1M2 + α2M3 (0.500 , 0.500) 0.8780 (0.500 , 0.500) 0.8452 (0.500 , 0.500) 0.8826
α1M2 + α2M4 (0.306 , 0.694) 0.9095 (0.306 , 0.694) 0.8755 (0.306 , 0.694) 0.9129
α1M3 + α2M4 (0.256 , 0.744) 0.9156 (0.256 , 0.744) 0.8814 (0.256 , 0.744) 0.9188

With LoD
α1M1 + α2M2 (0.609 , 0.391) 0.9368 (0.499 , 0.501) 0.8576 (0.609 , 0.391) 0.9558
α1M1 + α2M3 (0.879 , 0.121) 0.8898 (0.581 , 0.419) 0.8171 (0.879 , 0.121) 0.9240
α1M1 + α2M4 (0.520 , 0.480) 0.9211 (0.520 , 0.480) 0.8783 (0.520 , 0.480) 0.9376
α1M2 + α2M3 (0.580 , 0.420) 0.8248 (0.460 , 0.540) 0.7519 (0.500 , 0.500) 0.8845
α1M2 + α2M4 (0.306 , 0.694) 0.8943 (0.526 , 0.474) 0.8026 (0.340 , 0.660) 0.9203
α1M3 + α2M4 (0.256 , 0.744) 0.9024 (0.493 , 0.507) 0.8455 (0.416 , 0.584) 0.9237

Table 3: DMD data set, two measurements are combined (Example 2)

In Table 3, we combine two measurements (without and with LoD, resp.) in order to maximize the areas

under the empirical, lower and upper ROC curves. From Table 3, without LoD, it seems that combining M1

with M2 gives the largest improvement in comparison to combining M1 with M3 or M1 with M4, despite

the fact that M3 and M4 have the highest AUC alone compared to M2. However M3 and M4 are highly

correlated with M1 while M2 is uncorrelated with M1. The same holds for the results in Table 3, with LoD,

for both the empirical AUC and upper AUC, but for the lower AUC we have different results. For the lower

AUC, the largest improvement is obtained by combining M1 and M4, then the second largest by combining
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M1 with M2, this is again due to the fact that M1 and M4 have higher AUC alone and they are highly

correlated, but also to the fact that we have fewer observations with LoD, as discussed in Section 6. The

data structures for the analysis in Table 3 with LoD, are given below, e.g. considering M1 with M2, the

results are based on 103 observations within LoD, 72 normals and 31 carriers.

SD=0
12 =


0 0 0

5 72 1

0 4 0

 , SD=1
12 =


0 4 1

0 31 2

0 0 0

 , SD=0
13 =


0 0 0

6 72 0

0 4 0

 , SD=1
13 =


0 2 3

0 31 2

0 0 0

 ,

SD=0
14 =


0 0 0

1 76 1

2 2 0

 , SD=1
14 =


0 2 3

0 32 1

0 0 0

 , SD=0
23 =


0 1 0

6 70 0

0 5 0

 , SD=1
23 =


0 3 0

0 30 5

0 0 0

 ,

SD=0
24 =


0 1 0

3 72 1

0 5 0

 , SD=1
24 =


0 3 0

0 31 4

0 0 0

 , SD=0
34 =


0 0 0

2 73 1

1 5 0

 , SD=1
34 =


0 2 3

0 32 1

0 0 0

 .

In Table 4, we combine three measurements (without and with LoD, respectively) in order to maximize

the areas under the empirical, lower and upper ROC curves. For combining three and four markers we have

used the approach discussed at the end of Section 5. By comparing Tables 3 and 4, the case without LoD,

one can see that we gain little improvement by combining M3 or M4 with M1 and M2. On the other hand,

combining M1 with M3 and M4 leads to better improvement compared to combining M2 with M3 and M4.

The empirical, lower and upper AUCs all agreed on this.

Measurements α̂opt ÂUC αLopt AUC αUopt AUC

Without LoD
α1M1 + α2M2 + α3M3 (0.52, 0.34, 0.14) 0.9589 (0.52, 0.34, 0.14) 0.9231 (0.52, 0.34, 0.14) 0.9605
α1M1 + α2M2 + α3M4 (0.54, 0.32, 0.14) 0.9589 (0.54, 0.32, 0.14) 0.9231 (0.54, 0.32, 0.14) 0.9605
α1M1 + α2M3 + α3M4 (0.31, 0.19, 0.50) 0.9336 (0.31, 0.19, 0.50) 0.8987 (0.31, 0.19, 0.50) 0.9361
α1M2 + α2M3 + α3M4 (0.27, 0.28, 0.45) 0.9272 (0.27, 0.28, 0.45) 0.8925 (0.27, 0.28, 0.45) 0.9299

With LoD
α1M1 + α2M2 + α3M3 (0.52, 0.34, 0.14) 0.9347 (0.50, 0.50, 0) 0.7402 (0.52, 0.34, 0.14) 0.9614
α1M1 + α2M2 + α3M4 (0.51, 0.27, 0.22) 0.9471 (0.49, 0.50, 0.01) 0.8128 (0.51, 0.27, 0.22) 0.9657
α1M1 + α2M3 + α3M4 (0.31, 0.19, 0.50) 0.9183 (0.47, 0.28, 0.25) 0.7943 (0.31, 0.19, 0.50) 0.9435
α1M2 + α2M3 + α3M4 (0.29, 0.21, 0.50) 0.9048 (0.04, 0.49, 0.47) 0.7115 (0.27, 0.28, 0.45) 0.9416

Table 4: DMD data set, three measurements are combined (Example 2)

For the case with LoD, by comparing Tables 3 and 4, we gain more accuracy by combining M4 with M1

and M2 than with M3, for both the empirical and the upper AUC, and a small loss of accuracy for the lower

AUC (again the lower AUC is affected by having fewer observations). It does not make a big difference if

we combine M1 or M2 with M3 and M4 for both the empirical and the upper AUC, but there is a large loss

in the accuracy in terms of the lower AUC if we combine M2 instead of M1 with M3 and M4. The data
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structures for the analysis in Table 3 with LoD, are given below, e.g. considering M1, M2 and M3, the results

is based on 95 observations, 66 normals and 29 carriers.

SD=0
123 =



0 0 0

0 0 0

0 0 0

0 1 0

6 66 0

0 5 0

0 0 0

0 4 0

0 0 0



, SD=1
123 =



0 1 0

0 1 3

0 0 0

0 2 0

0 29 2

0 0 0

0 0 0

0 0 0

0 0 0



, SD=0
124 =



0 0 0

0 0 0

0 0 0

0 1 0

1 70 1

0 5 0

0 0 0

2 2 0

0 0 0



, SD=1
124 =



0 1 0

0 1 3

0 0 0

0 2 0

0 30 1

0 0 0

0 0 0

0 0 0

0 0 0



,

SD=0
134 =



0 0 0

0 0 0

0 0 0

0 0 0

0 71 1

1 5 0

0 0 0

2 2 0

0 0 0



, SD=1
134 =



0 0 3

0 2 0

0 0 0

0 2 0

0 30 1

0 0 0

0 0 0

0 0 0

0 0 0



, SD=0
234 =



0 0 0

0 1 0

0 0 0

0 0 0

2 67 1

1 5 0

0 0 0

0 5 0

0 0 0



, SD=1
234 =



0 0 0

0 3 0

0 0 0

0 2 3

0 29 1

0 0 0

0 0 0

0 0 0

0 0 0



.

Finally, if we combine all 4 measurements, in the case without LoD, we have α̂opt = αLopt = αUopt =

(0.52, 0.31, 0.08, 0.09) where ÂUC = 0.9621, AUC = 0.9262 and AUC = 0.9635. That is about 83% of the

weight is given to the first and the second measurements (52% for M1 and 31% for M2), and M3 and M4 are

almost neglected. For the case with LoD (as shown from the data structure given below, the result is based

on 93 observations, 65 normals and 28 carriers) we have α̂opt = (0.45, 0.27, 0.04, 0.24) and ÂUC = 0.9451,

αLopt = (0.49, 0.5, 0, 0.01) and AUC = 0.7105, αUopt = (0.45, 0.27, 0.04, 0.24) and AUC = 0.9691. In this case,

in order to maximize the NPI lower AUC, M1 and M2 are given almost the same weights (around 50% each)

while M3 and M4 are almost totally neglected. The empirical and the upper AUC still gave more weight to

M1 (45%) but they also assigned M2 and M4 almost similar weights (27% and 24%, resp.), while M3 is still

neglected.
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SD=0
1234 =



0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 2 0 0 65 1 0 0 0

0 0 0 1 5 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 5 0 0 0 0

0 0 0 0 0 0 0 0 0



, SD=1
1234 =



0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 3

0 0 0 0 28 1 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



.

One can see from Table 4, the case without LoD, and the results above, that if we add M4, the empirical,

and upper AUCs become larger, so we improved the accuracy by combining all markers together. On the

other hand, for the case with LoD, we observed a similar behaviour as in Example 1, namely that the

empirical and the upper AUC improved by combining all markers together, but the lower AUC decreases

which reflects that we have less evidence in favour of the event of interest, of course due to having fewer

observations.

8 Concluding remarks

In this paper the NPI approach is presented for best linear combination of biomarkers subject to limits of

detection. We also showed how NPI can be used to combine biomarkers when all the data are available (i.e.

without limits of detection). NPI provides an attractive approach to quantify uncertainty without discarding

the unobserved measurements (that are below or above limits of detection) or the need for replacement

strategies and their drawbacks [8]. In NPI only the number of the unobserved measurements are taking into

account and the uncertainty is quantified via lower and upper probabilities to provide a statement about the

future observations.

While there are some issues regarding classical methods with regard to when combining biomarkers

will actually improve the accuracy [29], the proposed method, as shown in the simulation study, with the

restrictions on the coefficients of the linear combination, can help to draw a conclusion on when combining

biomarkers will improve diagnostic accuracy. The best scenario is achieved by combining good (high AUC

values) uncorrelated biomarkers, and the worst scenario is obtained when a good biomarker is combined with

a highly correlated useless biomarker. Therefore, from practical perspective, if one chooses the AUC as the

objective function to maximize, it will be more informative and computationally efficient to use restriction

on the parameters. And when selecting a set of biomarkers to combine, one should take the correlation
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between these biomarkers into account as mentioned earlier.

NPI typically leads to lower and upper probabilities for events of interest, which are based on Hills

assumption A(n) and have strong properties from frequentist statistics perspective. As events of interest are

explicitly about a future observation, or a function of such an observation, NPI is indeed explicitly about

prediction. The NPI lower and upper probabilities have a frequentist interpretation that could be regarded

as confidence statements related to repeated application of the same procedure. From this perspective,

corresponding lower and upper probabilities can be interpreted as bounds for the confidence level for the

event of interest. However, the method does not provide prediction intervals in the classical sense, as e.g.

appear in frequentist regression methods. Those tend to relate to confidence intervals for model parameter

estimates combined with variability included in the model, in NPI no variability is explicitly included in a

model and there are clearly no parameters to be estimated.

The proposed method can be extended in many ways, for example, one can consider other objective

functions to optimize instead of the AUC, for example by building a risk score function [2], to accommodate

other factors such as costs or risk to patients, etc. We may also want to consider other ways of combining

the tests, e.g. by using copulas to capture the dependence of these biomarkers. Some initial results of using

NPI for combining two biomarkers via copula have been presented by Muhammad [36]. Generalizing the

proposed NPI method to three-group ROC surface and the volume under the surface [24, 37] is an interesting

topic for future research. NPI lower and upper bounds for the well-known Youden index [38, 39] have been

introduced for both two-group ROC and three-group ROC analysis [23, 24]. Full investigation of using NPI

for selecting the optimal cut-off points in the case of limits of detection [40] is of also of interest and left for

future research.
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Appendix

A1. Proof of Theorem 3

In this section we derive the lower and upper probabilities for the event T 0
n0+1 < T 1

n1+1, which is equivalent

to finding the lower and upper probabilities for the event α1X
0
n0+1 + α2Y

0
n0+1 < α1X

1
n1+1 + α2Y

1
n1+1.

P =P (T 0
n0+1 < T 1

n1+1) =

r1T∑
i=0

P (T 0
n0+1 < T 1

n1+1, T
1
n1+1 ∈ (t1(i), t

1
(i+1)))

+P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (−∞, Lx), Y 1

n1+1 ∈ (−∞, Ly)) + P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (−∞, Lx), Y 1

n1+1 ∈ (Ly, Uy))

+P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (−∞, Lx), Y 1

n1+1 ∈ (Uy,∞)) + P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (Lx, Ux), Y 1

n1+1 ∈ (−∞, Ly))

+P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (Lx, Ux), Y 1

n1+1 ∈ (Uy,∞)) + P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (Ux,∞), Y 1

n1+1 ∈ (−∞, Ly))

+P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (Ux,∞), Y 1

n1+1 ∈ (Ly, Uy)) + P (T 0
n0+1 < T 1

n1+1, X
1
n1+1 ∈ (Ux,∞), Y 1

n1+1 ∈ (Uy,∞)).

The NPI lower probability for the event T 0
n0+1 < T 1

n1+1 is obtained as follows:

P ≥
r1T∑
i=0

P (T 0
n0+1 < t1(i))

1

n1 + 1
+ P (T 0

n0+1 < −∞)

[
n1ll

n1 + 1
+

n1lr
n1 + 1

+
n1lu

n1 + 1
+

n1rl
n1 + 1

+
n1ul

n1 + 1

]
+P (T 0

n0+1 < α1Lx + α2Uy)
n1ru
n1 + 1

+ P (T 0
n0+1 < α1Ux + α2Ly)

n1ur
n1 + 1

+ P (T 0
n0+1 < α1Ux + α2Uy)

n1uu
n1 + 1

=

r1T∑
i=1

P (T 0
n0+1 < t1(i))

1

n1 + 1
+ P (T 0

n0+1 < α1Lx + α2Uy)
n1ru
n1 + 1

+P (T 0
n0+1 < α1Ux + α2Ly)

n1ur
n1 + 1

+ P (T 0
n0+1 < α1Ux + α2Uy)

n1uu
n1 + 1

.

The above inequality follows by putting all probability masses for T 1
n1+1, according to the M-functions

in Definition 1, corresponding to the intervals (t1(i), t
1
(i+1)) (i = 0, ..., r1T ), (−∞, α1Lx + α2Ly), (−∞, α1Lx +

α2Uy), (−∞, α1Ux + α2Ly),(α1Lx + α2Uy,∞), (α1Ux + α2Ly,∞), (α1Ux + α2Uy,∞) and (−∞,∞) to the

left-end points of these intervals. The next step in the proof is divided into four parts, I1, I2, I3 and I4. The

following inequalities (in I1, I2, I3 and I4) follow by putting all probability masses for T 0
n0+1 corresponding to

the intervals (t0(j), t
0
(j+1)) (j = 0, ..., r0T ), (−∞, α1Lx+α2Ly), (−∞, α1Lx+α2Uy), (−∞, α1Ux+α2Ly),(α1Lx+

α2Uy,∞), (α1Ux + α2Ly,∞), (α1Ux + α2Uy,∞) and (−∞,∞) to the right-end points of these intervals.
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I1 =

r1T∑
i=1

P (T 0
n0+1 < t1(i))

1

n1 + 1

≥
r1T∑
i=1

1

n1 + 1

[
1{α1Lx + α2Ly < t1(i)}

n0ll
n0 + 1

+ 1{α1Lx + α2Uy < t1(i)}
n0lr

n0 + 1
+ 1{α1Ux + α2Ly < t1(i)}

n0rl
n0 + 1

+

r0T−1∑
j=0

1{t0(j+1) < t1(i)}
1

n0 + 1
+ 1{∞ < t1(i)}

(
n0lu + n0ru + n0ul + n0ur + n0uu + 1

n0 + 1

)]

=
1

(n1 + 1)(n0 + 1)

r1T∑
i=1

[
n0ll + 1{α1Lx + α2Uy < t1(i)}n

0
lr + 1{α1Ux + α2Ly < t1(i)}n

0
rl +

r0T−1∑
j=0

1{t0(j+1) < t1(i)}

]
.

I2 =P (T 0
n0+1 < α1Lx + α2Uy)

n1ru
n1 + 1

≥ n1ru
n1 + 1

[
1{α1Lx + α2Ly < α1Lx + α2Uy}

n0ll
n0 + 1

+ 1{α1Lx + α2Uy < α1Lx + α2Uy}
n0lr

n0 + 1

+1{α1Ux + α2Ly < α1Lx + α2Uy}
n0rl

n0 + 1
+

r0T−1∑
j=0

1{t0(j+1) < α1Lx + α2Uy}
1

n0 + 1

+1{∞ < α1Lx + α2Uy}
(

n0lu
n0 + 1

+
n0ru
n0 + 1

+
n0ul

n0 + 1
+

n0ur
n0 + 1

+
n0uu
n0 + 1

+
1

n0 + 1

)]

=
n1ru

(n1 + 1)(n0 + 1)

[
n0ll + 1{α1Ux + α2Ly < α1Lx + α2Uy}n0rl +

r0T−1∑
j=0

1{t0(j+1) < α1Lx + α2Uy}

]
.

I3 =P (T 0
n0+1 < α1Ux + α2Ly)

n1ur
n1 + 1

≥ n1ur
n1 + 1

[
1{α1Lx + α2Ly < α1Ux + α2Ly}

n0ll
n0 + 1

+ 1{α1Lx + α2Uy < α1Ux + α2Ly}
n0lr

n0 + 1

+1{α1Ux + α2Ly < α1Ux + α2Ly}
n0rl

n0 + 1
+

r0T−1∑
j=0

1{t0(j+1) < α1Ux + α2Ly}
1

n0 + 1

+1{∞ < α1Ux + α2Ly}
(

n0lu
n0 + 1

+
n0ru
n0 + 1

+
n0ul

n0 + 1
+

n0ur
n0 + 1

+
n0uu
n0 + 1

+
1

n0 + 1

)]

=
n1ur

(n1 + 1)(n0 + 1)

[
n0ll + 1{α1Lx + α2Uy < α1Ux + α2Ly}n0lr +

r0T−1∑
j=0

1{t0(j+1) < α1Ux + α2Ly}

]
.
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I4 =P (T 0
n0+1 < α1Ux + α2Uy)

n1uu
n1 + 1

≥ n1uu
n1 + 1

[
1{α1Lx + α2Ly < α1Ux + α2Uy}

n0ll
n0 + 1

+ 1{α1Lx + α2Uy < α1Ux + α2Uy}
n0lr

n0 + 1

+1{α1Ux + α2Ly < α1Ux + α2Uy}
n0rl

n0 + 1
+

r0T−1∑
j=0

1{t0(j+1) < α1Ux + α2Uy}
1

n0 + 1

+1{∞ < α1Ux + α2Uy}
(

n0lu
n0 + 1

+
n0ru
n0 + 1

+
n0ul

n0 + 1
+

n0ur
n0 + 1

+
n0uu
n0 + 1

+
1

n0 + 1

)]

=
n1uu
n1 + 1

[
n0ll

n0 + 1
+

n0lr
n0 + 1

+
n0rl

n0 + 1
+

r0T−1∑
j=0

1{t0(j+1) < α1Ux + α2Uy}
1

n0 + 1

]

=
n1uu

(n1 + 1)(n0 + 1)

[
n0ll + n0lr + n0rl + n0rr

]
.

then the lower probability can be written as (P = I1 + I2 + I3 + I4)

P =
1

(n1 + 1)(n0 + 1)

r1T∑
i=1

n0ll + 1{α1Lx + α2Uy < t1(i)}n
0
lr + 1{α1Ux + α2Ly < t1(i)}n

0
rl +

r0T−1∑
j=0

1{t0(j+1) < t1(i)}


+

n1ru
(n1 + 1)(n0 + 1)

n0ll + 1{α1Ux + α2Ly < α1Lx + α2Uy}n0rl +

r0T−1∑
j=0

1{t0(j+1) < α1Lx + α2Uy}


+

n1ur
(n1 + 1)(n0 + 1)

n0ll + 1{α1Lx + α2Uy < α1Ux + α2Ly}n0lr +

r0T−1∑
j=0

1{t0(j+1) < α1Ux + α2Ly}


+

n1uu
(n1 + 1)(n0 + 1)

[
n0ll + n0lr + n0rl + n0rr

]
.

And the NPI upper probability for the event T 0
n0+1 < T 1

n1+1 is obtained as follows:

P ≤ P (T 0
n0+1 <∞)

[
n1lu

n1 + 1
+

n1ru
n1 + 1

+
n1ul

n1 + 1
+

n1ur
n1 + 1

+
n1uu
n1 + 1

+
1

n1 + 1

]
+

r1T∑
i=1

P (T 0
n0+1 < t1(i))

1

n1 + 1

+ P (T 0
n0+1 < α1Lx + α2Ly)

n1ll
n1 + 1

+ P (T 0
n0+1 < α1Lx + α2Uy)

n1lr
n1 + 1

+ P (T 0
n0+1 < α1Ux + α2Ly)

n1rl
n1 + 1

.

The above inequality follows by putting all probability masses for T 1
n1+1, according to the M-functions in

Definition 1, corresponding to the intervals (t1(i), t
1
(i+1)) (i = 0, ..., r1T ), (−∞, α1Lx + α2Ly), (−∞, α1Lx +

α2Uy), (−∞, α1Ux+α2Ly),(α1Lx+α2Uy,∞), (α1Ux+α2Ly,∞), (α1Ux+α2Uy,∞) and (−∞,∞) to the right-

end points of these intervals. The next step in the proof is divided into five parts, J1, J2, J3, J4 and J5. The

following inequalities (in I1, I2, I3 and I4) follow by putting all probability masses for T 0
n0+1 corresponding to
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the intervals (t0(j), t
0
(j+1)) (j = 0, ..., r0T ), (−∞, α1Lx+α2Ly), (−∞, α1Lx+α2Uy), (−∞, α1Ux+α2Ly),(α1Lx+

α2Uy,∞), (α1Ux + α2Ly,∞), (α1Ux + α2Uy,∞) and (−∞,∞) to the left-end points of these intervals.

J1 =P (T 0
n0+1 <∞)

[
n1lu

n1 + 1
+

n1ru
n1 + 1

+
n1ul

n1 + 1
+

n1ur
n1 + 1

+
n1uu
n1 + 1

+
1

n1 + 1

]

=
n1lu

n1 + 1
+

n1ru
n1 + 1

+
n1ul

n1 + 1
+

n1ur
n1 + 1

+
n1uu
n1 + 1

+
1

n1 + 1
.

J2 =

r1T∑
i=1

P (T 0
n0+1 < t1(i))

1

n1 + 1

=

r1T∑
i=1

1

n1 + 1

[
1{−∞ < t1(i)}

[
n0ll

n0 + 1
+

n0lr
n0 + 1

+
n0lu

n0 + 1
+

n0rl
n0 + 1

+
n0ul

n0 + 1

]
+ 1{α1Lx + α2Uy < t1(i)}

n0ru
n0 + 1

+1{α1Ux + α2Ly < t1(i)}
n0ur
n0 + 1

+ 1{α1Ux + α2Uy < t1(i)}
n0uu
n0 + 1

+

r0T∑
j=0

1{t0(j) < t1(i)}
1

n0 + 1

]

=
n1rr

n1 + 1

[
l0x + l0y − n0ll + 1

n0 + 1

]
+

1

(n1 + 1)(n0 + 1)

r1T∑
i=1

[
1{α1Lx + α2Uy < t1(i)}n

0
ru + 1{α1Ux + α2Ly < t1(i)}n

0
ur

+

r0T∑
j=1

1{t0(j) < t1(i)}

]
.

J3 = P (T 0
n0+1 < α1Lx + α2Ly)

n1ll
n1 + 1

=
n1ll

n1 + 1

[
1{−∞ < α1Lx + α2Ly}

{
n0ll

n0 + 1
+

n0lr
n0 + 1

+
n0lu

n0 + 1
+

n0rl
n0 + 1

+
n0ul

n0 + 1

}
+ 1{α1Lx + α2Uy < α1Lx + α2Ly}

n0ru
n0 + 1

+ 1{α1Ux + α2Ly < α1Lx + α2Ly}
n0ur
n0 + 1

+ 1{α1Ux + α2Uy < α1Lx + α2Ly}
n0uu
n0 + 1

+

r0T∑
j=0

1{t0(j) < α1Lx + α2Ly}
1

n0 + 1

]

=
n1ll

n1 + 1

{
l0x + l0y − n0ll + 1

n0 + 1

}
.
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J4 = P (T 0
n0+1 < α1Lx + α2Uy)

n1lr
n1 + 1

=
n1lr

n1 + 1

[
1{−∞ < α1Lx + α2Uy}

{
n0ll

n0 + 1
+

n0lr
n0 + 1

+
n0lu

n0 + 1
+

n0rl
n0 + 1

+
n0ul

n0 + 1

}
+ 1{α1Lx + α2Uy < α1Lx + α2Uy}

n0ru
n0 + 1

+ 1{α1Ux + α2Ly < α1Lx + α2Uy}
n0ur
n0 + 1

+ 1{α1Ux + α2Uy < α1Lx + α2Uy}
n0uu
n0 + 1

+

r0T∑
j=0

1{t0(j) < α1Lx + α2Uy}
1

n0 + 1

]

=
n1lr

n1 + 1

{
l0x + l0y − n0ll + 1

n0 + 1

}
+

n1lr
n0 + 1

[
1{α1Ux + α2Ly < α1Lx + α2Uy}

n0ur
n0 + 1

+

r0T∑
j=1

1{t0(j) < α1Lx + α2Uy}
1

n0 + 1

]
.

J5 = P (T 0
n0+1 < α1Ux + α2Ly)

n1rl
n1 + 1

=
n1rl

n1 + 1

[
1{−∞ < α1Ux + α2Ly}

{
n0ll

n0 + 1
+

n0lr
n0 + 1

+
n0lu

n0 + 1
+

n0rl
n0 + 1

+
n0ul

n0 + 1

}
+ 1{α1Lx + α2Uy < α1Ux + α2Ly}

n0ru
n0 + 1

+ 1{α1Ux + α2Ly < α1Ux + α2Ly}
n0ur
n0 + 1

+ 1{α1Ux + α2Uy < α1Ux + α2Ly}
n0uu
n0 + 1

+

r0T∑
j=0

1{t0(j) < α1Ux + α2Ly}
1

n0 + 1

]

=
n1rl

n1 + 1

{
l0x + l0y − n0ll + 1

n0 + 1

}
+

n1rl
n1 + 1

[
1{α1Lx + α2Uy < α1Ux + α2Ly}

n0ru
n0 + 1

+

r0T∑
j=1

1{t0(j) < α1Ux + α2Ly}
1

n0 + 1

]
.
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then the upper probability can be written as (P = J1 + J2 + J3 + J4 + J5)

P =
u1x + u1y − n1uu + 1

n1 + 1
+

[
n1rr

n1 + 1
+

n1ll
n1 + 1

+
n1lr

n1 + 1
+

n1rl
n1 + 1

]{
l0x + l0y − n0ll + 1

n0 + 1

}

+

r1T∑
i=1

1

n1 + 1

[
1{α1Lx + α2Uy < t1(i)}

n0ru
n0 + 1

+ 1{α1Ux + α2Ly < t1(i)}
n0ur
n0 + 1

+

r0T∑
j=1

1{t0(j) < t1(i)}
1

n0 + 1

]

+
n1lr

n1 + 1

[
1{α1Ux + α2Ly < α1Lx + α2Uy}

n0ur
n0 + 1

+

r0T∑
j=1

1{t0(j) < α1Lx + α2Uy}
1

n0 + 1

]

+
n1rl

n1 + 1

[
1{α1Lx + α2Uy < α1Ux + α2Ly}

n0ru
n0 + 1

+

r0T∑
j=1

1{t0(j) < α1Ux + α2Ly}
1

n0 + 1

]
.

A2. Data structure for combining three and four biomarkers

If one wants to combine three biomarkers, say Tn+1 = α1Z1,n+1+α2Z2,n+1+α3Z3,n+1, then the two matrices

QL and QU will be of order (r0T + 27)× (r1T + 27). The vector MD, with the M-functions as in Definition 1,

can be defined using the following data structure,

S =

q..l q..r q..u



quu. nuul nuur nuuu

qur. nurl nurr nuru

qul. null nulr nulu

qru. nrul nrur nruu

qrr. nrrl nrrr nrru

qrl. nrll nrlr nrlu

qlu. nlul nlur nluu

qlr. nlrl nlrr nlru

qll. nlll nllr nllu

,

where

lz1 = qll. + qlr. + qlu., lz2 = qll. + qrl. + qul., lz3 = q..l,

rz1 = qrl. + qrr. + qru., rz2 = qlr. + qrr. + qur., rz3 = q..r,

uz1 = qul. + qur. + quu., uz2 = qlu. + qru. + quu., uz3 = q..u.

If one wants to combine four biomarkers, say Tn+1 = α1Z1,n+1 +α2Z2,n+1 +α3Z3,n+1 +α4Z4,n+1, then the

two matrices QL and QU will be of order (r0T + 81) × (r1T + 81). The vector MD, with M-functions as in
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Definition 1, can be defined using the following data structure,

S =

ql..l ql..r ql..u qr..l qr..r qr..u qu..l qu..r qu..u



q.uu. nluul nluur nluuu nruul nruur nruuu nuuul nuuur nuuuu

q.ur. nlurl nlurr nluru nrurl nrurr nruru nuurl nuurr nuuru

q.ul. nlull nlulr nlulu nrull nrulr nrulu nuull nuulr nuulu

q.ru. nlrul nlrur nlruu nrrul nrrur nrruu nurul nurur nuruu

q.rr. nlrrl nlrrr nlrru nrrrl nrrrr nrrru nurrl nurrr nurru

q.rl. nlrll nlrlr nlrlu nrrll nrrlr nrrlu nurll nurlr nurlu

q.lu. nllul nllur nlluu nrlul nrlur nrluu nulul nulur nuluu

q.lr. nllrl nllrr nllru nrlrl nrlrr nrlru nulrl nulrr nulru

q.ll. nllll nlllr nlllu nrlll nrllr nrllu nulll nullr nullu

,

where

lz1 = ql..l + ql..r + ql..u, lz2 = q.ll. + q.lr. + q.lu., lz3 = q.ll. + q.rl. + q.ul., lz4 = ql..l + qr..l + qu..l,

rz1 = qr..l + qr..r + qr..u, rz2 = q.rl. + q.rr. + q.ru., rz3 = q.lr. + q.rr. + q.ur., rz4 = ql..r + qr..r + qu..r,

uz1 = qu..l + qu..r + qu..u, uz2 = q.ul. + q.ur. + q.uu., uz3 = q.lu. + q.ru. + q.uu., uz4 = ql..u + qr..u + qu..u.

A3. Simulation results, Section 6.2
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µx µy AUCx AUCy α̂opt ÂUC αL
opt AUC αU

opt AUC

n0 = n1 = 50, ρ = 0
0.358 0.358 0.6 0.6 0.505 0.495 0.655 0.506 0.494 0.630 0.506 0.494 0.669
0.742 0.358 0.7 0.6 0.680 0.320 0.729 0.680 0.320 0.701 0.681 0.319 0.740
0.742 0.742 0.7 0.7 0.499 0.501 0.779 0.500 0.500 0.748 0.500 0.500 0.787
1.190 0.358 0.8 0.6 0.775 0.225 0.816 0.777 0.223 0.785 0.775 0.225 0.823
1.190 0.742 0.8 0.7 0.622 0.378 0.845 0.623 0.377 0.812 0.624 0.376 0.851
1.190 1.190 0.8 0.8 0.500 0.500 0.887 0.501 0.499 0.853 0.500 0.500 0.892
1.812 0.358 0.9 0.6 0.837 0.163 0.908 0.837 0.163 0.872 0.837 0.163 0.911
1.812 0.742 0.9 0.7 0.719 0.281 0.920 0.720 0.280 0.884 0.721 0.279 0.923
1.812 1.190 0.9 0.8 0.610 0.390 0.940 0.610 0.390 0.904 0.610 0.390 0.943
1.812 1.812 0.9 0.9 0.504 0.496 0.967 0.505 0.495 0.930 0.505 0.495 0.968

n0 = n1 = 50, ρ = 0.5
0.358 0.358 0.6 0.6 0.500 0.500 0.630 0.502 0.498 0.606 0.502 0.498 0.645
0.742 0.358 0.7 0.6 0.866 0.340 0.705 0.866 0.134 0.678 0.867 0.133 0.716
0.742 0.742 0.7 0.7 0.504 0.496 0.737 0.504 0.496 0.708 0.505 0.495 0.747
1.190 0.358 0.8 0.6 0.974 0.026 0.800 0.974 0.026 0.769 0.974 0.026 0.808
1.190 0.742 0.8 0.7 0.818 0.182 0.808 0.820 0.180 0.776 0.820 0.180 0.815
1.190 1.190 0.8 0.8 0.504 0.496 0.840 0.507 0.493 0.807 0.506 0.494 0.846
1.812 0.358 0.9 0.6 0.994 0.006 0.899 0.995 0.005 0.864 0.995 0.005 0.903
1.812 0.742 0.9 0.7 0.959 0.041 0.900 0.961 0.039 0.865 0.960 0.040 0.904
1.812 1.190 0.9 0.8 0.805 0.195 0.907 0.806 0.194 0.872 0.807 0.193 0.910
1.812 1.812 0.9 0.9 0.504 0.496 0.933 0.507 0.493 0.897 0.507 0.493 0.936

n0 = n1 = 50, ρ = 0.75
0.358 0.358 0.6 0.6 0.505 0.495 0.620 0.506 0.494 0.596 0.506 0.494 0.634
0.742 0.358 0.7 0.6 0.960 0.040 0.700 0.960 0.040 0.673 0.961 0.039 0.711
0.742 0.742 0.7 0.7 0.502 0.498 0.721 0.505 0.495 0.693 0.503 0.497 0.732
1.190 0.358 0.8 0.6 0.997 0.003 0.799 0.998 0.002 0.768 0.998 0.002 0.807
1.190 0.742 0.8 0.7 0.952 0.048 0.800 0.954 0.046 0.769 0.954 0.046 0.808
1.190 1.190 0.8 0.8 0.503 0.497 0.822 0.503 0.497 0.790 0.504 0.496 0.828
1.812 0.358 0.9 0.6 1.000 0.000 0.899 1.000 0.000 0.864 1.000 0.000 0.903
1.812 0.742 0.9 0.7 0.997 0.003 0.899 0.998 0.002 0.864 0.998 0.002 0.903
1.812 1.190 0.9 0.8 0.960 0.040 0.900 0.963 0.037 0.865 0.963 0.037 0.904
1.812 1.812 0.9 0.9 0.509 0.491 0.918 0.515 0.485 0.882 0.514 0.486 0.921

n0 = n1 = 100, ρ = 0
0.358 0.358 0.6 0.6 0.494 0.506 0.647 0.494 0.506 0.634 0.494 0.506 0.654
0.742 0.358 0.7 0.6 0.678 0.322 0.724 0.678 0.322 0.709 0.678 0.322 0.729
0.742 0.742 0.7 0.7 0.498 0.502 0.774 0.498 0.502 0.759 0.497 0.503 0.779
1.190 0.358 0.8 0.6 0.772 0.228 0.812 0.773 0.227 0.796 0.772 0.228 0.816
1.190 0.742 0.8 0.7 0.617 0.383 0.841 0.617 0.383 0.825 0.617 0.383 0.845
1.190 1.190 0.8 0.8 0.498 0.502 0.885 0.498 0.502 0.868 0.498 0.502 0.887
1.812 0.358 0.9 0.6 0.839 0.161 0.905 0.840 0.160 0.888 0.840 0.160 0.907
1.812 0.742 0.9 0.7 0.711 0.289 0.918 0.711 0.289 0.900 0.711 0.289 0.920
1.812 1.190 0.9 0.8 0.604 0.396 0.939 0.603 0.397 0.920 0.604 0.396 0.940
1.812 1.812 0.9 0.9 0.499 0.501 0.966 0.499 0.501 0.947 0.499 0.501 0.967

n0 = n1 = 100, ρ = 0.5
0.358 0.358 0.6 0.6 0.510 0.490 0.622 0.511 0.489 0.609 0.511 0.489 0.629
0.742 0.358 0.7 0.6 0.916 0.084 0.702 0.916 0.084 0.688 0.916 0.084 0.707
0.742 0.742 0.7 0.7 0.508 0.492 0.731 0.508 0.492 0.716 0.508 0.492 0.736
1.190 0.358 0.8 0.6 0.991 0.009 0.799 0.991 0.009 0.784 0.992 0.008 0.803
1.190 0.742 0.8 0.7 0.841 0.159 0.804 0.841 0.159 0.789 0.840 0.160 0.808
1.190 1.190 0.8 0.8 0.504 0.496 0.836 0.504 0.496 0.820 0.505 0.495 0.839
1.812 0.358 0.9 0.6 0.999 0.001 0.899 0.999 0.001 0.882 0.999 0.001 0.901
1.812 0.742 0.9 0.7 0.980 0.020 0.900 0.980 0.020 0.882 0.980 0.020 0.902
1.812 1.190 0.9 0.8 0.817 0.183 0.905 0.817 0.183 0.887 0.817 0.183 0.907
1.812 1.812 0.9 0.9 0.504 0.496 0.931 0.505 0.495 0.913 0.504 0.496 0.933

n0 = n1 = 100, ρ = 0.75
0.358 0.358 0.6 0.6 0.492 0.508 0.613 0.492 0.508 0.600 0.491 0.509 0.620
0.742 0.358 0.7 0.6 0.989 0.011 0.698 0.989 0.011 0.684 0.989 0.011 0.704
0.742 0.742 0.7 0.7 0.493 0.507 0.716 0.494 0.506 0.702 0.494 0.506 0.722
1.190 0.358 0.8 0.6 1.000 0.000 0.798 1.000 0.000 0.782 1.000 0.000 0.802
1.190 0.742 0.8 0.7 0.981 0.019 0.798 0.981 0.019 0.783 0.981 0.019 0.802
1.190 1.190 0.8 0.8 0.492 0.508 0.818 0.493 0.507 0.802 0.492 0.508 0.821
1.812 0.358 0.9 0.6 1.000 0.000 0.899 1.000 0.000 0.881 1.000 0.000 0.901
1.812 0.742 0.9 0.7 0.999 0.001 0.899 0.999 0.001 0.881 0.999 0.001 0.901
1.812 1.190 0.9 0.8 0.981 0.019 0.899 0.981 0.019 0.881 0.980 0.020 0.901
1.812 1.812 0.9 0.9 0.496 0.504 0.916 0.496 0.504 0.898 0.497 0.503 0.917

Table 5: Simulated data example, Bivariate normal distribution, without LoD

37



µx µy AUCx AUCy α̂opt ÂUC αL
opt AUC αU

opt AUC

n0 = n1 = 50, ρ = 0
0.358 0.358 0.6 0.6 0.510 0.490 0.628 0.506 0.494 0.439 0.506 0.494 0.783
0.742 0.358 0.7 0.6 0.667 0.333 0.681 0.613 0.387 0.499 0.678 0.322 0.829
0.742 0.742 0.7 0.7 0.505 0.495 0.719 0.502 0.498 0.550 0.503 0.497 0.857
1.190 0.358 0.8 0.6 0.773 0.227 0.759 0.623 0.377 0.570 0.776 0.224 0.884
1.190 0.742 0.8 0.7 0.635 0.365 0.783 0.548 0.452 0.616 0.641 0.359 0.897
1.190 1.190 0.8 0.8 0.504 0.496 0.826 0.501 0.499 0.673 0.501 0.499 0.921
1.812 0.358 0.9 0.6 0.825 0.175 0.865 0.575 0.425 0.646 0.835 0.165 0.942
1.812 0.742 0.9 0.7 0.729 0.271 0.876 0.530 0.470 0.691 0.738 0.262 0.947
1.812 1.190 0.9 0.8 0.620 0.380 0.897 0.510 0.490 0.741 0.624 0.376 0.957
1.812 1.812 0.9 0.9 0.503 0.497 0.937 0.502 0.498 0.797 0.506 0.494 0.974

n0 = n1 = 50, ρ = 0.5
0.358 0.358 0.6 0.6 0.518 0.482 0.604 0.497 0.503 0.465 0.509 0.491 0.742
0.742 0.358 0.7 0.6 0.807 0.193 0.658 0.739 0.261 0.525 0.821 0.179 0.795
0.742 0.742 0.7 0.7 0.505 0.495 0.672 0.498 0.502 0.563 0.501 0.499 0.812
1.190 0.358 0.8 0.6 0.936 0.064 0.748 0.799 0.201 0.600 0.935 0.065 0.867
1.190 0.742 0.8 0.7 0.802 0.198 0.740 0.633 0.367 0.628 0.801 0.199 0.863
1.190 1.190 0.8 0.8 0.514 0.486 0.763 0.503 0.497 0.675 0.508 0.492 0.879
1.812 0.358 0.9 0.6 0.976 0.024 0.868 0.759 0.241 0.674 0.974 0.026 0.938
1.812 0.742 0.9 0.7 0.935 0.065 0.856 0.640 0.360 0.704 0.933 0.067 0.932
1.812 1.190 0.9 0.8 0.801 0.199 0.851 0.557 0.443 0.744 0.799 0.201 0.929
1.812 1.812 0.9 0.9 0.506 0.494 0.881 0.501 0.499 0.797 0.506 0.494 0.944

n0 = n1 = 50, ρ = 0.75
0.358 0.358 0.6 0.6 0.503 0.497 0.593 0.514 0.486 0.493 0.507 0.493 0.712
0.742 0.358 0.7 0.6 0.926 0.074 0.661 0.857 0.143 0.562 0.923 0.077 0.778
0.742 0.742 0.7 0.7 0.508 0.492 0.660 0.506 0.494 0.590 0.503 0.497 0.785
1.190 0.358 0.8 0.6 0.992 0.008 0.770 0.927 0.073 0.643 0.990 0.010 0.865
1.190 0.742 0.8 0.7 0.931 0.069 0.742 0.749 0.251 0.658 0.919 0.081 0.850
1.190 1.190 0.8 0.8 0.504 0.496 0.746 0.505 0.495 0.696 0.496 0.504 0.856
1.812 0.358 0.9 0.6 0.999 0.001 0.894 0.917 0.083 0.717 0.998 0.002 0.945
1.812 0.742 0.9 0.7 0.993 0.007 0.873 0.799 0.201 0.737 0.992 0.008 0.934
1.812 1.190 0.9 0.8 0.948 0.052 0.851 0.628 0.372 0.765 0.940 0.060 0.922
1.812 1.812 0.9 0.9 0.510 0.490 0.862 0.504 0.496 0.812 0.514 0.486 0.929

n0 = n1 = 100, ρ = 0
0.358 0.358 0.6 0.6 0.490 0.510 0.613 0.498 0.502 0.439 0.497 0.503 0.771
0.742 0.358 0.7 0.6 0.681 0.319 0.669 0.611 0.389 0.503 0.684 0.316 0.821
0.742 0.742 0.7 0.7 0.499 0.501 0.708 0.503 0.497 0.556 0.501 0.499 0.849
1.190 0.358 0.8 0.6 0.774 0.226 0.752 0.608 0.392 0.557 0.776 0.224 0.879
1.190 0.742 0.8 0.7 0.625 0.375 0.774 0.542 0.458 0.625 0.628 0.372 0.892
1.190 1.190 0.8 0.8 0.506 0.494 0.818 0.501 0.499 0.684 0.501 0.499 0.917
1.812 0.358 0.9 0.6 0.834 0.166 0.861 0.565 0.435 0.655 0.838 0.162 0.940
1.812 0.742 0.9 0.7 0.723 0.277 0.871 0.524 0.476 0.702 0.726 0.274 0.944
1.812 1.190 0.9 0.8 0.613 0.387 0.893 0.504 0.496 0.755 0.615 0.385 0.954
1.812 1.812 0.9 0.9 0.502 0.498 0.934 0.502 0.498 0.812 0.502 0.498 0.972

n0 = n1 = 100, ρ = 0.5
0.358 0.358 0.6 0.6 0.505 0.495 0.589 0.503 0.497 0.465 0.505 0.495 0.727
0.742 0.358 0.7 0.6 0.861 0.139 0.648 0.756 0.244 0.532 0.862 0.138 0.787
0.742 0.742 0.7 0.7 0.494 0.506 0.663 0.499 0.501 0.569 0.505 0.495 0.802
1.190 0.358 0.8 0.6 0.969 0.031 0.745 0.805 0.195 0.609 0.965 0.035 0.862
1.190 0.742 0.8 0.7 0.822 0.178 0.734 0.621 0.379 0.637 0.810 0.190 0.857
1.190 1.190 0.8 0.8 0.499 0.501 0.757 0.501 0.499 0.686 0.502 0.498 0.872
1.812 0.358 0.9 0.6 0.993 0.007 0.867 0.761 0.239 0.685 0.992 0.008 0.937
1.812 0.742 0.9 0.7 0.962 0.038 0.855 0.626 0.374 0.716 0.959 0.041 0.930
1.812 1.190 0.9 0.8 0.809 0.191 0.848 0.551 0.449 0.757 0.802 0.198 0.926
1.812 1.812 0.9 0.9 0.503 0.497 0.877 0.500 0.500 0.812 0.503 0.497 0.941

n0 = n1 = 100, ρ = 0.75
0.358 0.358 0.6 0.6 0.486 0.514 0.580 0.503 0.497 0.496 0.496 0.504 0.696
0.742 0.358 0.7 0.6 0.973 0.027 0.656 0.894 0.106 0.570 0.965 0.035 0.770
0.742 0.742 0.7 0.7 0.494 0.506 0.650 0.498 0.502 0.596 0.490 0.510 0.774
1.190 0.358 0.8 0.6 0.998 0.002 0.768 0.958 0.042 0.656 0.997 0.003 0.860
1.190 0.742 0.8 0.7 0.965 0.035 0.738 0.746 0.254 0.668 0.951 0.049 0.843
1.190 1.190 0.8 0.8 0.503 0.497 0.740 0.498 0.502 0.707 0.496 0.504 0.849
1.812 0.358 0.9 0.6 1.000 0.000 0.895 0.952 0.048 0.732 1.000 0.000 0.944
1.812 0.742 0.9 0.7 0.998 0.002 0.872 0.805 0.195 0.751 0.998 0.002 0.932
1.812 1.190 0.9 0.8 0.972 0.028 0.849 0.612 0.388 0.778 0.965 0.035 0.919
1.812 1.812 0.9 0.9 0.498 0.502 0.858 0.499 0.501 0.827 0.500 0.500 0.925

Table 6: Simulated data example, Bivariate normal distribution, with LoD 10%
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β0
x β0

y AUCx AUCy α̂opt ÂUC αL
opt AUC αU

opt AUC

n0 = n1 = 50, ρ = 0
0.667 0.667 0.6 0.6 0.516 0.484 0.663 0.518 0.482 0.638 0.518 0.482 0.676
0.429 0.667 0.7 0.6 0.725 0.275 0.739 0.726 0.274 0.710 0.726 0.274 0.749
0.429 0.429 0.7 0.7 0.509 0.491 0.791 0.510 0.490 0.761 0.510 0.490 0.799
0.250 0.667 0.8 0.6 0.850 0.150 0.824 0.851 0.149 0.792 0.851 0.149 0.831
0.250 0.429 0.8 0.7 0.692 0.308 0.857 0.694 0.306 0.824 0.694 0.306 0.863
0.250 0.250 0.8 0.8 0.507 0.493 0.900 0.510 0.490 0.865 0.510 0.490 0.904
0.111 0.667 0.9 0.6 0.936 0.064 0.912 0.937 0.063 0.877 0.937 0.063 0.916
0.111 0.429 0.9 0.7 0.856 0.144 0.928 0.858 0.142 0.892 0.858 0.142 0.931
0.111 0.250 0.9 0.8 0.731 0.269 0.949 0.733 0.267 0.912 0.733 0.267 0.951
0.111 0.111 0.9 0.9 0.511 0.489 0.973 0.514 0.486 0.936 0.514 0.486 0.974

n0 = n1 = 50, ρ = 0.5
0.667 0.667 0.6 0.6 0.514 0.486 0.635 0.516 0.484 0.611 0.515 0.485 0.649
0.429 0.667 0.7 0.6 0.857 0.143 0.709 0.856 0.144 0.682 0.858 0.142 0.721
0.429 0.429 0.7 0.7 0.511 0.489 0.746 0.512 0.488 0.717 0.512 0.488 0.756
0.250 0.667 0.8 0.6 0.970 0.030 0.802 0.971 0.029 0.771 0.971 0.029 0.810
0.250 0.429 0.8 0.7 0.814 0.186 0.815 0.815 0.185 0.783 0.816 0.184 0.822
0.250 0.250 0.8 0.8 0.514 0.486 0.851 0.516 0.484 0.818 0.516 0.484 0.857
0.111 0.667 0.9 0.6 0.995 0.005 0.900 0.995 0.005 0.865 0.995 0.005 0.904
0.111 0.429 0.9 0.7 0.962 0.038 0.903 0.963 0.037 0.868 0.964 0.036 0.907
0.111 0.250 0.9 0.8 0.832 0.168 0.914 0.836 0.164 0.879 0.836 0.164 0.917
0.111 0.111 0.9 0.9 0.518 0.482 0.942 0.523 0.477 0.905 0.523 0.477 0.944

n0 = n1 = 50, ρ = 0.75
0.667 0.667 0.6 0.6 0.517 0.483 0.622 0.517 0.483 0.598 0.518 0.482 0.637
0.429 0.667 0.7 0.6 0.955 0.045 0.702 0.956 0.044 0.674 0.956 0.044 0.713
0.429 0.429 0.7 0.7 0.507 0.493 0.726 0.509 0.491 0.698 0.509 0.491 0.737
0.250 0.667 0.8 0.6 0.997 0.003 0.800 0.997 0.003 0.769 0.997 0.003 0.807
0.250 0.429 0.8 0.7 0.935 0.065 0.802 0.937 0.063 0.771 0.937 0.063 0.810
0.250 0.250 0.8 0.8 0.519 0.481 0.828 0.522 0.478 0.796 0.521 0.479 0.835
0.111 0.667 0.9 0.6 1.0 0.0 0.9 1.000 0.000 0.865 1.000 0.000 0.903
0.111 0.429 0.9 0.7 0.996 0.004 0.900 0.997 0.003 0.865 0.997 0.003 0.904
0.111 0.250 0.9 0.8 0.944 0.056 0.902 0.946 0.054 0.867 0.947 0.053 0.906
0.111 0.111 0.9 0.9 0.514 0.486 0.923 0.520 0.480 0.888 0.521 0.479 0.926

n0 = n1 = 100, ρ = 0
0.667 0.667 0.6 0.6 0.507 0.493 0.655 0.508 0.492 0.642 0.508 0.492 0.661
0.429 0.667 0.7 0.6 0.732 0.268 0.733 0.732 0.268 0.718 0.732 0.268 0.738
0.429 0.429 0.7 0.7 0.503 0.497 0.787 0.503 0.497 0.772 0.503 0.497 0.791
0.250 0.667 0.8 0.6 0.857 0.143 0.820 0.857 0.143 0.804 0.857 0.143 0.823
0.250 0.429 0.8 0.7 0.689 0.311 0.854 0.689 0.311 0.837 0.689 0.311 0.857
0.250 0.250 0.8 0.8 0.503 0.497 0.898 0.503 0.497 0.880 0.503 0.497 0.900
0.111 0.667 0.9 0.6 0.939 0.061 0.910 0.939 0.061 0.892 0.939 0.061 0.912
0.111 0.429 0.9 0.7 0.854 0.146 0.926 0.854 0.146 0.908 0.854 0.146 0.928
0.111 0.250 0.9 0.8 0.724 0.276 0.948 0.725 0.275 0.929 0.725 0.275 0.949
0.111 0.111 0.9 0.9 0.507 0.493 0.973 0.509 0.491 0.954 0.509 0.491 0.974

n0 = n1 = 100, ρ = 0.5
0.667 0.667 0.6 0.6 0.508 0.492 0.628 0.508 0.492 0.615 0.508 0.492 0.635
0.429 0.667 0.7 0.6 0.891 0.109 0.705 0.892 0.108 0.691 0.891 0.109 0.711
0.429 0.429 0.7 0.7 0.507 0.493 0.741 0.507 0.493 0.727 0.507 0.493 0.746
0.250 0.667 0.8 0.6 0.984 0.016 0.801 0.984 0.016 0.785 0.984 0.016 0.805
0.250 0.429 0.8 0.7 0.826 0.174 0.812 0.826 0.174 0.796 0.826 0.174 0.815
0.250 0.250 0.8 0.8 0.505 0.495 0.849 0.505 0.495 0.832 0.504 0.496 0.852
0.111 0.667 0.9 0.6 0.998 0.002 0.900 0.998 0.002 0.882 0.998 0.002 0.902
0.111 0.429 0.9 0.7 0.971 0.029 0.902 0.972 0.028 0.884 0.972 0.028 0.904
0.111 0.250 0.9 0.8 0.832 0.168 0.913 0.833 0.167 0.895 0.833 0.167 0.914
0.111 0.111 0.9 0.9 0.511 0.489 0.942 0.512 0.488 0.923 0.512 0.488 0.943

n0 = n1 = 100, ρ = 0.75
0.667 0.667 0.6 0.6 0.507 0.493 0.616 0.507 0.493 0.604 0.507 0.493 0.624
0.429 0.667 0.7 0.6 0.983 0.017 0.700 0.984 0.016 0.686 0.984 0.016 0.706
0.429 0.429 0.7 0.7 0.505 0.495 0.722 0.505 0.495 0.708 0.505 0.495 0.727
0.250 0.667 0.8 0.6 1.0 0.0 0.8 1.000 0.000 0.784 1.000 0.000 0.804
0.250 0.429 0.8 0.7 0.962 0.038 0.801 0.963 0.037 0.785 0.962 0.038 0.805
0.250 0.250 0.8 0.8 0.502 0.498 0.826 0.502 0.498 0.809 0.503 0.497 0.829
0.111 0.667 0.9 0.6 1.0 0.0 0.9 1.000 0.000 0.882 1.000 0.000 0.902
0.111 0.429 0.9 0.7 0.999 0.001 0.900 0.999 0.001 0.882 0.999 0.001 0.902
0.111 0.250 0.9 0.8 0.959 0.041 0.901 0.959 0.041 0.884 0.960 0.040 0.903
0.111 0.111 0.9 0.9 0.511 0.489 0.923 0.513 0.487 0.905 0.512 0.488 0.924

Table 7: Simulated data example, Bigamma distribution, without LoD
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β0
x β0

y AUCx AUCy α̂opt ÂUC αL
opt AUC αU

opt AUC

n0 = n1 = 50, ρ = 0
0.667 0.667 0.6 0.6 0.502 0.498 0.609 0.503 0.497 0.445 0.501 0.499 0.777
0.429 0.667 0.7 0.6 0.726 0.274 0.669 0.679 0.321 0.510 0.719 0.281 0.829
0.429 0.429 0.7 0.7 0.501 0.499 0.712 0.503 0.497 0.564 0.502 0.498 0.862
0.250 0.667 0.8 0.6 0.852 0.148 0.765 0.773 0.227 0.582 0.834 0.166 0.886
0.250 0.429 0.8 0.7 0.697 0.303 0.791 0.665 0.335 0.627 0.677 0.323 0.906
0.250 0.250 0.8 0.8 0.503 0.497 0.843 0.506 0.494 0.671 0.505 0.495 0.934
0.111 0.667 0.9 0.6 0.932 0.068 0.883 0.859 0.141 0.655 0.922 0.078 0.944
0.111 0.429 0.9 0.7 0.856 0.144 0.895 0.812 0.188 0.695 0.842 0.158 0.953
0.111 0.250 0.9 0.8 0.727 0.273 0.920 0.774 0.226 0.726 0.718 0.282 0.967
0.111 0.111 0.9 0.9 0.508 0.492 0.959 0.507 0.493 0.749 0.512 0.488 0.983

n0 = n1 = 50, ρ = 0.5
0.667 0.667 0.6 0.6 0.523 0.477 0.599 0.522 0.478 0.471 0.526 0.474 0.746
0.429 0.667 0.7 0.6 0.826 0.174 0.659 0.779 0.221 0.535 0.818 0.182 0.802
0.429 0.429 0.7 0.7 0.515 0.485 0.680 0.520 0.480 0.576 0.514 0.486 0.824
0.250 0.667 0.8 0.6 0.949 0.051 0.762 0.868 0.132 0.608 0.927 0.073 0.869
0.250 0.429 0.8 0.7 0.808 0.192 0.761 0.728 0.272 0.641 0.774 0.226 0.874
0.250 0.250 0.8 0.8 0.516 0.484 0.795 0.519 0.481 0.682 0.514 0.486 0.899
0.111 0.667 0.9 0.6 0.987 0.013 0.886 0.919 0.081 0.682 0.975 0.025 0.938
0.111 0.429 0.9 0.7 0.952 0.048 0.879 0.857 0.143 0.715 0.929 0.071 0.937
0.111 0.250 0.9 0.8 0.831 0.169 0.884 0.790 0.210 0.743 0.803 0.197 0.943
0.111 0.111 0.9 0.9 0.520 0.480 0.921 0.525 0.475 0.772 0.523 0.477 0.962

n0 = n1 = 50, ρ = 0.75
0.667 0.667 0.6 0.6 0.521 0.479 0.589 0.522 0.478 0.499 0.525 0.475 0.714
0.429 0.667 0.7 0.6 0.927 0.073 0.661 0.870 0.130 0.569 0.911 0.089 0.781
0.429 0.429 0.7 0.7 0.507 0.493 0.664 0.515 0.485 0.599 0.520 0.480 0.793
0.250 0.667 0.8 0.6 0.992 0.008 0.780 0.941 0.059 0.648 0.978 0.022 0.864
0.250 0.429 0.8 0.7 0.920 0.080 0.756 0.812 0.188 0.668 0.876 0.124 0.855
0.250 0.250 0.8 0.8 0.521 0.479 0.773 0.512 0.488 0.704 0.514 0.486 0.872
0.111 0.667 0.9 0.6 0.999 0.001 0.906 0.959 0.041 0.724 0.994 0.006 0.941
0.111 0.429 0.9 0.7 0.992 0.008 0.889 0.91 0.09 0.75 0.980 0.020 0.933
0.111 0.250 0.9 0.8 0.932 0.068 0.877 0.840 0.160 0.773 0.897 0.103 0.929
0.111 0.111 0.9 0.9 0.522 0.478 0.900 0.521 0.479 0.799 0.523 0.477 0.945

n0 = n1 = 100, ρ = 0
0.667 0.667 0.6 0.6 0.502 0.498 0.609 0.503 0.497 0.445 0.501 0.499 0.777
0.429 0.667 0.7 0.6 0.726 0.274 0.669 0.679 0.321 0.510 0.719 0.281 0.829
0.429 0.429 0.7 0.7 0.501 0.499 0.712 0.503 0.497 0.564 0.502 0.498 0.862
0.250 0.667 0.8 0.6 0.852 0.148 0.765 0.773 0.227 0.582 0.834 0.166 0.886
0.250 0.429 0.8 0.7 0.697 0.303 0.791 0.665 0.335 0.627 0.677 0.323 0.906
0.250 0.250 0.8 0.8 0.503 0.497 0.843 0.506 0.494 0.671 0.505 0.495 0.934
0.111 0.667 0.9 0.6 0.932 0.068 0.883 0.859 0.141 0.655 0.922 0.078 0.944
0.111 0.429 0.9 0.7 0.856 0.144 0.895 0.812 0.188 0.695 0.842 0.158 0.953
0.111 0.250 0.9 0.8 0.727 0.273 0.920 0.774 0.226 0.726 0.718 0.282 0.967
0.111 0.111 0.9 0.9 0.508 0.492 0.959 0.507 0.493 0.749 0.512 0.488 0.983

n0 = n1 = 100, ρ = 0.5
0.667 0.667 0.6 0.6 0.502 0.498 0.586 0.512 0.488 0.473 0.513 0.487 0.733
0.429 0.667 0.7 0.6 0.871 0.129 0.648 0.792 0.208 0.540 0.840 0.160 0.793
0.429 0.429 0.7 0.7 0.498 0.502 0.666 0.505 0.495 0.582 0.505 0.495 0.815
0.250 0.667 0.8 0.6 0.971 0.029 0.757 0.878 0.122 0.617 0.944 0.056 0.864
0.250 0.429 0.8 0.7 0.831 0.169 0.750 0.732 0.268 0.649 0.773 0.227 0.868
0.250 0.250 0.8 0.8 0.507 0.493 0.786 0.500 0.500 0.692 0.503 0.497 0.893
0.111 0.667 0.9 0.6 0.994 0.006 0.884 0.922 0.078 0.694 0.982 0.018 0.935
0.111 0.429 0.9 0.7 0.965 0.035 0.875 0.860 0.140 0.726 0.931 0.069 0.933
0.111 0.250 0.9 0.8 0.828 0.172 0.879 0.799 0.201 0.756 0.796 0.204 0.940
0.111 0.111 0.9 0.9 0.506 0.494 0.919 0.507 0.493 0.784 0.509 0.491 0.961

n0 = n1 = 100, ρ = 0.75
0.667 0.667 0.6 0.6 0.503 0.497 0.576 0.509 0.491 0.502 0.513 0.487 0.701
0.429 0.667 0.7 0.6 0.970 0.030 0.655 0.897 0.103 0.577 0.936 0.064 0.774
0.429 0.429 0.7 0.7 0.505 0.495 0.651 0.504 0.496 0.607 0.503 0.497 0.784
0.250 0.667 0.8 0.6 0.999 0.001 0.778 0.954 0.046 0.660 0.989 0.011 0.860
0.250 0.429 0.8 0.7 0.955 0.045 0.750 0.816 0.184 0.679 0.889 0.111 0.848
0.250 0.250 0.8 0.8 0.507 0.493 0.765 0.502 0.498 0.715 0.498 0.502 0.867
0.111 0.667 0.9 0.6 1.000 0.000 0.906 0.962 0.038 0.738 0.997 0.003 0.939
0.111 0.429 0.9 0.7 0.998 0.002 0.888 0.912 0.088 0.763 0.986 0.014 0.930
0.111 0.250 0.9 0.8 0.949 0.051 0.874 0.844 0.156 0.787 0.900 0.100 0.926
0.111 0.111 0.9 0.9 0.512 0.488 0.899 0.506 0.494 0.812 0.514 0.486 0.943

Table 8: Simulated data example, Bigamma distribution, with LoD 10%
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