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Abstract This paper concerns the long term behaviour of a growth model describing a
random sequential allocation of particles on a finite cycle graph. Themodel can be regarded as
a reinforced urnmodel with graph-based interaction. It is motivated by cooperative sequential
adsorption, where adsorption rates at a site depend on the configuration of existing particles
in the neighbourhood of that site. Our main result is that, with probability one, the growth
process will eventually localise either at a single site, or at a pair of neighbouring sites.
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interaction
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1 Introduction

This paper concerns a probabilistic model describing a sequential allocation of particles on
a finite cycle graph. The model is motivated by cooperative sequential adsorption (CSA)
(see [7,8] and references therein). CSA models are widely applied in physical chemistry
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Fig. 1 Multilayer adsorption/random deposition model

for modelling adsorption processes on a material surface onto which particles are deposited
at random. The main peculiarity of adsorption processes is that deposited particles change
adsorption properties of the material. This motivates the growth rates defined in Eq. (1). The
growth rates model a particular situation where the subsequent particles are more likely to
be adsorbed around previously deposited particles.

There is typically a hard-core constraint associated with CSA. That is, the adsorption
(growth) rate is zero at any location with more than a certain number of particles. The
asymptotic shape of the spatial configuration of deposited particles is of primary interest in
such models. Many probabilistic models of spatial growth by monolayer deposition, diffu-
sion and aggregation dynamics present this characteristic. For instance, the Eden model [6],
diffusion-limited aggregation process [22], first-passage percolation models [17] and contact
interaction processes [18].

In contrast, in our model (defined in Sect. 2) we allow any number of particles to be
deposited at each site. This is motivated by growing interfaces (Fig. 1) associated with
multilayer adsorption processes (see [2,10,15]). Even though the random nature of these
processes is usually emphasized in the physical literature, there is a limited number of rigorous
formulations and published results in this field (most of them in [14,16]). Ourmodel is closely
related to a variant of random deposition models, but as we do not apply any of the techniques
from this field, we refer the reader to the survey on surface growth [1].

Our model can be naturally interpreted in terms of interacting urn models. In the case of
no interaction, in which the growth rate at site i is given by Γ (xi ), where xi is the number of
existing particles at site i andΓ : Z+ → (0, ∞) is a given function (called the reinforcement
rule [4] or feedback function [12]), our model coincides with a generalised Pólya urn (GPU)
model with a particular reinforcement rule Γ. Each site (with no underlying graph structure)
corresponds to a different colour of ball. The growth rule corresponds to choosing an existing
ball of colour i, with probability proportional to Γ (xi ), and adding a new ball of that colour.
The case Γ (x) = x is the classical Pólya urn.

The so called Rubin’s exponential embedding (first appearing in [5]) classifies the two
possible limiting behaviours in the above class of GPU models. Firstly, there almost surely
exists a site i that gets all but finitely many particles. Secondly, the number of particles at
every site grows almost surely to infinity. For a comprehensive survey on urn models and
their applications, see [13] and references therein.

In contrast, we consider growth rules with graph-based interactions (as in [19]) where the
underlying graph is a cycle with N sites. In our growth model the rate of growth at site i is
given by a site-dependent reinforcement rule Γi = exp(λi ui ), where λi > 0 and ui is the
number of existing particles in a neighbourhood of site i. This allows one to take into account
the case where different sites might possibly have different reinforcement schemes (Fig. 2).
In other words, the case where each site has its own intrinsic ‘capacity’ parameter, which
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Fig. 2 An interpolated graph of a particular parameter set (λi )
20
i=1

is what would be expected in many real-life situations. Although the model can easily be
defined for a general graph, the results will heavily depend on its topological properties. In
this paper we only address the case of a cycle graph. See [3,9] for results on general graphs
but different growth rules.

The main result of the present paper classifies, in terms of the set of parameters Λ =
(λi )

N
i=1, the two possible behaviours of the model. The first behaviour is localization of

growth at a single site. Thismeans that froma randommoment of timeonwards, all subsequent
particles are allocated at a particular site. The second is localization of growth at a pair of
neighbouring sites with equal λ parameter. Similarly as in the first case, this means that from a
randommoment of time onwards, all subsequent particles are allocated at a particular pair of
neighbouring sites. In particular, if λi �= λi+1 for all i, then, with probability one, the growth
will eventually localise at a single site. On the other hand, if λi ≡ λ, then, with probability
one, the growth will eventually localise at a pair of neighbouring sites. In the general case
of a fixed and arbitrary parameter set Λ, only the above two types of limiting behaviour are
possible. Theorem 1 below provides a complete characterization of the parameter set Λ and
associated subsets where only one of the regimes, or both, may happen.

The model with Γi = exp(λui ), i.e., λi ≡ λ ∈ R, was first considered in [19], and
an analogue of Theorem 1 (Theorem3 in [19]) was proved for this particular case of site-
independent parameter λ.

The paper is organised as follows. In Sect. 2, we formally define the model, fix some
terminology and state Theorem 1 which is our main result. The proof of the theorem appears
in Sect. 6 and relies essentially on Lemmas 1–8 stated in Sect. 3 and proved in Sect. 5.
Section 4 contains results concerning sums of random geometric progressions, which are of
interest in their own right. These results combined with stochastic domination techniques are
constantly used in the proofs of Lemmas 5–8.

2 The Model and Main Result

Consider a cycle graph with N ≥ 4 vertices (sites) enumerated by the first N natural numbers
such that 1 ∼ 2 ∼ · · · ∼ N − 1 ∼ N ∼ 1, where i ∼ j indicates that sites i and j are
incident. Let Z+ be the set of non-negative integers and Λ = {λ1, . . . , λN } be an arbitrary
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set of positive real numbers. Given x = (x1, . . . , xN ) ∈ Z
N+ , define the growth rates as

Γi (x) = e
λi

(
xi+∑

j∼i x j
)
, i = 1, . . . , N . (1)

Consider a discrete-time Markov chain X (n) = (X1(n), . . . , XN (n)) ∈ Z
N+ with the follow-

ing transition probabilities

P (Xi (n + 1) = Xi (n) + 1|X (n) = x) = Γi (x)∑N
k=1 Γk(x)

, i = 1, . . . , N , x ∈ Z
N+ .

The Markov chain describes the evolution of the number of particles sequentially allocated
at each site of the graph. Given the configuration of particles X (n) = x ∈ Z

N+ at time n, the
next incoming particle is placed at site i with probability proportional to Γi (x).

Definition 1 For i ∈ {1, . . . , N } (modulo N )

(1) a site {i} is a local minimum, if λi < min(λi−1, λi+1);
(2) a pair of sites {i, i + 1} is a local minimum of size 2, if λi = λi+1 < min(λi−1, λi+2);
(3) a site {i} is a local maximum, if λi > max(λi−1, λi+1);
(4) a pair of sites {i, i + 1} is a saddle point, if

min (λi−1, λi+2) < λi = λi+1 < max (λi−1, λi+2) ;
(5) a site {i} is a growth point, if either λi−1 < λi < λi+1, or λi−1 > λi > λi+1.

Definition 2 Let {i, i +1} be a local minimum of size two.We say that it is a local minimum
of size 2 and

(1) type 1, if λi = λi+1 >
λi−1λi+2

λi−1+λi+2
,

(2) type 2, if λi = λi+1 ≤ λi−1λi+2
λi−1+λi+2

.

The following theorem is the main result of the paper.

Theorem 1 For every X (0) = x ∈ Z
N+ and

(i) for every local maximum {k}, with positive probability,

lim
n→∞ Xi (n) = ∞ if and only if i = k;

(ii) for every pair {k, k + 1} where λk = λk+1 =: λ, but not a local minimum of size 2 and
type 2, with positive probability,

lim
n→∞ Xi (n) = ∞, if and only if i ∈ {k, k + 1}, and

lim
n→∞

Xk+1(n)

Xk(n)
= eλR,

where R = limn→∞[Xk+2(n) − Xk−1(n)] ∈ Z.

No other limiting behaviour is possible. That is, with probability 1, exactly one of the above
events occurs in a random location {k} or {k, k +1} as described in (i) and (ii), respectively.
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3 Lemmas

We start with notations that will be used throughout the proofs. Given i = 1, . . . , N , define
the following events

Ai
n := {at time n a particle is placed at site i}, n ∈ Z+,

Ai,i+1
n := Ai

n ∪ Ai+1
n , n ∈ Z+.

Define also the following events

Ai[n1,n2] :=
n2⋂

n=n1

Ai
n,

Ai,i+1
[n1,n2] :=

n2⋂
n=n1

Ai,i+1
n ,

indicating that from time n1 to n2 all particles are placed at site i, and at sites i or i + 1,
respectively. Further, events Ai

[n,∞) and Ai,i+1
[n,∞) denote the corresponding limiting cases as

n2 goes to infinity.
Let ei ∈ Z

N+ be a vector, whose i th coordinate is 1, and all other coordinates are zero.
Given x ∈ Z

N+ , define the following probability measure Px(·) = P( · | X (0) = x).

Remark 1 In lemmas and proofs below we denote by ε and ε, possibly with subscripts,
various positive constants whose values do not depend on the starting configuration x and
may vary from line to line. This is essential for the proof of Theorem 1. Also, the results
are stated only for the essentially different cases, and whenever there are trivially symmetric
situations (e.g., λk−1 < λk < λk+1 and λk−1 > λk > λk+1), we state and prove only one of
them in order to avoid unnecessary repetition.

Lemma 1 Suppose that {k} is a local maximum, and x ∈ Z
N+ is such that Γk(x) =

maxi Γi (x). Then, with positive probability, all subsequent particles are allocated at k,

i.e., Px

(
Ak

[1,∞)

)
≥ ε for some ε > 0.

Lemma 1 describes the only case where localisation of growth at a single site can occur,
namely, at a local maximum.

Lemma 2 Suppose that {k} is a growth point, and x ∈ Z
N+ is such thatΓk(x) = maxi Γi (x). If

λk−1 < λk < λk+1, then there exist n = n(x, Λ) ∈ Z+ and ε > 0, such that Px(Ak[1,n]) ≥ ε

and Γk+1(x + nek) = maxi Γi (x + nek).

Lemma 3 Suppose that {k} is a localminimum, andx ∈ Z
N+ is such thatΓk(x) = maxi Γi (x).

Then there exist n = n(x, Λ) ∈ Z+ and ε > 0, such that Px(Ak[1,n]) ≥ ε andmax(Γk−1(x+
nek), Γk+1(x + nek)) = maxi Γi (x + nek).

Lemmas 2–3 describe the following effect. If the maximal rate is attained at a site which
is either a growth point or a local minimum, then, with positive probability, allocating n =
n(x, Λ) particles at that site results in relocation of the maximal rate to a nearest neighbour
with larger parameter λ. The number of particles required for relocation (the relocation time)
is deterministic and depends only on the starting configuration x and parameter set Λ.

Lemma 4 Suppose that Γk(x) = maxi Γi (x).
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(1) λk−1 < λk = λk+1 ≥ λk+2; or
(2) λk−1 = λk = λk+1 ≥ λk+2, and Γk+1(x) ≥ Γk−1(x),

then, with positive probability, all subsequent particles are allocated at sites {k, k + 1}, i.e.,
Px(A

k,k+1
[1,∞)) ≥ ε for some ε > 0.

Lemma 4 describes a particular case that implies the second possible limiting behaviour
of the model, i.e., localisation of growth at a pair of neighbouring sites.

Definition 3 Define the following stopping times

τk = inf (n : Xk(n) = Xk(0) + 1) ,

w+
k = min (τi : i �= k, k + 1, k + 2) , for k = 1, . . . , N ,

where the usual convention is that

inf(∅) = ∞ and min(a, ∞) = a, for a ∈ R+ ∪ {∞}.
The above stopping times and the quantities r, z1 and z2 below will appear throughout

Lemmas 4–8 and their proofs.

Definition 4 Given x ∈ Z
N+ define

r := r(x) = xk+2 − xk−1. (2)

In addition, if a pair of sites {k, k + 1} is such that λk = λk+1 =: λ and

λk−1 > λ, define z1 = 1

λ
log

(
λk−1 − λ

λ

)
, (3)

λk+2 > λ, define z2 = 1

λ
log

(
λ

λk+2 − λ

)
. (4)

Before stating Lemma5, let us denote by Bk the event in which a particle arrives in finite
time at k + 2 before anywhere outside {k, k + 1, k + 2}. That is to say,

Bk := {
τk+2 < w+

k

}
. (5)

Lemma 5 Suppose that a pair of sites {k, k+1} is a saddle point with λk−1 < λk = λk+1 =:
λ < λk+2, and x ∈ Z

N+ is such that

max (Γk(x), Γk+1(x)) = max
i

Γi (x). (6)

(1) Then there exists ε > 0 such that

Px

(
Ak,k+1

[1,∞)

⋃
Bk

)
= Px

(
Ak,k+1

[1,∞)

)
+ Px (Bk) ≥ ε.

(2) If r < z2, then, with positive probability, all subsequent particles are allocated at sites
{k, k + 1}, i.e., Px(A

k,k+1
[1,∞) ) ≥ ε for some ε > 0.

(3) If r ≥ z2, then Px(A
k,k+1
[1,∞)) = 0, and, hence, Px(Bk) ≥ ε.

(4) If r > z2 is strict, then, with positive probability, the maximal rate relocates as follows.
There exists ε > 0 such that

Px

(
Bk, max

i=k+2,k+3
Γi (X (τk+2)) = max

i
Γi (X (τk+2))

)
≥ ε, (7)

where maxi Γi (X (τk+2)) may be attained at k + 3 only if λk+3 > λ.
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Part (4) of Lemma 5 is similar to Lemmas 2–3 in that it also describes relocation of the
maximal rate to a site with larger parameter λ. The main difference is that in Lemma 5 the
relocation time is random. This is in contrast to Lemmas 2–3, where the relocation time is
deterministic.

The proposition and definition below are intended to clarify some assumptions and sim-
plify some notations in Lemmas6–8.

Proposition 1 Let {k, k + 1} be a local minimum of size 2 with λ = λk = λk+1, and let
r = r(x), z1 and z2 be quantities as in Definition4. Then, z1 < z2 if and only if local
minimum {k, k + 1} is of type 1, in which case there might exist x such that z1 < r < z2.
Otherwise, if a local minimum {k, k + 1} is of type 2, then z2 ≤ z1, in which case r ≥ z2 or
r ≤ z1 for all x.

Definition 5 Recall that τk := inf(n : Xk(n) = Xk(0) + 1) and let us further define the
following stopping times

σk = min (τk−1, τk+2) ,

wk = min (τi : i �= k ± 1, k, k + 2) ,

and following events

Dk = {σk < wk} ,

D′
k = {τk−1 < min (τk+2, wk)} ,

D′′
k = {τk+2 < min (τk−1, wk)} .

Note that D′
k ∩ D′′

k = ∅, Dk = D′
k ∪ D′′

k and Ak,k+1
[1,∞) ∩ Dk = ∅.

Lemma 6 Suppose that {k, k + 1} is a local minimum of size 2, and x ∈ Z
N+ is such that

max(Γk(x), Γk+1(x)) = maxi Γi (x).

(1) There exists ε > 0 such that

Px

(
Ak,k+1

[1,∞)

⋃
Dk

)
= Px

(
Ak,k+1

[1,∞)

)
+ Px (Dk) ≥ ε.

(2) If z1 < r < z2 (only possible if {k, k + 1} is of type 1), then, with positive probability,
all subsequent particles are allocated at sites {k, k + 1}, i.e., Px(A

k,k+1
[1,∞)) > ε for some

ε > 0.
(3) If r ≤ z1 or r ≥ z2 (always the case if {k, k + 1} is of type 2),

then Px(A
k,k+1
[1,∞)) = 0 and, hence, Px(Dk) ≥ ε.

Lemma 6 is analogous to Parts (1)–(3) of Lemma 5 for the case of a local minimum of
size 2. An analogue of Part (4) of Lemma 5 in the same situation is provided by Lemma 7.

Lemma 7 Suppose that local minimum {k, k + 1} is of size 2 with λk = λk+1 := λ, and
x ∈ Z

N+ is such that max(Γk(x), Γk+1(x)) = maxi Γi (x).

(1) If {k, k + 1} is of type 1 and r < z1, or {k, k + 1} is of type 2 and r < z2 then

Px

(
D′
k, max

i=k−2,k−1
Γi (X (τk−1)) = max

i=1,...,N
Γi (X (τk−1))

)
≥ ε,

for some ε > 0, where maxi Γi (X (τk−1)) may be attained at k − 2 only if λk−2 > λ.
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(2) If {k, k + 1} is of type 1 and r > z2, or {k, k + 1} is of type 2 and r > z1 then

Px

(
D′′
k , max

i=k+2,k+3
Γi (X (τk+2)) = max

i=1,...,N
Γi (X (τk+2))

)
≥ ε,

for some ε > 0, where maxi Γi (X (τk+2)) may be attained at k + 3 only if λk+3 > λ.

(3) If {k, k + 1} is of type 2 and z2 < r < z1, then

Px

(
D′
k, max

i=k−2,k−1
Γi (X (τk−1)) = max

i=1,...,N
Γi (X (τk−1))

)

+Px

(
D′′
k , max

i=k+2,k+3
Γi (X (τk+2)) = max

i=1,...,N
Γi (X (τk+2))

)
≥ ε,

for some ε > 0, where maxΓi follows the corresponding prescriptions as above.

Remark 2 The next lemma concerns the borderline cases in between having a local minimum
{k, k + 1} of size 2 and type 1 or a saddle point. For example, in notations of Lemma 7 these
cases are formally obtained by setting either λk−1 = λ (where−∞ = z1 < z2), or λk+2 = λ

(where z1 < z2 = ∞). As both cases can be addressed in similar ways, the lemma below
deals only with the case λk−1 = λ.

Lemma 8 Suppose that sites {k − 1, k, k + 1, k + 2} are such that
λk−1 = λk = λk+1 =: λ < λk+2,

x ∈ Z
N+ is such that max(Γk(x), Γk+1(x)) = maxi Γi (x) and, additionally, Γk−1(x) ≤

Γk+1(x).

(1) There exists ε > 0 such that

Px

(
Ak,k+1

[1,∞)

⋃
Dk

)
= Px

(
Ak,k+1

[1,∞)

)
+ Px (Dk) ≥ ε.

(2) If r < z2, then, with positive probability all subsequent particles are allocated at sites
{k, k + 1}, i.e., Px(A

k,k+1
[1,∞) ) ≥ ε for some ε > 0.

(3) If r ≥ z2, then Px(A
k,k+1
[1,∞)) = 0 and, hence, Px(Dk) ≥ ε.

(4) If r > z2, then there exists ε > 0 such that

Px

(
Bk, max

i=k+2,k+3
Γi (X (τk+2)) = max

i
Γi (X (τk+2))

)
≥ ε,

where maxi Γi (X (τk+2)) may be attained at k + 3 only if λk+3 > λ.

The following corollary concerns those cases covered by Parts (3) of Lemmas 5, 6 and 8,
where the configuration parameter r is equal to one of the model parameters z1 and z2. In
what follows we call them critical cases.

Corollary 1 For the critical cases, relocation of the maximal rate to a site with larger
parameter λ also occurs, with positive probability, in finite time.

Remark 3 Let us remark the following.

(1) It is important to emphasize that in all the above cases where themaximal rate maxi Γi (x)
eventually relocates with positive probability, it always relocates to a site with strictly
larger parameter λ.

(2) Note that Lemmas 2, 3, 5 and 7 can be appropriately reformulated in order to cover the
symmetric cases by simply re-labelling the graph sites in reverse order as the graph is a
cycle. For example, if {k, k +1} is a saddle point as in Lemma 5, then the corresponding
symmetric case would be λk−1 > λk = λk+1 > λk+2, etc.
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4 Random Geometric Progressions and Bernoulli Measures

The statements and propositions in this section are essential building blocks for the proof of
lemmas which follow. The reason is that along the proofs of Lemmas 4–8 we need to analyse
the limiting behaviour of random variables of the form

∑n
i=0

∏i
j=1 ζ j , as n → ∞, where

{ζ j , j ≥ 1} is an i.i.d. sequence of positive random variables. It will also be necessary to
compare such variables and introduce some stochastic domination concepts to enable us to
carry out uniform estimates not depending on the starting configuration X (0) = x. We refer
to [21] for standard definitions and basic properties of stochastic domination. The following
notations are used throughout. Given random variables X and Y (or sequences X and Y ), we
write X ≥st Y if X stochastically dominates Y. Similarly, given two probability measures ν

and μ, we write μ ≥st ν if μ stochastically dominates ν.

Random geometric progressions In this subsection we consider random variables realised on
a certain probability space (Ω, F, P). E denotes the expectation with respect to probability
measure P. If X and Y are random variables or sequences such that X ≥st Y, then we may
assume that P is a coupling of probability distributions of X and Y such that P(X ≥ Y ) = 1.
Such a coupling exists by Strassen’s theorem ([20]).

Given a random sequence ζ = {ζi , i ≥ 1}, define

Yi (ζ ) =
i∏

j=1

ζ j , i ≥ 1, Y0(ζ ) = 1, and Zn(ζ ) =
n∑

i=0

Yi (ζ ), n ≥ 1, (8)

and

Z(ζ ) =
∞∑
i=0

Yi (ζ ).

Proposition 2 (1) Let ζ = {ζi , i ≥ 1} be an i.i.d. sequence of positive random variables
such that E(log(ζi )) < 0. Then P(Z(ζ ) < ∞) = 1 and, consequently, E(e−Z(ζ )) > 0.

(2) Let θ = {θi , i ≥ 1} be another i.i.d. sequence of positive random variables such that
E(log(θi )) < 0 and θ ≥st ζ. Then E(e−Z(ζ )) ≥ E(e−Z(θ)).

Proof of Proposition 2 The first statement of the proposition is a well known simple fact in
the theory of random walk in a random environment. Indeed, denote E(log(ζi )) = a < 0.
Given δ > 0 such that a + δ < 0, it follows from the strong law of large numbers that
Yn < e(a+δ)n for all but finitely many n almost surely. Therefore, a tail of Z(ζ ) is eventually
majorised by the corresponding tail of a converging geometric progression. In turn, finiteness
of Z(ζ ) implies positiveness of the expectation. Moreover, note that eZ(·) is an increasing
function. Therefore, e−Z(ζ ) ≥st e−Z(θ) and hence, E(e−Z(ζ )) ≥ E(e−Z(θ)) as claimed. ��
Definition 6 Let ζ = {ζi , i ≥ 1} and η = {η j , j ≥ 1} be i.i.d. sequences of positive random
variables. Sequence η is said to be reciprocal to ζ if η1 has the same distribution as 1/ζ1.

The following proposition follows from basic properties of stochastic domination.

Proposition 3 Let X and Y be two i.i.d. sequences of positive random variables, and let ηX

and ηY be their corresponding reciprocal sequences. If X ≥st Y then ηX ≤st ηY .

Proposition 4 Let ζ = {ζi , i ≥ 1} be an i.i.d. sequence of positive random variables such
that E(log(ζi )) > 0. Let {Yi , i ≥ 0} and {Zn(ζ ), n ≥ 1} be the random variables as in (8).
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Define the following random sequence

Fn(ζ ) = Zn(ζ )/Yn(ζ ), n ≥ 1.

Then, Fn(ζ ) converges in distribution to

Z(η) = 1 +
∞∑
i=1

i∏
j=1

η j , as n → ∞,

where η is the sequence reciprocal to ζ. Moreover, Z(η) is almost surely finite and Z(η) ≥st

Fn(ζ ) for any n ≥ 1.

Proof of Proposition 4 First, note that for every n ≥ 1,

Fn(ζ ) = 1 +
n∑

i=1

i∏
j=1

ζ−1
n− j+1 = 1 +

n∑
i=1

i∏
j=1

η
(n)
j ,

where η
(n)
j = ζ−1

n− j+1. This means that Fn(ζ ) has the same distribution as Zn(η) defined for
the sequence η = {ηi , i ≥ 1} reciprocal to ζ. Therefore, Fn(ζ ) converges in distribution
to Z(η). In addition, E(log(η1)) = −E(log(ζ1)) < 0. Therefore, by Proposition2, Z(η) is
almost surely finite. Finally, it follows by construction that Z(η) ≥st Fn(ζ ), n ≥ 1. ��
Proposition 5 Let ζ = {ζi , i ≥ 1} be an i.i.d. sequence of positive random variables such
that E(log(ζi )) = a > 0, and η = {ηi , i ≥ 1} be its reciprocal sequence. Given 0 < γ < 1,
define the following stopping time

m̂ = min (n : γYn(ζ ) ≥ 1) . (9)

Then both Z(η) < ∞ and Zm̂−1(ζ ) < ∞ almost surely, γ Zm̂−1(ζ ) ≤st Z(η), and, hence,

E
(
e−γ Zm̂−1(ζ )

)
≥ E

(
e−Z(η)

)
> 0. (10)

Proof of Proposition 5 By Proposition4, Z(η) is almost surely finite and Fn(ζ ) ≤st Z(η)

for all n ≥ 1. Therefore, Fm̂−1(ζ ) ≤st Z(η). Since γYm̂−1(ζ ) < 1 we obtain that

γ Zm̂−1(ζ ) < Zm̂−1(ζ )/Ym̂−1(ζ ) = Fm̂−1(ζ ).

Consequently, γ Zm̂−1(ζ ) ≤st Z(η), which implies (10) as claimed. ��
Proposition 6 Let ζ = (ζi , i ≥ 1) and θ = (θi , i ≥ 1) be i.i.d. sequences of positive
random variables such that E(log(θ1)) > 0 and ζ1 ≥st θ1. Let ηζ and ηθ be sequences
reciprocal to ζ and θ, respectively. Given 0 < γ < 1, let m̂ be the stopping time for
sequence ζ as in (9). Then

E
(
e−γ Zm̂−1(ζ )

)
≥ E

(
e−Z(ηθ )

)
.

Proof of Proposition 6 Note that ζ1 ≥st θ1 implies E(log(ζ1)) > 0. By Proposition4 both
Z(ηζ ) and Z(ηθ ) are almost surely finite. Further, by Proposition3 ηζ ≤st ηθ . Therefore

E
(
e−Z(ηζ )

)
≥ E

(
e−Z(ηθ )

)
.

By Proposition5, it follows that

E
(
e−γ Zm̂−1(ζ )

)
≥ E

(
e−Z(ηζ )

)
≥ E

(
e−Z(ηθ )

)

as claimed. ��
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Bernoulli measures Now, we introduce a family of Bernoulli measures and some notations
that will be used throughout proofs of Lemmas 4–8.

Let ξ = (ξi , i ≥ 1) be a sequence of independent Bernoulli randomvariableswith success
probability p. Let μp be the distribution of ξ, that is, the product Bernoulli measure defined
on the set of infinite binary sequences, and denote by Ep the expectation with respect to the
Bernoulli measure μp.

Define

Ui = ξ1 + · · · + ξi , i ≥ 1, (11)

the binomial random variables corresponding to a Bernoulli sequence ξ.

Let λk−1, λk, λk+1 and λk+2 be λ-parameters corresponding to quadruples {k−1, k, k+
1, k + 2} of the graph sites such that λ = λk = λk+1 as in Lemmas 4–8. Let us define the
following i.i.d. sequences

ζ1 =
(
ζ1,i = eλk−1(1−ξi )−λ, i ≥ 1

)
,

ζ2 = (
ζ2,i = eλk+2ξi−λ, i ≥ 1

)
.

(12)

It is a well known fact that if 0 < p′ ≤ p′′ < 1, then μp′ ≤st μp′′ . This fact yields the
following proposition.

Proposition 7 Let ζ ′
1, ζ ′

2 and ζ ′′
1 , ζ ′′

2 be sequences defined by (12) for Bernoulli sequences
with success probabilities p′ and p′′, respectively. If 0 < p′ ≤ p′′ < 1, then ζ ′

1 ≥st ζ ′′
1 and

ζ ′
2 ≤st ζ ′′

2 .

Note that variables Zn [defined in (8)] corresponding to sequences ζ1 and ζ2 can be expressed
in terms of Binomial random variables (11) as follows

Zn (ζ1) =
n∑

i=0

eλk−1(i−Ui )−λi and Zn (ζ2) =
n∑

i=0

eλk+2Ui−λi . (13)

It is useful to note that if λk−1 = λk+2 = λ, then the above expressions are

Zn (ζ1) =
n∑

i=0

e−λUi and Zn (ζ2) =
n∑

i=0

eλ(Ui−i).

5 Proofs of Lemmas

In the following proofs we show the existence of positive real constants C, c, ε and ε, whose
exact values are immaterial and may vary from line to line, but which do not depend on
the starting configuration X (0) = x. In order to avoid notational clutter we shall denote
initial allocation rates Γi (x) simply by Γi for all i. Moreover, whenever we fix index k ∈
{1, . . . , N } and consider indices in the neighbourhoodof k, those indices should be interpreted
as modulo N .

5.1 Proofs of Lemmas 1–3

For short, denote B = ∑
i �=k,k±1 Γi and Z = ∑N

i=1 Γi .Byassumption,Γk = maxi=1,...,N Γi ,

then

Γk−1

Γk
≤ 1,

Γk+1

Γk
≤ 1, Γk ≥ Z

N
and

Z − Γk

Z
≤ (N − 1)

N
. (14)
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It follows from the last two inequalities that

B

Γk
≤ N − 1. (15)

Proof of Lemma 1 Recall that λk > max(λk−1, λk+1). We need to prove the existence of a
positive number ε such that

Px

(
Ak

[1,∞)

)
=

∞∏
n=0

Γkeλkn

Γk−1eλk−1n + Γkeλkn + Γk+1eλk+1n + B
> ε, (16)

where ε > 0 depends only on λk−1, λk, λk+1 and N .

Indeed, rewriting the identity in (16) and applying bounds (14) and (15),

Px

(
Ak

[1,∞)

)

= exp

(
−

∞∑
n=0

log

(
1 + Γk−1

Γk
e(λk−1−λk )n + Γk+1

Γk
e(λk+1−λk )n + B

Γk
e−λkn

))

≥ exp

(
−

∞∑
n=0

log
(
1 + e(λk−1−λk )n + e(λk+1−λk )n + (N − 1)e−λkn

))

≥ exp

(
−C

∞∑
n=0

(
e(λk−1−λk )n + e(λk+1−λk )n + (N − 1)e−λkn

))
> ε > 0,

since the series in the exponent above converges. It is not hard to see that in the last inequality,
ε should depend only on λk−1, λk, λk+1 and N . ��

Proof of Lemma 2 Recall that λk−1 < λk < λk+1. We need to prove the existence of a finite
positive integer n̂ and a positive number ε such that

Γk+1e
λk+1n̂ ≥ Γke

λk n̂ > max

(
Γk−1e

λk−1n̂, max
i �=k,k±1

Γi

)

and

Px

(
Ak

[1,n̂]
)

=
n̂−1∏
n=0

Γkeλkn

Γk−1eλk−1n + Γkeλkn + Γk+1eλk+1n + B
> ε, (17)

where ε > 0 depends only onλk−1, λk, λk+1 and N .Note that the sequence e(λk+1−λk )n, n ≥
0 is exponentially increasing, so there exists the minimal integer n̂ such that

e(λk+1−λk )n̂ ≥ Γk

Γk+1
, that is,

Γk+1(x + n̂ek)
Γk(x + n̂ek)

≥ 1.

Then, it is easy to see that

Γk+1

Γk

n̂−1∑
n=0

e(λk+1−λk )n ≤ C1 < ∞, (18)
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where C1 depends only on λk and λk+1. Further, rewriting the identity in (17) and using
bounds (14), (15) and (18), gives that

Px

(
Ak

[1,n̂]
)

= exp

⎛
⎝−

n̂−1∑
n=0

log

(
1 + Γk−1

Γk
e(λk−1−λk )n + Γk+1

Γk
e(λk+1−λk )n + B

Γk
e−λkn

)⎞
⎠

≥ exp

⎛
⎝−

n̂−1∑
n=0

log

(
1 + e(λk−1−λk )n + Γk+1

Γk
e(λk+1−λk )n + (N − 1)e−λkn

)⎞
⎠

≥ exp

⎛
⎝−C2

n̂−1∑
n=0

(
e(λk−1−λk )n + Γk+1

Γk
e(λk+1−λk )n + (N − 1)e−λkn

)⎞
⎠ > ε,

for some ε > 0. ��
Proof of Lemma 3 Recall that λk < min(λk−1, λk+1). As in the proof of Lemma 2, we need
to show existence of a finite positive integer n̂ and a positive ε such that

max
(
Γk−1e

λk−1n̂, Γk+1e
λk+1n̂

)
≥ Γke

λk n̂ ≥ max
i �=k,k±1

Γi

and

Px

(
Ak

[1,n̂]
)

=
n̂−1∏
n=0

Γkeλkn

Γk−1eλk−1n + Γkeλkn + Γk+1eλk+1n + B
> ε,

where ε > 0 depends only on λk−1, λk, λk+1 and N . This can be shown similar to the proof
of Lemma 2, and we skip details. ��
5.2 Proofs of Lemmas 4–8

5.2.1 Notations

We start with some preliminary considerations and notations that will be used throughout the
proofs of Lemmas 4–8.

Let {k, k + 1} be a pair of sites such that λk = λk+1 = λ. If, as defined in Definition 2,
r = r(x) = xk+2 − xk−1, then

Γk+1(x)
Γk (x)

= eλr . Therefore, given that the next particle is
allocated at either k or k + 1, the conditional Px-probability to choose k + 1 is equal to

p := p(r) = Γk+1(x)
Γk(x) + Γk+1(x)

= eλr

1 + eλr
. (19)

We henceforth denote q = 1 − p. Furthermore, probability p does not change by adding
particles at sites k and k + 1 since configuration parameter r remains constant.

Note that p(z), considered as a function of z ∈ R, is monotonically increasing. A direct
computation gives that unique solutions of equationsλk−1−λ = p(z)λk−1 andλk+2 p(z) = λ

are quantities z1 and z2 [defined in (3)], respectively.
Let Sn be the number of additional particles at site k + 1 at time n ≥ 1. Let S0 =

0 and s(n) = (s0, s1, . . . , sn) be a fixed trajectory of a finite random sequence S(n) =
(S0, S1, . . . , Sn).Note that, by construction, any trajectory s(n) is a sequence of non-negative
integers such that s0 = 0 and si − si−1 ∈ {0, 1}, i = 1, . . . , n.
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For short, denote

Γi = Γi (x), Γ̃k =
∑

i �=k,k±1,k+2

Γi ,

γk,1 = Γk−1

Γk + Γk+1
, γk,2 = Γk+2

Γk + Γk+1
, γ̃k = Γ̃k

Γk + Γk+1
.

(20)

In the rest of this sectionweare going toderive expressions for probabilitiesPx(A
k,k+1
[1,n+1]), n ≥

1, in terms of expectations with respect to a Bernoulli product measure on {0, 1}∞ with
parameter p defined in (19). These expressions allow one to obtain lower and upper bounds
for the above probabilities. We start with the case of fixed n and then extend it to the case
where n is a stopping time.

In the above notations

Px

(
Ak,k+1
i+1 , Si+1 = si+1

∣∣∣∣Ak,k+1
[1,i] , Si = si

)

= psi+1−si q1−(si+1−si )(Γk + Γk+1)eλi

(Γk + Γk+1)eλi + Γk−1eλk−1(i−si ) + Γk+2eλk+2si + Γ̃k

= psi+1−si q1−(si+1−si )

1 + γk,1eλk−1(i−si )−λi + γk,2eλk+2si−λi + γ̃ke−λi
.

Then, given n we obtain by repeated conditioning that

Px

(
Ak,k+1

[1,n+1], Sn+1 = sn+1, . . . , S1 = s1
)

= psn+1qn+1−sn+1Wn (s1, . . . , sn) ,

where

Wn (s1, . . . , sn) =
n∏

i=0

1

1 + γk,1eλk−1(i−si )−λi + γk,2eλk+2si−λi + γ̃ke−λi
. (21)

Consequently, we get that

Px

(
Ak,k+1

[1,n+1]
)

=
∑

s(n+1)

psn+1qn+1−sn+1Wn (s1, . . . , sn) ,

=
∑
s(n)

(p + q)psnqn−snWn (s1, . . . , sn) ,

=
∑
s(n)

psnqn−snWn (s1, . . . , sn) ,

(22)

where the sum in the first line is over all possible trajectories s(n + 1) = (s1, . . . , sn+1)

of S(n + 1) = (S1, . . . , Sn+1) and the other two are over all possible trajectories s(n) =
(s1, . . . , sn) of S(n) = (S1, . . . , Sn). Therefore, we arrive to the following equation

Px

(
Ak,k+1

[1,n+1]
)

= Ep (Wn (U1, . . . ,Un)) , (23)

where Ep is the expectation with respect to the Bernoulli measure μp defined in Sect. 4 and
Ui , i ≥ 1, are Binomial random variables defined in (11).

Further, assumptions of Lemmas4–8 imply that Γi
Γk+Γk+1

≤ 1, i = 1, . . . , N . Therefore,
quantity γ̃k defined in (20) can be bounded as follows

γ̃k ≤ (N − 4). (24)
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Using bound (24) and inequality log(1 + z) ≤ z for all z ≥ 0 we obtain that

Wn (s1, . . . , sn) ≥
n∏

i=0

1

1 + γk,1eλk−1(i−si )−λi + γk,2eλk+2si−λi + (N − 4)e−λi

= e− ∑n
i=0 log(1+γk,1e

λk−1(i−si )−λi+γk,2e
λk+2si−λi+(N−4)e−λi )

≥ e
−

(∑n
i=0 γk,1e

λk−1(i−si )−λi+γk,2e
λk+2si−λi+c1e−c2 i

)

≥ δe−γk,1
∑n

i=0 e
λk−1(i−si )−λi

e−γk,2
∑n

i=0 e
λk+2si−λi

,

for some δ > 0 not depending on the configuration x. On the other hand, note that

Wn (s1, . . . , sn) ≤
n∏

i=0

1

1 + γk,1eλk−1(i−si )−λi + γk,2eλk+2si−λi
. (25)

The above inequalities yield the following lower and upper bounds

Px

(
Ak,k+1

[1,n+1]
)

≥ δEp

(
e−γk,1

∑n
i=0 e

λk−1(i−Ui )−λi
e−γk,2

∑n
i=0 e

λk+2Ui−λi
)

, (26)

Px

(
Ak,k+1

[1,n+1]
)

≤ Ep

(
n∏

i=0

1

1 + γk,1eλk−1(i−Ui )−λi + γk,2eλk+2Ui−λi

)
. (27)

We will also need a generalisation of lower bound (26) for probabilities Px(A
k,k+1
[1,τ ] ), where

τ is one of the following stopping times, min(n : Sn − c1n ≥ c2), min(n : n− Sn ≥ c3), and
the minimum of two such stopping times. At the moment, we shall not further specify such
stopping times as it will be clear later which one it refers to. Arguing similarly as in Eq. (22),
one can obtain that

Px

(
Ak,k+1

[1,τ ]
)

=
∞∑
n=0

∑
s(n)

psn qn−snWn(s1, . . . , sn)1{Mn},

whereMn is a set of paths s(n) = (s1, . . . , sn) for which τ = n + 1. Furthermore, similar to
Eq. (23), we can rewrite equation above as

Px

(
Ak,k+1

[1,τ ]
)

= Ep (Wτ̃ (U1, . . . ,Uτ̃ )) ,

where τ̃ is a stopping time defined by replacing Sn by Un in the same way as τ but in terms
of random variables Un . Proceeding similar to how we got lower bound (26) we obtain the
following lower bound

Px

(
Ak,k+1

[1,τ ]
)

≥ δEp

(
e−γk,1

∑τ̃−1
i=0 eλk−1(i−Ui )−λi

e−γk,2
∑τ̃−1

i=0 eλk+2Ui−λi
)

. (28)

Let us rewrite the lower bounds in terms of random sequences ζ1, ζ2 and Zn as defined in
(12) and (13). In these notations, lower bounds (26) and (28) take the following form

Px

(
Ak,k+1

[1,n+1]
)

≥ δEp

(
e−γk,1Zn(ζ1)e−γk,2Zn(ζ2)

)
(29)

and

Px

(
Ak,k+1

[1,τ ]
)

≥ δEp

(
e−γk,1Z τ̃−1(ζ1)e−γk,2Z τ̃−1(ζ2)

)
(30)

respectively.
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Finally, letting n → ∞ in (26) and (29) we obtain the following bound

Px

(
Ak,k+1

[1,∞)

)
≥ δEp

(
e−γk,1

∑∞
i=0 e

λk−1(i−Ui )−λi
e−γk,2

∑∞
i=0 e

λk+2Ui−λi
)

= δEp

(
e−γk,1Z(ζ1)e−γk,2Z(ζ2)

)
.

(31)

5.2.2 Proof of Lemma 4

We start with the following proposition.

Proposition 8 Let μp be the Bernoulli measure defined in Sect. 4, and let Un, n ≥ 1, be the
corresponding Binomial random variables [defined in (11)]. Then

(1) given ε ∈ (0, 1) and κ > 0, there exist positive constants c1 and c2 such that

inf
p∈(0, 1)

μp

( ∞⋂
n=M

{n
2
p(1 − κ) − c1 ≤ Un ≤ np(1 + κ) + c2

})
≥ ε, (32)

where M = [p−1] is the integer part of p−1;
(2) given λ > 0, there exists ε1 > 0 such that

inf
p∈(0, 1)

Ep

(
e−p

∑∞
i=0 e

−λUi
)

≥ ε1.

Proof of Proposition 8 Set U0 = 0 and define the following random variables

Vj = UjM −U( j−1)M =
jM∑

i=( j−1)M+1

ξi , j ≥ 1,

Y j = V1 + · · · + Vj , j ≥ 1,

Y0 = 0.

First, denote a(p) := Ep(Vi ) = pM = p[p−1] and note that a(p) ∈ [1/2, 1] for all
p ∈ (0, 1). Moreover, Var(Vi ) = Ep(V 2

i ) − (Ep(Vi ))2 = p(1 − p)[p−1] ≤ 1. Now,
consider the auxiliary process χn := Yn − n(1 − κ)/2 + c′, with χ0 = c′. Note that
Ep(χn+1 −χn |χn = χ) = a(p)− (1− κ)/2 > 0. Moreover, if we define the stopping time
tx = minn≥0{χn < x}, it follows from [11, Theorem 2.5.18] that there exist x1 and α > 0
such that

P

( ∞⋂
n=1

{
Yn ≥ n

2
(1 − κ) − (

c′ − x1
)})

= P
(
tx1 = ∞) ≥ 1 −

(
1 + x1
1 + χ0

)α

.

So, for every ε ∈ (0, 1) and κ > 0, we can appropriately choose α and χ0 = c′ > x1
such that the probability in the above display is greater than ε/2. Analogously, if we define
χn = −Yn + n(1 + κ), the upper bound can be found exactly as above, yielding

μp

( ∞⋂
n=1

{n
2
(1 − κ) − c ≤ Yn ≤ n(1 + κ) + c

})
≥ ε. (33)

Further, fix n ≥ M. Let mn and ln be integers such that n = mnM + ln, where ln < M.

Then on event
⋂∞

n=1

{ n
2 (1 − κ) − c ≤ Yn ≤ n(1 + κ) + c

}
the following bounds hold

Un ≥ Ymn ≥ 1

2

(
n

M
− ln

M

)
(1 − κ) − c ≥ 1

2
np(1 − κ) − c1, (34)
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and

Un ≤ Ymn+1 ≤
(

n

M
+ M − ln

M

)
(1 + κ) + c ≤ np(1 + κ) + c2. (35)

Inequalities (33)–(35) yield bound (32).
Recall that M = [p−1], and so,

p
M−1∑
i=0

e−λUi ≤ pM ≤ 1.

By combining this bound with bound (32), it follows that given ε ∈ (0, 1) and κ > 0 we can
find c1 > 0 such that with μp-probability at least ε

p
∞∑
i=0

e−λUi ≤ 1 + p
∞∑

i=M

e
−λ

(
1
2 pi(1−κ)−c1

)
≤ C (36)

for some deterministic constant C = C(ε, λ) and all p ∈ (0, 1). Therefore

inf
p∈(0, 1)

Ep

(
e−p

∑∞
i=0 e

−λUi
)

≥ εe−C = ε1 > 0,

as required. ��
We are now ready to proceed with the proof of the lemma. Recall that λk = λk+1 =: λ.

Proof of Part (1) of Lemma 4 Recall that in this case λk−1 < λk = λk+1 = λ, λ ≥ λk+2

and Γk = maxi Γi . Then,

γk,1Z (ζ1) = γk,1

∞∑
i=0

eλk−1(i−Ui )−λi ≤
∞∑
i=0

e−(λ−λk−1)i ≤ C1 < ∞, (37)

where C1 > 0 is a deterministic constant and we used that γk,1 ≤ 1.
Further, if λ > λk+2, then

γk,2Z (ζ2) = γk,2

∞∑
i=0

eλk+2Ui−λi ≤
∞∑
i=0

e−(λ−λk+2)i ≤ C2 < ∞, (38)

where C2 > 0 is a deterministic constant and we used that γk,2 ≤ 1. Then, using bounds
(37) and (38) in lower bound (31) gives that Px(A

k,k+1
[1,∞)) ≥ ε for some ε > 0, as claimed.

If λ = λk+2, then bound (38) cannot be used, and we proceed as follows. Note that in this
case

γk,2Z (ζ2) = γk,2

∞∑
i=0

eλ(Ui−i) ≤ q
∞∑
i=0

eλ(Ui−i), (39)

as

γk,2 = Γk+2

Γk + Γk+1
≤ Γk

Γk + Γk+1
= q = 1 − p, (40)

where p is defined in (19). Further, combining bounds (37) and (39) in (31) we get that

Px

(
Ak,k+1

[1,∞)

)
≥ ε1Ep

(
e−q

∑∞
i=0 e

λ(Ui−i)
)

= ε1Ep

(
e−p

∑∞
i=0 e

−λUi
)

,
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where the equality holds by symmetry. It is left to note that the expectation in the right side
of the last equation is bounded below uniformly over p ∈ (0, 1) by Part (2) of Proposition 8.

��
Proof of Part (2) of Lemma 4 Recall that in this case λk−1 = λk = λk+1 = λ ≥ λk+2,

Γk = maxi Γi and Γk−1 ≤ Γk+1. These conditions give that eλk−1(i−Ui )−λi = e−λUi ,

eλk+2Ui−λi ≤ eλ(Ui−i), and

γk,1 = Γk−1

Γk + Γk+1
≤ Γk+1

Γk + Γk+1
= p. (41)

Recall also that γk,2 ≤ q = 1− p [see (40)]. Using all these inequalities in lower bound (31)
gives the following lower bound

Px

(
Ak,k+1

[1,∞)

)
≥ δEp

(
e−p

∑∞
i=0 e

−λUi e−q
∑∞

i=0 e
λ(Ui−i)

)
. (42)

We have already shown in (36) that for any ε ∈ (0, 1) there exists constant C = C(ε) > 0
such that

μp

(
p

∞∑
i=0

e−λUi ≤ C

)
≥ ε and μp

(
q

∞∑
i=0

eλ(Ui−i) ≤ C

)
≥ ε (43)

for all p, where the second bound holds by symmetry. Choosing ε > 0.5 we get that

μp

(
p

∞∑
i=0

e−λUi ≤ C, q
∞∑
i=0

eλ(Ui−i) ≤ C

)
≥ 2ε − 1 > 0,

for all p. Combining this bound with Eq. (42) we finally obtain that Px(A
k,k+1
[1,∞) ) ≥ ε2 for

some ε2 > 0, as claimed. ��

5.2.3 Proof of Lemma 5

Proof of Part (1) of Lemma 5 Note that at every time a particle is added to site k or k+1, the
allocation rates at these sites are multiplied by eλ. In particular, if a particle is added to site k,
then the allocation rate at k−1 is multiplied by eλk−1 . Otherwise, if a particle is added to site
k + 1, then the allocation rate at k + 2 is multiplied by eλk+2 . Other rates remain unchanged.
Thus, by allocating a particle at k or k + 1, the sum of rates at k, k + 1 and k + 2 over the
sum of rates at all other sites is increased by a multiple constant. This yields the following
exponential bound

Px

⎛
⎝ ⋃

i �=k,k+1,k+2

Ai
n+1

∣∣∣∣Ak,k+1
[1,n]

⎞
⎠ ≤ C1e

−C2n, (44)

for some C1, C2 > 0. In turn, bound (44) implies that with a positive probability (not
depending on x) event Ak,k+1

[1,∞) ∪ {τk+2 < w+
k } occurs as claimed. Note also that events

Ak,k+1
[1,∞) and {τk+2 < w+

k } are mutually exclusive. Thus, with a positive probability either all
particles will be allocated at k and k + 1, or a particle is eventually placed at k + 2 before
anywhere else outside k, k + 1 and k + 2. Placing a particle at k + 2 can violate condition
(6) because the maximal allocating probability can be now attained at sites k + 2 and k + 3
as well. Part (1) of Lemma5 is proved. ��
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Proof of Part (2) Lemma 5 Note that eλk−1(i−Ui )−λi < e−(λ−λk−1)i and λk−1 < λ. Conse-
quently, for any n

Zn (ζ1) =
n∑

i=0

eλk−1(i−Ui )−λi ≤
∞∑
i=0

e−(λ−λk−1)i < C < ∞. (45)

Note also that γk,1 ≤ 1 and γk,2 ≤ 1. Combining these inequalities with Eq. (45) and letting
n → ∞ in (29) gives that

Px

(
Ak,k+1

[1,∞]
)

≥ ε1Ep

(
e−Z(ζ2)

)
,

for some ε1 > 0. Further, assumption r < z2 implies that λk+2 p − λ < 0. Recall that
parameter r = xk+2 − xk−1 takes integer values, and p = p(r) is a monotonically increasing
function of r. Let r0 be the maximal integer such that r < z2 and p0 = p(r0), so that
λk+2 p0 − λ < 0. It follows from Propositions 2 and 7 that for all 0 < p < p0

Ep

(
e−Z(ζ2)

)
≥ Ep0

(
e−Z(ζ2)

)
> 0,

and, hence,Px(A
k,k+1
[1,∞] ) ≥ ε for some uniform ε > 0 over configurations x satisfying r < z2.

Part (2) of Lemma5 is proved. ��
Proof of Part (3) of Lemma 5 We are going to use the following relaxation of upper bound
(27)

Px

(
Ak,k+1

[1,n+1]
)

≤ Ep

(
n∏

i=0

1

1 + γk,2eλk+2Ui−λi

)
. (46)

Next, assumption r ≥ z2 implies that λk+2 p − λ ≥ 0. Therefore, by the strong law of
large numbers, we get that μp-a.s. λk+2Ui − λi ≥ 0 for infinitely many i and, hence,∏n

i=0
1

1+γk,2e
λk+2Ui−λi → 0. The product is bounded by 1, therefore, by the Lebesgue’s

dominated convergence theorem, the expectation in the right side of (46) tends to 0 asn → ∞,

which implies that

Px

(
Ak,k+1

[1,∞]
)

= lim
n→∞Px

(
Ak,k+1

[1,n+1]
)

= 0, (47)

as claimed. Note that Eq. (47) combined with Part (1) of the lemma further yields that
Px(τk+2 < w+

k ) > ε for some ε. ��
Proof of Part (4) of Lemma 5 Define

n̂ = min
(
n : γk,2e

λk+2Sn−λn ≥ 1
)

. (48)

In other words, n̂ is the first time when the allocation rate at site k + 2 exceeds the sum of
allocation rates at sites k and k + 1, becoming therefore, the maximal rate.

Applying lower bound (30) gives that

Px

(
Ak,k+1

[1,̂n]
)

≥ δEp

(
e−γk,1Zm̂−1(ζ1)e−γk,2Zm̂−1(ζ2)

)
, (49)

where

m̂ = min
(
m : γk,2e

λk+2Um−λm ≥ 1
)

. (50)
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Equation (45) yields that γk,1Zm̂−1(ζ1) < Z(ζ1) < C < ∞. This allows us to rewrite
bound (49) as follows Px(A

k,k+1
[1,̂n] ) ≥ ε2Ep(e−γk,2Zm̂−1(ζ2)), for some ε2. By assumption

r > z2. Let now r0 be the minimal integer such that r0 > z2 and p0 = p(r0). Then
λk+2 p − λ > λk+2 p0 − λ > 0 for any p > p0. It follows from Propositions 6 and 7 that for
all p > p0

Ep

(
e−γk,2Zm̂−1(ζ2)

)
≥ Ep0

(
e−Z(η2)

)
> 0,

where η2 is the sequence reciprocal to ζ2. Hence Px(A
k,k+1
[1,̂n] ) ≥ ε2ε2 > 0.

Next, recall event Bk defined in (5). Note that Ak,k+1
[1,̂n] ∩ Ak+2

n̂+1 ⊆ Bk, so that Px(Bk) ≥
ε2ε2/N > 0 as well.

It is left to show that the maximal rate maxi Γi relocates as described in (7). Clearly, this
is always the case if λ < min(λk+2, λk+3). This might not be the case in the following
particular situation. Namely, suppose that λk+3 ≤ λ and initial configuration x is such that
Γk = maxi Γi and Γk+3eλk+3 ≥ Γk . In this case, if τk+2 = 1, then the maximal rate might
move to k+3.However, note that τk+2 ≥ 2 on event Ak,k+1

[1,̂n] . Indeed, by definition (48) n̂ ≥ 1,
and, hence, on this event τk+2 ≥ 2 as τk+2 > n̂, so that at least one particle is deposited at
{k, k + 1} by time τk+2. It is not hard to check that placing one particle at {k, k + 1} makes
impossible that relocation of maxi Γi to k + 3 when λk+3 ≤ λ. ��

5.2.4 Proof of Lemma 6

First, note that the proof of Part (1) of Lemma6 is analogous to the proof of Part (1) of
Lemma5 and we omit technical details. For simplicity of notation we denote λ = λk = λk+1

in the rest of the proof.

Proof of Part (2) of Lemma 6 Recall lower bound (31)

Px

(
Ak,k+1

[1,∞]
)

≥ δEp

(
e−γk,1Z(ζ1)e−γk,2Z(ζ2)

)
.

Note that z1 < r < z2 if and only if both λk−1(1− p)−λ < 0 and λk+2 p−λ < 0.Therefore,
it follows from Proposition2 that μp-a.s. both Z(ζ1) < ∞ and Z(ζ2) < ∞. Consequently,

Ep

(
e−γk,1Z(ζ1)e−γk,2Z(ζ2)

)
≥ Ep

(
e−Z(ζ1)e−Z(ζ2)

)
≥ ε(p) > 0,

as γk,i ≤ 1, i = 1, 2, so that Px(A
k,k+1
[1,∞] ) ≥ δε(p). It is left to note that there is a finite

number (depending only on λ’s) of possible values of integer-valued parameter r satisfying
z1 < r < z2, and, hence, the same number of possible values of probability p. Therefore,
constant ε(p) can be chosen as the minimal one for those values of p. This concludes the
proof of the second part of the lemma. ��
Proof of Part (3) of Lemma 6 Let us start by noting the following. Assumption r ≤ z1
implies that λk−1(1 − p) − λ ≥ 0, and assumption r ≥ z2 implies that λk+2 p − λ ≥ 0.
Therefore, the law of large numbers yields that μp-a.s. at least one of the following events
{λk−1(i −Ui ) − λi ≥ 0} and {λk+2Ui − λi ≥ 0} occurs for infinitely many i. Consequently,
μp-a.s.

∏n
i=0

1
1+γk,1e

λk−1(i−Ui )−λi+γk,2e
λk+2Ui−λi → 0, as n → ∞. Using bound (27) and the

Lebesgue dominated convergence theorem, we obtain that

Px

(
Ak,k+1

[1,n+1]
)

≤ Ep

(
n∏

i=0

1

1 + γk,1eλk−1(i−Ui )−λi + γk,2eλk+2Ui−λi

)
→ 0,
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as n → ∞. Hence, Px(A
k,k+1
[1,∞] ) = 0, and, hence, Px(Dk) ≥ ε, as claimed. ��

5.2.5 Proof of Lemma 7

The proof here is similar to the proof of Part (4) of Lemma5. The common starting point is
the lower bound (30) where τ and τ̃ are appropriately chosen stopping times.

Proof of Parts (1) and (2) of Lemma 7 First, note that the random variables Z(ζ1) and Z(ζ2)

are finite if λk−1(1− p)−λ < 0 and λk+2 p−λ < 0, respectively. In fact, by our assumptions,
precisely one of these conditions is necessarily satisfied so that one of Z(ζ1) and Z(ζ2) is
almost surely finite. Then we apply bound (30) with the corresponding pair of stopping times
(τ, τ̃ ) = (̂n2, m̂2) or (τ, τ̃ ) = (̂n1, m̂1) respectively, where

n̂1 = min
(
n : γk,1e

λk−1(n−Sn)−λn ≥ 1
)

,

n̂2 = min
(
n : γk,2e

λk+2Sn−λn ≥ 1
)

,

m̂1 = min
(
m : γk,1e

λk−1(m−Um )−λm ≥ 1
)

,

m̂2 = min
(
m : γk,2e

λk+2Um−λm ≥ 1
)

.

For concreteness, consider the casewhere {k, k+1} is of type 2 and r > z1 ≥ z2, in which
case λk−1(1− p)−λ < 0 and λk+2 p−λ > 0.Applying bound (30) with (τ, τ̃ ) = (̂n2, m̂2)

yields that

Px

(
Ak,k+1

[1,̂n2]
)

≥ δEp

(
e−γk,1Zm̂2−1(ζ1)e−γk,2Zm̂2−1(ζ2)

)
.

Condition λk−1(1− p)−λ < 0 and Proposition 2 imply that Z(ζ1) < ∞ μp-a.s. Therefore,
we can bound γk,1Zm̂2−1(ζ1) ≤ Z(ζ1), as γk,1 ≤ 1. Also, condition λk+2 p − λ > 0 and
Proposition5 imply that γk,2Zm̂2−1(ζ2) < ∞ μp-a.s. Combining the above, we get to the
following lower bound

Px

(
Ak,k+1

[1,̂n2]
)

≥ δEp

(
e−Z(ζ1)e−γk,2Zm̂2−1(ζ2)

)
.

Moreover, let η2 be the sequence reciprocal to ζ2. Then, applying Proposition5 again, we
get that Z(η2) < ∞ μp-a.s., Z(η2) ≥st γ Zm̂−1(ζ2) and

Ep

(
e−Z(ζ1)e−γ Zm̂−1(ζ2)

)
≥ Ep

(
e−Z(ζ1)e−Z(η2)

)
> 0.

Let us show that, when r > z1, the expectation in the right side of the preceding display is
uniformly bounded below over p = p(r). To this end, take the minimal integer r0 such that
r0 > z1 so that condition r > z1 implies p > p0 = p(r0), and, hence, λk−1(1 − p) − λ <

λk−1(1 − p0) − λ < 0 and λk+2 p − λ > λk+2 p0 − λ > 0. This implies the following.
First, consider the random variable Z(ζ1) with distribution determined by parameter p0.
By Propositions 2 and 7, it follows that Z(ζ1) is almost surely finite, and, moreover, it
stochastically dominates any other random variable Z(ζ1) with distribution determined by
p > p0. Second, consider the random variable Z(η2), where η2 is a sequence reciprocal to
sequence ζ2 whose distribution is determined by parameter p0. By Propositions 2, 3 and 7,
it follows that Z(η2) is almost surely finite and, moreover, it stochastically dominates any
other random variable Z(η2), where η2 is reciprocal to ζ2 whose distribution is determined
by p > p0.
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Therefore, Ep(e−Z(ζ1)e−Z(η2)) ≥ Ep0(e
−Z(ζ1)e−Z(η2)). Summarizing the above, we

finally obtain that

Px

(
Ak,k+1

[1,̂n2]
)

≥ δEp0

(
e−Z(ζ1)e−Z(η2)

)
> 0.

We have considered here only the case where {k, k + 1} is of type 2 and r > z1, but by
rearranging the stopping times above, one should note that for all the remaining cases stated
in Parts (1) and (2) of Lemma7, the reasoning is exactly the same as above. ��
Proof of Part (3) of Lemma 7 Let us obtain the lower bound in Part (3) of Lemma7. In this
case {k, k+1} is a local minimum of type 2 and z2 < r < z1. The double inequality implies
that both λk−1(1 − p) − λ > 0 and λk+2 p − λ > 0. As a result, both Z(ζ1) and Z(ζ2) are
infinite. In this case we modify bound (30) with stopping times τ = n̂ = min(̂n1, n̂2) and
τ̃ = m̂ = min(m̂1, m̂2), as follows

Px

(
Ak,k+1

[1,̂n]
)

≥ δEp

(
e−γk,1Zm̂−1(ζ1)e−γk,2Zm̂−1(ζ2)

)

≥ δEp

(
e−γk,1Zm̂1−1(ζ1)e−γk,2Zm̂2−1(ζ2)

)
,

where in the last inequality we bounded m̂ = min(m̂1, m̂2) by m̂1 and m̂2, respectively.
By Proposition 5 μp-a.s. both γk,1Zm̂1−1(ζ1) < ∞ and γk,2Zm̂2−1(ζ2) < ∞. There-
fore, Px(A

k,k+1
[1,̂n] ) ≥ ε(p) > 0. Further, there are finitely many integers r such that

z2 < r < z1. Consequently, there are finitely many corresponding values of probability
p, and Px(A

k,k+1
[1,̂n] ) ≥ ε for some ε > 0 uniformly over all values of p in this finite set.

Finally, relocation of the maximal rate in all cases covered by Lemma 7 can be shown by
modifying the argument used in the proof of Part (4) of Lemma 5. ��

5.2.6 Proof of Lemma 8

We skip proofs of Parts (1) and (3) as they are analogous to the proofs of Parts (1) and (3) of
Lemma 5. Proofs of Parts (2) and (4) can be obtained by appropriately modifying proofs of
Parts (2) and (4) of Lemma 5 and combining them with the ideas in the proof of Lemma 4.
Modifications are due to condition λk−1 = λ implying that z1 = −∞ < z2 (see Remark 2).

Proof of Part (2) of Lemma 8 Recall that in this case r < z2, so that λk+2 p − λ < 0 and
p < p0, where p0 is defined in Part (2) of Lemma 5. Repeating the proof of Part (2) of
Lemma 5 and using that γk,1 ≤ p and γk,2 ≤ 1 [see (41) and (40)] we obtain the following
lower bound

Px

(
Ak,k+1

[1,∞]
)

≥ Ep

(
e−pZ(ζ1)e−Z(ζ2)

)
. (51)

Our assumptions imply that both Z(ζ1) and Z(ζ2) are almost surely finite by Proposition2.
Fix ε > 0.5, let C1 = C1(ε) > 0 be such that

μp (pZ (ζ1) ≤ C1) = μp

(
p

∞∑
i=0

e−λUi ≤ C1

)
≥ ε (52)

for all p ∈ (0, 1) [see (43)], and let C2 = C2(ε) be such that μp0(Z(ζ2) ≤ C2) ≥ ε.

The last inequality yields that μp(Z(ζ2) ≤ C2) ≥ μp0(Z(ζ2) ≤ C2) ≥ ε, as Z(ζ2), with
distribution determined by parameter p0, dominates any random variable Z(ζ2) with distri-
bution determined by parameter p < p0. Finally, by using the same elementary argument
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as in the proof of Lemma 4, we get that μp(pZ(ζ1) ≤ C1, Z(ζ2) ≤ C2) ≥ 2ε − 1, which
implies that the expectation in the right side of (51) is bounded below away from zero, so
that Px(A

k,k+1
[1,∞] ) ≥ ε1 for some uniform ε1 > 0 over configurations x satisfying r < z2. ��

Proof of Part (4) of Lemma 8 Recall that in this case r > z2, so that λk+2 p − λ > 0 and
p > p0, where p0 is now defined in Part (4) of Lemma 5. Repeating the proof of Part (4) of
Lemma 5 and using again that γk,1 ≤ p we obtain the following lower bound

Px

(
Ak,k+1

[1,̂n]
)

≥ δEp

(
e−pZ(ζ1)e−γk,2Zm̂−1(ζ2)

)
,

where n̂ and m̂ are defined in (48) and (50), respectively. Our assumptions imply that both
Z(ζ1) and Zm̂−1(ζ2) are almost surely finite by Propositions2 and 5. Further, Proposition 5
yields that

Px

(
Ak,k+1

[1,̂n]
)

≥ δEp

(
e−pZ(ζ1)e−Z(η2)

)
, (53)

where η2 is the random sequence reciprocal to ζ2.

Let ε > 0.5 and C1 = C1(ε) > 0 be such that (52) holds, and let C2 = C2(ε) be such
that μp0(Z(η2) ≤ C2) ≥ ε. The last inequality yields that

μp (Z (η2) ≤ C2) ≥ μp0 (Z (η2) ≤ C2) ≥ ε,

as Z(η2), with distribution determined by parameter p0, dominates any random variable
Z(η2) with distribution determined by parameter p > p0.

As at the same stage of the proof in Part (2) we can now conclude that the expectation in
the right side of (53) is bounded below away from zero, which implies that Px(A

k,k+1
[1,̂n] ) ≥ ε2

for some uniform ε2 > 0 over configurations x satisfying r > z2. ��

5.2.7 Proof of Corollary 1

The critical cases where r = z1 or r = z2 need to be treated separately since these cases can
not be proven directly by the above arguments. However, by a slight modification one can
amend the proof of each lemma in order to encompass such critical cases.

The modification is the same for all lemmas, but for the sake of concreteness let us
consider the critical case described in Part (3) of Lemma 5 assuming that r = z2. We start
by commenting on the same effect that we already discussed in the proof of Part (4) of
Lemma 5. Namely, recall that if λk+3 < λk = λk+1, Γk+3eλk+3 ≥ Γk, and Γk = maxi Γi ,

then τk+2 = 1 makes the maximal rate move to k+3. One can check that the above situation
is the only one that can possibly relocate the maximal rate to a site with smaller λ. In order
to avoid such case, it is simply a matter of placing a particle at k at the first step, which can
be done with probability at least 1/N . Therefore, without loss of generality we can exclude
this case.

Next, if at time τk+2 the maximal rate relocates either to k + 2, or to k + 3 (provided
λk+3 > λk = λk+1) then we are done. Suppose the opposite, namely, that at time τk+2 the
maximal allocation rate remains where it was, that is, at k or at k+1. It is left to note that given
event Ak,k+1

[1,τk+2−1], placing a particle at site k + 2 at moment τk+2 increases the configuration
parameter r = xk+2 − xk−1 by 1, so that the resulting configuration is such that r > z2. By
Part (4) of Lemma 5, the next allocated particles at {k, k + 1} will end up by relocating the
maximal rate as prescribed.

Other critical cases can be handled similarly, andwe skip straightforward technical details.
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6 Proof of Theorem 1

The idea of the proof goes briefly as follows. Given any initial state X (0) = x, the site k where
Γk(x) = maxi=1,...,N (Γi (x)) is identified. Then, a particle allocation strategy is drawn so that
it always results in localization of growth as described in Theorem1. Lemmas 1–8 enable us
to identify the corresponding strategy for each particular case and bound its probability from
below uniformly over initial configurations (see Remark 1). Should a particular strategy fail
to happen, which means that at a certain step n a particle is not allocated according to that
strategy, but somewhere else, a new one is drawn and this procedure reiterates from X (n).

Since there is a finite number of possible strategies it follows from the renewal argument
below that almost surely one of them eventually succeeds.

In what follows, when referring to Lemma 2 or one of Lemmas 4–8, this automatically
includes the symmetric cases by re-labelling the graph in reverse order (as explained in
Remark 3). Also, local minima of size 2 and type 1 automatically include the limiting case
described in Remark 2.

Let X (n) = x be a fixed and arbitrary configuration, and:

(1) Assume that Γk(x) = maxi=1,...,N (Γi (x)) and λk−1 �= λk �= λk+1.

(1.1) Let k be a local maximum. By Lemma 1, with positive probability, all subsequent
particles are allocated at k.

(1.2) Let k be either a growth point, or a local minimum. By Lemmas 2 and 3, with positive
probability, the maximal rate relocates in finite time to one of its nearest neighbours
having parameter λ > λk .

(2) Assume that Γk(x) = maxi=1,...,N (Γi (x)) and that additional assumptions of Lemma 4
are satisfied. Lemma 4 yields that, with positive probability, all subsequent particles are
allocated at sites {k, k + 1}.

(3) Assume that max(Γk(x), Γk+1(x)) = maxi Γi (x), where {k, k + 1} is either a saddle
point, or a local minimum of size 2 and type 1.Additional assumptions on x, as described
in Part (2) of Lemmas 5, 6 and 8, guarantee that, with positive probability, all subsequent
particles are allocated at sites {k, k + 1}.

(4) Assume that max(Γk(x), Γk+1(x)) = maxi Γi (x), where {k, k + 1} is either a saddle
point of size 2, or a localminimumof size 2 of either type. Assume also that configuration
x is such that assumptions as in the preceding item do not hold. Such cases are covered
by Lemmas: 5, Parts (3) and (4), 6 Part (3), 7 and 8, and finally, 8 Parts (3) and (4)
complemented by Corollary 1. In all those cases, with positive probability, the maximal
rate eventually relocates in a random but finite time to a site with larger parameter λ.

(5) Finally, for the remaining cases of local minima, maxima or saddle points of size greater
than 2, it is not hard to check that such cases can be reduced to one, or a combination, of
the above items.

Thus, for every configuration x and every set of positive real parametersΛ = (λk)
N
k=1,we

have identified two types of events. First, there are events resulting in localisation of growth
at either a single site or a pair of neighbouring sites [as described in Theorem 1 Parts (1) and
(2), respectively]. Call such events L-events. Second, there are events resulting in relocation
of the maximal rate. Call such events R-events.

The next step of the proof is to define a sequence of random moments of time (Tj ) j≥0

called renewal moments. First, set T0 = 0. Now, given Tj , let us define Tj+1. Suppose that
at time Tj the process is at state x. We identify an event R1, . . . , RmL (strategy) formed by
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a sequence of m R-events (possibly none) ending at an L-event. At the fist moment of time
t > Tj a particle is not allocated according to R1, . . . , RmL , we set Tj+1 = t.

Note that R-events are defined in a way so that the maximal rate always relocates to a site
with strictly larger parameter λ. It follows that the number ofR-events preceding any L-event
is bounded by the number of different values of λi , i = 1, . . . , N . Then, by Lemmas 1–
8, probabilities of events R1, . . . , RmL are bounded below uniformly over configurations,
where m ≤ N .

Further, let jmax := max{ j ≥ 0 : Tj < ∞}. Lemmas 1–8 imply the existence of an
uniform bound ε > 0 such that P(Tj = ∞) ≥ ε on {Tj−1 < ∞}. Therefore, P(Tj <

∞) ≤ 1 − ε on {Tj−1 < ∞}, or equivalently, P( jmax ≥ j | jmax ≥ j − 1) < 1 − ε. Thus,
P( jmax < ∞) = 1. This implies that Tj = ∞ for some j, so that, with probability one,
a certain allocation strategy R1, . . . , RmL eventually succeeds, that is the growth process
localises as claimed.

Finally, the long term behaviour of ratio Xk+1(n)/Xk(n) described in item (ii) of the
theorem is implied by the law of large numbers for the Binomial distribution. This follows
straightforwardly from the proofs of Lemma 4 and Parts (2) of Lemmas 5, 6 and 8. The
theorem is proved. ��
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