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Is there a correlation between the (hetero)aromaticity of the core of a molecule and its conductance in a single 

molecular junction? To address this question, which is of fundamental interest in molecular electronics, 

oligo(arylene-ethynylene) (OAE) molecular wires have been synthesized with core units comprising 

dibenzothiophene, carbazole, dibenzofuran and fluorene. The biphenyl core has been studied for comparison. 

Two isomeric series have been obtained with 4-ethynylpyridine units linked to the core either at para-para 

positions (para series 1–5) or meta-meta positions (meta series 6–10). A combined experimental and 

computational study, using mechanically controlled break junction measurements and density functional theory 

calculations, demonstrates consistently higher conductance in the para series compared to the meta series: this is 

in agreement with increased conjugation of the –system in the para series. Within the para series conductance 

increases in the order of decreasing heteroaromaticity (dibenzothiophene < carbazole < dibenzofuran). However, 

the sequence is very different in the meta series, where dibenzothiophene ≈ dibenzofuran < carbazole. Excellent 

agreement between theoretical and experimental conductance values is obtained. Our study establishes that both 

quantum interference and heteroaromaticity in the molecular core units play important and inter-related roles in 

determining the conductance of single molecular junctions. 
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The measurement and understanding of charge transport in single molecules is of fundamental interest and is 

relevant to the proposed future applications of molecules in electronic devices
1–6

. Many studies have addressed 

correlations between molecular structure and transport properties of molecules wired into metal–molecule–metal 

nanoscale junctions
7,8

. Several experimental approaches are well established for measuring transport through 

single (or a few) molecules, notably the mechanically controlled break junction (MCBJ)
9
 and scanning 

tunnelling microscopy-break junction (STM-BJ) techniques
10

. Combined experimental and theoretical studies
11

 

have established that charge transport through molecular junctions is controlled by the intrinsic properties of the 

molecular backbone, the terminal anchoring group, and the metal leads. Key features are the molecular length, 

the molecular conformation, the gap between the highest occupied and the lowest unoccupied molecular orbitals 

(the HOMO-LUMO gap), the alignment of this gap to the Fermi level of the metal electrodes, and the 

coordination geometry at the metal-molecule contacts. Oligo(arylene-ethynylene) (OAE)-type molecular wires 

have been widely explored in single molecular junctions
12–16

. They are –conjugated, rod-like molecules and 

their functional properties can be systematically tuned over a wide range of parameters by chemical synthesis
17

. 

In the present work we investigate a series of ten OAE molecules 1–10 whose structures are shown in Figure 

1. The molecular design combines three key structural features: (i) all of the molecules have terminal pyridyl 

anchoring units at both ends; (ii) each molecule has one of five different core units and (iii) there is either para-

para or meta-meta conjugation through the core unit, providing two isomeric series. The dibenzothiophene (1, 

6), N-ethylcarbazole (2, 7), dibenzofuran (3, 8) and 9,9-dimethylfluorene cores (4, 9) are rigid and planar. 

Heteroaromaticity, i.e., the resonance energy, will decrease in the sequence dibenzothiophene > carbazole > 

dibenzofuran, reflecting the extent of delocalization of a lone pair from the heteroatom into the –system of the 

central ring (S > N > O)
18

. Fluorene, with no heteroatom and a bridging sp
3
 carbon atom instead, has a non-

aromatic central ring. In contrast to the other molecules in Figure 1, biphenyl derivatives 5 and 10 possess a 

flexible and twisted core. It is well known that increasing the torsion angle within a biphenyl unit leads to 

reduced single-molecule conductance
19–23

, therefore, 5 and 10 are studied here as model compounds.  

 

 
 

Figure 1 | Structures of the molecules discussed in this work and their nomenclature. The structures represent the para-
linked series 1–5 (top) and meta-linked series 6–10 (bottom) 

 

 

We are aware of only two related reports on the effect of heteroaromaticity on single-molecule conductance. 

Venkataraman, Breslow and co-workers studied three amine-terminated molecules comprising thiophene, furan 

and dimethylcyclopentadiene cores (11–13, Figure 2). Based on STM–BJ measurements the authors concluded 

that aromaticity in the core leads to a decrease in the single-molecule conductance, i.e. the non-aromatic 

cyclopentadiene derivative 13 has the highest conductance, while the most aromatic thiophene derivative 11 has 
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the lowest conductance
24

. This work did not consider the linkage of the anchor units to different positions on the 

core. 

 

 
 

 
Figure 2| Molecules studied in reference 23. Amine-terminated molecules 11–13 measured by STM-BJ. 

 

A second study concerns multiple pathways through a molecular wire based on fluorene-like molecules
25

. 

Several studies have established that para (conjugated) connectivity through a core unit results in enhanced 

conductance compared to the isomeric meta (reduced conjugation) connectivity. This is ascribed to quantum 

interference and has been observed experimentally and theoretically in aromatic rings such as benzene
26–29

, 

naphthalene
14

, anthracene
14

, pyrene
30

 and anthanthrene
31

. 

The motivation for the present work is to study for the first time the combined effects of two important 

molecular parameters on the single-molecule conductance of molecular wires: (i) heteroaromaticity in the core 

of the wire, and (ii) para versus meta conjugation through the core unit.  

 

 

Results 

Synthesis. For the synthesis of the para-linked 1–5 and meta-linked 6–10 molecules (Scheme 1) a tandem two-

pot reaction sequence was followed. To enable the Sonogashira cross coupling of the corresponding 

aryldibromide central units (structures 14–23
32–39 in SI) at elevated temperatures, desilylation of 4-((tri-methyl-

silyl)ethynyl)pyridine
40

 with TBAF (1 M in THF) was performed in 1,4-dioxane (room temperature for 30 min). 

Since the light-sensitive 4-ethynylpyridine is not stable in air, the mixture was directly subjected to the 

aryldibromide in the presence of PdCl2(PhCN)2, CuI, t-Bu3P, and (i-Pr)2NH, to give the target structures 1–10 in 

very good yields (Schemes S1 and S2). All the compounds were characterized by 
1
H and 

13
C NMR 

spectroscopy, mass spectrometry and elemental analysis. In addition, to assess the extent of conjugation within 

compounds 1–10 their UV–Vis absorption spectra were measured in a dilute and aerated dichloromethane 

solution at room temperature (Supplementary Figure 1). The optical HOMO-LUMO gaps (Eg) were calculated 

from the onset of the absorption and are listed in Supplementary Table 1. Compounds 1–5, with the anchor 

groups attached in the para positions, show a smaller HOMO–LUMO gap compared to the meta isomers 6-10. 

This is consistent with reduced conjugation in the meta series.  

 

Single-molecule Conductance Measurements. Single-molecule conductance measurements of 1–10 in 

molecular junctions were performed using a home-built mechanically controllable break junction (MCBJ) setup 

at a bias Vbias = 0.1 V. Figure 3a shows typical individual conductance G (in units of quantum point conductance 

G0=2e
2
/h) versus distance (z) stretching traces in the measurement of Np. The conductance in the molecule-

free traces (black line) reveals exponential decrease characteristics upon the stretching process. When molecule 

Np is present a pronounced conductance plateau around 10
-5

 G0 could be detected (green line) after the Au–Au 

contact breaks, which is assigned to the gold–molecule–gold junction. Since the break junction method can 

create a large number of molecular junctions with different molecule–electrode contact geometries, more than 

1000 curves were recorded for statistical analysis to determine the most probable conductance of the molecular 

junctions. We further introduced a relative distance (z) and defined z = 0 at 0.5 G0 to align all the traces. This 
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procedure leads to an accurate alignment of the conductance−distance traces because of the sharp drop in 

conductance at G < G0. The electrode separation zexp is then estimated by zexp = z + zcorr, where zcorr = 0.5 ± 

0.1 nm corresponds to the “snap-back” nanogap which forms immediately upon breaking of the gold-gold 

atomic contact
41

. The all–data two–dimensional (2D) histogram (Figure 3b) exhibits features of gold–gold 

contacts  around G ≥ 1 G0，followed by another well-defined conductance scatter group in the range of 10
-4

 G0 

~ 10
-6

 G0 which is attributed to the formation of single–molecule junctions. Figures 3c-d demonstrate the 

comparison between molecules with different heteroatoms and anchoring positions. For the compounds 1–3 

with the para–para connectivity, the conductance clearly increases in the sequence Sp < Np < Op. However, for 

the isomers 6–8 where the anchoring groups are attached at meta–meta positions, the conductance reveals a 

different trend, Sm ≈ Om < Nm. Control experiments using analogues with a carbon bridge (4-Cp and 9-Cm) 

and without any bridging atom (5-2Hp and 10-2Hm) were also conducted. The conductance of 2Hm could not 

be measured within the detection range of our setup. This can be explained by the meta coupling combined with 

a non-planar biphenyl core giving a conductance value below the direct tunneling conductance
29

. 

 

 

 
Figure 3 | Single-molecule conductance results from MCBJ experiments. (a) Typical individual conductance–distance 
traces (horizontally offset for clarity) of Np (green) and pure tunneling traces (black). (b) All-data-point 2D conductance 
versus relative distance (Δz) of Np. In 2D histogram, statistically averaged conductance−distance traces (hollow circles) 
with variations indicated by the standard deviations (bars) are shown, along with the linear fit (line). The solid circle 
represents the last data point in the linear fit before junction rupture. Inset: Stretching distance distribution obtained 
between 10

-0.30
 G0 and 10

-6.25
 G0. (c) and (d) All-data-point 1D conductance histograms constructed from more than 1,000 

MCBJ traces of molecules with anchoring groups on (c) para-para and (d) meta–meta position. The gray area represents 
the detection limit of the MCBJ set up at 10

-7
 G0. 

 

As the junction configuration is known to have a significant effect on the single–molecule conductance, we 

further explored the master curves composed of the fitted conductance with standard variation at each cross-

sectional distance point
42

. After a linear fitting, the Np junction conductance with a fully stretched molecular 

conformation before the junction rupture can be deduced as 10
-5.74 ± 0.17

 G0, which should be closer to the 

theoretical predicted configurations.  

 

 

 

a b 

c d 



5 

 

 

 

Table 1 | Most Probable Conductance Values as Obtained from MCBJ Experiments and Computations. 

 

Compound 
MCBJ 

(log(G/G0))
a
 

DFT 

(log(G/G0))
b
 

GF para–GF meta 

(log(G/G0))
c
 

JFP 

(%)
d
 

Electrode separation 

zexp = z + zcorr 

(nm)
e
 

Theoretical 

length 

(nm) 

 GM

a
 GF

b
 GM

a
 GF

b
 MCBJ DFT    

1-Sp –5.79 ± 0.30 –5.93 ± 0.16 –5.50 –5.74 0.72 0.66 69 2.04 ± 0.45 2.04 

2-Np –5.22 ± 0.40 –5.74 ± 0.17 –5.15 –5.36 0.67 0.70 83 2.01 ± 0.23 2.02 

3-Op –5.04 ± 0.47 –5.47 ± 0.22 –5.10 –5.33 1.37 1.19 99 1.92 ± 0.26 2.03 

4-Cp –5.55 ± 0.44 –5.81 ± 0.12 –5.44 –5.66 0.09 0.68 70 1.84 ± 0.22 2.03 

5-2Hp –5.40 ± 0.36 –5.68 ± 0.11 –5.30 –5.55 >1.32 2.34 83 2.11 ± 0.23 2.08 

6-Sm –6.34 ± 0.47 –6.65 ± 0.35 –6.34 –6.40   100 1.64 ± 0.29 1.51 

7-Nm –5.76 ± 0.48 –6.41 ± 0.25 –6.06 –6.06   71 1.66 ± 0.14 1.56 

8-Om –6.32 ± 0.38 –6.84 ± 0.24 –6.40 –6.52   100 1.65 ± 0.19 1.55 

9-Cm –5.66 ± 0.82 –5.90 ± 0.39 –5.74 –6.34   100 1.46 ± 0.29 1.51 

10-2Hm < –7 < –7 –7.38 –7.89   – – 1.41 

a
Conductance fitted by Gaussian function in the 1D histogram. 

b
Molecular conductance through fully stretched junction 

obtained by linear fitting of the master curve. 
c
Fully-stretched conductance difference between para- and meta-linked 

molecule for each heteroatom. 
d
Junction formation probability judged by area ratio of the peak in the plateau length 

distribution. 
e
Most-probable electrode separation at the end of conductance plateau. Error bars are based on the Gaussian 

fitting of conductance all-data-point 1D histogram and plateau displacement distribution.  

 

It is found that there is some difference in the conductance comparison among different molecules: Om shows 

lower conductance than Sm for the conductance of the fully-stretched configurations, while Om shows a slightly 

higher conductance for the most probable conductance extracted from conductance histogram.  

The key results of the MCBJ measurements are summarized in Table 1 and the corresponding original results 

are presented in the Supporting Information (Supplementary Figures 24-33). No multiple features were observed 

in the experiments, including 3-Op and 8-Om. The lower peaks covered by the grey area below 10
-7

 G0 is the 

noise level of the MCBJ experiments (Figure 3(c and d)). All the curves were used for the statistical analysis 

without any data selection. Junction formation probability (JFP) is the proportion of molecular stretching traces 

with a pronounced plateau relative to the total number of traces (Table 1). It is judged by area ratio of the peak 

in the plateau length distribution. Direct tunneling traces have no plateau and decay faster to the noise level, 

corresponding to the smaller stretching peak alongside the molecular peak in the plateau length histogram. 

(Supplementary Figures 24-33). 

Several interesting conclusions can be drawn from the comparative conductance values of these molecules. 

First, in all cases, molecules with para connectivity 1–5 present larger conductance values than their meta 
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isomers, regardless of the bridging unit. This can be attributed to the partial de Broglie waves traversing in 

different paths through the core being in phase in the para isomers, giving rise to a constructive quantum 

interference (QI) effect. On the contrary, in the meta-anchored isomers the waves are out of phase leading to 

destructive quantum interference. The conductance relationship of the para and meta molecules is consistent 

with that of molecules with a central single benzene ring
27–29,43

, indicating the quantum interference effect can 

still operate in polycyclic compounds. Secondly, the structure of the central core plays an important role in the 

conductance of QI molecules. It is noted that the largest difference between the para– and meta–anchored 

molecules (ΔG) is for the dibenzofuran pair 3-Op and 8-Om, 1.37 log(G/G0). However, as we reported 

previously, the differences between para and meta linked molecules are nearly 1.50 log(G/G0) in benzene-cored 

analogs
29

. The lower experimental differences in the present study demonstrate that the quantum interference 

effect has not been amplified, and is even slightly reduced, by bridging the two benzene rings with a five-

membered ring. Additionally, differences of the conductance in fully-stretched conformations between para– 

and meta–anchored molecules follow the increasing order of GC < GN < GS < GO, illustrating that the 

heteroatom can also contribute to the expression of the quantum interference. The electrode separations (zexp in 

Table 1) are in good agreement with the theoretical molecular lengths. This indicates that in the fully stretched 

configuration, the molecular junctions are primarily linked by the gold–nitrogen bonds. 

Moreover, there is no distinct correlation between the plateau length (or JFP) and the nature of the bridging 

atoms (S, N, O or C), demonstrating that these atoms have no significant influence on the conformation of the 

molecular junction. Furthermore, we did not observe any additional conductance group during the experiments 

for the ten molecules. We attributed this fact to three reasons. Firstly, pyridyl-terminated compounds have been 

reported to show well-defined peaks in the conductance histograms resulting from the high directionality of the 

donor-acceptor binding between N lone pair and Au
15,44,45

. Secondly, the alkyl groups connected to the bridged 

atom (N and C) sterically hinder the interaction between the electrode and the core of the molecule as well as 

restricting any π-π interaction of two molecules. Thirdly, molecules with similar core structures have been 

reported
19,22,23

 to exhibit only one conductance statistical peak, suggesting that the junction formed by the core 

of the molecule is not robust enough during the elongation process. In the control experiments with 5-2Hp and 

10-2Hm, however, we observed such an obvious difference that the conductance of 5-2Hp is higher than that of 

10-2Hm by almost two orders of magnitude. 

 

Theory and Simulations. To understand the effect of pendant groups on quantum interference in the molecules 

of Figure 1, we first consider their two tight-binding representations shown in Figure 4, connected to 1-

dimensional external leads. 
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Figure 4 | Tight-binding (i.e. Hückel) models of para-(a) and meta-connected (b) molecules. Within the core of each, all 
site energies are zero except the pendant site energy ɛb and all nearest neighbour bonds are equal to –1, except for those 

denoted as α. The weaker couplings between the molecule and left leads are -L = -0.08 at atom number i and right leads -

R = -0.08 at atom number j. 

 

The tight binding model is introduced to illustrate the underlying trends in the transmission function and to 

allow us to obtain an analytic formula. Figure 5 shows results for various values of alpha, to reveal the evolution 

of the transmission curves with increasing coupling to the pendant groups. In Figure 6a, to use the simplest 

possible description, the same value of alpha = 1 is used for all molecules (for more information see 

Supplementary Table 5). When  = 0, the pendant orbital is decoupled from the central core. Since the latter is a 

bipartite lattice, in the meta case, destructive interference should occur at the centre of the HOMO–LUMO gap 

(i.e. E = 0)
11,30,31

. The black curves in Figure 5 show the resulting transmission coefficients T (E), when b = 0. 

The other curves in Figure 5 show how the transmission coefficient evolves as the coupling α to the pendant 

orbital is increased from zero (black curves) to unity (red curves). 

 

 

Figure 5 | T (E) vs. E for different values of  at b = 0. Transmission coefficients T (E) for para-connection (a) and meta-

connection (b), when b = 0.  

 

 

The above results show that in the absence of pendant groups (i.e. when α = 0) the meta case shows a sharp 

transmission dip due to destructive interference at the gap centre, which is absent in the para case. In the 

presence of pendant groups (i.e. when  is non-zero) this destructive interference is alleviated in the meta case. 

In the para case, the non-zero coupling to the pendant group introduces a new conductance pathway, which can 

b a 

b a 
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cause destructive interference within the gap, signaled by the Fano lineshape just below E = 0. Further examples 

of this evolution for different choices of b are presented in the SI. For the values of b shown in Supplementary 

Table 5, Figure 6a, shows the resulting tight-binding transmission coefficients. Clearly the tight-binding model 

captures the qualitative features of the full density-functional calculation of transmission curves shown in Figure 

6b. In particular the tight-binding result for 2-Hm, which does not possess a pendant orbital, shows a 

pronounced transmission dip near E = 0, which is reflected in the low transmission coefficient predicted by 

DFT. (In the latter case, the presence of non-pi orbitals provides a parallel conductance path, which prevents the 

transmission coefficient completely vanishing.) 

 

 
Figure 6 | Transmission coefficients. Results for the tight-binding (Hückel-model) transmission coefficients (a) obtained 
using the parameters in Supplementary Table 5. The transmission coefficients (b) obtained for electrodes with adatoms 
(see figure 7b) using density functional theory combined with Gollum.  

 

 

 

The electronic interference structure calculations leading to transmission curves (Figure 6b) were performed 

using the DFT code SIESTA
46

. The optimum geometry of the isolated molecules was obtained by relaxing the 

molecules until all forces on the atoms were <0.05 V/Å. The SIESTA calculations employed a double-zeta plus 

polarization orbital basis set, norm-conserving pseudopotentials, an energy cutoff of 200 Rydbergs defined the 

real space grid and the exchange correlation functional was Local Density Approximation (LDA)
47

. 

 

 

 
 
 
 
 
Figure 7| Geometry of the molecular junction containing a 1-S wire (a) on flat electrodes (b) on electrodes containing 
adatoms. 

 

To calculate the conductance through these two groups of molecules, para and meta shown in Figure 1, they 

were attached to gold leads via the pyridyl anchor groups. The leads were constructed of 6 layers of (111) gold 

each containing 30 gold atoms. Transport calculations were carried out both for flat electrodes and for electrodes 

containing adatoms, as shown in Figure 7.  According to DFT, the molecule binds most favourably to a top site, 

with a binding energy of about 0.8 eV at a distance of 2.3 Å (Figure 7 and Supplementary Figure 34-35) 

between the terminal nitrogen atoms and a „top‟ gold atom. This most-favourable binding geometry has been 

b a 

b a 
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used in all simulations. A Hamiltonian describing this structure was produced using SIESTA and the zero-bias 

transmission coefficients      were calculated using the Gollum code
48

. An excellent agreement between 

theoretical and experimental conductance values has been obtained (Figure 8), by choosing a Fermi energy of EF 

= –0.8 eV relative to the DFT-predicted value. Supplementary Figure 49 shows that the transmission 

coefficients of meta-connected molecules are all lower than those of para connected molecules over a wide 

energy range within their HOMO–LUMO gaps, in agreement with a tight-binding model of pi-orbital transport 

(Supplementary Figures 44–48). In the latter case, in the absence of bridging atoms (5-2Hp and 10-2Hm) there 

appear sharp transmission dips due to destructive interference in the meta case, which are alleviated by the 

presence of pendant groups. In contrast, in the para case, constructive interference in the pi-channel is preserved 

in the presence of bridging atoms. On the other hand, in the DFT-based transmission curves perfect destructive 

interference is masked by the presence of sigma orbitals, which provide a parallel path for conductance. 

 

 

 

 

 
Figure 8 | Comparison between theoretical and experimental data for most probable conductance values. DFT results 
are shown for both flat electrodes (solid red lines) and with electrodes containing adatoms (dashed red lines). The dotted 
lines show the average of the ‘flat’ and ‘adatom’ DFT conductances. Although there are differences, we conclude that the 
same qualitative trends are obtained using both geometries, with the exception of CMe2, which in the presence of 
adatoms, no longer has an anomalously high conductance observed experimentally in the meta case 9-Cm. 
 

 

Discussion 

We conclude, therefore, from our experimental and theoretical data for the para series 1–4 and the meta 

series 6–9, that there is a clear correlation between aromaticity of the central ring when heteroatoms are present 

and the single-molecule conductance value in the para series. Aromaticity follows the sequence: S > NEt > O > 

CMe2. Our conductance trend for the heterocyclic para series, i.e. O > NEt > S is in agreement with a previous 

experimental study by Venkataraman, Breslow, et al
24

 on monocyclic core units (furan > thiophene) (Figure 2). 

However, the fluorene derivative 4-Cp (which does not have a heteroatom in the core) shows a lower 

conductance than 2-Np and 3-Op although it exhibits a non-aromatic core. The reason for this exceptional 

behaviour of 4-Cp is not clear. However, we note that other workers
21–23

 have observed that the single-molecule 

conductance of fluorene-based cores do not follow expected trends. 
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These results demonstrates that a non-aromatic core unit does not necessarily lead to higher conductance 

since the polycyclic series 1–5 exhibits a clear difference in comparison to the monocyclic series shown in  

Scheme 2. However, our data show that the sequence is very different in the meta series where 

dibenzothiophene ≈ dibenzofuran < carbazole. Multiple factors (such as quantum interference, aromaticity and 

electronegativity) and their composite effects should be taken into consideration in explaining the trends in the 

conductance. Our results show that bridging heteroatoms alleviate destructive quantum interference in the meta-

connected molecules. The contribution of electronegativity of the bridging atoms should not be ignored. For the 

meta series dibenzothiophene 6-Sm and dibenzofuran 8-Om represent both extremes. Dibenzothiophene Sm is 

the most aromatic and therefore it lowers the conductance. As was mentioned above, dibenzofuran 8-Om is the 

least aromatic core unit. Therefore, based on the conclusions of the series shown in Figure 2, 8-Om should be 

the most conductive molecule. However, the lone pair of oxygen is tightly bonded due to oxygen‟s high 

electronegativity, which hinders the delocalization of electrons and decreases the electron density of the 

conjugated π system in 8-Om. The carbazole derivative 7-Nm is the most conductive in this meta series because 

it is less aromatic than dibenzothiophene, but also bears a lone pair which allows transmission through the 

molecule. The conductance of model non-bridged compound 5-2Hp is reduced because of the dihedral angle 

between the two phenyl units. Model compound 10-2Hm shows no conductance within the detection limit of the 

MCBJ setup. This is consistent with the bridging atom of 6-9 planarizing the core, which is essential for raising 

the conductance in the meta-series. 

We have studied the single-molecule conductance of ten oligo(arylene-ethynylene) derivatives with five 

different core units (dibenzothiophene, carbazole, dibenzofuran, fluorene and biphenyl) attached to gold 

electrodes by pyridyl anchoring groups. Within the two series there is either para-para or meta-meta 

conjugation through the core unit. In all cases molecules with para connectivity present larger conductances 

than their meta isomers, regardless of the bridging unit. We have experimentally and theoretically observed 

clear and distinct trends in the para and meta series. In the para series there is a clear correlation between 

aromaticity of the central ring and the single-molecule conductance values in the sequence dibenzofuran > 

carbazole > dibenzothiophene, in agreement with a previous experimental study on monocyclic core units (furan 

> thiophene). However, in the meta series the carbazole derivative is the most conductive: the sequence 

dibenzothiophene ≈ dibenzofuran < carbazole. It is concluded that the nitrogen lone pair facilitates transmission 

through the molecule. Overall, we find that constructive quantum interference in the para-connected molecules 

persists in the presence of bridging atoms and is partly masked by the presence of sigma channels, whereas 

bridging atoms alleviate destructive quantum interference in the meta-connected molecules. Our comprehensive 

study establishes that both quantum interference and heteroaromaticity in the molecular core units play 

important and inter-related roles in determining the conductance of single molecular junctions. These results 

should assist in future research in the development of new molecules for incorporation into nanoscale molecular 

circuits. 
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Methods 

Synthesis. Details of the synthesis and molecular characterization are in the Supplementary Notes 1–2. 

 

MCBJ measurements.  

Electron transport characteristics in single-molecule junctions were studied by MCBJ measurements in solution at room 

temperature. The molecular solution contained typically 0.1 mM of the 1–10 molecules in a mixture of 1,3,5-

trimethylbenzene (Aldrich, p.a.) and tetrahydrofuran (Aldrich, p.a.), 4:1 (v/v). Single-molecule conductance experiments 

were performed during the formation and breaking of a nanogap on a notched, freely suspended gold wire (0.1 mm diameter, 

99.999%, Goodfellow) fixed on spring steel sheets (10 mm × 30 mm, 0.25 mm thick) with a two-component epoxy glue 

(Stycast 2850 FT with catalyst 9). A Kel-F liquid cell with a Kalrez O-ring was mounted onto the sample sheet fixed by two 

holders. During the measurements, the steel sample could be bent with a pushing rod controlled by a stepper motor (or a 

piezo motor) and a piezo stack. The stepper motor initialized the bending process. Once the measured current reached a 

value corresponding to 15 G0, the stepper motor paused and the piezo stack was activated. This strategy managed to decrease 

environmental noise significantly from the operation of the stepper motor. After the junction was completely opened, the 

piezo stack was reset and the stepper motor drove down the pushing rod. The movement of the piezo stack controlled the 

breaking and the reformation of nanoscale contacts and the stretching rate of the two gold leads controlled by the piezo stack 

is about 5–20 nm/s. Molecular junctions could form upon breaking the gold–gold nanocontacts. More than 1000 

conductance–distance curves were recorded for statistically relevant data analysis during the repeated cycles. 

The MCBJ controller is based on a laboratory-built bipotentiostat. All current measurements were performed with two 

custom-designed bipolar and tunable logarithmic I–V converters operating in a wide dynamic range from 10 to below 10–7 

G0. The tunneling current between the two ends of the „broken wire‟ (taken as WE1 and WE2) could be recorded as a 

feedback signal at a given bias voltage 0.1 V. The distance between the two gold electrodes in the MCBJ setup is calibrated 

by the STM-BJ setup with the assumption that the tunneling decay is identical under the same experimental conditions. After 

breaking a gold-gold contact, the conductance of the junction drops to approximately 10-3 G0. Due to the so-called “snap-

back” effect, the gap between the two gold electrodes increases instantaneously to a certain distance Δzcorr. A perfect linear 

atomic chain of gold has a conductance of G0. Due to the tunneling theory, we assume that log (G/G0) = -αzexp, where zexp = 

0 corresponds to the point where the distance between the terminating gold atoms is equal to the equilibrium gold-gold 

separation. Our measured separation is Δz = zexp - Δzcorr, where Δzcorr is the snap-back distance. Then, the relationship 

between log (G/G0) and Δz is log (G/G0) = -αΔz - αΔzcorr. The log(G/G0) plot has a slope of -α and an intercept of -αΔzcorr. To 

calibrate the stretching distance in the absence of molecules, we measured the conductance G versus Δz for conductances 

ranging from 10-4 to 10-6 G0 and extracted the slope and intercept. From repeated measurements, we obtained a distribution 

of slopes and intercepts and from the most probable slopes and intercepts obtained the most probable values of α and Δzcorr. 

We concluded from individual experiments that in TMB: THF (v:v = 4:1), the Δzcorr is determined as 0.5 nm and the addition 

of a low concentration of molecules in solution does not influence the snap-back distance. Further technical details and data 

evaluation methods have been described in our previous article by Hong et al49.  

Theory and simulations. Details of the theory and simulations are in Supplementary Notes 4-5. 
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