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1 Introduction

Systems with boundaries, defects and impurities have been intensively studied in statistical

physics and field theory, both at the classical and the quantum levels. Often the key

physics of the model can be captured, possibly after dimensional reduction, by a simple

1+1 dimensional field theory on a half line. Examples include the Kondo problem [1],

fluxon propagation in long Josephson junctions [2], the XXZ model with boundary magnetic

field [3], an impurity in an interacting electron gas [4], the sine-Gordon [5] and Toda [6]

models, monopole catalysis [7], the Luttinger liquid [8], and a toy model motivated by

M-theory [9].

Especially since the work of Ghoshal and Zamolodchikov [5], there has been great

interest in boundary conditions compatible with bulk integrability, and many such models

turn out to be of direct physical interest. However less attention has been paid to the

equally if not more physically-relevant cases of non-integrable boundary systems, even at

the classical level. This is perhaps a shame, as it is now known that non-integrable classical
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field theories, even in 1+1 dimensions, can exhibit remarkably rich patterns of behaviour

not seen in their integrable counterparts [10–14].

In this paper we examine the φ4 theory in 1+1 dimensions, restricted to a half line

by a simple Neumann-type ‘magnetic field’ boundary condition. (The sine-Gordon model

with a non-integrable boundary was recently investigated in [15].) The φ4 theory on a

full line is similar to the sine-Gordon model in that both support topological kinks and

antikinks; the φ4 theory also has an intriguing and still not fully-understood counterpart of

the sine-Gordon breather, the oscillon [16]. We chose the magnetic field boundary condition

in part because of its simplicity, and in part because the scattering of kinks against such

a boundary provides a natural deformation of the full-line scattering problems which are

already known to exhibit intricate patterns of resonant scattering [10–13]. In some regimes

our results do indeed resemble the pattern of scattering windows observed in kink-antikink

collisions on the full line, while in others we find novel phenomena including a new type of

‘sharp-edged’ scattering window. Even though the theory is not integrable, it turns out to

be possible to give an accurate analytical description of some aspects of this behaviour. We

complement these studies with an investigation of the decay of the vibrational boundary

mode through nonlinear couplings to scattering states, and of the creation of kinks by

an excited boundary. An interesting feature of the boundary mode decay, discussed in

section 8, is that with suitable initial conditions a period of relatively slow decay can be

followed by a sudden burst of radiation from the boundary as a new decay channel opens.

While this paper is self-contained, we have also made a number of short movies to

illustrate aspects of the discussion, which can be found as supplementary material. After a

brief explanation of the numerical methods used to obtain our plots in appendix A, these

are listed in appendix B.

2 The model

We consider a rescaled φ4 theory with vacua φv ∈ {−1,+1} on the left half-line −∞ <

x < 0. The bulk energy and Lagrangian densities are E = T + V and L = T − V
respectively, where

T =
1

2
φ2
t and V =

1

2
φ2
x +

1

2
(φ2 − 1)2 . (2.1)

The static full-line kink and antikink, φK(x) = tanh(x − x0) and φK̄(x) = −φK(x), have

rest mass M = 4/3 and interpolate between the two vacua. Including a boundary energy

−Hφ0, where φ0 = φ(0, t) and H can be interpreted as a boundary magnetic field, yields

the Neumann-type boundary condition φx(0, t) = H at x = 0 .

For 0 < H < 1 there are four static solutions to the equations of motion, shown in

figure 1. Two of them, φ1(x) = tanh(x − X0) and φ2(x) = tanh(x + X0) with X0 =

cosh−1(1/
√
|H|), are restrictions of regular full-line kinks to the half-line, while the other

two, φ3(x) = − coth(x − X1) and φ4(x) = − coth(x + X1) with X1 = sinh−1(1/
√
|H|)

are irregular on the full line. On the half line, φ3 is non-singular and corresponds to the

absolute minimum of the energy, while φ1 is metastable, and φ2 is the unstable saddle-point

between φ3 and φ1. Their energies can be found by rewriting E[φ] =
∫ 0
−∞ V dx −Hφ0 in
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Figure 1. Static solutions for H = 1/2.

Bogomolnyi form as

E[φ] =
1

2

∫ 0

−∞

(
φx ± (φ2−1)

)2
dx∓

[
1

3
φ3−φ

]0

−∞
−Hφ0 . (2.2)

Since φ1 and φ2 satisfy φx = 1 − φ2 we have φ1(0) = −
√

1−H, φ2(0) =
√

1−H ; while

(φ3)x = φ2
3 − 1 and so φ3(0) =

√
1+H. Taking the upper and lower signs in (2.2) as

appropriate,

E[φ1] =
2

3
− 2

3
(1−H)3/2 , E[φ2] =

2

3
+

2

3
(1−H)3/2 ,

E[φ3] =
2

3
− 2

3
(1+H)3/2 . (2.3)

As H increases through 1, φ1 merges with φ2 and disappears, leaving φ3 as the only

static solution for H > 1. For H < 0 the story is the same, with φ and H negated

throughout, so the physically-relevant solutions are φ̃i(x) := −φi(x), i = 1 . . . 3.

3 Numerical results

We took initial conditions corresponding to an antikink at x0 = −10 travelling towards

the boundary with velocity vi > 0. (We found the setup with an incident antikink easier

to visualise, but our results apply equally to kink-boundary collisions on negating φ and

H.) Thus the initial profile was φ(x, 0) = φ1(x) − tanh(γ(x − x0)) + 1 for H > 0 and

φ(x, 0) = φ̃3(x)− tanh(γ(x− x0)) + 1 for H < 0, where γ = 1/
√

1− v2
i . Our real interest

was in the problem with the initial antikink infinitely far from the boundary, but the rapid

decay of the antikink-boundary force (4.1), calculated below, meant that error in taking

x0 = −10 was small.

To solve the system numerically, we restricted it to an interval of length L, with the

Neumann boundary condition imposed at x = 0 and a Dirichlet condition at x = −L.

(Since we took run times such that radiation did not have time to reflect from the extra
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Figure 2. Final antikink velocities as functions of initial velocities. The dashed line indicates the

result for a purely elastic collision. In the fifth plot, a kink can also be produced: its velocity is

shown in red. The horizontal dotted lines in plots a and b show the relevant values of vcr(H), as

given by equation (4.2) below.

boundary and return, the boundary condition at x = −L was anyway irrelevant.) We used

a 4th order finite-difference method, explained in more detail in appendix A, on a grid of

N = 1024 nodes with L = 100, so the spatial step was δx ≈ 0.1, and a 6th-order symplectic

integrator for the time stepping function, with time step δt = 0.04. Selected runs were

repeated with other values of x0, L, N and δt to check the stability of our results.

Our simulations revealed a rich picture, aspects of which are summarised in figures 2

and 3. For all (H, vi) pairs with H < Hc ≈ 0.6, the antikink either reflects off the

boundary with some velocity vf , or becomes stuck to it — corresponding to vf = 0 — to

form a ‘boundary oscillon’. This latter configuration oscillates with a large (of order one)

amplitude, and a below-bulk-threshold basic frequency. Just like the bulk oscillon (which

it becomes in the limit H → 0), it then decays very slowly into radiation. At H = 0

(figure 2(c)) the plot of |vf | as a function of vi reproduces the well-known structure of

resonant scattering windows in KK̄ collisions on a full line [10–12]. For negative values of H

(figures 2(a) and (b)) new features emerge. For vi small, the antikink is reflected elastically

from the boundary with very little radiation. As vi increases above an H-dependent critical

value vcr, the antikink is trapped by the boundary, leaving only radiation in the final state.

Increasing vi further, scattering windows begin to open, until vi exceeds an upper critical
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Figure 3. A ‘phase diagram’ of antikink-boundary collisions. The plot shows the value of the field

at x = 0 a time tf = |x0|/vi + 100 after the start of the simulation, as function of the boundary

magnetic field H and the initial velocity vi.

value and the antikink again always escapes. If the antikink does escape, its speed |vf |
is always larger than some minimal value very slightly lower than vcr, so (in contrast to

the full-line situation) vf is a discontinuous function of vi, giving the windows the sharp

edges mentioned in the introduction. For small positive values of H (figure 2(d)), vf is

instead a continuous function of vi, the sequence of windows for H = 0 shifting towards

lower velocities while preserving its general structure. Finally, for H > Hc (figure 2(e))

other new phenomena arise which have no counterparts in the full-line theory; these will

be discussed further in later sections.

4 Kink-boundary forces and the location of the low-velocity window

To understand the novel window of near-elastic scattering at low initial velocities when H

is negative, seen in figures 2(a) and 2(b), we start by evaluating the static force between a

single antikink and the boundary. Placing the antikink at x = x0 < 0, we add a possibly-

singular ‘image’ kink at x1 > 0 in such a way that the combined configuration satisfies the

boundary condition at x = 0. From the standard full-line result, the force on the antikink

from the image kink is equal to 32e−2(x1−x0), or minus this if the image kink is singular. For

– 5 –
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Figure 4. Example collisions for H = −0.4 (left column) and H = 0.9 (right column), illustrating

various scattering scenarios. At negative H: (a) elastic recoil for low impact velocity; (b) saddle

point production at the critical velocity, the antikink finishing on the top of the potential barrier;

(c) single bounce with the antikink escaping back over the barrier. At positive H: (d) single

bounce with the excitation of the H > 0 boundary mode; (e) kink production via collision-induced

boundary decay; (f) bulk oscillon production. See also movies M01–M07 and M11 of appendix B.

|H| � 1 and |x0| � 1 we find that the boundary condition requires e−2x1 = 1
4H + e2x0 , so

F = 32

(
1

4
H + e2x0

)
e2x0 . (4.1)

For H < 0 the force is repulsive far from the boundary, only becoming attractive nearer in.

When x0 = 1
2 log(−1

4H), x1 = ∞ and the force vanishes, the antikink-kink configuration

reducing to the unstable static solution φ̃2.

Now consider, again for H < 0, an antikink moving towards the boundary. If its

velocity vi is small, then it won’t have sufficient energy to overcome the initially-repulsive

force, and it will be reflected without ever coming close to x = 0, and without significantly

exciting any other modes; this behaviour is illustrated in figure 4(a). Increasing vi, at some

critical value vcr the energy will be just enough reach the top of the potential barrier and

create the static saddle-point configuration φ̃2, as shown in figure 4(b). The value of vcr
can be deduced on energetic grounds: the initial energy is 4

3(1−v2
cr)
−1/2 +E[φ̃3], while the

final energy is E[φ̃2] = 2
3 + 2

3(1+H)3/2. Equating the two,

vcr(H) =

√
1− 4

(
(1+H)3/2 + (1−H)3/2

)−2
. (4.2)

– 6 –



J
H
E
P
0
5
(
2
0
1
7
)
1
0
7

If vi is just larger than vcr, the antikink can overcome the potential barrier and approach the

boundary; energy is then lost to other modes and so it is unable to return, and is trapped

at the boundary. Thus vcr(H) marks the upper limit of the windows of almost-perfectly-

elastic scattering seen in figures 2(a) and 2(b), and the lower edge of the ‘fractal tongue’

occupying the left half of figure 3. The curve vi = vcr(H) is included in figure 3; it matches

our numerical results remarkably well. Indeed, it can be seen from figure 7 below that

the maximum error is of the order of 0.5%, which is rather small given that radiation was

ignored in the derivation. Similar arguments show that, within this approximation, vcr is

the smallest possible speed for any escaping antikink, explaining the sharp (discontinuous)

edges of all windows when H < 0.

5 The boundary mode

Next we consider the perturbative sector of the model, that is solutions of the form φ(x, t) =

φs(x)+η(x, t) where φs(x) is a static solution to the equations of motion and η(x, t) is small.

The full-line theory has a continuum of small linear perturbations about each vacuum with

mass m = 2, while a static kink φK(x) = tanh(x − X0) has two discrete normalizable

modes — the translational mode, and a vibrational mode with frequency ω1 =
√

3 — and

a continuum of above-threshold states η(x, t) = eiωtηk(x) where ω2 = 4 + k2 and [18]

ηk(x) = e−ik(x−X0)
(
−1− k2 + 3ik tanh(x−X0) + 3 tanh2(x−X0)

)
. (5.1)

Turning now to the half-line theory, we can regard φK(x) instead as the static half-line

solution φ1(x) to the boundary theory with 0 < H < 1 and φ(−∞) = −1. Its linear

perturbations must now satisfy ∂xη(x) = 0 at x = 0. Setting k = iκ this yields

κ3 − 3φ0κ
2 + (6φ2

0 − 4)κ− 6φ3
0 + 6φ0 = 0 (5.2)

where φ0 = φ1(0) = −
√

1−H and the frequency ωB of the corresponding boundary mode

satisfies ω2
B = 4−κ2. The solutions of (5.2) for both negative and positive values of φ0 are

shown on the left-hand plot of figure 5; note that only solutions with κ > 0 can give rise to

localised modes, and of these, κ must be less than 2 for ωB to be real and the mode stable.

We will denote the corresponding normalised profile function as ηB(x) := ηiκ(x)/ηiκ(0),

where ηiκ(x) is given by (5.1) with k = iκ.

For 0 < H < 1, we have −1 < φ0 < 0 and (5.2) has just one positive solution κ, which

satisfies κ < 2: this is the single vibrational mode, localised near to the boundary. The

linear perturbations of φ2(x), the saddle-point solution, are also described by (5.2), but

now with φ0 = φ2(0) = +
√

1−H. For these cases (5.2) has two positive solutions but one

is larger than 2: this is the unstable mode of φ2(x). Finally, for H < 0, the continuation

of (5.2) to φ0 < −1 governs the spectrum of fluctuations about φ̃3(x), the H < 0 vacuum

in the φ(−∞) = −1 sector. There are no positive solutions in this regime and hence no

vibrational modes of the boundary for H < 0. The right-hand plot of figure 5 summarises

the situation, plotting the images of the positive-κ parts of the curves shown on the left

under the mapping (φ0, κ)→ (H,ω2
B) = (1−φ2

0, 4−κ2). The grey dashed parts of the curve

– 7 –
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Figure 5. Linearised boundary mode analysis: on the left, the solutions of equation (5.2) as a

function of φ0 = φ(0); on the right, the frequencies of localised boundary modes as a function of H.
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Figure 6. Power spectra at the boundary after a collision with vi = 0.5, for H = −0.1 (upper)

and H = 0.3 (lower).

visible for H < 0 are included for completeness but do not describe vibrational modes of

physical solutions — they correspond to ‘perturbations’ of the singular solution φ̃4(x).

These findings are confirmed by our numerical results. Figure 6 shows the Fourier

transforms of φ(0, t) for 30 < t < 3030, for antikink-boundary collisions with initial velocity

vi = 0.5, and H = −0.1 and 0.3. The final velocity vf of the reflected antikink is −0.382596

for H = −0.1 and −0.454014 for H = 0.3, so in both cases translational energy is lost to

other modes during the collision.

For H = −0.1, the boundary does not have an internal mode, and only radiative modes

with frequencies near to 2, the mass threshold, remain near to the boundary. The internal
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mode of the reflected antikink has frequency ω1, but this mode cannot be observed at the

boundary since it is exponentially suppressed there. However nonlinear couplings with

other excitations create waves with frequencies at above-threshold multiples of ω1 [19],

which can propagate back to the boundary. The upper plot of figure 6 shows peaks at

Ω1 = 2 and Ω2 = Ω(2ω1), where Ω(ω) = γ(ω + k(ω)vf ) is the Doppler-shifted frequency

of radiation emitted from the moving kink measured on the boundary. Higher harmonics

at Ω3 = Ω(3ω1) and Ω4 = Ω(4ω1) are also visible, along with combinations of the internal

mode of the antikink and the lowest continuum mode such as Ω5 = Ω(2 + ω1) and Ω6 =

2 + Ω(2ω1).

Many of these modes are also present in the H = 0.3 spectrum shown in the lower

plot of figure 6, albeit at shifted locations because of the different final antikink velocity.

However the plot is dominated by the internal boundary mode with frequency Ω10 =

ωB = 1.888459. The higher harmonics Ω11 = 2ωB and Ω12 = 3ωB are also visible, while

interactions between radiation from the outgoing antikink and the boundary mode lead to

peaks at Ω13 = ωB + Ω(2ω1) and Ω14 = ωB − Ω(2ω1).

6 The resonance mechanism in boundary scattering

For small nonzero values of |H|, the resonant energy exchange mechanism governing scat-

tering in the bulk φ4 model is changed in two ways in the boundary theory: (i) the attractive

force acting on the antikink near to the boundary is modified, in particular becoming re-

pulsive at greater distances when H is negative; (ii) after the initial impact, energy can

be stored not only in the internal mode of the antikink, but also, for positive values of

H, in the boundary mode. These factors change the resonance condition for energy to

be returned to the translational mode of the antikink on a subsequent impact after some

integer number of oscillations of the antikink’s internal mode, shifting (and, for negative

H, sharpening) the windows seen in figures 2(a)–(d). This return can happen after two,

three or more bounces from the boundary, leading to a hierarchy of multibounce windows

as in the full-line situation. Our numerical results suggest that for small positive values of

H the contribution of the boundary mode in the resonant energy transfer is not significant.

For larger values of |H| other new features appear. For H < 0 the first is the resurrec-

tion of a two-bounce window that was observed to be missing from the full-line scattering

process by Campbell et al. in [10]. Figure 2(a) includes a scattering window centred at

vi ≈ 0.245 which is not the continuation of any of the windows seen in figures 2(b)–(d); the

same window can be seen in figure 3 running from (H, vi) = (−0.135, 0.202) to (H, vi) =

(−0.489, 0.417), and the top plot of figure 7, running from (H, vi−vcr) = (−0.135, 0.084) to

(H, vi) = (−0.489, 0.023). The emergence of this window as H decreases below H ≈ −0.136

is shown in more detail in the left-hand set of plots of figure 8. The nature of the new

window is made clear by the plots in figure 9, which shows φ(0, t) for vi inside the first

three two-bounce windows for H = −0.2, and also for H = 0, which is equivalent to the

full-line case. The ‘wobbles’ between the large dips in such plots count the oscillations

of the internal antikink mode between bounces [10]. As can be seen from the figure, the

minimum number of oscillations supporting antikink escape is one smaller for H = −0.2

– 9 –
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Figure 7. Zoomed-in views of the region near the tip of the fractal tongue of figure 3. Note that

the vertical axes show multiples of vi− vcr, where vcr = vcr(H) is the theoretical upper limit of the

near-elastic scattering window given by the formula (4.2).

than it was for H = 0, giving rise to the extra window. A complementary process of

‘window destruction’ occuring for H > 0 can be seen on a close examination of figure 3,

and on the right-hand set of plots of figure 8. Decreasing H further, we also observed

interesting structures at the tip of the fractal tongue, near to H = −1, with resonance

windows merging to give rise to a pattern of half-rings on the phase diagram. These are

shown in the lower two plots in figure 7.

For H > 0, the scattering can induce the metastable φ1 boundary to decay to φ3, the

true ground state, with the creation of an extra kink. This process, which has no analogue

in the full-line theory, is visible in the extra red ‘kink’ line in figure 2(e). The principal

region of boundary decay occupies the solid red area on the right edge of figure 3, and is

examined in more detail in figure 10. If the boundary mode is sufficiently strongly excited

by the initial antikink impact, it behaves as an intermediate state prior to the escape of

a kink from the boundary, analogous to the intermediate oscillon state in the process of

– 10 –
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KK̄ pair production on the full line [17, 19, 20]. Depending on their relative velocities, the

reflected antikink and the subsequently-emitted kink may appear separately in the final

state, or recombine to form a bulk oscillon. Such collisions lead themselves to a fractal-like

structure with windows where the antikink and kink separate interspersed with regions of

oscillon production, just as in the full-line theory (though with added complications due

to interference with radiation from the boundary). Some of this structure can be seen

in figure 10(d), where the blue regions inside the zone of boundary decay show windows

of antikink and kink separation, while the yellow regions correspond to the production

of a bulk oscillon, and also in the movies M11 and M12. Spacetime plots of some of the

relevant processes, for H = 0.90, are shown in the right panels of figure 4: scattering of the

antikink with excitation of the boundary mode, but no kink production (d); production

of a separated KK̄ pair, with the boundary decaying to the true ground state (e); and

recombination of the KK̄ pair to form a bulk oscillon (f). A further intriguing feature

of the region of boundary decay, clearly visible in figures 3 and 10, is the cusp-like nick,

terminating at (H, vi) ≈ (1, 0.365), which splits it into two disconnected parts. This appears

to be associated with a velocity-dependent vanishing of the effective coupling between the

incident antikink and the boundary mode. It would be very interesting to find an analytical

understanding of this phenomenon, but we will leave this for future work.
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7 Radiative decay of the boundary mode

A significant feature of the φ4 model is that its spectrum of perturbative oscillations around

the static kink or antikink solutions contains an internal vibrational mode. If the ampli-

tude of the excitation is small enough and nonlinear corrections can be neglected, this

mode oscillates with almost-constant amplitude A and frequency ωd =
√

3. For larger

amplitudes nonlinearities start to play an important role. It has been shown [19] that the

first anharmonic correction to the internal mode oscillation results in the appearance of an

outgoing wave with frequency 2ωd, which is above the mass threshold. The corresponding

rate of radiative energy loss is dE/dt ∼ A4, causing the mode to decay. The resulting

time dependence of the amplitude of the internal mode follows the law dA/dt ∼ A3, where

the explicit value of the proportionality constant can be found using a Green’s function

technique [19].

For our boundary theory, we have observed a similar pattern in the decay of small-

amplitude excitations of the boundary mode, but with a number of interesting new features.

For small positive values of H, the frequency ωB of the linearised boundary mode, as

predicted by (5.2), satisfies 2ωB > 2, and so the second harmonic of this mode is able to

propagate in the bulk.1 But as the boundary magnetic field H increases, the frequency

of the boundary mode decreases, and when H > H2 ≈ 0.925, 2ωB dips below 2 and the

situation changes. The second harmonic can no longer propagate into the bulk, and this

channel of radiative energy loss from the boundary is terminated. Only the next harmonic,

which appears in the third order of the perturbation series, can be seen in the power

spectrum. The radiation loss rate becomes dE/dt ∼ A6 and the decay rate is reduced to

dA/dt ∼ A5.

The situation changes again as H increases beyond H = H3 ≈ 0.982, when 3ωB
falls below 2 and the third harmonic joins the second, trapped below the mass threshold.

Theoretically, as H → 1 and ωB → 0 this pattern will repeat an infinite number of times,

so that whenever 2
n+1 < ωB < 2

n , the amplitude of the decaying mode should satisfy, to

leading order, the equation dA/dt ∼ A2n−1.

Figure 11 shows the behaviour of the field on the boundary and at x = −50, in

the far field zone, with initial conditions φ(x, 0) = φ1(x) + 0.05 ηB(x), φt(x, 0) = 0 and

H = 0.90 < H2. The power spectrum of the field on the boundary is dominated by

boundary mode oscillating with the theoretically predicted frequency ωB = 1.08509. There

are also two peaks at 2ωB and 3ωB. Since ωB < m, this lowest mode cannot propagate

and indeed, there is no trace of it in the far field zone. The mode with the frequency 2ωB
is already in the scattering spectrum, so this mode does propagate, causing the energy loss

from the boundary mode, as seen in figure 11a.

The picture is different when H = 0.94 > H2 (see figure 12). The mode with frequency

ωB = 0.93643 still dominates the power spectrum of the boundary excitations, but its decay

is much slower, reflecting the fact that the mode 2ωB is now below the mass threshold and

cannot propagate into the bulk. As can be seen from the power spectrum in the far field

zone plotted in figure 12(d), the radiation is much less than in the previous case. There are

1Recall that m = 2 is the mass threshold for the bulk theory.
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two dominant frequencies, ω = 2 and ω = 3ωB. The presence of the peak at 3ωB is natural,

since this is the first harmonic above the mass threshold. The peak at ω = 2 originates

from near-threshold bulk modes, excited by the initial conditions via the nonlinearities,

which disperse only slowly away from the boundary [21].

Another test of the scenario is to consider the radiation from a “kicked” boundary

initial condition φ(x, 0) = φ1(x), φt(x, 0) = A0ωBηB(x) in the far field zone. Our numerical

results for this case are presented in figures 13 and 14.
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Figure 13 shows the H-dependence of maximal amplitude of the field measured at

x = −50, far away from the boundary, for three small values of the initial impetus A0

given to the boundary mode. Note that the radiation amplitude drops sharply when H

crosses H2 and H3, as predicted by our general considerations.

Figure 14 shows a log-log plot of the dependence of the maximal amplitude at x = −50

on A0. For small values of A0 and H < H2, all curves have the same slope, fitting the

expected ∼ A2
0 dependence. The curve for H = 0.95 shows a significant reduction in the

radiation amplitude, reflecting the loss of a decay channel as H passes H2. However its

slope for small values of A0 appears to be relatively unchanged from that of the previous

curves, even though our previous considerations based on the propagation of the third

harmonic would suggest an ∼ A3
0 dependence. It may be that slow (near-threshold) bulk

modes, visible in figure 12(d) in the peak at ω = 2, are obscuring the effect we are looking

for. It is possible that this could be tested by waiting significantly longer before measuring

the radiation, to allow the slow modes to die away, but a more-detailed study would be

needed to draw a clear conclusion.

Another interesting feature visible on each curve is that as A0 reaches some (curve-

dependent) critical value, the radiation flux suddenly dips. As will be discussed in the next

section, this effect is associated with the nonlinear effect of the reduction in the frequency

of the boundary mode with increasing amplitude.

Finally, for even larger values of the intial impetus we can see a large increase of the

amplitude of the field in the far zone. This is a signature of a non-perturbative effect,

the excitation at the boundary becoming strong enough to destabilise it completely, with

the emission of a kink into the bulk flipping the field there into the other vacuum. Some

further observations concerning this phenomenon are reported in section 9 below.

8 Higher-order nonlinear effects and amplitude-dependent decay rates

In the last section we principally considered boundary mode decay in the small-amplitude

regime where the boundary mode itself could be treated linearly. For larger amplitudes

the frequency of the mode’s oscillation is lowered, just as in the case of an anharmonic

oscillator or the simple pendulum. Numerical simulations of the oscillations of a full-line

kink [19] also exhibit this behaviour, which is typical for many nonlinear systems.

In the evaluation of the critical values Hn above, we implicitly assumed that the ampli-

tude of the excitation was small, so that its frequency was that predicted by the linearised

equations. However for larger amplitudes, given the amplitude-dependent frequency re-

duction just described, it is possible that even for H < H2, the actual frequency of the

boundary mode, ω̃B, will be lower than m/2. Then the decay rate will be slower than

that observed for smaller amplitudes, since the second harmonic will not couple directly

with any propagating bulk modes. However, the amplitude of the boundary mode will

decrease with time due to the outgoing radiation, causing its frequency to grow. Provided

H < H2, once the amplitude has decreased far enough, the second harmonic will enter the

scattering spectrum. In such a case we can expect to observe an intriguing phenomenon:

while initially the radiation flux from the boundary is relatively small and the decay rate
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Figure 15. Evolution of the boundary mode for H = 0.8393 < H2 and large initial amplitude

A0 = 0.3. Plots a) and c) show the time evolution of the amplitudes of the boundary mode and

radiation field respectively, from the values of the field at x = 0 and x = −50. Plots b) and d) show

power spectra at the positions x = 0 and x = −50. The black lines show the power spectra from

φ(0, t) for times 0 < t < 1600 (plot b)) and φ(−50, t) for times 200 < t < 1600 (plot d)). The purple

and green lines and filled areas show the power spectra for times before and after the transition

(0 < t < 750 and 750 < t < 1600 for x = 0; 200 < t < 800 and 800 < t < 1600 for x = −50).

rather slow, after some time there will be a sudden increase of the radiation flux and a

switch to a much faster decay rate.

Numerical work confirms that this effect really exists, as can be seen in figure 15 and

movie M13, which show the decay of the amplitude of the boundary mode. For about the

first 750 units of time the amplitude changes very slowly, albeit with a small modulation,

after which there is a sudden transition to a much more rapid decay. In the far field zone

this effect can be observed as a sudden jump of the radiation flux, by about one order of

magnitude.

In the power spectrum plotted in figure 15d one can clearly see a large peak just below

ω = 1, which is the initial frequency of the mode. While the amplitude slowly decreases

the frequency grows until it crosses 1, after which point the decay runs much faster. We

can also see a drift of the frequency up to ωB = 1.24666.

This slow-then-fast behaviour is reminiscent of higher-dimensional oscillon decay.

In [22–24] it was observed that oscillons in two and three spatial dimensions lose their

energy very slowly for tens of thousands of oscillations until they reach some critical fre-

quency, above which they quickly decay to the vacuum.

9 Creation of kinks from an excited boundary

The final phenomenon we investigated was the creation of kinks from the metastable bound-

ary. We previously observed that this could be induced in certain scattering processes at
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large H. To view it in isolation, we instead excited the boundary mode directly, taking

initial conditions of the two types (“stretched” and “kicked”) used earlier. First, we used

initial condition

φ(x, 0) = φ1(x) +A0ηB(x), φt(x, 0) = 0 (9.1)

with ηB(x) the boundary profile for the linearised prolem, as an approximation to the

boundary mode at its largest deviation from equilibrium; and second, we took

φ(x, 0) = φ1(x), φt(x, 0) = A0ωBηB(x) (9.2)

representing the “kicked” boundary. As before, we normalized the profile of the boundary

mode in such a way that ηB(0) = 1.

In both cases, if A0 is taken to be sufficiently small, the boundary oscillates with fre-

quency ωB and the amplitude A0. However, as A0 becomes larger, the nonlinear processes

discussed above start to play a significant role and further, as the initial energy of the

excited mode becomes sufficient, outgoing kinks can be observed in the far zone, as seen

in figures 16 and 17.

Note that for large H → 1 the boundary mode profile resembles the difference between

the unstable boundary solution (a saddle point of the energy) and the stable boundary

solution:

ηB(x) ≈ tanh(x+X0)− tanh(x−X0)

2 tanh(X0)
(9.3)

Therefore the boundary mode, with appropriate amplitude, being added to the static

boundary solution yields the unstable boundary. When the solution crosses the saddle

point of energy it decays into another static solution with an additional kink is emitted

from the boundary.

Therefore the critical value of the amplitude of the boundary mode for the production

of the kinks is:

Acrit = φ2 − φ1 = 2
√

1−H. (9.4)

This critical amplitude is in very good agreement with the first type of the initial conditions

for positive values of A0. Only for very small values of A0 is there a symmetry A0 → −A0.

For larger A0 > 0 the excitation have less energy than the excitation for −A0. Therefore

the critical line for kink creation, from the left side of the plot, is much closer to the centre

(A0 = 0).

For initial conditions of the second type, the energy for A0 and −A0 is exactly the

same and therefore the plots look much more symmetric. For H → 1 the critical amplitude

is almost exactly Acrit =
√

1−H, half as big as in the first case.

10 Conclusions

Our investigations of the boundary φ4 theory have shown that it offers a considerably richer

variety of resonance phenomena than the bulk theory, within a setting where analytical

progress can be made. Key features include the modification of the force leading to the

sharpening of window boundaries and the new critical velocity vcr, the resurrection of the
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first ‘missing’ scattering window, the observation of the boundary oscillon, and the collision-

induced decay of the metastable boundary vacuum for H near to 1. Much of our work

has been numerical and many issues remain for further study, the most pressing being the

development of a reliable moduli space approximation incorporating the boundary degrees

of freedom (see [9] for some earlier work on this issue). This model is sufficiently simple

that it should offer the ideal playground for the development of better analytical techniques

for the understanding of more general nonintegrable field theories.
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A Numerical methods

In this appendix we describe some details of the numerical methods used in our simulation.

In our numerical code we used the following discretization:

un = φ(−nh), n = 0 . . . N . (A.1)

To calculate spatial derivatives we used a fourth-order central difference scheme

D2un =
1

12h2
(−un−2 + 16un−1 − 30un + 16un+1 − un+2) (A.2)

for all points far enough from the boundary, n ≤ 2. This scheme can be derived using

Lagrange polynomial approximation:

u(x) =

n+m∑
i=n−m

ui`i(x), `i(x) =

n+m∏
j=n−m
j 6=i

x− jh
ih− jh

. (A.3)

However for the two points closest to the boundary we have to use a different basis

u(x) = H ¯̀
0(x) +

3∑
i=0

ui ˜̀i(x), (A.4)

where

˜̀
i>0(x) =

x2

(ih)2

3∏
j=1
j 6=i

x− jh
ih− jh

, (A.5)

˜̀
0(x) =

(
1 +

11

6
x

) 3∏
j=1

x− jh
−jh

, (A.6)

¯̀
0(x) = x

3∏
j=1

x− jh
−jh

. (A.7)
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Note that for points within the interpolation intervals

`i(xj) = ˜̀
i(xj) = δij , ¯̀(xi) = 0, ˜̀′

i(0) = 0, ¯̀′(0) = 1. (A.8)

The above relations prove that formula (A.4) really interpolates the function with appro-

priete boundary condition

u(nh) = un, n ≤ 3 and u′(0) = H. (A.9)

From this approximation it is straightforward to calculate the second derivative for the

first two points:

D2u0 = − 1

18h2
(85u0 + 66hH − 108u1 + 27u2 − 4u3) , (A.10)

D2u1 =
1

18h2
(29u0 + 6hH − 54u1 − 2u3 + 27u2) . (A.11)

B Supplementary material

We have prepared a number of short movies, labelled M01 . . . M13, to illustrate aspects of

our findings, which are listed in this appendix. The movies themselves can be found as

supplementary material.

The first six movies show the processes depicted in figure 4(a)–(f) :

M01 BndryScattering Hminus040 v020.mov : H = −0.4, v = 0.20 < vcr(H)

Almost-perfect reflection of the incident antikink, which has insufficient energy to get

over the saddle-point potential barrier.

M02 BndryScattering Hminus040 v0333.mov : H = −0.4, v = 0.333 = vcr(H)

Antikink incident at the critical velocity, leading to the creation of the saddle-point

configuration. Note, this movie (and the associated figure 4(b)) is somewhat idealised,

as in practice it is impossible to tune the initial velocity finely enough to hit the true

critical velocity precisely. Instead, we patched together an animation up to t = 40

with the static solution thereafter.

M03 BndryScattering Hminus040 v040.mov : H = −0.4, v = 0.40 > vcr(H)

Single bounce, with subsequent escape of the antikink. Note that the acceleration of

the antikink after it surpasses the potential barrier is clearly visible.

M04 BndryScattering Hplus090 v035.mov : H = 0.9, v = 0.35

Single bounce, with excitation of both the H > 0 boundary mode and the internal

mode of the antikink.

M05 BndryScattering Hplus090 v037.mov : H = 0.9, v = 0.37

Single bounce exciting the boundary mode strongly enough to induce decay of the

metastable boundary state, creating an additional kink in the bulk.
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M06 BndryScattering Hplus090 v039.mov : H = 0.9, v = 0.39

A similar process to M5, but here the relative velocities of the emitted kink and an-

tikink are such that a bulk oscillon is formed instead of a separated kink-antikink pair.

The next six movies scan through a range of velocities at constant H. Movies M07–M10 show

‘traditional’ window formation as in the full-line case (equivalent to M09). The sharpened

edges of the windows for H < 0, caused by the presence there of a potential barrier, are

visible on careful comparision of M7 and M8 (for H < 0) with M9 and M10 (for H ≥ 0). For

movies M11 and M12, H is in the region where collision-induced boundary decay is possible.

M07 VelocityScan Hminus040.mov : H = −0.4

M08 VelocityScan Hminus020.mov : H = −0.2

M09 VelocityScan H000.mov : H = 0

M10 VelocityScan Hplus020.mov : H = 0.2

M11 VelocityScan Hplus090.mov : H = 0.9

M12 VelocityScan Hplus095.mov : H = 0.95

Finally, movie M13 shows the slow-then-fast relaxation of the boundary mode. Four plots

are shown: on the left, the field values next to, and slightly further from, the boundary;

on the right, the amplitude of the field at the boundary, and an estimate ω(0, t) := 2π/T

of its instantaneous frequency, where T is the time between successive minima of φ(0, t).

M13 Relaxation Hplus08393 A030.mov : H = 0.8393, A0 = 0.3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] P. Fendley, Kinks in the Kondo problem, Phys. Rev. Lett. 71 (1993) 2485

[cond-mat/9304031] [INSPIRE].

[2] O.H. Olsen and M.R. Samuelsen, Fluxon propagation in long Josephson junctions with

external magnetic field, J. Appl. Phys. 52 (1981) 6247.

[3] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter and G.R.W. Quispel, Surface

exponents of the quantum XXZ, Ashkin-Teller and Potts models, J. Phys. A 20 (1987) 6397

[INSPIRE].

[4] C.L. Kane and M.P.A. Fisher, Transmission through barriers and resonant tunneling in an

interacting one-dimensional electron gas, Phys. Rev. B 46 (1992) 15233 [INSPIRE].

[5] S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in

two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841

[Erratum ibid. A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].

– 22 –

https://arxiv.org/src/1508.02329v2/anc/M06_BndryScattering_Hplus090_v039.mov
https://arxiv.org/src/1508.02329v2/anc/M07_VelocityScan_Hminus040.mov
https://arxiv.org/src/1508.02329v2/anc/M08_VelocityScan_Hminus020.mov
https://arxiv.org/src/1508.02329v2/anc/M09_VelocityScan_H000.mov
https://arxiv.org/src/1508.02329v2/anc/M10_VelocityScan_Hplus020.mov
https://arxiv.org/src/1508.02329v2/anc/M11_VelocityScan_Hplus090.mov
https://arxiv.org/src/1508.02329v2/anc/M12_VelocityScan_Hplus095.mov
https://arxiv.org/src/1508.02329v2/anc/M13_Relaxation_Hplus08393_A030.mov
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.71.2485
https://arxiv.org/abs/cond-mat/9304031
http://inspirehep.net/search?p=find+EPRINT+cond-mat/9304031
http://dx.doi.org/10.1063/1.328567
http://dx.doi.org/10.1088/0305-4470/20/18/038
http://inspirehep.net/search?p=find+J+%22J.Phys.,A20,6397%22
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,B46,15233%22
http://dx.doi.org/10.1142/S0217751X94001552
https://arxiv.org/abs/hep-th/9306002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9306002


J
H
E
P
0
5
(
2
0
1
7
)
1
0
7

[6] P. Bowcock, E. Corrigan, P.E. Dorey and R.H. Rietdijk, Classically integrable boundary

conditions for affine Toda field theories, Nucl. Phys. B 445 (1995) 469 [hep-th/9501098]

[INSPIRE].

[7] V.A. Rubakov, Superheavy magnetic monopoles and proton decay, JETP Lett. 33 (1981) 644

[Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 658] [INSPIRE].

[8] X.G. Wen, Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall

states, Phys. Rev. B 41 (1990) 12838 [INSPIRE].

[9] N.D. Antunes, E.J. Copeland, M. Hindmarsh and A. Lukas, Kink boundary collisions in a

two-dimensional scalar field theory, Phys. Rev. D 69 (2004) 065016 [hep-th/0310103]

[INSPIRE].

[10] D.K. Campbell, J.F. Schonfeld and C.A. Wingate, Resonance structure in kink-antikink

interactions in φ4 theory, Physica 9D (1983) 1.

[11] M. Peyrard and D.K. Campbell, Kink antikink interactions in a modified sine-Gordon model,

Physica 9D (1983) 33.

[12] P. Anninos, S. Oliveira and R.A. Matzner, Fractal structure in the scalar λ(φ2 − 1)2 theory,

Phys. Rev. D 44 (1991) 1147 [INSPIRE].

[13] R. Goodman and R. Haberman, Chaotic scattering and the n-bounce resonance in

solitary-wave interactions, Phys. Rev. Lett. 98 (2007) 104103 [nlin/0702048].

[14] P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the φ6

model, Phys. Rev. Lett. 107 (2011) 091602 [arXiv:1101.5951] [INSPIRE].

[15] R. Arthur, P. Dorey and R. Parini, Breaking integrability at the boundary: the sine-Gordon

model with Robin boundary conditions, J. Phys. A 49 (2016) 165205 [arXiv:1509.08448]

[INSPIRE].

[16] I.L. Bogolyubsky and V.G. Makhankov, On the pulsed soliton lifetime in two classical

relativistic theory models, JETP Lett. 24 (1976) 12 [INSPIRE].

[17] T. Romanczukiewicz and Ya. Shnir, Oscillon resonances and creation of kinks in particle

collisions, Phys. Rev. Lett. 105 (2010) 081601 [arXiv:1002.4484] [INSPIRE].

[18] T. Sugiyama, Kink-antikink collisions in the two-dimensional φ4 model, Prog. Theor. Phys.

61 (1979) 1550 [INSPIRE].

[19] N.S. Manton and H. Merabet, φ4 kinks: gradient flow and dynamics, Nonlinearity 10 (1997)

3 [hep-th/9605038] [INSPIRE].

[20] T. Romanczukiewicz, Creation of kink and antikink pairs forced by radiation, J. Phys. A 39

(2006) 3479 [hep-th/0501066] [INSPIRE].
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