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Abstract
We study interactions between brightmatter-wave solitonswhich acquire chiral transport dynamics
due to an optically-induced density-dependent gauge potential. Through numerical simulations, we
find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions
including population transfer and radiation losses to the formation of short-lived bound states and
solitonfission. An effective quasi-particlemodel for the interaction between the solitons is derived by
means of a variational approximation, which demonstrates that the inelastic nature of the collision
arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of
interaction potentials which show that the influence of the gauge field appears as a short-range
potential, that can give rise to both attractive and repulsive interactions.

1. Introduction

One of the defining properties of solitons in systems such as the nonlinear Schrödinger (NLS) andKorteweg-de
Vries equations is that they pass through and emerge from collisions with other solitons unperturbed, with the
exception of a phase shift arising from the nonlinear interaction [1, 2]. All of the dynamical quantities of solitons,
such as their velocities andmasses, are conserved by the collision. In such systems, the elastic nature of these
collisions is a consequence of the integrability of themodel, which heavily restricts the allowed dynamics due to
the existence of an infinite set of conservation laws.

Innon-integrable systems, stable solitonsmay exist too, but their collisions are, generally, inelastic and can lead
to trajectorieswhich are chaotic [1, 3]. In this case, the defining feature is the existence of short-lived bound states
inwhich the number of collision events depends fractally on the initial conditions. Generally, thismechanism
arises from the excitationof an internalmodeof the solitons innon-integrablemodels, eitherwith [4–8]orwithout
radiation losses [9, 10], or through the presence of aweakperturbation [11–13]. Solitons canmerge or fracture into
newproducts throughfission and fusion processes [14–16], which has also been studied in the context of three-
soliton and soliton-breather collisions [17]. These effects highlight a strong contrast to solitondynamics in
integrable systems,which arenot only interesting froma fundamental point of view, but offer insight into the
description of realistic systemswhere the influence of integrability-breaking perturbations canbe consequential.

Ultracold atomic gases represent an attractive platform to studynonlinear physics due to their unprecedented
experimental controllability. The ability to precisely engineer both the dimensionality and interactions in these
systems has lead to the realizationof isolatedbrightmatter-wave solitons [18, 19], aswell as solitons trains [20]. The
second generationof experiments addressed controlled collisionswith potential barriers [21, 22], aswell as
understanding both the role and origin of the relative phase for the stability of bright soliton states [23–25].
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The underlying integrability of the focusingNLS equation leads to a hierarchy of analytical higher-order
soliton solutions provided by the inverse scattering transform. This directly led to the development of a classical
particlemodel [26], describing the dynamics of the bright solitons, fromwhich regions of chaotic behaviour
have been eventually predicted for trapped bright solitons in non-integrable settings [27, 28].

Due to their inherent coherence, bright solitons represent a useful tool for investigating interferometry in the
quantum realm. Recent experimental progress in this direction has seen thefirst realization of a 85Rbmatter-
wave interferometer, as well as theoretical proposals for precisionmeasurement using the Sagnac effect [29] and
the creation of Bell states using quantumbright solitons [30], as well taking advantage of the interaction of
solitonswith nonlinear splitters [31].

The ability to simulate artificial gauge theories with ultracold gases offers a newopportunity to understand
the interplay of effectivemagnetism in these systemswith nonlinear effects [32, 33]. This has led to the
realization of vortex states [34] as well as spin–orbit coupling [35]. Interest was recently focused on schemes for
generating gauge potentials with an effective back-action between thematter and the gauge potential [36, 37],
which leads to a number of novel phenomena, including the violation of theKohn’s theorem [38, 39], and
unconventional vortex dynamics [40, 41]. Very recently, thefirst experimental realization of a dynamical gauge
theory in a trapped ion systemwas shown [42] .

In this paper, we study the nonlinear dynamics of two interacting one-dimensional chiralmatter-wave
solitons.We begin by reviewing how these solitons can be engineered in ultracold gases using optical techniques
which induce an effective density-dependent gauge potential in the atomic cloud. The resulting equation of
motion for the gas, which takes the formof a chiral NLS equation, is then solved numerically in section 3.
Following this in section 4, we develop a variational approach to further understand the soliton dynamics in this
system, both in linear and asymptotic limits, before concluding in section 5.

2. The theoreticalmodel

Weconsider a Bose–Einstein condensate ofN two-level interacting atoms, inwhich two internal states of the
atoms (labelled ñ∣1 and ñ∣2 ) are resonantly coupled by an external laserfield. TheHamiltonian describing the
interacting trapped gas as well as the light–matter interaction can bewritten as
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describes the optical coupling of the two internal states of the atoms, with strengthΩ and laser phasefℓ. In order
to obtain an equation ofmotion for themany-particle system, the state of the system is defined as aHartree
product cYñ = Ä ñ=∣ ∣ ( )

l
N

l1
0 , where c ñ∣ ( )

l
0 defines one of the single-particle eigenstates of equation (2). In this work

we assume that the gas is harmonically trapped in the ( )x y, plane (described by the vectorial r⊥ coordinates in
equation (2)), but free along the axial z direction. Themean-field interactions appearing in equation (1) are
defined by  = F + F F + Fˆ [ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ]g g g gdiag ,int 11 1
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2
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2 , where F∣ ∣i 2 denotes the population of the state i.
Provided that the gas is sufficiently dilute, we can diagonalize theHamiltonian by treating themean-field

interactions F¢∣ ∣gii i
2 as a small perturbation to the laser coupling ÿΩ. The eigenvectors of equation (1) can then

bewritten in the dressed state basis {+,−} as
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∣ (∣ ∣ )( ) ℓ1 e 2 20 i denotes the unperturbed dressed states. The associated eigenvalues are given

by F  W∣ ∣g 22 , with the dressed scattering parameter = + +( )g g g g2 411 22 12 .
From the interacting dressed states, we canwrite the state vector of the system as x cñ = å F ñ=+ -∣ ( )∣tr,i i i, .

Then, the effectiveHamiltonian is written as
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Equation (4) introduces the geometric phase  c c= á  ñ  ∣A i . Accompanying this is a scalar geometric phase,
whose leading-order effect is inducing an energy offset, whichmaybedropped. Then, using the definition givenby
equation (3), to lowest-order the density-dependent geometric phase appears as = + F ∣ ( )∣( )A A a r0

1
2, with the

single-particle vector potential,  f= -  ( )( )A rl
0

2
, while f=  - W( )( )g ga r 8l1 11 22 defines the strength of the

density-dependent gauge potential. The equationofmotion governing the evolutionof thewave-function
amplitudeF+( )tr, is found fromminimizationof the system’s energy functional,  = áY ¶ - Yñ∣( ˆ )∣Hi t . After
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dropping±subscripts, the resultingmean-fielddensity-dependentGross–Pitaevskii equation is obtained as

 w
¶F
¶

= - + + + F F^ ^
⎡
⎣⎢

⎤
⎦⎥( ) · ∣ ∣ ( )

t m
m gp A a j ri

1

2

1

2
, 52

1
2 2 2

where

* *= F + F - F - F[ ( ) ( ) ] ( )
m

j p A p A
1

2
6

defines the current nonlinearity appearing in equation (5). The current-coupledNLS equation, captured by
equation (5), describes a novel nonlinear gauge theorywhere there is an effective back-action between the
matter-field and the gauge potential [36]. This feedback ingredient of the system is somewhat similar to the local
field effect, which affects a ‘soft’ optical lattice trapping the condensate, that gives rise to various consequences,
such as formation of bright solitons in the absence of contact interactions between atoms [43].

2.1.One-dimensional reduction
Weare interested in studying solitary-wave solutions in the frameworks of the dimensionally reduced formof
equations (5) and (6). To do this, we assume the system is in the ground state of the transverse trap, such that one
can factorize thewave function as F = Y Y^ ^( ) ( ) ( )t x tr r, , , where pY = -^ ^ ^

-
^ ^( ) ( ) ( )l lr rexp 21 2 2 is the

transverse ground-state wave function, and  w=^ ^l m is the transverse harmonic length scale. Equation (5)
is then reduced to an effective one-dimensional form,
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transverse area of the cloud, and the corresponding one-dimensional current nonlinearity is defined as
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Inwriting equation (7), we have defined the laser phase as f =ℓ kx and subsequently eliminated the zeroth-
order vector potential through amomentumboost.We can further simplify equation (7) by introducing the
nonlinear phase transformation

 òy yY = ¢ ¢
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which acts to decouple the vector potential from the canonicalmomentum appearing in the one-dimensional
Gross–Pitaevskii equation. Substituting equation (9) into equations (7) and (8) leads to the simplified equation,
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where * y y¢ = ¶( ) ( ) ( )j x m Im x is the gauge-transformed current operator. Equation (10) belongs to the class
of derivative or ‘chiral’NLS equations [44, 45], whichwas originally studied, in particular, in the context of one-
dimensional anyons [46]. Themodel features several key differences from the standardNLS equation in that it is
generally non-integrable, does not obey theGalilean invariance, and possesses chiral soliton solutions [45–47].
These properties are expected to contribute to unconventional soliton dynamics in the one-dimensional case.

An experimental realization of the interacting gauge theory relies, basically, on two conditions, viz., an
atomic species possessing long-lived excited states that the adiabaticmotion of the atoms requires, as well as the
spontaneous-emission rate that is negligible on the time scale of cold-atom experiments. A promising candidate
that fulfils these conditions are alkali-earth atoms, which have been recently used to create a spin–orbit-coupled
Fermi gas of 173Yb atoms [48], using amethodology similar to that outlined here. Very recently, an interaction-
induced synthetic gauge potential was realised experimentally in a Bose–Einstein condensate loaded into a
modulated two-dimensional lattice [49].

2.2. Chiral solitons
Single-soliton solutions of equation (10) can be derived by first boosting into themoving frame via the
transformation

y j= - m¢+ ¢ - ¢( ) ( ) ( )( )x t x vt, e , 11mvx mv t t
BS

i 22

which is aGalilean transformation inwhich the stationary coordinates (x, t) andmoving coordinates ¢ ¢( )x t, are
connected by the translations, ¢  -x x vt and ¢ t t , with frame velocity v. The resulting differential
equation for the real-valuedwave functionj ¢( )x becomes
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
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inwhich the current is contained as j(x)=vj2. Integrating equation (12), and requiring that thewave function
converges toj ¥ =( ) 0 for ¢ = - <g g a v2 0

1D 1D 1 , onefinds the single bright-soliton solution,
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inwhichwe have transformed back into the stationary frame. The chemical potential appearing in equation (12)
is m = - ¢mg N 8

1D
2 2 2, with the amplitude factor b1 2 imposed by normalizationN= 1. In contrast to the

Gross–Pitaevskii theory used tomodel non-chiral bright solitons [50], the lack of theGalilean invariance of
equation (10) results in a change of the solitonwidth, = - ¢b mg2 2

1D
, depending on the direction of the

soliton’smotion. These solitons are therefore chiral, in the sense that themean-field interactions, and hence the
soliton’s size depend on the direction inwhich it is travelling. An illustrative example of this can be demonstrated
by the reflection of a chiral soliton off a hardwall, which causes the soliton to disperse [36].

2.3. Conservation laws
Although the equations ofmotion defined by equations (7) and (10) are non-integrable, a set of conservation
laws in the present system can be derived directly from theNoether’s theorem [1] .With the respective
Lagrangian density,
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it is straightforward to show that, at least, three conserved quantities exist [51], given by the integral expressions:
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which correspond to the number of particles,momentum, and energy of the system, respectively. The integrands
of equation (17) introduce theHamiltonian densities for both the transformed and non-transformed
representations, which is expected due to the fact that the underlying Lagrangian isHermitian. A specific
peculiarity of the chiralmodel arises in equation (16), which shows that, as a consequence of the breakdown of
theGalilean invariance, the canonicalmomentum is not conserved, but the quantity y¢ + ∣ ∣mj a1

4 is conserved.

3.Numerical simulations

The focussingNLS equation is an integrablemodel, where solitons collide elastically, with the same shape and
velocity before and after scattering. The one-dimensional gauge theory defined by equation (10) breaks the
integrability due to the presence of the current nonlinearity. In this sectionwe numerically solve equation (10)
for binary chiral-soliton collisions using the known single-soliton solution, given by equation (13), in order to
understand how the broken integrabilitymanifests itself. The system is prepared initially in the state

y y x y x= = - + -d( ) ( ) ( ) ( )x t x x, 0 e , 18in BS 1
i

BS 2

where d p pÎ -[ ], is the relative phase difference between the solitons, while ξ1,2 are initial centre-of-mass

coordinates of the solitons, and the normalization condition is ò y =
-¥

+¥
∣ ( )∣x x Nd in

2 . Since a full parameter
scan of chiral-soliton collisions, featuring every degree of freedom, presents a formidable problem,we restrict
our analysis to two parameter regimes, each set by a ratio of interaction strengths, which illustrate the essential
physics present in themodel:

• In thefirst instance, we consider the case of strong chiral interactions, +∣ ∣ ∣ ( )∣g a v v1D 1 1 2 , where effects
stemming from the current nonlinearity aremade influential by the solitons’high velocities.
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• For the second, we treat the case of weak chiral interactions, +∣ ∣ ∣ ( )∣g a v v1D 1 1 2 , where the current
nonlinearity is treated as a small perturbation added to the usualmean-field dynamics.

To integrate equation (10)numerically, we construct an explicit central-difference scheme for the evolution
of thewave function, and compare the results to those produced by a split-step Fouriermethod, to ensure
consistency. The numerical domain is chosen to be at least two orders ofmagnitude larger than thewidths of the
solitons to avoid radiation back-reflecting into the solitons (the aliasing effect). It is useful at this stage to point
out that the evolution of the soliton’s relative phase depends on their separation [52]. Therefore, each result
whichwe present is defined up to a choice of the initial phase difference and separation, although altering these
parameters does not yield a qualitative difference.

3.1. Strong interactions
Infigure 1we show a set of density plots for the collision of two co-moving chiral solitons in the presence of the
strong chiral interactions. In each case, the interaction induced by the current nonlinearity dominates over the
usualmean-field effects due to the solitons’high velocities, which effectively reduces themean-field scattering
parameter. Figures 1(a) and (b) highlight extrememanifestations of this regime, where the dynamics are solely
influenced by the current nonlinearity, setting  =ℓg m 01D

2 , i.e., themean-field contact interaction is
completely disregarded.

Surprisingly, the collisions in these two instances are similar to those produced by the conventional NLS
dynamics, with the solitons surviving the collision and retaining the general shape of their envelopes. However,
two key differences are visible in the trajectories of the solitons, particularly in the case of a1/ÿ=4,figure 1(b).
Thefirst are a pair of inelastic trajectories, with velocities of the outgoing solitons differing from their initial
velocities, with the left- and right-most solitons reducing and increasing their velocities, respectively. The second
difference from themean-field setting is the appearance of a density node at the interaction centre, which is
reminiscent of a repulsive interaction, despite the initial phase difference taken as δ=0, which is conventionally
an attractive interaction (for the solitons colliding in-phase). A third feature is also spotted in the formof
population transfer, as illustrated in the figure 1(b.i) for the collision pictured infigure 1(b). Here, approximately
a quarter of the initialmass of the right-most soliton is transferred to the left-most soliton in the course of the

Figure 1.High-velocity collisionsof twoco-moving chiral solitons. (a)–(b)Trajectories of inelastic interactionswith  =ℓ ℓg m v m0,1D
2

1

 = =ℓv m2, 12 , and δ=0,where the gaugefield strength isa1/ÿ=1 in (a), anda1/ÿ=4 in (b). (c)–(d)Solitonfissionwith
   = = = =ℓ ℓ ℓg m v m v m a2, 2, 0.5, 51D

2
1 2 1 ,with δ=0 (c), and δ=π (d). (b.i)Populationsof the soliton envelopes before

andafter the collisionpictured in (b), highlighting thepopulation transfer.The colourbar limithasbeen intentionally lowered in (c)–(d) to
display the solitonsmore clearly.

5
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collision.Note, that the populations of the solitons are not calculated during the collision at (ÿ/mℓ2)t=4 to
(ÿ/mℓ2)t=12, due to the overlap of the soliton envelops.

Each of these effects can be traced to the non-integrability of the current nonlinearity, which permits the
transfer of stored interaction energy into the kinetic energy, and a possibility of a non-trivial shift of the soliton
phase difference. The presence of the population transfer is directly linked to the phase shift, as both quantities
aremutually conjugate. The energy exchange, or, to a greater extent, the inelasticity of the collision, appears to be
minimisedwhen the collision parameters are chosen so that the solitons interact repulsively. This is evident from
comparisons between the twofigures, wherewe note that a1/ÿ=1 leads to a repulsive interactionwith elastic
trajectories, while a1/ÿ=4 gives rise to amore attractive interactionwhich features inelastic trajectories.

The lower row offigure 1 shows the dynamics where the collision is destructive, causing fission of the
solitons. In both cases, three solitons emerge from the collision (the third soliton infigure 1(d)with δ=π is
located at the leading edge of the other two)with the populations and velocities of each outgoing soliton
depending on the initial phase difference. In addition, amodest amount of radiation is ejected during the
collision, as seen in the trailing edge infigure 1(c), and the interference pattern located between the slowest two
solitons infigure 1(d). Themain difference against the previous case is a larger difference in the initial velocities,
which, if coupledwith a larger gauge-field strength, a1/ÿ=5, produces two soliton envelopes with a greater
disparity of widths. As such, in the course of the collision, the solitons effectively interact over a longer period,
thus enhancing effects stemming from the interaction.

3.2.Weak interactions
In the previous subsection it was seen how chiral solitons undergo inelastic collisions. To quantify the elasticity
of the collisions, we introduce the coefficient of restitution [14]

h =
+

+

( )
( )

( )
m v m v

m v m v
, 19

f1 1
2

2 2
2

1 1
2

2 2
2

0

which compares the difference of the kinetic energy before and after the collision. For η=1, the collision is
perfectly elastic with conservedmasses and velocities of the solitons, while h ¹ 0 indicates an inelastic collision.
Here,m1,2 and v1,2 play the role of themasses and velocities of the solitons in our semi-classical description, and
are calculated from the respective expectation values,

ò y= á ñ = ∣ ∣ ( )m m N m xd , 201,2 1,2
2

*

ò y y= á ñ = - ¶ˆ ( )v p m

m
x

i
d . 21x1,2 1,2 1,2

1,2

The integration in each case at either the initial orfinal time is performed locally around each soliton’s centre of
mass to exclude contributions from radiation and overlapwith the other soliton. Due to the occurrence of both
the population transfer and changes in the outgoing velocities of the solitons, one cannot distinguish whether
the chiral solitons pass through or rebound off each other during the collision. Therefore, to remain consistent,
we denote the solitons located in the x<0 and x>0 regions as the first and second ones, respectively. By
varying the strength of the gaugefield, we have performed a detailed parameter scan of the soliton–soliton
collisions as a function of the initial phase difference, with the initial soliton velocities fixed. The coefficient of
restitution is computed and plotted infigure 2with corresponding examples of the dynamics shown infigure 3.
For each value of the gauge-field strength, three regimes of the collision dynamics can be identified, depending
on the initial phase difference between the solitons. Thefirst is an elastic scattering regime highlighted by a
plateau in the restitution data at η=1, with an example of the dynamics shown infigure 3(a). Here, the
interaction is notably repulsive, with a distinct node in the density at the interaction centre and the soliton
parameters keeping their values after the collision.

Away from this plateau, two distinct regimes of inelastic dynamics are foundwith η>1, as illustrated in
figures 3(b) and (d). Here, the dynamics are also similar to the case of strong interactions, with inelastic
trajectories that feature a redistribution of the solitonmasses, as well as evolution of the initial phase difference,
resulting in shifts of the in- and out-of-phase collision points. Comparing these two plots, one notices that,
depending on the direction inwhich onemoves away from the plateau in the parameter space, the solitonmass
can be transferred, chiefly, in either the left (figure 3(d)) or right-hand (figure 3(b)) outgoing soliton.

Thefinal inelastic regime, indicated by the ‘resonance’ peak in the restitution data represented by the cross
labelled (c) infigure 2, features the turning point of this population transfer, where themass is transferred from
one soliton to the other.We show in figure 3(c) an example of the dynamics in this regime, at themaxima of the
‘resonance’ peak.Here, a peculiar soliton state is formed, where there is a strong interplay between emitted
radiation, excitation of an oscillatorymode in the right-hand soliton, and aweak left-hand one. This regime
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appears to be an example of in-phase (fully attractive) dynamics, which features the formation of ametastable
(short-lived) bound state.

A feature universal to the restitution data presented infigure 2 is that the location of each inelastic regime is
cyclically shifted left-wards for an increasing current strength. Comparing different gauge-potential strengths,
one can see that the elastic region shrinks for larger values, which can be explained by enhancement of the non-
integrability effects for stronger gauge-field strengths. Although not shown here, the dip in the restitution data
initially appears close to d = 0 at small values of the current strength, and cyclically displaces towards lower δ for
increasing current strengths.

To complete the analysis for theweak-chiral regime, we perform a similar parameter scan as before, but now
in the casewhen the relative phase difference isfixed to δ=0, with the initial velocity of the left-hand soliton
allowed to vary. In this case, the coefficient of restitution provides a poor illustration of the underlying dynamics,
therefore we, instead, plot the outgoing velocity of the soliton travelling to the right for increasing values of the
gauge-field strength, as shown infigure 4(a).

Depending on the choice of the initial velocity and gauge-field strength, the strength of the chiral
interactions +∣ ( )∣a v v1 1 2 may be either small or comparable to themean-field strength ∣ ∣g1D . Therefore, for
extreme values of the parameters, it is expected that the dynamics will be generally inelastic in a similarmanner
tofigure (1), whereas for smaller values the dynamics will be, generally, elastic. This reasoning is reflected in the
pair of curves corresponding to  =a 11 and a1/ÿ=1.25 infigure 4(a), inwhich the soliton velocity does not

Figure 2. Inverseof the coefficient of restitution calculated fromnumerical simulations (dots), with  = - =ℓ ℓg m v m4, 0.11D
2

1 ,
and v2mℓ/ÿ=0.The grey dashed line indicates the standardGPE resultswith perfectly elastic collisions, black crosses corresponding to
the simulations infigure 3.

Figure 3.Asymmetric collisions between two chiral solitons for various phase differences. The soliton parameters are
  = - = =ℓ ℓ ℓg m v m v m4, 0.1, 01D

2
1 2 , and a1/ÿ=1.5. The phase differences are taken as δ=0 (a), δ=0.9π (b),

δ=0.98π (c), and δ=−0.9π (d).
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change significantly after the interaction for small initial velocities. As the velocity increases (and hence the
interaction strength increases too), this invariance begins to break, which is particularly notable in the case of
a1/ÿ=1.25, which exhibits a sinusoidal behaviour, at the velocity exceeding a critical value, »v 0.51 .

As the gaugefield strength is increased further, as in the case of  =a 1.51 , a ‘resonance’ feature appears in the
datawhere a two-bound resonance state is formed, as shown infigure 4(b). Asmentioned previously, such states
are a commonoccurrence innon-integrablemodels [4–13], perhapsmost notably innon-integrable versions of
the sine-Gordon equation [8], where, depending on the strength and shapeof the interaction potential, ann-
bound resonance statemay emerge.Here the underlyingmechanism is the energy exchange between the colliding
solitons as awhole and their internalmodes,which requires the solitons to collide several times before escaping,
thus regaining the energy temporarily transferred into the internalmode. Inperforming this parameter scan,
higher-order bound states, where the solitons collidemore than twice, werenot observed, as for stronger
interaction strengths the appearance of a bound state tends to be suppressed in a similarmanner tofigure 3(c).

3.3. Bound states
To further investigate the inelastic dynamics of the density-dependent gauge theory, we consider a set of
symmetric collisions (see figure 5), where two interacting solitons form amolecule-like bound state. In a similar
manner to results obtained inweakly perturbed cubic-quinticNLS [7, 11] and sine-Gordon systems [12], a weak
current nonlinearity is found to support short-lived bound states, where the solitons collide several times before
escaping. As before, the underlyingmechanismhere is the transfer of a part of the energy of the interaction
between the solitons into the kinetic energy and redistribution of the solitonmasses.However, themagnitude of
the interaction energy is now comparable to or larger than the kinetic energy of the solitons, requiring them to
collide several times in order to gain enough kinetic energy for escaping the attractive interaction. Compared to
the standardGross–Pitaevskii dynamics shown infigure 5(a)with  =a 01 , where the solitons are perpetually
trappedwith afixed oscillation amplitude and frequency, amodest current strength can begin to destabilize the

Figure 4. (a)Outgoing versus incoming velocities for asymmetric collisions between two chiral solitons for various gauge-field
strength, with parameters  = - =ℓ ℓg m v m4, 01D

2
2 , and δ=0fixed in each instance. Black cross indicates the two-bounce

resonance state shown in (b) for v1mℓ/ÿ=0.5425 and a1/ÿ=1.5.

Figure 5.Breakdown of the soliton–soliton bound state due to the presence of the current nonlinearity. Two stationary solitons are
initially placed at distance x/ℓ=5 units apart, with  = -ℓg m 41D

2 and δ=0. The gauge-field strength varies as a1/ÿ=0 (a),
a1/ÿ=0.125 (b), a1/ÿ=0.25 (c), and a1/ÿ=0.5 (d).
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bound state, such as infigure 5(c) for a1/ÿ=0.25, where the solitons collide four times before escaping, and in
figure 5(d) for a1/ÿ=0.5, where they collide twice before escaping.

Interestingly, despite the interaction being initially symmetric, effects stemming from the chiral dynamics
result in a left-handedness in the post-collision behaviour. For example, infigure 5(b)with  =a 0.1251 , the
first collision at (ÿ/mℓ2)t=10 is noticeably attractive due to the presence of the anti-node at the interaction
centre, but every subsequent collision becomes increasingly repulsive with the amplitude of the anti-node
decreasing and its position shifting towards the left. In addition, a density node fills the vacancy left by the anti-
node at each interaction centre, with somemanifestation of the population transfer. This effect is seen to bemost
profound infigure 5(d) for a1/ÿ=0.5, where∼60%of the outgoingmass in captured in the left soliton.
Returning to the two-bound resonance state in figure 4, the existence of higher-order bound states appears
unlikely due to the fact that each subsequent interaction becomesmore repulsive, hencemore elastic than the
previous one. These dynamics highlight the role that the lack of theGalilean invariance plays in the interacting
gauge theory. In particular, the current operator appearing in equation (10) induces the population transfer
between the two solitons, resulting in the suppression and, ultimately, breakdown of the bound state.

4. The variational analysis

To gain insight into how the current nonlinearitymodifies the interactions between the solitons, we have
performed variational calculations to derive an effective particlemodel for the soliton dynamics.We achieve this
by using two similar, but essentially differentmethods.

In thefirst instance,we approximate the two-soliton state as a linear superposition of two individual solitons,
with the interaction treated as the spatial overlap of the soliton envelopes. This technique has been previously
applied to interaction problems in theNLS [53, 54] andGross–Pitaevskii equations [55, 56], in addition to several
others [57–61]. An advantage of thismethod is the ability to derive a set of variational equationswhich describe the
motionof the solitons. From this, twokey results can be extracted. Thefirst is an effective potential describing the
interaction between the solitons,whichwill provide details into thephase dependence and range of the
interactions. Secondly, bynumerically solving the variational equations,wewill be able to illustrate thedynamics of
theparticlemodel and compare it directly to the full numerical solutions that are presented above.

For the secondmethod, we follow the technique outlined in [62, 63], inwhich the soliton state is also
approximated as a linear superposition, but restricted to the case of two stationary solitonswhich are well-
separated. In this case, the interaction is accounted for by the spatial overlap of one solitonwith the ‘weak tail’ of
the other, andmay therefore be regarded as an asymptotic approximation to the full interaction. As such, this
method is well suited to the study of bound states, butwill also provide a basis to draw comparisons to the first
method in a far-field low-velocity limit.

4.1. Linear calculations
The starting point for the variational calculation is the Lagrangian density [47, 64]
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inwhich each soliton contains a spatially-varying phase [65, 66],

x f= - +( ) ( )S v x . 26j j j j

Here, a(t), b(t), ξj(t), vj(t), andfj(t) are time-dependent variational parameters corresponding to the amplitude,
width, centre-of-mass coordinates, velocities, and central phases of the solitons. This ansatzmodels two bright
solitons inwhich the individual velocities and positions are allowed to evolve independently, with the interaction
treated as the (linear)-overlap of the soliton envelopes. The constraint that the solitons have a commonwidth,
which in turnfixes the profiles of the soliton envelopes, is a necessary restriction in order to be able to explicitly
calculate interaction integrals. Consequently, this restricts the variational analysis to the regime inwhich

=
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-
» ( )b

b

g a v

g a v

2

2
1. 271

2

1D 1 2

1D 1 1

This can be achieved by considering collisionswith small velocities andby compensating the effects of the gauge
field by ameanfieldwith amodest strength, such that + ∣ ( )∣ ∣ ∣a v v g1 1 2 . Therefore, the above constraint restricts
our variational analysis to theweak-chiral regime forwhich numerical results are presented above. In spite of these
restrictions, wewillfind that onemaybequite liberal with the choice of parameters and still achieve sensible results.

Our choice of ansatz arises due to two reasons. First, ourmodel is non-integrable, therefore a closed-formed
expression for a two-soliton state via inverse scattering techniques is not available. Secondly, regardless of
whether such a solution existed, equation (25) shouldwork as a good approximation to the dynamics pictured in
figure 3, as the solitons roughly retain their shape during the interaction. However, itmust be stressed that this
choice of the ansatz does not fully replicate all the features of the interaction andwill therefore lead to
inconsistencies at short length scales, when the solitons begin to significantly overlap.

An important inconsistency thatmust be considered before proceeding, is related to a divergence of the soliton
amplitude a(t) at short length scales. This can be illustrated by evaluating the conditionN= 1 as per equation (15)
for our variational ansatz, fromwhichone can obtain the following expression for the soliton’s amplitude:
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Toperform the integration,wehave introduced the change of variables a x= -( )x b1 and
α+ò=(x−ξ2)/b, where  x x= -( ) b1 2 is a new variational parameter describing the relative positions of the
solitons.Additionally,wehave assumed that themagnitude of the velocity is small, such that the phase difference

d- »S S1 2 is an approximate function of solely the central phases.Additional details of the calculation are
outlined in appendixA. Although this integral can be evaluated exactlywithout needing this approximation [54],
the ensuing exact expression is to cumbersome for extracting explicit results from it. Inspecting equation (28), one
can see that, in the limit of   0, the value of a2(t) rapidly diverges for δä[π/2, 3π/4] and approaches a
singularity at δ=π ,modulo 2π . Our approximations therefore lead to anunphysical divergencewhich is not
representative of soliton collisions, thereby requiring us to restrict our studies to the boundeddomain
 d∣ ( )∣f , 1, which corresponds to the interval of δä [0,π/2]. For such values of fwhich are bounded from

below, a(t) is non-divergent, representing the knowndynamicsmore adequately—for instance, at d = 0, which
corresponds to the fact that the solitons’ amplitude is increased by b1 2 when they constructively interfere.

Substituting our ansatz into equation (22) and integrating via equation (23) leads to the averaged Lagrangians
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wherewe have defined ¢ = - +( )g g a v v
2 1D 1 1 2 , and have split the total Lagrangian into the sumof termswhich

implicitly and explicitly depend on ò, as denoted by the free and interacting Lagrangians,   = + I0 .
Equations ofmotion for each variational parameter can nowbe derived from equation (24), which lead to

the set of coupled differential equations
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Here, the vertical bar notation in equations (33) and (34), denotes the full Lagrangian function in equation (30),
but excluding terms containing a factor of f x˙ ˙,i i, or v̇i. In equations (32) and (36), for i=1 positive (+)
operations are taken, with the converse for i=2. A variational equation for b, the solitons’width, is not required
to proceed and is excluded. Both equations (35) and (36) are introduced for notational convenience. From the
set of variational equations, we can now extract details of how the gauge field affects the soliton dynamics, and
derive several important quantities.

Starting with the first variational equation, which can be obtained by varying eitherf1 orf2, one can identify
equation (31) as a conservation law for  d( )a bf4 ,2 . This is consistent with both equations (15) and (28), which
state that the phase and density of the condensate are conjugate variables. In the asymptotic limit of   ¥, this
conserved quantity reduces to ~a b1 42 , which is the correct amplitude for a two-soliton state.

The equations for the velocities vihighlight themain result of the variational analysis. Thefirst and last terms
of equation (32) (and the last termof equation (35)), correspond to similar terms in theNLS equation. Together
they imply that, in the asymptotic limit of x~ ˙vi i , both solitonsmove at a constant velocity when they are well
separated.However, at   0 the velocities of the solitons aremodified due to their interaction, but, once again,
they become constant after the solitons have passed through each other. The additional terms∝a1, which appear
in the velocity equation, are newones, which arise due to the presence of the gauge potential. Thefirst of these is
a non-Galilean effect that redefines the soliton velocities in the asymptotic limit as x~ +˙v a b6i 1 , which is
consistent with themomentum conservation law stated in equation (16). The remaining termswhich appear in
equation (35) are responsible for the interaction-induced velocity shift, which, in both the v1 and v2 equations,
has the samemagnitude and sign.

The variational equations for both a and ξi are not particularly transparent. However, they do highlight the
coupling between all of the variational parameters, andwill be requiredwhen deriving the interaction potentials
later in the section.

4.1.1. Collision dynamics
In order to illustrate how the gaugefield is themechanismunderlying the inelastic scattering in our system,we
set out tofirst simplify and reduce the number of variational equations, so that an effective particlemodel can be
derived. Subsequently, we can numerically solve our systemof equations and compare it to the full numerics
presented above.

We begin by first reiterating that we consider the case of weak-chiral interactions + ∣ ( )∣ ∣ ∣a v v g1 1 2 , which
feature the solitonsmoving slowly for a given choice of the gauge-field strength. Equations (33) and (34)may
then be set up as a set of simultaneous equations inwhich coordinates, f f x˙ ˙ ˙, ,1 2 1, and ẋ2 can be eliminated,
leading to a pair of equations


g g

x
+ - = -

¶á ñ
¶

˙ ˙ ( ) ( )
˙

v v 1 4 , 37I

q

1 2
1

n

11

New J. Phys. 20 (2018) 043004 R JDingwall et al




g g

x
+ - = -

¶á ñ
¶

˙ ˙ ( ) ( )
˙

v v 1 4 , 38I

q

2 1
2

n

with g º - ¶ -x( ) ( ( ) )b f f1 2 1
1

. Together with equation (32), they form a set of coupled differential
equations for the soliton dynamics, in which details of the interaction are encoded in expressions for γ (ò , δ ) and
á ñI . Once again, in the asymptotic limit, both equations simplify to the single-soliton result ~v̇ 0i , which
highlights that both solitonsmove independently at a constant velocity when they are well separated. A
consequence stemming from the elimination of variables ḟ1 and ḟ2 in the equations highlights that the phase in
this particlemodel is static , and does not dynamically evolve. Although this is an important feature in ourmodel
which hasmany consequences in the scattering dynamics, wewill still be able to obtain qualitative results which
do not strongly depend on phase δ, but will not be able to address issues pertaining to the bound-states dynamics
pictured infigure 5.

We solve the set of differential equations numerically using a fourth-order Runge–Kuttamethod and
compare our results to an example of the full numerics infigure 6. For the chosen set of parameters, the
magnitude of the outgoing velocities are in good agreementwith the post-collision trajectories showing that the
solitons pass through each other.However, position shifts of the solitons are not capturedwell, with the left-
outgoing soliton shifted toomuch, and the right-outgoing soliton shifted too little. This particular example
represents the configuration that has the best agreement for the velocities. Although not shown here, for
δ<0.3π the particlemodel predicts that the solitons form a perpetual bound statewith a centre ofmass
coordinate that increases linearly with time.Otherwise, for δ>π/2 , the dynamics feature a hard-core elastic
interactionwhere the solitons collide, but rebound off each other. Although the dynamics in these two regimes
are similar towhatwe have obtained numerically, in that we can identify regimeswhere the interaction is
repulsive (and therefore elastic) and attractive (supporting bound states), this correlation actually arises from
discrepancies in ourmodel.

To explain how these discrepancies appear in our results, we restate the consequences of the various
approximations that we have used in the analysis. In effect, all inconsistencies can be traced back to the initial
ansatz used in the analysis, see equation (25). Thefirst problem is the obvious fact that the ansatz is a linear
superposition of two solitons, neglecting the nonlinear deformationwhich takes placewhen they overlap
significantly. For this reason, important details of the interaction are omitted.

The second discrepancy in the ansatz, arises from the need tofix and equate the solitonwidths. For two chiral
solitons to interact, their velocities, and therefore, by extension, their widths,must be different. Furthermore, as
the solitons’ velocities can change after colliding, b(t) is a time-dependent quantity that requires the additional
term x-( )w x i

2 in the expression for the phase given by equation (26), withw being the chirp. Although this was
derived, it was eventually excluded due the complexity in implementing it in the particlemodel. The net result is
that interaction effects in our particlemodel are isotropic with respect to each soliton’smutual influence, which
is clearly not the case in the full numerics.

Another inconsistency is the divergence of the amplitude equation (28) for short length scales in the regime
of δ>π/2. This artifact enters due to approximating the phase difference as a function of only the central
phases, therefore neglecting velocity contributions. Although this was justified by taking the velocities small, the
spatially-varying formof this phase is required to obtain sensible results, as was shown in [54]. Due to the
divergence of the amplitude, the effective interaction potential between the solitons also diverges in this regime,
aswewill demonstrate in the following subsection.

Figure 6.Comparison between the solutions of the variational equations (dashed-green/red) and full numerics (blue) for the
evolution of the solitons’ centres ofmass. The soliton parameters are taken as = - = = =g v v a4, 0.1, 0, 31D 1 2 1 , and δ=0.4π .
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Thefinal discrepancy takes place due to the static nature of the phase in ourmodel. Aswas demonstrated in
our simulations, the current nonlinearity introduces the population transfer and shifts in the soliton’s central
phase at each collision. The absence of these properties in themodel results, therefore, in the existence of
perpetual bound states, in addition to the lack of changes in the soliton’s amplitudes/widths due to the
populations transfer.

From this, it is sensible to conclude that the variational analysis presented here ismore suited to studying
dynamics at the onset of the collision, before the soliton envelopes significantly overlap, but not in the course of
the collision proper.

4.1.2. The interaction potential
The set of coupled differential equations can be reformulated into amechanical system, in order to derive an
effective potential describing the interaction between the solitons.We begin byfirst restricting our analysis at the
onset of the collision, before the solitons began to significantly overlap, as said above. In this regime, the second
soliton remains approximately stationary andwe can fix that ξ2(t)=0 and v2(t)=0 . The set of coupled
differential equations then greatly simplify, andwemay readily integrate equation (37) to obtain

x g = - á ñ +˙ ∣ ( )˙v C4 , 39I q1 1 n

whereC is an arbitrary integration constant. Substituting equation (32) into (39), and then substituting again to
remove a factor of ẋ1, leads to themechanical energy equation,

x
g
x

g
+ + =˙ ˙ ( )a

bf
V

C

f

1

2 6 2
, 401

2 1
2 1 int 2

wherewe identify the soliton kinetic energy ẋ 21
2

, total energy gC f2 2, and the effective interaction potential,


g

= - + - - á ñ
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∣ ( )˙V

f
d d

a

bf
v f

1

2 6
4 . 41I qint 2 2

1
1 n

The structure of equation (40), treats themotion of thefirst soliton as a classical particlemoving through the
potential landscape of the second.

We plot the interaction curves infigure 7, in comparison to an asymptotic calculation derived in the next
section. The interaction curves are here plotted only for negative values of the separation, as we have considered
the situation inwhich themoving soliton approaches the stationary soliton up to the start of the collision.

For a typical set of parameters whichwe have used in our simulations, the curves infigure 7 show that both
repulsive and attractive interactions are supported, up to a choice of the phase difference. The presence of an
attractive potential—in particular, for δ=0 and d p= 4,—therefore supports the existence of bound states,
and the interpretation of the ‘resonance’ regime in figure 2 as an example of the attractive dynamics. The effect of
the divergence of the amplitude for δ>π/2 is illustrated by the upper two curves offigure 7, as themagnitude of
the potential increases rapidly.

In fact, the nature of these curves does not differ drastically from the results expected in theNLS equation, as
contributions from terms stemming from the current feature as a short-range attractive potential, hence they do
not have significant influence far from the centre of the interaction. This can be compared to the plot with
a1=0, fromwhich it is well known that d d p= =0, , and δ=π/2 correspond, respectively, to the attractive,
repulsive, andweak intermediate interactions of solitons in the standardNLS equation.

4.2. Asymptotic calculations
In the previous section, the interactionof two chiral solitonswas explored using a full variational approach. It is
further useful to consider an asymptotic approach forwell-separated solitons. Such an analysis canbe
accomplished using themethodologypresented in [62, 63], where tails of the solitons are used to produce the
interaction potential (see also [67]).Webegin bywriting theone-dimensionalHamiltoniandensity for the system,

 y y y= - - -∣( ˆ ∣ ∣ ) ∣ ∣ ∣ ( )p a
g1

2 2
, 421

2 2 1D 4

which,whenminimised, reduces to equation (7). Toderive an effective interactionpotential,we again restrict our
analysis to the regimeofweak-chiral interactions inwhich the second soliton canbe taken as stationarywith respect
to thefirst. In addition, since + ∣ ( )∣ ∣ ∣a v v g1 1 2 , wenote that the dominant contributions to the interaction
potential in equation (41) arise from termsnot containing a factor of v1. Thereforewe can further impose that the
first soliton is also stationary such that v1=v2=0. Then provided the solitons’ centres ofmasses arewell
separated by a distance L=ξ1−ξ2, wemay approximate the two-soliton state in the vicinity of thefirst soliton as

y y y= + +( ) ( ) ( )x x L , 431 2
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inwhichψ1 represents the envelope of thefirst soliton, and y2 is the exponential tail of the second soliton. The
reciprocal approximation is valid in the region around the second soliton.

Next, we substitute equation (43) and its counterpart pertaining to the second soliton into equation (42), and
retain termswhich are linearwith respect to the small tails, eitherψ1 orψ2. The resulting expression can be recast
in a compact form as


 

y
y

y
y

=
¶
¶

+ ¶
¶
¶

+
y y=

⎡
⎣⎢

⎤
⎦⎥ ( )c.c. , 44x

x
12 2 2

1

where each derivative is evaluated at pointψ=ψ1.

To proceed, we note that theHamiltonian can be defined as ò=
-¥

+¥
H xd , with the variational (alias

Fréchet)derivative,

 d
dy y y

=
¶
¶

-
¶
¶

¶
¶

( )H

x
. 45

x

Aswe consider only the case of exact solutions forwhich d dy =H 0, wemay recast equation (44), using
equation (45) and integration by parts, to obtain the expression


y

y
=

¶
¶

+ +
y y

¥

=


⎡
⎣
⎢⎢

⎤
⎦⎥ { } ( )H c.c. 1 2 , 46

x z

12 2

0
1

which, after using equation (44), simplifies to

* *y y y y= ¶ + + +
¥

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥∣ ∣ { } ( )H

a1

2

i

2
c.c. 1 2 . 47x

x

12 1
1

1 1
2

2

0

Rather than taking the integration limits in the domain -¥ ¥( ), , we here divide the integration domain at an
arbitrary point x0 located between the solitons, and introduce the symmetric contribution { }1 2 to account
for the contribution from the second soliton. To proceed, we require expressions for single-soliton states of
equation (43), which are given by

Figure 7. (a)Potential-energy curves, predicted by equation (41) as a function of the soliton separation, for various phase differences.
(b)Comparison between asymptotic curves obtained by equation (B3) (solid) and equation (50) (dashed). In both cases, the
parameters are taken as g1D=−4, v1=0.1, and a1=3.
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y = ´
=

+ =
f

⎧⎨⎩
( )
(( ) )

( )
b

x b n

x L b n
1

2
e

sech , 1,

sech , 2,
48n

i n

where the soliton’s width = - ˜b g4 is chosen such that ò yå =
-¥

+¥
∣ ∣xd 1n n

2 , with each soliton containing half

the number of atoms. In keepingwith the linearisation procedure used in deriving equation (46), we can instead
simplify these expressions in the vicinity of x0, with asymptotic forms

y ~ ´
=
=

f
-

+

⎧⎨⎩ ( )
( )b

e n

e n

1
e

, 1,

, 2.
49n

x b

x L b
i n

To calculate the variational derivative in equation (45), we use the full expressions in equation (48) to evaluate
the upper limit at = ¥x , together with the asymptotic forms in equation (49) to evaluate the lower limit at x0.
To obtain a contribution from the current to the effective potential, which is independent of the choice of
arbitrary point x0, wemust go to the next order in the expression for y2 in the second term in expression (47),
taking y ~ - f+( )e b2 ex L b

2
3 i 2 . Substituting these expressions, we obtain an effective interaction potential

 d d= - +[ ( ) ( )] ( )V
b

e a e
2

cos sin , 50int 2 1
3

which is convenient to extract information from. Thefirst term in equation (50) comes from theNLS equation,
being attractive/repulsive for the correct choice of δ. The second term,which appears due to the current,may
also be attractive or repulsive, but it is out of phase with the first term.However this term yields a shorter
interaction range, compared to theNLS term, hence it does not contribute significantly to the interaction
potential far from the centre of the interaction.

It is relevant to compare the interaction potentials produced by both the linear-superposition and
asymptoticmodels. Because the asymptotic calculation neglects some terms in the underlyingHamiltonian
density, compared to the linear-superposition ansatz (25), it is necessary to approximate the result produced by
the linear superposition, using the asymptotic forms, so that they can be fairly compared. This is detailed in
appendix B. Figure 7 shows a comparison between these interaction potentials, fromwhichwe can see that both
curves share the same qualitative features, with both repulsive and attractive interactions supported in a similar
manner to the standardNLS equation.

5. Conclusion

Wehave demonstrated how the current nonlinearity introduces non-integrable effects in the collision dynamics
of brightmatter-wave solitons. Using the variational approximation, we have derived an effective particlemodel
for the soliton dynamics, which helps to explain both inelastic scattering and the attractive/repulsive nature of
the interactions.We have also derived effective potentials for the interaction between the solitons.We showed
that the particlemodel is valid as long as the current nonlinearity is weak, similar to the situation in integrable
models, where inherent symmetries of the system can be exploited [54]. This fact implies that essential results
may be produced by collisions between slowlymoving solitons. For stronger interactions, the particlemodel
breaks down due to the non-integrability.We observe, in particular, how the strong current-induced
nonlinearity can destabilize bound states of solitons and also induce soliton fission, breaking two colliding
solitons into several ones after the collision.

These concepts constitute a rich spectrumof dynamics which are interesting from the point of view of the
fundamental nonlinear dynamics. In addition, the chiral properties of the quantumgas studied heremay
provide novel applications to atomtronics [68] and quantum transport. In such scenarios, careful consideration
of the collision dynamics is needed.
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AppendixA. Calculation of interaction integrals

In this appendixwe showhow to evaluate the interaction integrals which appear in the variational analysis, using
themethod of residues. These calculations can be found in the standard literature [54, 57] , but we recapitulate
details here, to provide a basis for evaluatingmore complicated integrals.

A.1. Integral example I
The simplest interaction integral to evaluate is

ò
a

a a
=

+-¥

+¥

( ) ( )
( )I b

d

cosh cosh
. A11

Toproceed, we consider the following contour integral

 
=

+
∮ ∮( )

( ) ( )
( )f z z

z

z z
zd

cosh cosh
d , A2

inwhich the contour path  forms a rectangular region in the complex plane, z=α+iy, with dimensions
−R<α<R, 0<y<π . The complex function f (z) is analytic in the region except for a pair of (simple) poles
at z1=iπ/2 and z2=iπ/2−ò . These properties are illustrated infigure 8.

In the limit of  ¥R , the contour integrals along the vertical paths vanish, as f (z) exponentially converges
to zero at = ¥z . The horizontal paths also cancel, except for a contribution from the top pathwhich is
proportional to the desired integral. Therefore, from the residue theoremwe canwrite


åp p= - =
=

∮ ( ) ( ( ) ) ( )b f z z I b f z zd i 2 i Res , . A3
k

k1
1,2

The task of evaluating I1 reduces to simply, albeit tediously, computing the residues of f (z), which are given by


p

= -

=


( ( ) ) ( ) ( )

( )
( )

f z z z z f zRes , lim

2i sinh
, A4

z z
1 1

1





p

= -

=- -


( ( ) ) ( ) ( )

( ) ( )
( )

f z z z z f zRes , lim

2i sinh sinh
. A5

z z
2 2

2

Collating the results, wefind




=
( )

( )I
b2

sinh
. A61

Figure 8.Map of the complex plane z=α+iy, highlighting the location of the poles (black dots) and contour path  (red line) for all
interaction integrals. The integration path is counter-clockwise.
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A.2. Integral example II
Amore involved example is


ò

a a
a a

a=
+

+-¥

¥ ( )
( ) ( )

( )I b
tanh

cosh cosh
d . A72

In this case, we consider the following contour integral:


 

=
+

+
∮ ∮( ) ( )

( ) ( )
( )g z z

z z

z z
zd

sinh

cosh cosh
d , A8

2

2

inwhich the contour path  is identical to the one used in the previous example. In contrast, the integrand now
contains a simple pole and a second-order one. Again, using the residue theorem,we canwrite


åp p p= - + =
=

∮ ( ) ( ( ) ) ( )b g z z I I b g z zd 2 i 2 i Res , , A9
k

k2
2

3
1,2

where the task of evaluating I2 nowdepends on computing the residues of g(z) and knowledge of the integral





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a a

a a
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+
+
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2
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2 cosh

sinh
. A10

3

2

The residues in this instance are given by
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= -

=


( ( ) ) ( ) ( )
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( )

( )

g z z z z g zRes , lim
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Collating the results, wefind

 





= - +
( )

( ) ( )
( )I

b bcosh

sinh

2

sinh
. A132

2

2

For the remaining interaction integrals, one can proceed using the samemethodology, provided that the correct
contour shift is applied to the integral, namely,

 
ò òa a a 

-¥

¥
-( ) ( ) ( )f f z z z, d , d , A14n n1

or

   
ò òa a a+  +

-¥

¥
-( )( ) ( )( ) ( )f f z z z, d , d , A15n n1

where Î +n and f (α, ò) is a product of hyperbolic functions.

Appendix B. The asymptotic approximation for the interaction potential produced by the
linear-superposition ansatz

Todirectly compare the interaction potentials derived from the variational analysis, it is necessary to reduce the
potential obtained from the linear-superpositon ansatz (25) to a formwhich captures the same approximations
whichwere used in the asymptotic version, based on ansatz (43). This can be done by introducing asymptotic
forms for each contribution to the interaction potential and selectively dropping termswhich are either short-
range ones, or contain an explicit dependence on the soliton velocities.
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We start, by explicitly restating the linear interaction potential
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 
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2 3

2 3
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2

3

which has been simplified by taking v1=0, for the case of two stationary solitons. To reduce equation (B1) to an
asymptotic form,we recall that, while deriving equation (41), we considered the dynamics of the soliton
travelling in the positive x-direction under the action of the effective potential induced by the second soliton.
Therefore, we are required to approximate the interaction potential for negative values of ò, with respect to the
second solitonwhich is centred at x=0. Then, in the samemanner as before, we introduce the following
asymptotic forms:       d d~ ~ - ~ --( ) ( ) ( ) ( )e f ecosh 2, csch 2 , , 1 2 cos , and


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g d ~ -
- + - - +

( )
( ) ( ) ( )( )

( )
f f f

f
, 1

1 1 1 2

2
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2

2

Substituting these expressions into equation (B1), one arrives at the asymptotic potential

 
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Inwriting equation (B3), we have neglected term µe3 and the term  dµ ( )a d , 61 in equation (B1), as they,
being small in the asymptotic limit, do not essentially affect the result.
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