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Abstract This paper concerns the long term behaviour of a growth model
describing a random sequential allocation of particles on a finite cycle graph.
The model can be regarded as a reinforced urn model with graph-based inter-
actions. It is motivated by cooperative sequential adsorption, where adsorp-
tion rates at a site depend on the configuration of existing particles in the
neighbourhood of that site. Our main result is that, with probability one, the
growth process will eventually localise either at a single site, or at a pair of
neighbouring sites.
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1 Introduction

This paper concerns a probabilistic model describing a sequential allocation
of particles on a finite cycle graph. The model is motivated by cooperative
sequential adsorption (CSA) (see [7], [8] and references therein). CSA models
are widely applied in physical chemistry for modelling adsorption processes on
a material surface onto which particles are deposited at random. The main pe-
culiarity of adsorption processes is that deposited particles change adsorption
properties of the material. This motivates the growth rates defined in equa-
tion (1). The growth rates model a particular situation where the subsequent
particles are more likely to be adsorbed around previously deposited particles.

There is typically a hard-core constraint associated with CSA. That is, the
adsorption (growth) rate is zero at any location with more than a certain num-
ber of particles. The asymptotic shape of the spatial configuration of deposited
particles is of primary interest in such models. Many probabilistic models of
spatial growth by monolayer deposition, diffusion and aggregation dynamics
present this characteristic. For instance, the Eden model [6], diffusion-limited
aggregation process [22], first-passage percolation models [17] and contact in-
teraction processes [18].

In contrast, in our model (defined in Section 2) we allow any number of
particles to be deposited at each site. This is motivated by growing interfaces
(Figure 1) associated with multilayer adsorption processes (see [2], [10] and
[15]). Even though the random nature of these processes is usually emphasized
in the physical literature, there is a limited number of rigorous formulations
and published results in this field (most of them in [14] and [16]). Our model
is closely related to a variant of random deposition models, but as we do not
apply any of the techniques from this field, we refer the reader to the survey
on surface growth [1].

Xi(n)
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1

Fig. 1 Multilayer adsorption/random deposition model

Our model can be naturally interpreted in terms of interacting urn models.
In the case of no interaction, in which the growth rate at site i is given by Γ (xi),
where xi is the number of existing particles at site i and Γ : Z+ → (0,∞) is a



Localisation in a growth model with interaction 3

given function (called the reinforcement rule [4] or feedback function [12]), our
model coincides with a generalised Pólya urn (GPU) model with a particular
reinforcement rule Γ . Each site (with no underlying graph structure) corre-
sponds to a different colour of ball. The growth rule corresponds to choosing
an existing ball of colour i, with probability proportional to Γ (xi), and adding
a new ball of that colour. The case Γ (x) = x is the classical Pólya urn.

The so called Rubin’s exponential embedding (first appearing in [5]) clas-
sifies the two possible limiting behaviours in the above class of GPU models.
Firstly, there almost surely exists a site i that gets all but finitely many par-
ticles. Secondly, the number of particles at every site grows almost surely to
infinity. For a comprehensive survey on urn models and their applications, see
[13] and references therein.

In contrast, we consider growth rules with graph-based interactions (as in
[19]) where the underlying graph is a cycle with N sites. In our growth model
the rate of growth at site i is given by a site-dependent reinforcement rule
Γi = exp(λiui), where λi > 0 and ui is the number of existing particles in a
neighbourhood of site i. This allows one to take into account the case where
different sites might possibly have different reinforcement schemes (Figure 2).
In other words, the case where each site has its own intrinsic ‘capacity’ param-
eter, which is what would be expected in many real-life situations. Although
the model can easily be defined for a general graph, the results will heavily
depend on its topological properties. In this paper we only address the case of
a cycle graph. See [3] and [9] for results on general graphs but different growth
rules.

λi

i
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Fig. 2 An interpolated graph of a particular parameter set (λi)
20
i=1.

The main result of the present paper classifies, in terms of the set of pa-
rameters Λ = (λi)

N
i=1, the two possible behaviours of the model. The first

behaviour is localization of growth at a single site. This means that from a
random moment of time onwards, all subsequent particles are allocated at a
particular site. The second is localization of growth at a pair of neighbouring
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sites with equal λ parameter. Similarly as in the first case, this means that
from a random moment of time onwards, all subsequent particles are allocated
at a particular pair of neighbouring sites. In particular, if λi ̸= λi+1 for all
i, then, with probability one, the growth will eventually localise at a single
site. On the other hand, if λi ≡ λ, then, with probability one, the growth
will eventually localise at a pair of neighbouring sites. In the general case of
a fixed and arbitrary parameter set Λ, only the above two types of limiting
behaviour are possible. Theorem 1 below provides a complete characterization
of the parameter set Λ and associated subsets where only one of the regimes,
or both, may happen.

The model with Γi = exp(λui), i.e. λi ≡ λ ∈ R, was first considered in
[19], and an analogue of Theorem 1 (Theorem 3 in [19]) was proved for this
particular case of site-independent parameter λ.

The paper is organised as follows. In Section 2, we formally define the
model, fix some terminology and state Theorem 1 which is our main result.
The proof of the theorem appears in Section 6 and relies essentially on Lem-
mas 1-8 stated in Section 3 and proved in Section 5. Section 4 contains results
concerning sums of random geometric progressions, which are of interest in
their own right. These results combined with stochastic domination techniques
are constantly used in the proofs of Lemmas 5-8.

2 The model and main result

Consider a cycle graph with N ≥ 4 vertices (sites) enumerated by the first
N natural numbers such that 1 ∼ 2 ∼ . . . ∼ N − 1 ∼ N ∼ 1, where i ∼ j
indicates that sites i and j are incident. Let Z+ be the set of non-negative
integers and Λ = {λ1, ..., λN} be an arbitrary set of positive real numbers.
Given x = (x1, . . . , xN ) ∈ ZN

+ , define the growth rates as

Γi(x) = eλi(xi+
∑

j∼i xj), i = 1, . . . , N. (1)

Consider a discrete-time Markov chain X(n) = (X1(n), . . . , XN (n)) ∈ ZN
+

with the following transition probabilities

P(Xi(n+ 1) = Xi(n) + 1|X(n) = x) =
Γi(x)∑N

k=1 Γk(x)
, i = 1, . . . , N, x ∈ ZN

+ .

The Markov chain describes the evolution of the number of particles sequen-
tially allocated at each site of the graph. Given the configuration of particles
X(n) = x ∈ ZN

+ at time n, the next incoming particle is placed at site i with
probability proportional to Γi(x).

Definition 1 For i ∈ {1, . . . , N} (modulo N)

1. a site {i} is a local minimum, if λi < min(λi−1, λi+1);
2. a pair of sites {i, i + 1} is a local minimum of size 2, if λi = λi+1 <

min(λi−1, λi+2);
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3. a site {i} is a local maximum, if λi > max(λi−1, λi+1);
4. a pair of sites {i, i+ 1} is a saddle point, if

min(λi−1, λi+2) < λi = λi+1 < max(λi−1, λi+2);

5. a site {i} is a growth point, if either λi−1 < λi < λi+1, or λi−1 > λi > λi+1.

Definition 2 Let {i, i+ 1} be a local minimum of size two. We say that it is
a local minimum of size 2 and

1) type 1, if λi = λi+1 > λi−1λi+2

λi−1+λi+2
,

2) type 2, if λi = λi+1 ≤ λi−1λi+2

λi−1+λi+2
.

The following theorem is the main result of the paper.

Theorem 1 For every X(0) = x ∈ ZN
+ and

i) for every local maximum {k}, with positive probability,

lim
n→∞

Xi(n) = ∞ if and only if i = k;

ii) for every pair {k, k + 1} where λk = λk+1 =: λ, but not a local minimum
of size 2 and type 2, with positive probability,

lim
n→∞

Xi(n) = ∞, if and only if i ∈ {k, k + 1}, and

lim
n→∞

Xk+1(n)

Xk(n)
= eλR,

where R = limn→∞[Xk+2(n)−Xk−1(n)] ∈ Z.

No other limiting behaviour is possible. That is, with probability 1, exactly one
of the above events occurs in a random location {k} or {k, k+1} as described
in i) and ii), respectively.

3 Lemmas

We start with notations that will be used throughout the proofs. Given i =
1, ..., N , define the following events

Ai
n := {at time n a particle is placed at site i}, n ∈ Z+,

Ai,i+1
n := Ai

n ∪Ai+1
n , n ∈ Z+.

Define also the following events

Ai
[n1,n2]

:=

n2∩
n=n1

Ai
n,

Ai,i+1
[n1,n2]

:=

n2∩
n=n1

Ai,i+1
n ,
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indicating that from time n1 to n2 all particles are placed at site i, and at
sites i or i + 1, respectively. Further, events Ai

[n,∞) and Ai,i+1
[n,∞) denote the

corresponding limiting cases as n2 goes to infinity.
Let ei ∈ ZN

+ be a vector, whose i-th coordinate is 1, and all other co-
ordinates are zero. Given x ∈ ZN

+ , define the following probability measure
Px(·) = P( · |X(0) = x).

Remark 1 In lemmas and proofs below we denote by ϵ and ε, possibly with
subscripts, various positive constants whose values do not depend on the start-
ing configuration x and may vary from line to line. This is essential for the proof
of Theorem 1. Also, the results are stated only for the essentially different cases,
and whenever there are trivially symmetric situations (e.g. λk−1 < λk < λk+1

and λk−1 > λk > λk+1), we state and prove only one of them in order to avoid
unnecessary repetition.

Lemma 1 Suppose that {k} is a local maximum, and x ∈ ZN
+ is such that

Γk(x) = maxi Γi(x). Then, with positive probability, all subsequent particles

are allocated at k, i.e. Px

(
Ak

[1,∞)

)
≥ ϵ for some ϵ > 0.

Lemma 1 describes the only case where localisation of growth at a single site
can occur, namely, at a local maximum.

Lemma 2 Suppose that {k} is a growth point, and x ∈ ZN
+ is such that

Γk(x) = maxi Γi(x). If λk−1 < λk < λk+1, then there exist n = n(x, Λ) ∈ Z+

and ϵ > 0, such that Px

(
Ak

[1,n]

)
≥ ϵ and Γk+1(x+ nek) = maxi Γi(x+ nek).

Lemma 3 Suppose that {k} is a local minimum, and x ∈ ZN
+ is such that

Γk(x) = maxi Γi(x). Then there exist n = n(x, Λ) ∈ Z+ and ϵ > 0, such that

Px

(
Ak

[1,n]

)
≥ ϵ and max(Γk−1(x+ nek), Γk+1(x+ nek)) = maxi Γi(x+ nek).

Lemmas 2-3 describe the following effect. If the maximal rate is attained at
a site which is either a growth point or a local minimum, then, with positive
probability, allocating n = n(x, Λ) particles at that site results in relocation of
the maximal rate to a nearest neighbour with larger parameter λ. The number
of particles required for relocation (the relocation time) is deterministic and
depends only on the starting configuration x and parameter set Λ.

Lemma 4 Suppose that Γk(x) = maxi Γi(x).

1) λk−1 < λk = λk+1 ≥ λk+2; or
2) λk−1 = λk = λk+1 ≥ λk+2, and Γk+1(x) ≥ Γk−1(x),

then, with positive probability, all subsequent particles are allocated at sites

{k, k + 1}, i.e. Px

(
Ak,k+1

[1,∞)

)
≥ ϵ for some ϵ > 0.

Lemma 4 describes a particular case that implies the second possible limit-
ing behaviour of the model, i.e. localisation of growth at a pair of neighbouring
sites.
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Definition 3 Define the following stopping times

τk = inf(n : Xk(n) = Xk(0) + 1),

w+
k = min(τi : i ̸= k, k + 1, k + 2), for k = 1, . . . , N,

where the usual convention is that

inf(∅) = ∞ and min(a,∞) = a, for a ∈ R+ ∪ {∞}.

The above stopping times and the quantities r, z1 and z2 below will appear
throughout Lemmas 4-8 and their proofs.

Definition 4 Given x ∈ ZN
+ define

r := r(x) = xk+2 − xk−1. (2)

In addition, if a pair of sites {k, k + 1} is such that λk = λk+1 =: λ and

λk−1 > λ, define z1 =
1

λ
log

(
λk−1 − λ

λ

)
, (3)

λk+2 > λ, define z2 =
1

λ
log

(
λ

λk+2 − λ

)
. (4)

Before stating Lemma 5, let us denote by Bk the event in which a particle
arrives in finite time at k + 2 before anywhere outside {k, k + 1, k + 2}. That
is to say,

Bk := {τk+2 < w+
k }. (5)

Lemma 5 Suppose that a pair of sites {k, k+1} is a saddle point with λk−1 <
λk = λk+1 =: λ < λk+2, and x ∈ ZN

+ is such that

max(Γk(x), Γk+1(x)) = max
i

Γi(x). (6)

1) Then there exists ϵ > 0 such that

Px

(
Ak,k+1

[1,∞)

∪
Bk

)
= Px

(
Ak,k+1

[1,∞)

)
+ Px (Bk) ≥ ϵ.

2) If r < z2, then, with positive probability, all subsequent particles are allo-

cated at sites {k, k + 1}, i.e. Px

(
Ak,k+1

[1,∞)

)
≥ ε for some ε > 0.

3) If r ≥ z2, then Px

(
Ak,k+1

[1,∞)

)
= 0, and, hence, Px (Bk) ≥ ϵ.

4) If r > z2 is strict, then, with positive probability, the maximal rate relocates
as follows. There exists ε > 0 such that

Px

(
Bk, max

i=k+2,k+3
Γi(X(τk+2)) = max

i
Γi(X(τk+2))

)
≥ ε, (7)

where maxi Γi(X(τk+2)) may be attained at k + 3 only if λk+3 > λ.
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Part 4) of Lemma 5 is similar to Lemmas 2-3 in that it also describes
relocation of the maximal rate to a site with larger parameter λ. The main
difference is that in Lemma 5 the relocation time is random. This is in contrast
to Lemmas 2-3, where the relocation time is deterministic.

The proposition and definition below are intended to clarify some assump-
tions and simplify some notations in Lemmas 6-8 below.

Proposition 1 Let {k, k + 1} be a local minimum of size 2 with λ = λk =
λk+1, and let r = r(x), z1 and z2 be quantities as in Definition (4). Then,
z1 < z2 if and only if local minimum {k, k + 1} is of type 1, in which case
there might exist x such that z1 < r < z2. Otherwise, if a local minimum
{k, k + 1} is of type 2, then z2 ≤ z1, in which case r ≥ z2 or r ≤ z1 for all x.

Definition 5 Recall that τk := inf(n : Xk(n) = Xk(0) + 1) and let us further
define the following stopping times

σk = min(τk−1, τk+2),

wk = min(τi : i ̸= k ± 1, k, k + 2),

and following events

Dk = {σk < wk},
D′

k = {τk−1 < min(τk+2, wk)},
D′′

k = {τk+2 < min(τk−1, wk)}.

Note that D′
k ∩D′′

k = ∅, Dk = D′
k ∪D′′

k and Ak,k+1
[1,∞) ∩Dk = ∅.

Lemma 6 Suppose that {k, k + 1} is a local minimum of size 2, and x ∈ ZN
+

is such that max(Γk(x), Γk+1(x)) = maxi Γi(x).

1) There exists ϵ > 0 such that

Px

(
Ak,k+1

[1,∞)

∪
Dk

)
= Px

(
Ak,k+1

[1,∞)

)
+ Px (Dk) ≥ ϵ.

2) If z1 < r < z2 (only possible if {k, k + 1} is of type 1), then, with positive
probability, all subsequent particles are allocated at sites {k, k + 1}, i.e.

Px

(
Ak,k+1

[1,∞)

)
> ε for some ε > 0.

3) If r ≤ z1 or r ≥ z2 (always the case if {k, k + 1} is of type 2),

then Px

(
Ak,k+1

[1,∞)

)
= 0 and, hence, Px (Dk) ≥ ϵ.

Lemma 6 is analogous to Parts 1)-3) of Lemma 5 for the case of a local
minimum of size 2. An analogue of Part 4) of Lemma 5 in the same situation
is provided by Lemma 7 below.

Lemma 7 Suppose that local minimum {k, k + 1} is of size 2 with λk =
λk+1 := λ, and x ∈ ZN

+ is such that max(Γk(x), Γk+1(x)) = maxi Γi(x).
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1) If {k, k + 1} is of type 1 and r < z1, or {k, k + 1} is of type 2 and r < z2
then

Px

(
D′

k, max
i=k−2,k−1

Γi(X(τk−1)) = max
i=1,...,N

Γi(X(τk−1))

)
≥ ε,

for some ε > 0, where max
i

Γi(X(τk−1)) may be attained at k − 2 only if

λk−2 > λ.
2) If {k, k + 1} is of type 1 and r > z2, or {k, k + 1} is of type 2 and r > z1

then

Px

(
D′′

k , max
i=k+2,k+3

Γi(X(τk+2)) = max
i=1,...,N

Γi(X(τk+2))

)
≥ ε,

for some ε > 0, where max
i

Γi(X(τk+2)) may be attained at k + 3 only if

λk+3 > λ.
3) If {k, k + 1} is of type 2 and z2 < r < z1, then

Px

(
D′

k, max
i=k−2,k−1

Γi(X(τk−1)) = max
i=1,...,N

Γi(X(τk−1))

)
+ Px

(
D′′

k , max
i=k+2,k+3

Γi(X(τk+2)) = max
i=1,...,N

Γi(X(τk+2))

)
≥ ε,

for some ε > 0, where maxΓi follows the corresponding prescriptions as
above.

Remark 2 The next lemma concerns the borderline cases in between having
a local minimum {k, k+1} of size 2 and type 1 or a saddle point. For example,
in notations of Lemma 7 these cases are formally obtained by setting either
λk−1 = λ (where −∞ = z1 < z2), or λk+2 = λ (where z1 < z2 = ∞). As both
cases can be addressed in similar ways, the lemma below deals only with the
case λk−1 = λ.

Lemma 8 Suppose that sites {k − 1, k, k + 1, k + 2} are such that

λk−1 = λk = λk+1 =: λ < λk+2,

x ∈ ZN
+ is such that max(Γk(x), Γk+1(x)) = maxi Γi(x) and, additionally,

Γk−1(x) ≤ Γk+1(x).

1) There exists ϵ > 0 such that

Px

(
Ak,k+1

[1,∞)

∪
Dk

)
= Px

(
Ak,k+1

[1,∞)

)
+ Px (Dk) ≥ ϵ.

2) If r < z2, then, with positive probability all subsequent particles are allocated

at sites {k, k + 1}, i.e. Px

(
Ak,k+1

[1,∞)

)
≥ ϵ for some ε > 0.

3) If r ≥ z2, then Px

(
Ak,k+1

[1,∞)

)
= 0 and, hence, Px (Dk) ≥ ϵ.
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4) If r > z2, then there exists ε > 0 such that

Px

(
Bk, max

i=k+2,k+3
Γi(X(τk+2)) = max

i
Γi(X(τk+2))

)
≥ ε,

where max
i

Γi(X(τk+2)) may be attained at k + 3 only if λk+3 > λ.

The following corollary concerns those cases covered by Parts 3) of Lem-
mas 5, 6 and 8, where the configuration parameter r is equal to one of the
model parameters z1 and z2. In what follows we call them critical cases.

Corollary 1 For the critical cases, relocation of the maximal rate to a site
with larger parameter λ also occurs, with positive probability, in finite time.

Remark 3 Let us remark the following.

1) It is important to emphasize that in all the above cases where the maximal
rate maxi Γi(x) eventually relocates with positive probability, it always
relocates to a site with strictly larger parameter λ.

2) Note that Lemmas 2, 3, 5 and 7 can be appropriately reformulated in
order to cover the symmetric cases by simply re-labelling the graph sites in
reverse order as the graph is a cycle. For example, if {k, k + 1} is a saddle
point as in Lemma 5, then the corresponding symmetric case would be
λk−1 > λk = λk+1 > λk+2, etc.

4 Random geometric progressions and
Bernoulli measures

The statements and propositions in this section are essential building blocks
for the proof of lemmas which follow. The reason is that along the proofs of
Lemmas 4-8 we need to analyse the limiting behaviour of random variables of
the form

∑n
i=0

∏i
j=1 ζj , as n → ∞, where {ζj , j ≥ 1} is an i.i.d. sequence of

positive random variables. It will also be necessary to compare such variables
and introduce some stochastic domination concepts to enable us to carry out
uniform estimates not depending on the starting configuration X(0) = x. We
refer to [21] for standard definitions and basic properties of stochastic domi-
nation. The following notations are used throughout. Given random variables
X and Y (or sequences X and Y ), we write X ≥st Y if X stochastically dom-
inates Y . Similarly, given two probability measures ν and µ, we write µ ≥st ν
if µ stochastically dominates ν.

Random geometric progressions. In this subsection we consider random vari-
ables realised on a certain probability space (Ω,F ,P). E denotes the expecta-
tion with respect to probability measure P. If X and Y are random variables
or sequences such that X ≥st Y , then we may assume that P is a coupling
of probability distributions of X and Y such that P(X ≥ Y ) = 1. Such a
coupling exists by Strassen’s theorem ([20]).
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Given a random sequence ζ = {ζi, i ≥ 1}, define

Yi(ζ) =
i∏

j=1

ζj , i ≥ 1, Y0(ζ) = 1, and Zn(ζ) =
n∑

i=0

Yi(ζ), n ≥ 1, (8)

and

Z(ζ) =
∞∑
i=0

Yi(ζ).

Proposition 2 1) Let ζ = {ζi, i ≥ 1} be an i.i.d. sequence of positive random
variables such that E (log(ζi)) < 0. Then P(Z(ζ) < ∞) = 1 and, consequently,
E
(
e−Z(ζ)

)
> 0.

2) Let θ = {θi, i ≥ 1} be another i.i.d. sequence of positive random vari-
ables such that E (log(θi)) < 0 and θ ≥st ζ. Then E

(
e−Z(ζ)

)
≥ E

(
e−Z(θ)

)
.

Proof of Proposition 2. The first statement of the proposition is a well
known simple fact in the theory of random walk in a random environment.
Indeed, denote E (log(ζi)) = a < 0. Given δ > 0 such that a+ δ < 0, it follows
from the strong law of large numbers that Yn < e(a+δ)n for all but finitely
many n almost surely. Therefore, a tail of Z(ζ) is eventually majorised by the
corresponding tail of a converging geometric progression. In turn, finiteness
of Z(ζ) implies positiveness of the expectation. Moreover, note that eZ(·) is
an increasing function. Therefore, e−Z(ζ) ≥st e

−Z(θ) and hence, E
(
e−Z(ζ)

)
≥

E
(
e−Z(θ)

)
as claimed. ⊓⊔

Definition 6 Let ζ = {ζi, i ≥ 1} and η = {ηj , j ≥ 1} be i.i.d. sequences of
positive random variables. Sequence η is said to be reciprocal to ζ if η1 has the
same distribution as 1/ζ1.

The following proposition follows from basic properties of stochastic dom-
ination.

Proposition 3 Let X and Y be two i.i.d. sequences of positive random vari-
ables, and let ηX and ηY be their corresponding reciprocal sequences. If X ≥st Y
then ηX ≤st ηY .

Proposition 4 Let ζ = {ζi, i ≥ 1} be an i.i.d. sequence of positive random
variables such that E (log(ζi)) > 0. Let {Yi, i ≥ 0} and {Zn(ζ), n ≥ 1} be the
random variables as in (8). Define the following random sequence

Fn(ζ) = Zn(ζ)/Yn(ζ), n ≥ 1.

Then, Fn(ζ) converges in distribution to

Z(η) = 1 +
∞∑
i=1

i∏
j=1

ηj , as n → ∞,

where η is the sequence reciprocal to ζ. Moreover, Z(η) is almost surely finite
and Z(η) ≥st Fn(ζ) for any n ≥ 1.



12 M.Costa, M.Menshikov, V.Shcherbakov, M.Vachkovskaia

Proof of Proposition 4. First, note that for every n ≥ 1,

Fn(ζ) = 1 +
n∑

i=1

i∏
j=1

ζ−1
n−j+1 = 1 +

n∑
i=1

i∏
j=1

η
(n)
j ,

where η
(n)
j = ζ−1

n−j+1. This means that Fn(ζ) has the same distribution as
Zn(η) defined for the sequence η = {ηi, i ≥ 1} reciprocal to ζ. Therefore, Fn(ζ)
converges in distribution to Z(η). In addition, E(log(η1)) = −E(log(ζ1)) < 0.
Therefore, by Proposition 2, Z(η) is almost surely finite. Finally, it follows by
construction that Z(η) ≥st Fn(ζ), n ≥ 1. ⊓⊔

Proposition 5 Let ζ = {ζi, i ≥ 1} be an i.i.d. sequence of positive random
variables such that E (log(ζi)) = a > 0, and η = {ηi, i ≥ 1} be its reciprocal
sequence. Given 0 < γ < 1, define the following stopping time

m̂ = min(n : γYn(ζ) ≥ 1). (9)

Then both Z(η) < ∞ and Zm̂−1(ζ) < ∞ almost surely, γZm̂−1(ζ) ≤st Z(η),
and, hence,

E
(
e−γZm̂−1(ζ)

)
≥ E

(
e−Z(η)

)
> 0. (10)

Proof of Proposition 5. By Proposition 4, Z(η) is almost surely finite and
Fn(ζ) ≤st Z(η) for all n ≥ 1. Therefore, Fm̂−1(ζ) ≤st Z(η). Since γYm̂−1(ζ) <
1 we obtain that

γZm̂−1(ζ) < Zm̂−1(ζ)/Ym̂−1(ζ) = Fm̂−1(ζ).

Consequently, γZm̂−1(ζ) ≤st Z(η), which implies (10) as claimed. ⊓⊔

Proposition 6 Let ζ = (ζi, i ≥ 1) and θ = (θi, i ≥ 1) be i.i.d. sequences of
positive random variables such that E (log(θ1)) > 0 and ζ1 ≥st θ1. Let ηζ and
ηθ be sequences reciprocal to ζ and θ, respectively. Given 0 < γ < 1, let m̂ be
the stopping time for sequence ζ as in (9). Then

E
(
e−γZm̂−1(ζ)

)
≥ E

(
e−Z(ηθ)

)
.

Proof of Proposition 6. Note that ζ1 ≥st θ1 implies E (log(ζ1)) > 0. By Propo-
sition 4 both Z(ηζ) and Z(ηθ) are almost surely finite. Further, by Proposition
3 ηζ ≤st ηθ. Therefore

E
(
e−Z(ηζ)

)
≥ E

(
e−Z(ηθ)

)
.

By Proposition 5, it follows that

E
(
e−γZm̂−1(ζ)

)
≥ E

(
e−Z(ηζ)

)
≥ E

(
e−Z(ηθ)

)
as claimed. ⊓⊔
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Bernoulli measures. Now, we introduce a family of Bernoulli measures and
some notations that will be used throughout proofs of Lemmas 4-8.

Let ξ = (ξi, i ≥ 1) be a sequence of independent Bernoulli random variables
with success probability p. Let µp be the distribution of ξ, that is, the product
Bernoulli measure defined on the set of infinite binary sequences, and denote
by Ep the expectation with respect to the Bernoulli measure µp.

Define

Ui = ξ1 + · · ·+ ξi, i ≥ 1, (11)

the binomial random variables corresponding to a Bernoulli sequence ξ.

Let λk−1, λk, λk+1 and λk+2 be λ-parameters corresponding to quadruples
{k − 1, k, k + 1, k + 2} of the graph sites such that λ = λk = λk+1 as in
Lemmas 4-8. Let us define the following i.i.d. sequences

ζ1 = (ζ1,i = eλk−1(1−ξi)−λ, i ≥ 1),

ζ2 = (ζ2,i = eλk+2ξi−λ, i ≥ 1).
(12)

It is a well known fact that if 0 < p′ ≤ p′′ < 1, then µp′ ≤st µp′′ . This fact
yields the following proposition.

Proposition 7 Let ζ ′1, ζ
′
2 and ζ ′′1 , ζ

′′
2 be sequences defined by (12) for Bernoulli

sequences with success probabilities p′ and p′′, respectively. If 0 < p′ ≤ p′′ < 1,
then ζ ′1 ≥st ζ

′′
1 and ζ ′2 ≤st ζ

′′
2 .

Note that variables Zn (defined in (8)) corresponding to sequences ζ1 and ζ2
can be expressed in terms of Binomial random variables (11) as follows

Zn(ζ1) =

n∑
i=0

eλk−1(i−Ui)−λi and Zn(ζ2) =

n∑
i=0

eλk+2Ui−λi. (13)

It is useful to note that if λk−1 = λk+2 = λ, then the above expressions are

Zn(ζ1) =
n∑

i=0

e−λUi and Zn(ζ2) =
n∑

i=0

eλ(Ui−i).

5 Proofs of Lemmas

In the following proofs we show the existence of positive real constants C, c, ϵ
and ε, whose exact values are immaterial and may vary from line to line, but
which do not depend on the starting configuration X(0) = x. In order to avoid
notational clutter we shall denote initial allocation rates Γi(x) simply by Γi

for all i. Moreover, whenever we fix index k ∈ {1, . . . , N} and consider indices
in the neighbourhood of k, those indices should be interpreted as modulo N .



14 M.Costa, M.Menshikov, V.Shcherbakov, M.Vachkovskaia

5.1 Proofs of Lemmas 1-3

For short, denote B =
∑

i ̸=k,k±1 Γi and Z =
∑N

i=1 Γi. By assumption, Γk =
max

i=1,...,N
Γi, then

Γk−1

Γk
≤ 1,

Γk+1

Γk
≤ 1, Γk ≥ Z

N
and

Z − Γk

Z
≤ (N − 1)

N
. (14)

It follows from the last two inequalities that

B

Γk
≤ N − 1. (15)

Proof of Lemma 1. Recall that λk > max(λk−1, λk+1). We need to prove the
existence of a positive number ϵ such that

Px

(
Ak

[1,∞)

)
=

∞∏
n=0

Γke
λkn

Γk−1eλk−1n + Γkeλkn + Γk+1eλk+1n +B
> ϵ, (16)

where ϵ > 0 depends only on λk−1, λk, λk+1 and N .
Indeed, rewriting the identity in (16) and applying bounds (14) and (15),

Px

(
Ak

[1,∞)

)
= exp

(
−

∞∑
n=0

log

(
1 +

Γk−1

Γk
e(λk−1−λk)n +

Γk+1

Γk
e(λk+1−λk)n +

B

Γk
e−λkn

))

≥ exp

(
−

∞∑
n=0

log(1 + e(λk−1−λk)n + e(λk+1−λk)n + (N − 1)e−λkn)

)

≥ exp

(
−C

∞∑
n=0

(e(λk−1−λk)n + e(λk+1−λk)n + (N − 1)e−λkn)

)
> ϵ > 0,

since the series in the exponent above converges. It is not hard to see that in
the last inequality, ϵ should depend only on λk−1, λk, λk+1 and N . ⊓⊔

Proof of Lemma 2. Recall that λk−1 < λk < λk+1. We need to prove the
existence of a finite positive integer n̂ and a positive number ϵ such that

Γk+1e
λk+1n̂ ≥ Γke

λkn̂ > max

(
Γk−1e

λk−1n̂, max
i ̸=k,k±1

Γi

)
and

Px

(
Ak

[1,n̂]

)
=

n̂−1∏
n=0

Γke
λkn

Γk−1eλk−1n + Γkeλkn + Γk+1eλk+1n +B
> ϵ, (17)
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where ϵ > 0 depends only on λk−1, λk, λk+1 and N . Note that the sequence
e(λk+1−λk)n, n ≥ 0 is exponentially increasing, so there exists the minimal
integer n̂ such that

e(λk+1−λk)n̂ ≥ Γk

Γk+1
, that is,

Γk+1(x+ n̂ek)

Γk(x+ n̂ek)
≥ 1.

Then, it is easy to see that

Γk+1

Γk

n̂−1∑
n=0

e(λk+1−λk)n ≤ C1 < ∞, (18)

where C1 depends only on λk and λk+1. Further, rewriting the identity in (17)
and using bounds (14), (15) and (18), gives that

Px

(
Ak

[1,n̂]

)
= exp

(
−

n̂−1∑
n=0

log

(
1 +

Γk−1

Γk
e(λk−1−λk)n +

Γk+1

Γk
e(λk+1−λk)n +

B

Γk
e−λkn

))

≥ exp

(
−

n̂−1∑
n=0

log

(
1 + e(λk−1−λk)n +

Γk+1

Γk
e(λk+1−λk)n + (N − 1)e−λkn

))

≥ exp

(
−C2

n̂−1∑
n=0

(
e(λk−1−λk)n +

Γk+1

Γk
e(λk+1−λk)n + (N − 1)e−λkn

))
> ϵ,

for some ϵ > 0. ⊓⊔

Proof of Lemma 3. Recall that λk < min(λk−1, λk+1). As in the proof of
Lemma 2, we need to show existence of a finite positive integer n̂ and a positive
ϵ such that

max(Γk−1e
λk−1n̂, Γk+1e

λk+1n̂) ≥ Γke
λkn̂ ≥ max

i ̸=k,k±1
Γi

and

Px

(
Ak

[1,n̂]

)
=

n̂−1∏
n=0

Γke
λkn

Γk−1eλk−1n + Γkeλkn + Γk+1eλk+1n +B
> ϵ,

where ϵ > 0 depends only on λk−1, λk, λk+1 and N . This can be shown similar
to the proof of Lemma 2, and we skip details. ⊓⊔
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5.2 Proofs of Lemmas 4-8

5.2.1 Notations

We start with some preliminary considerations and notations that will be used
throughout the proofs of Lemmas 4-8.

Let {k, k + 1} be a pair of sites such that λk = λk+1 = λ. If, as defined in

Definition 2, r = r(x) = xk+2−xk−1, then
Γk+1(x)
Γk(x)

= eλr. Therefore, given that

the next particle is allocated at either k or k+1, the conditional Px-probability
to choose k + 1 is equal to

p := p(r) =
Γk+1(x)

Γk(x) + Γk+1(x)
=

eλr

1 + eλr
. (19)

We henceforth denote q = 1 − p. Furthermore, probability p does not change
by adding particles at sites k and k+1 since configuration parameter r remains
constant.

Note that p(z), considered as a function of z ∈ R, is monotonically increas-
ing. A direct computation gives that unique solutions of equations λk−1−λ =
p(z)λk−1 and λk+2p(z) = λ are quantities z1 and z2 (defined in (3)) respec-
tively.

Let Sn be the number of additional particles at site k + 1 at time n ≥ 1.
Let S0 = 0 and s(n) = (s0, s1, . . . , sn) be a fixed trajectory of a finite random
sequence S(n) = (S0, S1, . . . , Sn). Note that, by construction, any trajectory
s(n) is a sequence of non-negative integers such that s0 = 0 and si − si−1 ∈
{0, 1}, i = 1, . . . , n.

For short, denote

Γi = Γi(x), Γ̃k =
∑

i ̸=k,k±1,k+2

Γi,

γk,1 =
Γk−1

Γk + Γk+1
, γk,2 =

Γk+2

Γk + Γk+1
, γ̃k =

Γ̃k

Γk + Γk+1
.

(20)

In the rest of this section we are going to derive expressions for probabilities

Px

(
Ak,k+1

[1,n+1]

)
, n ≥ 1, in terms of expectations with respect to a Bernoulli

product measure on {0, 1}∞ with parameter p defined in (19). These expres-
sions allow one to obtain lower and upper bounds for the above probabilities.
We start with the case of fixed n and then extend it to the case where n is a
stopping time.

In the above notations

Px

(
Ak,k+1

i+1 , Si+1 = si+1

∣∣∣∣Ak,k+1
[1,i] , Si = si

)
=

psi+1−siq1−(si+1−si)(Γk + Γk+1)e
λi

(Γk + Γk+1)eλi + Γk−1eλk−1(i−si) + Γk+2eλk+2si + Γ̃k

=
psi+1−siq1−(si+1−si)

1 + γk,1eλk−1(i−si)−λi + γk,2eλk+2si−λi + γ̃ke−λi
.



Localisation in a growth model with interaction 17

Then, given n we obtain by repeated conditioning that

Px

(
Ak,k+1

[1,n+1], Sn+1 = sn+1, . . . , S1 = s1

)
= psn+1qn+1−sn+1Wn(s1, . . . , sn),

where

Wn(s1, . . . , sn) =

n∏
i=0

1

1 + γk,1eλk−1(i−si)−λi + γk,2eλk+2si−λi + γ̃ke−λi
. (21)

Consequently, we get that

Px

(
Ak,k+1

[1,n+1]

)
=

∑
s(n+1)

psn+1qn+1−sn+1Wn(s1, . . . , sn),

=
∑
s(n)

(p+ q)psnqn−snWn(s1, . . . , sn),

=
∑
s(n)

psnqn−snWn(s1, . . . , sn),

(22)

where the sum in the first line is over all possible trajectories s(n + 1) =
(s1, . . . , sn+1) of S(n + 1) = (S1, . . . , Sn+1) and the other two are over all
possible trajectories s(n) = (s1, . . . , sn) of S(n) = (S1, . . . , Sn). Therefore, we
arrive to the following equation

Px

(
Ak,k+1

[1,n+1]

)
= Ep(Wn(U1, . . . , Un)), (23)

where Ep is the expectation with respect to the Bernoulli measure µp defined
in Section 4 and Ui, i ≥ 1, are Binomial random variables defined in (11).

Further, assumptions of Lemmas 4-8 imply that Γi

Γk+Γk+1
≤ 1, i = 1, . . . , N .

Therefore, quantity γ̃k defined in (20) can be bounded as follows

γ̃k ≤ (N − 4). (24)

Using bound (24) and inequality log(1 + z) ≤ z for all z ≥ 0 we obtain that

Wn(s1, . . . , sn) ≥
n∏

i=0

1

1 + γk,1eλk−1(i−si)−λi + γk,2eλk+2si−λi + (N − 4)e−λi

= e−
∑n

i=0 log(1+γk,1e
λk−1(i−si)−λi+γk,2e

λk+2si−λi+(N−4)e−λi)

≥ e−(
∑n

i=0 γk,1e
λk−1(i−si)−λi+γk,2e

λk+2si−λi+c1e
−c2i)

≥ δe−γk,1

∑n
i=0 eλk−1(i−si)−λi

e−γk,2

∑n
i=0 eλk+2si−λi

,

for some δ > 0 not depending on the configuration x. On the other hand, note
that

Wn(s1, . . . , sn) ≤
n∏

i=0

1

1 + γk,1eλk−1(i−si)−λi + γk,2eλk+2si−λi
. (25)
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The above inequalities yield the following lower and upper bounds

Px

(
Ak,k+1

[1,n+1]

)
≥ δEp

(
e−γk,1

∑n
i=0 eλk−1(i−Ui)−λi

e−γk,2

∑n
i=0 eλk+2Ui−λi

)
, (26)

Px

(
Ak,k+1

[1,n+1]

)
≤ Ep

(
n∏

i=0

1

1 + γk,1eλk−1(i−Ui)−λi + γk,2eλk+2Ui−λi

)
. (27)

We will also need a generalisation of lower bound (26) for probabilities

Px

(
Ak,k+1

[1,τ ]

)
, where τ is one of the following stopping times, min(n : Sn−c1n ≥

c2), min(n : n − Sn ≥ c3), and the minimum of two such stopping times. At
the moment, we shall not further specify such stopping times as it will be
clear later which one it refers to. Arguing similarly as in equation (22), one
can obtain that

Px

(
Ak,k+1

[1,τ ]

)
=

∞∑
n=0

∑
s(n)

psnqn−snWn(s1, . . . , sn)1{Mn},

whereMn is a set of paths s(n) = (s1, . . . , sn) for which τ = n+1. Furthermore,
similar to equation (23), we can rewrite equation above as

Px

(
Ak,k+1

[1,τ ]

)
= Ep (Wτ̃ (U1, . . . , Uτ̃ )) ,

where τ̃ is a stopping time defined by replacing Sn by Un in the same way as τ
but in terms of random variables Un. Proceeding similar to how we got lower
bound (26) we obtain the following lower bound

Px

(
Ak,k+1

[1,τ ]

)
≥ δEp

(
e−γk,1

∑τ̃−1
i=0 eλk−1(i−Ui)−λi

e−γk,2

∑τ̃−1
i=0 eλk+2Ui−λi

)
. (28)

Let us rewrite the lower bounds in terms of random sequences ζ1, ζ2 and
Zn as defined in (12) and (13). In these notations, lower bounds (26) and (28)
take the following form

Px

(
Ak,k+1

[1,n+1]

)
≥ δEp

(
e−γk,1Zn(ζ1)e−γk,2Zn(ζ2)

)
(29)

and

Px

(
Ak,k+1

[1,τ ]

)
≥ δEp

(
e−γk,1Zτ̃−1(ζ1)e−γk,2Zτ̃−1(ζ2)

)
(30)

respectively.
Finally, letting n → ∞ in (26) and (29) we obtain the following bound

Px

(
Ak,k+1

[1,∞)

)
≥ δEp

(
e−γk,1

∑∞
i=0 eλk−1(i−Ui)−λi

e−γk,2

∑∞
i=0 eλk+2Ui−λi

)
= δEp

(
e−γk,1Z(ζ1)e−γk,2Z(ζ2)

)
.

(31)
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5.2.2 Proof of Lemma 4

We start with the following proposition.

Proposition 8 Let µp be the Bernoulli measure defined in Section 4, and let
Un, n ≥ 1, be the corresponding Binomial random variables (defined in (11)).
Then

1) given ε ∈ (0, 1) and κ > 0, there exist positive constants c1 and c2 such
that

inf
p∈(0,1)

µp

( ∞∩
n=M

{n
2
p(1− κ)− c1 ≤ Un ≤ np(1 + κ) + c2

})
≥ ε, (32)

where M = [p−1] is the integer part of p−1;
2) given λ > 0, there exists ε1 > 0 such that

inf
p∈(0,1)

Ep

(
e−p

∑∞
i=0 e−λUi

)
≥ ε1.

Proof of Proposition 8. Set U0 = 0 and define the following random variables

Vj = UjM − U(j−1)M =

jM∑
i=(j−1)M+1

ξi, j ≥ 1,

Yj = V1 + · · ·+ Vj , j ≥ 1,

Y0 = 0.

First, denote a(p) := Ep(Vi) = pM = p[p−1] and note that a(p) ∈ [1/2, 1] for
all p ∈ (0, 1). Moreover, V ar(Vi) = Ep(V

2
i ) − (Ep(Vi))

2 = p(1 − p)[p−1] ≤ 1.
Now, consider the auxiliary process χn := Yn − n(1− κ)/2 + c′, with χ0 = c′.
Note that Ep(χn+1−χn |χn = χ) = a(p)−(1−κ)/2 > 0. Moreover, if we define
the stopping time tx = minn≥0{χn < x}, it follows from Theorem 2.5.18 in
[11] that there exist x1 and α > 0 such that

P

( ∞∩
n=1

{
Yn ≥ n

2
(1− κ)− (c′ − x1)

})
= P(tx1 = ∞) ≥ 1−

(
1 + x1

1 + χ0

)α

.

So, for every ε ∈ (0, 1) and κ > 0, we can appropriately choose α and χ0 =
c′ > x1 such that the probability in the above display is greater than ε/2.
Analogously, if we define χn = −Yn+n(1+κ), the upper bound can be found
exactly as above, yielding

µp

( ∞∩
n=1

{n
2
(1− κ)− c ≤ Yn ≤ n(1 + κ) + c

})
≥ ε. (33)
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Further, fix n ≥ M . Let mn and ln be integers such that n = mnM + ln,
where ln < M . Then on event

∩∞
n=1{

n
2 (1 − κ) − c ≤ Yn ≤ n(1 + κ) + c} the

following bounds hold

Un ≥ Ymn
≥ 1

2

(
n

M
− ln

M

)
(1− κ)− c ≥ 1

2
np(1− κ)− c1, (34)

and

Un ≤ Ymn+1 ≤
(

n

M
+

M − ln
M

)
(1 + κ) + c ≤ np(1 + κ) + c2. (35)

Inequalities (33), (34) and (35) yield bound (32).
Recall that M = [p−1], and so,

p

M−1∑
i=0

e−λUi ≤ pM ≤ 1.

By combining this bound with bound (32), it follows that given ε ∈ (0, 1) and
κ > 0 we can find c1 > 0 such that with µp-probability at least ε

p
∞∑
i=0

e−λUi ≤ 1 + p
∞∑

i=M

e−λ( 1
2pi(1−κ)−c1) ≤ C (36)

for some deterministic constant C = C(ε, λ) and all p ∈ (0, 1). Therefore

inf
p∈(0,1)

Ep

(
e−p

∑∞
i=0 e−λUi

)
≥ εe−C = ε1 > 0,

as required. ⊓⊔

We are now ready to proceed with the proof of the lemma. Recall that
λk = λk+1 =: λ.

Proof of Part 1) of Lemma 4. Recall that in this case λk−1 < λk = λk+1 = λ,
λ ≥ λk+2 and Γk = maxi Γi. Then,

γk,1Z(ζ1) = γk,1

∞∑
i=0

eλk−1(i−Ui)−λi ≤
∞∑
i=0

e−(λ−λk−1)i ≤ C1 < ∞, (37)

where C1 > 0 is a deterministic constant and we used that γk,1 ≤ 1.
Further, if λ > λk+2, then

γk,2Z(ζ2) = γk,2

∞∑
i=0

eλk+2Ui−λi ≤
∞∑
i=0

e−(λ−λk+2)i ≤ C2 < ∞, (38)

where C2 > 0 is a deterministic constant and we used that γk,2 ≤ 1. Then,

using bounds (37) and (38) in lower bound (31) gives that Px

(
Ak,k+1

[1,∞)

)
≥ ε

for some ε > 0, as claimed.
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If λ = λk+2, then bound (38) cannot be used, and we proceed as follows.
Note that in this case

γk,2Z(ζ2) = γk,2

∞∑
i=0

eλ(Ui−i) ≤ q

∞∑
i=0

eλ(Ui−i), (39)

as

γk,2 =
Γk+2

Γk + Γk+1
≤ Γk

Γk + Γk+1
= q = 1− p, (40)

where p is defined in (19). Further, combining bounds (37) and (39) in (31)
we get that

Px

(
Ak,k+1

[1,∞)

)
≥ ε1Ep

(
e−q

∑∞
i=0 eλ(Ui−i)

)
= ε1Ep

(
e−p

∑∞
i=0 e−λUi

)
,

where the equality holds by symmetry. It is left to note that the expectation in
the right side of the last equation is bounded below uniformly over p ∈ (0, 1)
by Part 2) of Proposition 8. ⊓⊔

Proof of Part 2) of Lemma 4. Recall that in this case λk−1 = λk = λk+1 =
λ ≥ λk+2, Γk = maxi Γi and Γk−1 ≤ Γk+1. These conditions give that
eλk−1(i−Ui)−λi = e−λUi , eλk+2Ui−λi ≤ eλ(Ui−i), and

γk,1 =
Γk−1

Γk + Γk+1
≤ Γk+1

Γk + Γk+1
= p. (41)

Recall also that γk,2 ≤ q = 1 − p (see (40)). Using all these inequalities in
lower bound (31) gives the following lower bound

Px

(
Ak,k+1

[1,∞)

)
≥ δEp

(
e−p

∑∞
i=0 e−λUi

e−q
∑∞

i=0 eλ(Ui−i)
)
. (42)

We have already shown in (36) that for any ε ∈ (0, 1) there exists constant
C = C(ε) > 0 such that

µp

(
p

∞∑
i=0

e−λUi ≤ C

)
≥ ε and µp

(
q

∞∑
i=0

eλ(Ui−i) ≤ C

)
≥ ε (43)

for all p, where the second bound holds by symmetry. Choosing ε > 0.5 we
get that

µp

(
p

∞∑
i=0

e−λUi ≤ C, q
∞∑
i=0

eλ(Ui−i) ≤ C

)
≥ 2ε− 1 > 0,

for all p. Combining this bound with equation (42) we finally obtain that

Px

(
Ak,k+1

[1,∞)

)
≥ ε2 for some ε2 > 0, as claimed. ⊓⊔
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5.2.3 Proof of Lemma 5

Proof of Part 1) of Lemma 5. Note that at every time a particle is added
to site k or k + 1, the allocation rates at these sites are multiplied by eλ. In
particular, if a particle is added to site k, then the allocation rate at k − 1 is
multiplied by eλk−1 . Otherwise, if a particle is added to site k + 1, then the
allocation rate at k+2 is multiplied by eλk+2 . Other rates remain unchanged.
Thus, by allocating a particle at k or k + 1, the sum of rates at k, k + 1 and
k+2 over the sum of rates at all other sites is increased by a multiple constant.
This yields the following exponential bound

Px

 ∪
i ̸=k,k+1,k+2

Ai
n+1

∣∣∣∣Ak,k+1
[1,n]

 ≤ C1e
−C2n, (44)

for some C1, C2 > 0. In turn, bound (44) implies that with a positive prob-

ability (not depending on x) event Ak,k+1
[1,∞) ∪ {τk+2 < w+

k } occurs as claimed.

Note also that events Ak,k+1
[1,∞) and {τk+2 < w+

k } are mutually exclusive. Thus,

with a positive probability either all particles will be allocated at k and k+1,
or a particle is eventually placed at k+2 before anywhere else outside k, k+1
and k + 2. Placing a particle at k + 2 can violate condition (6) because the
maximal allocating probability can be now attained at sites k + 2 and k + 3
as well. Part 1) of Lemma 5 is proved. ⊓⊔

Proof of Part 2) Lemma 5. Note that eλk−1(i−Ui)−λi < e−(λ−λk−1)i and
λk−1 < λ. Consequently, for any n

Zn(ζ1) =
n∑

i=0

eλk−1(i−Ui)−λi ≤
∞∑
i=0

e−(λ−λk−1)i < C < ∞. (45)

Note also that γk,1 ≤ 1 and γk,2 ≤ 1. Combining these inequalities with
equation (45) and letting n → ∞ in (29) gives that

Px

(
Ak,k+1

[1,∞]

)
≥ ε1Ep

(
e−Z(ζ2)

)
,

for some ε1 > 0. Further, assumption r < z2 implies that λk+2p − λ < 0.
Recall that parameter r = xk+2 − xk−1 takes integer values, and p = p(r) is
a monotonically increasing function of r. Let r0 be the maximal integer such
that r < z2 and p0 = p(r0), so that λk+2p0−λ < 0. It follows from Proposition
2 and Proposition 7 that for all 0 < p < p0

Ep

(
e−Z(ζ2)

)
≥ Ep0

(
e−Z(ζ2)

)
> 0,

and, hence, Px

(
Ak,k+1

[1,∞]

)
≥ ε for some uniform ε > 0 over configurations x

satisfying r < z2. Part 2) of Lemma 5 is proved. ⊓⊔
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Proof of Part 3) of Lemma 5. We are going to use the following relaxation
of upper bound (27)

Px

(
Ak,k+1

[1,n+1]

)
≤ Ep

(
n∏

i=0

1

1 + γk,2eλk+2Ui−λi

)
. (46)

Next, assumption r ≥ z2 implies that λk+2p−λ ≥ 0. Therefore, by the strong
law of large numbers, we get that µp-a.s. λk+2Ui−λi ≥ 0 for infinitely many i
and, hence,

∏n
i=0

1

1+γk,2e
λk+2Ui−λi → 0. The product is bounded by 1, therefore,

by the Lebesgue’s dominated convergence theorem, the expectation in the right
side of (46) tends to 0 as n → ∞, which implies that

Px

(
Ak,k+1

[1,∞]

)
= lim

n→∞
Px

(
Ak,k+1

[1,n+1]

)
= 0, (47)

as claimed. Note that equation (47) combined with Part 1) of the lemma
further yields that Px

(
τk+2 < w+

k

)
> ϵ for some ϵ. ⊓⊔

Proof of Part 4) of Lemma 5. Define

n̂ = min
(
n : γk,2e

λk+2Sn−λn ≥ 1
)
. (48)

In other words, n̂ is the first time when the allocation rate at site k+2 exceeds
the sum of allocation rates at sites k and k+1, becoming therefore, the maximal
rate.

Applying lower bound (30) gives that

Px

(
Ak,k+1

[1,n̂]

)
≥ δEp

(
e−γk,1Zm̂−1(ζ1)e−γk,2Zm̂−1(ζ2)

)
, (49)

where
m̂ = min

(
m : γk,2e

λk+2Um−λm ≥ 1
)
. (50)

Equation (45) yields that γk,1Zm̂−1(ζ1) < Z(ζ1) < C < ∞. This allows us to

rewrite bound (49) as follows Px

(
Ak,k+1

[1,n̂]

)
≥ ε2Ep

(
e−γk,2Zm̂−1(ζ2)

)
, for some

ε2. By assumption r > z2. Let now r0 be the minimal integer such that r0 > z2
and p0 = p(r0). Then λk+2p − λ > λk+2p0 − λ > 0 for any p > p0. It follows
from Proposition 6 and Proposition 7 that for all p > p0

Ep

(
e−γk,2Zm̂−1(ζ2)

)
≥ Ep0

(
e−Z(η2)

)
> 0,

where η2 is the sequence reciprocal to ζ2. Hence Px

(
Ak,k+1

[1,n̂]

)
≥ ε2ϵ2 > 0.

Next, recall event Bk defined in (5). Note that Ak,k+1
[1,n̂] ∩ Ak+2

n̂+1 ⊆ Bk, so

that Px (Bk) ≥ ε2ϵ2/N > 0 as well.

It is left to show that the maximal rate maxi Γi relocates as described in
(7). Clearly, this is always the case if λ < min(λk+2, λk+3). This might not be
the case in the following particular situation. Namely, suppose that λk+3 ≤ λ
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and initial configuration x is such that Γk = maxi Γi and Γk+3e
λk+3 ≥ Γk. In

this case, if τk+2 = 1, then the maximal rate might move to k + 3. However,
note that τk+2 ≥ 2 on event Ak,k+1

[1,n̂] . Indeed, by definition (48) n̂ ≥ 1, and,

hence, on this event τk+2 ≥ 2 as τk+2 > n̂, so that at least one particle is
deposited at {k, k + 1} by time τk+2. It is not hard to check that placing one
particle at {k, k+1} makes impossible that relocation of maxi Γi to k+3 when
λk+3 ≤ λ. ⊓⊔

5.2.4 Proof of Lemma 6

First, note that the proof of Part 1) of Lemma 6 is analogous to the proof of
Part 1) of Lemma 5 and we omit technical details. For simplicity of notation
we denote λ = λk = λk+1 in the rest of the proof.

Proof of Part 2) of Lemma 6. Recall lower bound (31)

Px

(
Ak,k+1

[1,∞]

)
≥ δEp

(
e−γk,1Z(ζ1)e−γk,2Z(ζ2)

)
.

Note that z1 < r < z2 if and only if both λk−1(1−p)−λ < 0 and λk+2p−λ < 0.
Therefore, it follows from Proposition 2 that µp-a.s. both Z(ζ1) < ∞ and
Z(ζ2) < ∞. Consequently,

Ep

(
e−γk,1Z(ζ1)e−γk,2Z(ζ2)

)
≥ Ep

(
e−Z(ζ1)e−Z(ζ2)

)
≥ ε(p) > 0,

as γk,i ≤ 1, i = 1, 2, so that Px

(
Ak,k+1

[1,∞]

)
≥ δε(p). It is left to note that there

is a finite number (depending only on λ’s) of possible values of integer-valued
parameter r satisfying z1 < r < z2, and, hence, the same number of possible
values of probability p. Therefore, constant ε(p) can be chosen as the minimal
one for those values of p. This concludes the proof of the second part of the
lemma. ⊓⊔

Proof of Part 3) of Lemma 6. Let us start by noting the following. As-
sumption r ≤ z1 implies that λk−1(1 − p) − λ ≥ 0, and assumption r ≥
z2 implies that λk+2p − λ ≥ 0. Therefore, the law of large numbers yields
that µp-a.s. at least one of the following events {λk−1(i − Ui) − λi ≥ 0}
and {λk+2Ui − λi ≥ 0} occurs for infinitely many i. Consequently, µp-a.s.
n∏

i=0

1

1+γk,1e
λk−1(i−Ui)−λi+γk,2e

λk+2Ui−λi → 0, as n → ∞. Using bound (27) and

the Lebesgue dominated convergence theorem, we obtain that

Px

(
Ak,k+1

[1,n+1]

)
≤ Ep

(
n∏

i=0

1

1 + γk,1eλk−1(i−Ui)−λi + γk,2eλk+2Ui−λi

)
→ 0,

as n → ∞. Hence, Px

(
Ak,k+1

[1,∞]

)
= 0, and, hence, Px (Dk) ≥ ε, as claimed. ⊓⊔
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5.2.5 Proof of Lemma 7

The proof here is similar to the proof of Part 4) of Lemma 5. The common
starting point is the lower bound (30) where τ and τ̃ are appropriately chosen
stopping times.

Proof of Part 1) and 2) of Lemma 7. First, note that the random variables
Z(ζ1) and Z(ζ2) are finite if λk−1(1−p)−λ < 0 and λk+2p−λ < 0, respectively.
In fact, by our assumptions, precisely one of these conditions is necessarily
satisfied so that one of Z(ζ1) and Z(ζ2) is almost surely finite. Then we apply
bound (30) with the corresponding pair of stopping times (τ, τ̃) = (n̂2, m̂2) or
(τ, τ̃) = (n̂1, m̂1) respectively, where

n̂1 = min
(
n : γk,1e

λk−1(n−Sn)−λn ≥ 1
)
,

n̂2 = min
(
n : γk,2e

λk+2Sn−λn ≥ 1
)
,

m̂1 = min
(
m : γk,1e

λk−1(m−Um)−λm ≥ 1
)
,

m̂2 = min
(
m : γk,2e

λk+2Um−λm ≥ 1
)
.

For concreteness, consider the case where {k, k + 1} is of type 2 and r >
z1 ≥ z2, in which case λk−1(1−p)−λ < 0 and λk+2p−λ > 0. Applying bound
(30) with (τ, τ̃) = (n̂2, m̂2) yields that

Px

(
Ak,k+1

[1,n̂2]

)
≥ δEp

(
e−γk,1Zm̂2−1(ζ1)e−γk,2Zm̂2−1(ζ2)

)
.

Condition λk−1(1−p)−λ < 0 and Proposition 2 imply that Z(ζ1) < ∞ µp-a.s.
Therefore, we can bound γk,1Zm̂2−1(ζ1) ≤ Z(ζ1), as γk,1 ≤ 1. Also, condition
λk+2p− λ > 0 and Proposition 5 imply that γk,2Zm̂2−1(ζ2) < ∞ µp-a.s. Com-
bining the above, we get to the following lower bound

Px

(
Ak,k+1

[1,n̂2]

)
≥ δEp

(
e−Z(ζ1)e−γk,2Zm̂2−1(ζ2)

)
.

Moreover, let η2 be the sequence reciprocal to ζ2. Then, applying Proposition
5 again, we get that Z(η2) < ∞ µp-a.s., Z(η2) ≥st γZm̂−1(ζ2) and

Ep

(
e−Z(ζ1)e−γZm̂−1(ζ2)

)
≥ Ep

(
e−Z(ζ1)e−Z(η2)

)
> 0.

Let us show that, when r > z1, the expectation in the right side of the pre-
ceding display is uniformly bounded below over p = p(r). To this end, take
the minimal integer r0 such that r0 > z1 so that condition r > z1 implies
p > p0 = p(r0), and, hence, λk−1(1 − p) − λ < λk−1(1 − p0) − λ < 0 and
λk+2p−λ > λk+2p0−λ > 0. This implies the following. First, consider the ran-
dom variable Z(ζ1) with distribution determined by parameter p0. By Propo-
sitions 2 and 7, it follows that Z(ζ1) is almost surely finite, and, moreover,
it stochastically dominates any other random variable Z(ζ1) with distribution
determined by p > p0. Second, consider the random variable Z(η2), where η2
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is a sequence reciprocal to sequence ζ2 whose distribution is determined by pa-
rameter p0. By Propositions 2, 3 and 7, it follows that Z(η2) is almost surely
finite and, moreover, it stochastically dominates any other random variable
Z(η2), where η2 is reciprocal to ζ2 whose distribution is determined by p > p0.

Therefore, Ep

(
e−Z(ζ1)e−Z(η2)

)
≥ Ep0

(
e−Z(ζ1)e−Z(η2)

)
. Summarizing the

above, we finally obtain that

Px

(
Ak,k+1

[1,n̂2]

)
≥ δEp0

(
e−Z(ζ1)e−Z(η2)

)
> 0.

We have considered here only the case where {k, k+1} is of type 2 and r > z1,
but by rearranging the stopping times above, one should note that for all the
remaining cases stated in Parts 1) and 2) of Lemma 7, the reasoning is exactly
the same as above. ⊓⊔

Proof of Part 3) of Lemma 7. Let us obtain the lower bound in Part 3) of
Lemma 7. In this case {k, k+1} is a local minimum of type 2 and z2 < r < z1.
The double inequality implies that both λk−1(1−p)−λ > 0 and λk+2p−λ > 0.
As a result, both Z(ζ1) and Z(ζ2) are infinite. In this case we modify bound
(30) with stopping times τ = n̂ = min(n̂1, n̂2) and τ̃ = m̂ = min(m̂1, m̂2), as
follows

Px

(
Ak,k+1

[1,n̂]

)
≥ δEp

(
e−γk,1Zm̂−1(ζ1)e−γk,2Zm̂−1(ζ2)

)
≥ δEp

(
e−γk,1Zm̂1−1(ζ1)e−γk,2Zm̂2−1(ζ2)

)
,

where in the last inequality we bounded m̂ = min(m̂1, m̂2) by m̂1 and m̂2

respectively. By Proposition 5 µp-a.s. both γk,1Zm̂1−1(ζ1) < ∞ and

γk,2Zm̂2−1(ζ2) < ∞. Therefore, Px

(
Ak,k+1

[1,n̂]

)
≥ ε(p) > 0. Further, there are

finitely many integers r such that z2 < r < z1. Consequently, there are finitely

many corresponding values of probability p, and Px

(
Ak,k+1

[1,n̂]

)
≥ ε for some

ε > 0 uniformly over all values of p in this finite set.

Finally, relocation of the maximal rate in all cases covered by Lemmas 7
can be shown by modifying the argument used in the proof of Part 4) of
Lemma 5. ⊓⊔

5.2.6 Proof of Lemma 8

We skip proofs of Parts 1) and 3) as they are analogous to the proofs of Parts 1)
and 3) of Lemma 5. Proofs of Parts 2) and 4) can be obtained by appropriately
modifying proofs of Parts 2) and 4) of Lemma 5 and combining them with the
ideas in the proof of Lemma 4. Modifications are due to condition λk−1 = λ
implying that z1 = −∞ < z2 (see Remark 2).
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Proof of Part 2) of Lemma 8. Recall that in this case r < z2, so that λk+2p−
λ < 0 and p < p0, where p0 is defined in Part 2) of Lemma 5. Repeating the
proof of Part 2) of Lemma 5 and using that γk,1 ≤ p and γk,2 ≤ 1 (see (41)
and (40)) we obtain the following lower bound

Px

(
Ak,k+1

[1,∞]

)
≥ Ep

(
e−pZ(ζ1)e−Z(ζ2)

)
, (51)

Our assumptions imply that both Z(ζ1) and Z(ζ2) are almost surely finite by
Proposition 2. Fix ε > 0.5, let C1 = C1(ε) > 0 be such that

µp (pZ(ζ1) ≤ C1) = µp

(
p

∞∑
i=0

e−λUi ≤ C1

)
≥ ε (52)

for all p ∈ (0, 1) (see (43)), and let C2 = C2(ε) be such that µp0 (Z(ζ2) ≤ C2) ≥
ε. The last inequality yields that µp (Z(ζ2) ≤ C2) ≥ µp0 (Z(ζ2) ≤ C2) ≥ ε, as
Z(ζ2), with distribution determined by parameter p0, dominates any random
variable Z(ζ2) with distribution determined by parameter p < p0. Finally, by
using the same elementary argument as in the proof of Lemma 4, we get that
µp (pZ(ζ1) ≤ C1, Z(ζ2) ≤ C2) ≥ 2ε− 1, which implies that the expectation in

the right side of (51) is bounded below away from zero, so that Px

(
Ak,k+1

[1,∞]

)
≥

ε1 for some uniform ε1 > 0 over configurations x satisfying r < z2. ⊓⊔

Proof of Part 4) of Lemma 8. Recall that in this case r > z2, so that λk+2p−
λ > 0 and p > p0, where p0 is now defined in Part 4) of Lemma 5. Repeating
the proof of Part 4) of Lemma 5 and using again that γk,1 ≤ p we obtain the
following lower bound

Px

(
Ak,k+1

[1,n̂]

)
≥ δEp

(
e−pZ(ζ1)e−γk,2Zm̂−1(ζ2)

)
,

where n̂ and m̂ are defined in (48) and (50) respectively. Our assumptions
imply that both Z(ζ1) and Zm̂−1(ζ2) are almost surely finite by Propositions
2 and 5. Further, Proposition 5 yields that

Px

(
Ak,k+1

[1,n̂]

)
≥ δEp

(
e−pZ(ζ1)e−Z(η2)

)
, (53)

where η2 is the random sequence reciprocal to ζ2.
Let ε > 0.5 and C1 = C1(ε) > 0 be such that (52) holds, and let C2 = C2(ε)

be such that µp0 (Z(η2) ≤ C2) ≥ ε. The last inequality yields that

µp (Z(η2) ≤ C2) ≥ µp0 (Z(η2) ≤ C2) ≥ ε,

as Z(η2), with distribution determined by parameter p0, dominates any ran-
dom variable Z(η2) with distribution determined by parameter p > p0.

As at the same stage of the proof in Part 2) we can now conclude that the
expectation in the right side of (53) is bounded below away from zero, which

implies that Px

(
Ak,k+1

[1,n̂]

)
≥ ε2 for some uniform ε2 > 0 over configurations x

satisfying r > z2. ⊓⊔
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5.2.7 Proof of Corollary 1

The critical cases where r = z1 or r = z2 need to be treated separately since
these cases can not be proven directly by the above arguments. However, by
a slight modification one can amend the proof of each lemma in order to
encompass such critical cases.

The modification is the same for all lemmas, but for the sake of concreteness
let us consider the critical case described in Part 3) of Lemma 5 assuming that
r = z2. We start by commenting on the same effect that we already discussed
in the proof of Part 4) of Lemma 5. Namely, recall that if λk+3 < λk = λk+1,
Γk+3e

λk+3 ≥ Γk, and Γk = maxi Γi, then τk+2 = 1 makes the maximal rate
move to k + 3. One can check that the above situation is the only one that
can possibly relocate the maximal rate to a site with smaller λ. In order to
avoid such case, it is simply a matter of placing a particle at k at the first step,
which can be done with probability at least 1/N . Therefore, without loss of
generality we can exclude this case.

Next, if at time τk+2 the maximal rate relocates either to k + 2, or to
k + 3 (provided λk+3 > λk = λk+1) then we are done. Suppose the opposite,
namely, that at time τk+2 the maximal allocation rate remains where it was,
that is, at k or at k + 1. It is left to note that given event Ak,k+1

[1,τk+2−1], placing

a particle at site k + 2 at moment τk+2 increases the configuration parameter
r = xk+2 − xk−1 by 1, so that the resulting configuration is such that r > z2.
By Part 4) of Lemma 5, the next allocated particles at {k, k + 1} will end up
by relocating the maximal rate as prescribed.

Other critical cases can be handled similarly, and we skip straightforward
technical details.

6 Proof of Theorem 1

The idea of the proof goes briefly as follows. Given any initial state X(0) = x,
the site k where Γk(x) = maxi=1,...,N (Γi(x)) is identified. Then, a particle al-
location strategy is drawn so that it always results in localization of growth as
described in Theorem 1. Lemmas 1-8 enable us to identify the corresponding
strategy for each particular case and bound its probability from below uni-
formly over initial configurations (see Remark 1). Should a particular strat-
egy fail to happen, which means that at a certain step n a particle is not
allocated according to that strategy, but somewhere else, a new one is drawn
and this procedure reiterates from X(n). Since there is a finite number of pos-
sible strategies it follows from the renewal argument below that almost surely
one of them eventually succeeds.

In what follows, when referring to Lemma 2 or one of Lemmas 4-8, this
automatically includes the symmetric cases by re-labelling the graph in reverse
order (as explained in Remark 3). Also, local minima of size 2 and type 1
automatically include the limiting case described in Remark 2.

Let X(n) = x be a fixed and arbitrary configuration, and:
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1) Assume that Γk(x) = maxi=1,...,N (Γi(x)) and λk−1 ̸= λk ̸= λk+1.
1.1) Let k be a local maximum. By Lemma 1, with positive probability,

all subsequent particles are allocated at k.
1.2) Let k be either a growth point, or a local minimum. By Lemmas 2

and 3, with positive probability, the maximal rate relocates in finite time to
one of its nearest neighbours having parameter λ > λk.

2) Assume that Γk(x) = maxi=1,...,N (Γi(x)) and that additional assump-
tions of Lemma 4 are satisfied. Lemma 4 yields that, with positive probability,
all subsequent particles are allocated at sites {k, k + 1}

3) Assume that max(Γk(x), Γk+1(x)) = maxi Γi(x), where {k, k + 1} is
either a saddle point, or a local minimum of size 2 and type 1. Additional
assumptions on x, as described in Part 2) of Lemmas 5, 6 and 8, guarantee
that, with positive probability, all subsequent particles are allocated at sites
{k, k + 1}.

4) Assume that max(Γk(x), Γk+1(x)) = maxi Γi(x), where {k, k + 1} is
either a saddle point of size 2, or a local minimum of size 2 of either type.
Assume also that configuration x is such that assumptions as in the preceding
item do not hold. Such cases are covered by Lemmas: 5, Part 3) and 4); 6 Part
3); 7 and 8; and finally, 8 Part 3) and 4) complemented by Corollary 1. In all
those cases, with positive probability, the maximal rate eventually relocates
in a random but finite time to a site with larger parameter λ.

5) Finally, for the remaining cases of local minima, maxima or saddle points
of size greater than 2, it is not hard to check that such cases can be reduced
to one, or a combination, of the above items.

Thus, for every configuration x and every set of positive real parameters
Λ = (λk)

N
k=1, we have identified two types of events. First, there are events re-

sulting in localisation of growth at either a single site or a pair of neighbouring
sites (as described in Theorem 1 Part 1) and 2) respectively). Call such events
L-events. Second, there are events resulting in relocation of the maximal rate.
Call such events R-events.

The next step of the proof is to define a sequence of random moments of
time (Tj)j≥0 called renewal moments. First, set T0 = 0. Now, given Tj , let us
define Tj+1. Suppose that at time Tj the process is at state x. We identify
an event R1 . . . RmL (strategy) formed by a sequence of m R-events (possibly
none) ending at an L-event. At the fist moment of time t > Tj a particle is not
allocated according to R1 . . . RmL, we set Tj+1 = t.

Note that R-events are defined in a way so that the maximal rate always
relocates to a site with strictly larger parameter λ. It follows that the number
of R-events preceding any L-event is bounded by the number of different values
of λi, i = 1 . . . N . Then, by Lemmas 1-8, probabilities of events R1 . . . RmL
are bounded below uniformly over configurations, where m ≤ N .

Further, let jmax := max{j ≥ 0 : Tj < ∞}. Lemmas 1-8 imply the
existence of an uniform bound ϵ > 0 such that P(Tj = ∞) ≥ ϵ on {Tj−1 <
∞}. Therefore, P(Tj < ∞) ≤ 1 − ϵ on {Tj−1 < ∞}, or equivalently,
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P(jmax ≥ j | jmax ≥ j − 1) < 1 − ϵ. Thus, P(jmax < ∞) = 1. This implies
that Tj = ∞ for some j, so that, with probability one, a certain allocation
strategy R1 . . . RmL eventually succeeds, that is the growth process localises
as claimed.

Finally, the long term behaviour of ratio Xk+1(n)/Xk(n) described in item
ii) of the theorem is implied by the law of large numbers for the Binomial
distribution. This follows straightforwardly from the proofs of Lemma 4 and
Parts 2) of Lemmas 5, 6 and 8. The theorem is proved. ⊓⊔
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