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Grid-based mapping: a method for rapidly determining the spatial distributions of 

small features over very large areas.  
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Abstract 

The increased volume, spatial resolution, and areal coverage of high-resolution images of 

Mars over the past 15 years have led to an increased quantity and variety of small-scale 

landform identifications. Though many such landforms are too small to represent individually 

on regional-scale maps, determining their presence or absence across large areas helps form 

the observational basis for developing hypotheses on the geological nature and environmental 

history of a study area. The combination of improved spatial resolution and near-continuous 

coverage significantly increases the time required to analyse the data. This becomes 

problematic when attempting regional or global-scale studies of metre and decametre-scale 

landforms. Here, we describe an approach for mapping small features (from decimetre to 

kilometre scale) across large areas, formulated for a project to study the northern plains of 

Mars, and provide context on how this method was developed and how it can be 

implemented.  

Rather than “mapping” with points and polygons, grid-based mapping uses a “tick box” 

approach to efficiently record the locations of specific landforms (we use an example suite of 

glacial landforms; including viscous flow features, the latitude dependant mantle and 

polygonised ground). A grid of squares (e.g. 20 km by 20 km) is created over the mapping 

area. Then the basemap data are systematically examined, grid-square by grid-square at full 

resolution, in order to identify the landforms while recording the presence or absence of 

selected landforms in each grid-square to determine spatial distributions. The result is a series 

of grids recording the distribution of all the mapped landforms across the study area. In some 

ways, these are equivalent to raster images, as they show a continuous distribution-field of 

the various landforms across a defined (rectangular, in most cases) area. When overlain on 

context maps, these form a coarse, digital landform map.  
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We find that grid-based mapping provides an efficient solution to the problems of mapping 

small landforms over large areas, by providing a consistent and standardised approach to 

spatial data collection. The simplicity of the grid-based mapping approach makes it extremely 

scalable and workable for group efforts, requiring minimal user experience and producing 

consistent and repeatable results. The discrete nature of the datasets, simplicity of approach, 

and divisibility of tasks, open up the possibility for citizen science in which crowdsourcing 

large grid-based mapping areas could be applied.  

 

1.  Introduction 

With increasing coverage of high-resolution images of the surface of Mars (e.g. Context 

Imager – CTX, ~ 6 m/pixel, Malin et al., 2007, covering ~ 90% of the surface) we are able to 

identify increasing numbers and diversity of small-scale landforms. Many such landforms are 

too small to represent individually on regional maps, yet determining their presence or 

absence across large areas can form the observational basis for developing hypotheses on the 

geological nature and environmental history of a study area. The combination of improved 

spatial resolution with near-continuous coverage in spatial data means that sub-sampling of 

study areas is no longer needed when identifying landforms, but significantly more time is 

required to analyse the data. This becomes problematic when attempting regional or global-

scale studies of metre and decametre-scale landforms. Here, we describe an approach for 

mapping small features across large areas formulated for a project to study the northern plains 

of Mars and provide context on how this method was developed and how it can be 

implemented.  

The ISSI (International Space Science Institute) project that this study was a part of aimed to 

detail the geological and stratigraphic character of the martian northern plains, with particular 
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regard to the role that near-surface ice has played in their morphological evolution through 

the mapping of surface ice-related features. It is thought (Kreslavsky and Head, 2002; 

Lucchitta et al., 1986; Tanaka et al., 2005) that the uppermost layers of the northern plains are 

largely sediments that have been shaped by processes involving water-ice, but no consensus 

has emerged on the origin and emplacement mechanism of the ice. Kargel et al. (1995) 

discuss several proposed mechanisms of emplacement including freezing of fluvial, 

lacustrine or marine wet sediments, air-fall deposition/condensation, shallow groundwater 

processes, or a combination of these different processes. Furthermore, although the spatial 

distributions of some landform types have been measured and correlated with latitude-

controlled climatic processes (e.g. transverse aeolian ridges, TARs Balme et al., 2008; 

Berman et al., 2011; Wilson and Zimbelman, 2004, viscous-flow features, VFFs; Milliken et 

al., 2003, glacier-like forms, GLFs; Souness et al., 2012, dunes; e.g. Hayward et al., 2007), 

broad-scale heterogeneity in surface features exists within latitude bands (e.g. Geology; 

Tanaka et al., 2005, craters; Barlow and Bradley, 1990; Robbins and Hynek, 2012, latitude-

dependant mantle, LDM; Kreslavsky and Head, 2002). This suggests that regional geology 

and climate have played a dominant role in the evolution of the northern plains, which 

requires a more detailed understanding of the relationships between the geological units of 

the northern plains, the boundary conditions, and the resulting geomorphic landforms.  

Systematic, targeted geomorphological mapping of the spatial distribution of landforms 

thought to be indicative of ice in the regolith must be completed if we are to understand the 

geological evolution, environmental change and astrobiological potential (particularly 

whether sufficient liquid water was ever generated from ground-ice thaw; e.g., Ulrich et al., 

2012) of the martian northern plains. The ISSI project aimed to answer the following science 

questions: (1) What is the distribution of ice-related landforms in the northern plains and can 

it be related to distinct latitude bands, different geological units, physiographic provinces, 
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and/or topography? (2) What is the relationship between the LDM and (a) landforms 

indicative of ground ice and (b) other geological units in the northern plains?, (3) What are 

the distributions and associations of recent landforms indicative of thaw of ice or snow? This 

paper deals with the method used to answer these questions. We aim to submit companion 

science papers for Arcadia Planitia, Utopia Planitia and Acidalia Planitia alongside a new 

study of northern plains impact crater morphology followed by a synthesis of findings and 

previous works. 

Previous work on the Martian northern plains includes the first global geologic map of Mars, 

which was produced at a 1:25,000,000 scale on a photomosaic of 1–3 km/pixel Mariner 9 

visible wavelength images (Scott and Carr, 1978). Viking images with spatial resolutions of 

up to 100 m/pixel were analysed, leading to the production of three 1:15,000,000 scale maps 

(Greeley and Guest, 1987; Scott and Tanaka, 1986; Tanaka and Scott, 1987). These maps 

were combined and digitised for surface age reconstruction (Tanaka et al., 1988) and later 

updated to a GIS format (Skinner et al., 2006). Later, MOLA (Mars Orbiter Laser Altimeter; 

Smith et al., 1993) global topographic elevation data with 463 m/pixel spatial resolution or 

better and 1 m vertical precision (Smith et al., 1993), THEMIS (Thermal Emission Imaging 

System) near-infrared (IR) day and night-time images at 100 m/pixel (Christensen et al., 

2004) and CTX images provided an excellent base for the next generation, 1:15,000,000 scale 

northern hemisphere map (Tanaka et al., 2005). A new global geological map at 1:20,000,000 

scale with up to date chronostratigraphy and resurfacing ages has recently been published 

(Tanaka et al., 2014). 

The early Mariner 9- and Viking-based geological maps were drafted by hand onto image 

mosaics or air brushed onto manually produced shaded relief bases (Batson et al., 1979). 

With the development of geographic information system (GIS) software, planetary mapping 

has become increasingly digital with older maps being scanned and digitised to allow for 
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direct comparisons with the modern maps and bases that are developed almost entirely within 

GIS software (Tanaka et al., 2014). Both the early and modern geological maps focus on 

boundary and unit mapping, recording the distribution of units and landforms on the planet’s 

surface and placing them within a chronological framework. 

Where geological maps focus on placing observations into stratigraphic units, 

geomorphological maps can be considered graphical inventories of landscape that catalogue 

landforms, surface, and subsurface materials (Otto and Smith, 2013). Geomorphological 

maps can be categorised as either basic/analytical or derived/specialized. While basic maps 

are more generic and display the observed features of a landscape, derived or thematic maps 

are topically focused for a specific study or application. Traditionally, the basis for 

constructing a geomorphological map has been the drawing of points, lines, and polygons to 

represent landforms and surface types onto a topographic and/or image base map. For 

example, the northern plains of Mars are generally divided into allostratigraphic 

(unconformity-bounded) units based upon their inferred primary (emplacement) physical 

features, areal extent, relative ages, and geologic associations (Tanaka et al., 2005). However, 

small-scale (large area) geological and geomorphological maps are only capable of 

representing the largest features and the regional basement materials, and cannot consistently 

include decametre-scale landforms or thin surficial covers of materials. Previous martian 

geomorphological studies of small features have generally incorporated a survey-style 

approach and identified single landforms (e.g. TARs; (Balme et al., 2008; Berman et al., 

2011; Wilson and Zimbelman, 2004), VFFs; Milliken et al., 2003, GLFs; Souness et al., 

2012, dunes; e.g. Hayward et al., 2007, craters; Barlow and Bradley, 1990; Robbins and 

Hynek, 2012, latitude-dependant mantle, LDM; Kreslavsky and Head, 2002). In most cases, 

these studies have used high resolution images that do not have a continuous spatial extent 



7 
 

over the study area but instead are only small ‘windows’ sampling a subset of the true 

population of the features. 

Where basic geomorphological mapping has been conducted on Mars, it has tended to be, at 

best, regional in scale (e.g. Valles Marineris; Peulvast et al., 2001, Hellas Basin; Kargel and 

Strom, 1992, Hale Crater; Jones et al., 2011 ) often including morphometrics and there has 

been no global basic geomorphological mapping effort aimed at the sub-kilometre scale 

landforms. This is largely due to the question of scale. The majority of identifiable ice-related 

landforms and terrain types are of metre to decametre scale and mapping them requires 

observations at 1:10,000 scale. This makes cataloguing their global spatial occurrence on a 

traditional 1:15,000,000 scale geomorphological global map an enormous task, first requiring 

the identification and classification of all visible, thematically relevant landforms in 1500 

separate 1:10,000 mapping areas. However, a compromise between basic and derived 

thematic geomorphological mapping can be found in the grid-based mapping approach 

described in this manuscript. While not a replacement for geological or geomorphological 

mapping, grid-based mapping is a powerful approach that allows for systematic identification 

of the distribution of multiple landform types across very large continuous areas. We find that 

this approach provides a viable alternative – or pre-cursor supplement – to traditional 

geological and geomorphological mapping on regional to global scales where morphometrics 

are not the priority. 

2.  An overview of the grid-based mapping approach  

Rather than delineating discrete geological or geomorphological units and features using 

points, lines, and polygons on a continuous mapping base, (i.e., “traditional” mapping 

approach), our grid-based mapping approach uses a simple identifier for the presence of a 

specific landform in each cell of an overlain grid. This work demonstrates the first example 
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of grid mapping used on Mars, although earlier similar methods have been used for the Earth 

in few cases, for example, mapping of glacial bedforms and erosional zones in NW Scotland 

(Bradwell, 2013) and various statistical analyses in hydrometeorology (Greene and Hudlow, 

1982). The first (reconnaissance) stage of the approach is to conduct context/reconnaissance 

mapping using regional or global scale datasets. For Mars, this could be a combination of 

MOLA terrain and, for example, THEMIS daytime IR image mosaics. In addition, the formal 

basemap for the study area must also be constructed. Importantly, the basemap data type must 

be of sufficient resolution to identify all the required landforms reliably, and must have 

continuous (or near continuous) image coverage. For the Martian northern plains study, we 

used CTX mosaics that had nearly complete coverage for each study area and that, with 6 

m/px resolution, allowed decametre-scale landforms and surface textures to be identified. The 

aim of the context mapping is to: (i) identify large-scale features such as impact craters or 

large scale relief that provide topographic context, and (ii) to identify which specific 

landforms and terrain types will be systematically catalogued during the grid-based mapping. 

This suite of landforms can be either generic and include all the landforms seen within the 

area, or targeted in the context of a thematic geomorphological mapping programme. Either 

way, an important part of the reconnaissance stage is to study the basemap in detail and to 

produce a full inventory of the landform types that will be catalogued. If previous studies 

have identified the diversity of landforms that are present, the reconnaissance should be used 

to select, group, and sub-divide the landforms into a workable list of features. One advantage 

of the grid-based mapping approach is that it enables the efficient identification of multiple 

landform types through a single, systematic pass through the overlain grid; repeated passes to 

augment or refine landform types effectively undercuts this efficiency. Thus, we emphasize 

that the reconnaissance step is critical to the grid-based mapping approach. 
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In the second (mapping) stage, the mapping area is divided into a grid, which should offer a 

labelling and divisional system for ease of identification of data and for communication 

between mappers. This is best performed in a GIS setting using a shapefile or feature class. 

The shapefile is given an attribute table, with a separate attribute for each landforms type to 

be studied and a unique identification code for each grid-square. The basemap imaging data 

are then systematically examined, grid-square by grid-square at full resolution (between 

1:10,000 – 1:20,000 depending on the landforms present), in order to identify the landforms. 

Then, to record the spatial distribution of each of these landforms, their presence (or absence) 

in each grid-square is recorded in the grid-square shapefile attribute table. In our northern 

plains study, landforms were recorded as being either “present”, “absent” or “dominant.” The 

“dominant” classification was used when a single landform type covered the entire grid-

square to such an extent that other landforms could have been obscured. Where relevant, each 

grid-square can also be recorded as “null” (meaning “no data”) or “possible” if there is 

uncertainty in identification, either when the mapper is unsure or when the image quality is 

poor but there is some evidence to suggest that the landform is present.  

The result is a series of grids recording the distribution of all thematically relevant mapped 

landforms across the study area. In some ways, these are equivalent to raster images, as they 

show a continuous distribution-field of the various different landform types across a defined 

(rectangular, in most cases) area. When overlain on context maps, these form a coarse, digital 

landform distribution map. 

In section 3.5 we describe in detail how we applied the approach to one area in Arcadia 

Planitia during the Mars’ northern plains mapping project. This provides both contextual 

discussion about the effectiveness of the approach and in-depth methods for the results 

stemming from this project.  
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3.  Mapping the northern plains of Mars – the Arcadia Planitia Study area  

The northern plains project required mapping the spatial distribution of many ice-related 

landforms and surface types, in order to compare and contrast their distribution and generate 

hypotheses concerning their genesis. The northern plains comprise three main basin floors: 

Acidalia Planitia, Arcadia Planitia, and Utopia Planitia. A study area, consisting of a long 

latitudinal swath, was defined in each of these basins, with the precise location of the strips 

being selected largely based on the availability of high resolution images.  

3.1.  Cartographic Projection 

The study area in Arcadia is a 300 km wide strip extending from 30° to 80° N latitude, 

centred on the 170° West line of longitude. We opted to use a Cassini projection centred on 

the 170° West meridian. The Cassini projection is the transverse aspect of the commonly-

used plate carrée, or equirectangular projection, with the equator at true scale. Where the 

plate carrée projection is based on a cylinder wrapped around the globe and tangent to the 

equator, the Cassini projection is a cylinder wrapped around the globe tangent to a chosen 

meridian. The advantage of this projection is that regions along the central meridian, and at 

right angles to it, have minimal distortion, making this projection ideal for long narrow north-

south strips, like that of the three northern plains areas in this study. 

3.2. Data and Methods 

Geomorphological analysis and mapping were performed primarily using publically available 

CTX images. CTX images were downloaded pre-processed, directly from the Arizona State 

University Mars Portal and ingested into a GIS (ESRI’s, Environmental Systems Research 

Institute, Inc. Redlands, CA, ArcGIS 10.1). MOLA gridded data and hill-shade products with 

around 1 m vertical accuracy, MOLA track data with around 150 m surface spot size point 

data and around 300 m along-track spacing (Smith et al., 1993), and THEMIS images were 



11 
 

downloaded from the Planetary Data Systems’ Geosciences Node, Mars Orbital Data 

Explorer (ODE) and also ingested into the GIS.  

The ESRI ArcGIS software package was used to display and manipulate the available 

datasets. Symbols were adapted from standard map drafting conventions (Federal Geographic 

Data Committee, 2006) and were provided as a package from the U.S. Geological Survey.  

A simple reconnaissance map was created to give context to major relief and geological units. 

It used some of the line work from the published geological map of the northern plains of 

Mars (Tanaka et al., 2005), with additional features based on our reconnaissance. The map 

scale of our context mapping was at 1:10,000,000 (i.e., the Arcadia strip would be about 3 cm 

wide by 30 cm tall if printed at this scale). The digital scale is around 1:2,000,000 with 

approximately 2 km vertex spacing for digitised lines and polygons; these scales are 

incapable of conveying the occurrence of local decametre scale landforms individually. To 

identify the variety of landforms in the area, CTX images and THEMIS IR daytime images 

were overlaid onto MOLA hill-shade and elevation products. The suite of landforms 

identified within the Arcadia strip can be seen in Figure 1Error! Reference source not 

found. and the motivation for mapping these landforms in Table 1. 

The mapping strip was divided into a 15 x 150 grid of squares, each 20 by 20 km. In ArcGIS, 

a polygon feature-class shapefile was produced, in which each grid-square was represented 

by a single square polygon object. In the attribute table of this shapefile, a new attribute for 

each landform type was added. The THEMIS IR day and CTX images were then viewed 

systematically at up to 1:10,000 scale for each grid-square and the presence or absence of 

each of the suite of landforms was recorded.  
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3.3.  Landform Selection 

The choice of landforms to include within a suite for thematic grid-based mapping is highly 

project-dependant; when deciding which landforms to include, scale, thematic relevance and 

grouping of related landforms must be considered. For the northern plains project we chose 

landforms that have been cited as providing evidence of past or present ground ice (see 

Figure 1), including viscous flow features (VFFs; Milliken et al., 2003), glacier like forms 

(GLFs; Hubbard et al., 2011; while we use the classification scheme reviewed by Souness 

and Hubbard, 2012, we chose to map GLFs seperately as they can often be identified as a 

distinct landform comparable with terrestrial analogues), ~100 metre polygons (Mangold, 

2005), scalloped and non-scalloped pits (which might have a thermokarstic origin; Costard 

and Kargel, 1995), and linear, wrinkled, brain and “basketball” terrain textures associated 

with the LDM (Kostama et al., 2006), which we have grouped under the class “Textured” for 

this study. In addition to searching for the textural signatures of the LDM, we also recorded 

instances of topographic infilling and relief softening that provided a topographic (rather than 

textural) indication of a draping mantle (likely the LDM; Kostama et al., 2006). We also 

chose to include landforms potentially indicative of thaw, such as gullies (e.g., Mellon and 

Phillips, 2001) and channels (e.g., Sharp and Malin, 1975). 

Owing to their potential links with water/ice processes, the locations of kilometre-scale 

polygons, thumbprint terrain, large pitted mounds, and small mounds were recorded. The 

formation mechanism of the thumbprint terrain and associated large pitted mounds or cones is 

enigmatic and has been interpreted to be debris left behind after the removal of a static ice 

sheet (Grizzaffi and Schultz, 1989), rogen moraine - underwater glacial push moraine 

(Lockwood et al., 1992), mud volcanism (Davis and Tanaka, 1995), and various volcanic and 

lava/ice interaction features (Bridges et al., 2003; Bruno et al., 2004; Ghent et al., 2012; 

Plescia, 1980). Kilometre scale polygons or “giant polygons” are thought to be a product of 
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tectonic, volcanic, dessication or compaction processes and could be a result of faulting and 

rebounding following the removal of a water/ice load (e.g. El Maarry et al., 2010; McGill and 

Hills, 1992; Pechmann, 1980). These kilometre-scale forms were mapped using a 

combination of THEMIS and CTX, as they could often be more easily seen in THEMIS than 

when ‘zoomed-in’ using CTX. Reconnaissance mapping revealed the presence of small 

mounds, typically small, featureless hills less than 30 metres in diameter that are 

morphologically similar to rootless cones (e.g. Lanagan et al., 2001), pingos (Burr et al., 

2009), or erosional remnants. Finally, we chose to include landforms that might obscure or 

explain the absence of other landforms, obscuring landforms include dune fields, massive ice 

(largely water ice that is “massive” in the spatial sense, not referring to geological layering) 

and continuous “bedrock” formations . An example of bedrock is the platy-ridged material 

inferred to be lava flows in Southern Arcadia/North Amazonis Planitia (Keszthelyi et al., 

2000). 
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Figure 1 Images showing examples of landforms selected of the ISSI mapping project. North 

is up and illumination from the south-west in all images. The last part of each CTX label 

gives the latitude and longitude. 
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Table 1 showing the motivations for mapping the selected landforms with the scale of 

observations needed. 

Landform 
Approximate 

Observation Scale 
Motivation References 

Mantled 
Visible in CTX 

1:20k 

Evidence for ground ice, 

mantling deposit. 

Kostama et al., 2006 

Textured 
Visible in CTX 

1:20k 

Evidence for degradation of 

ground ice. 

Kostama et al., 2006 

Pitted 
Visible in CTX 

1:20k 

Evidence for degradation of 

ground ice. 

Costard and Kargel, 

1995 

Scalloped Pits 
Visible in CTX 

1:20k 

Evidence for degradation of 

ground ice. 

Costard and Kargel, 

1995 

100m 

Polygons 

Visible in CTX 

1:20k 

Evidence for possible 

ground ice processes. 

Mangold, 2005 

Km Polygons 

Visible in 

CTX/THEMIS 

1:100k 

Unknown origin, possible 

evidence for ground ice/ 

water expulsion processes. 

El Maarry et al., 2010; 

McGill and Hills, 1992; 

Pechmann, 1980 

Viscous-flow 

Features 

Visible in 

CTX/THEMIS 

1:200k 

Evidence for flow of ice-

rich material. 

Milliken et al., 2003 

Glacier-like 

Forms 

Visible in CTX 

1:20k 

Evidence for deposition, 

flow and reworking of ice-

rich material against 

topographic obstacles. 

Hubbard et al., 2011 

Thumbprint 

Terrain 

Visible in 

CTX/THEMIS 

1:200k 

Unknown origin, possible 

evidence for glacial flow. 

Grizzaffi and Schultz, 

1989; Lockwood et al., 

1992; Davis and 

Tanaka, 1995; Bridges 

et al., 2003; Bruno et 

al., 2004; Ghent et al., 

2012; Plescia, 1980 

Large Pitted 

Mounds 

Visible in CTX 

1:100k 

Unknown origin, possible 

evidence for mud 

volcanism. 

Small 

Mounds 

Visible in CTX 

1:20k 

Unknown origin, possible 

mud volcanism/ground ice 

processes/erosional 

remnants. 

Lanagan et al., 2001;  

(Burr et al., 2009) 

Channels 
Variable CTX 

1:20-200k  

Evidence for liquid water, 

thaw. 

Sharp and Malin, 1975 

Gullies 
Visible in CTX 

1:20k 

Evidence for liquid water, 

thaw. 

Malin and Edgett, 2000; 

Mellon and Phillips, 

2001 

Massive Ice 

Visible in 

CTX/THEMIS 

1:200k 

Ice visible at the surface. 

Obscures possible evidence 

for ground ice. 

Tanaka et al., 2005 

Dunes 

Visible in 

CTX/THEMIS 

1:200k 

Evidence for wind-blown 

sand, Obscures possible 

evidence for ground ice. 

Hayward et al., 2007 

Tanaka et al., 2005 

Bedrock Visible in Evidence for solid rock, or Tanaka et al., 2005 
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CTX/THEMIS 

1:200k 

no evidence for ground ice 

processes/landforms.  

3.4. Verification of landform selection and the grid-based mapping approach: test 

mapping 

To determine whether the grid-based mapping approach was viable for multiple mappers, and 

that the landforms we had selected were consistently identifiable, six mappers with varying 

levels of experience, both with the martian datasets and ArcGIS, were selected to apply the 

method to a test sample. The test sample had nine different areas, each with four 20 km by 20 

km grid-squares. As per the grid-mapping protocol, each mapper analysed the CTX and 

THEMIS sample data to estimate the relative frequency of occurrence of each member of a 

predefined set of landforms by recording if each landform type was “present”, “dominant”, 

“absent” or “possible”, or if the availability of usable data was “null”. The six mappers each 

completed the attribute table in the shapefiles of their grid-based mapping results for these 

areas, hence allowing an estimate of how consistent the approach could be when applied to a 

larger scale project.  

For each landform type in each square, we assigned a consistency rating based on the number 

of mappers agreeing on the relative frequency class describing each landform type in a given 

area. To calculate the consistency value, we recorded each mapper’s classification for each 

landform type. We interpreted the categories “present” and “dominating” as both meaning 

that a landform type is present. With 6 mappers, there were 28 possible outcomes, which can 

be seen in Figure 2. The consistency ratings ranged from Consistent through Semi-Consistent 

to Inconsistent. For the evaluation of consistency, we counted entries of “possible” to be split 

between present and absent and hence that they were half in agreement with both “present” 

and “absent”. To be considered “consistent” at least five out of six mappers needed to agree 

on either the presence or absence of a landform. To be “inconsistent” less than four mappers 

had to agree on the presence or absence of a landform. Finally to be “semi-consistent” 
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between four and five mappers had to agree on the presence or absence of a landform. Note 

that if five or six mappers were to assign a “possible” for a landform this would be evaluated 

as inconsistent in this evaluation. While it could be argued that the mappers were consistent 

in that they agreed on the difficulty to say whether a specific landform was present or not, we 

took a more conservative approach, because no decision was made. 

 

Figure 2 A look-up table to show the 28 possible combinations of mappers’ responses for the 

test mapping with our consistency rating. “Present” and “dominating” are both have been 

grouped, we counted entries of “possible” to be split between present and absent. We deemed 

“consistent” as five out of six mappers agreeing, “inconsistent” as less than four mappers 

agreeing and “semi-consistent” as between four and five mappers agreeing.  
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The results of the test mapping are shown in Figure 3. Note that the suite of landform types 

in this test mapping was somewhat different from the final suite described above but the 

refinements to the final suite were made as a result of the test mapping. Our tests showed the 

rank classification of spatial frequency to be 70% consistent, 20% semi-consistent and 10% 

inconsistent. However, Figure 3 highlights that some landform and terrain types are more 

difficult to identify than others. For example, the difficulties in distinguishing between brain 

terrain and basketball terrain in the tests resulted in us finally grouping the two types together 

with etched and linear terrains into a more inclusive “textured” terrain type. We found that 

loosely defined attributes such as “rough” and “smooth” were inconsistent and these labels 

were dropped following the test mapping. 
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Figure 3 Stacked-bar chart showing the consistency rating frequency for each landform or 

terrain type. 9 × 4 (=36) individual grid squares were mapped. 

3.5. Grid-mapping results 

The results from the grid-based mapping are stored as attributes in a GIS shapefile. This data 

can be manipulated within a GIS to output a variety of products. The most basic of these 

products is shown in Figure 4c, where the different shades represent the presence or absence 
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of a single landform type in each grid-square. Dual landform type maps can be constructed by 

manipulating the data so that the grid-squares are coloured to show where two landforms 

overlap, occur singularly or not at all, as shown in Figure 4d. Compilation landform type 

maps can be created by overlaying symbologies, as shown in Figure 4b, to show multiple 

landforms types and compare their distributions within and between grid-squares. As the data 

are gridded, summary statistics can quickly be generated, tabulated, and manipulated using 

statistical software such as R. Consistently-sized grids also allow for rapid inter-area 

comparisons, both within and between entire mapping strips.  
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Figure 4 Results from grid-mapping in Arcadia Planitia. a) An adaptation of the Geological 

Map of the northern plains of Mars (Tanaka et al., 2005) used as our reconnaissance map. b) 

Geomorphic Map using a compilation of grid-based mapping data. c) Grid-based mapping 

data showing the location of pits only. d) A dual landform map comparing and contrasting 
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the presence of mantled and textured geomorphic signatures. b, c, and d, are all overlain 

onto a MOLA hillshade and outline extracts from the geological map in a. 

 

3.6. Comparison with other data  

The gridded data show where certain landform types occur, without consideration of age or 

landform density. While landforms do not determine geology, it may be that the landforms 

are controlled by geology. This makes landform occurrence data useful in delineating 

between surface units, determining contacts, and deriving geological maps in areas where the 

underlying geology is not immediately apparent. Equally, they can be used to generate 

statistical datasets for determining spatial associations between landform types and contextual 

attributes, such as topography, latitude, albedo or mineral/elemental abundances. Comparing 

the grid-based mapping results with other spatial datasets allows the identification of possible 

localised controls influencing the occurrence of specific landform types. For example, certain 

landforms are predisposed to occur only in certain topographic contexts; gullies require a 

slope to form, whereas polygons occur in flatter terrain within morphological units. As each 

entry in the dataset refers to a specific mapping grid-square, with a predefined size, other 

metrics such as terrain elevation mean, minimum, maximum and range, slope type (concave, 

convex, rectilinear) and steepness, surface roughness and compositional properties (e.g. 

hydrogen and phyllosilicate abundance) can be added to the table, allowing for multivariate 

analysis of the effect of a range of local surface properties on the presence of each landform 

type. 

4. Discussion 

4.1. Advantages and disadvantages of grid-based mapping 

There is a wide variety of both academic and applied studies that requires the acquisition, 

handling and analysis of large spatial datasets. While final map products are largely 
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standardised, reconnaissance mapping is largely performed ad hoc. Standardising and 

converting reconnaissance data into a standardized map requires tremendous time and effort, 

meaning that the majority of data collected are not included in a formalised map. Grid-based 

mapping allows for efficient collection of large datasets that can be output in a consistent and 

easily comprehensible manner, complete with nominal to ordinal scale statistics. Moreover, 

an efficient, consistent and standardised approach to spatial data collection makes it easier to 

share data and collaborate with partners and end users. 

While the grid-based mapping approach is not a replacement for traditional mapping, it does 

provide an effective means of cataloguing multiple geomorphological landforms over large 

areas. This is due to the way interpretations are made through discrete decisions for small 

areas but mapping the extent of each landform type over large areas without having to 

physically locate and digitise boundaries or individual landforms. The technique becomes 

particularly advantageous when looking at vast and continuous high-resolution datasets, 

where there is a disparity between the scale of the final mapping output and the scale of data 

required to identify the landforms. Examples of high-resolution planetary datasets that can be 

used for landform identification include the terrestrial Landsat images, the Martian CTX and 

HRSC (High Resolution Stereo Camera; Neukum and Jaumann, 2004) images, and 

potentially images from the SIMBIO-SYS (Spectrometers and Imagers for MPO 

BepiColombo Integrated Observatory System; predicted global coverage at 50 m/pixel; 

Flamini et al., 2010) instruments on the yet to be launched BepiColombo mission to Mercury. 

For the northern plains of Mars mapping project, we catalogued potentially cryospheric 

landforms. However, this technique could be applied to a wider range of thematic data 

collection, targeting other genetic landform assemblages. The approach is particularly useful 

as first-pass reconnaissance as it provides both location and complementary contextual data 

and statistics to inform a more detailed study. 
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The main advantage of grid-based mapping is efficiency. For each area, a mapper has only to 

scan the image for the landforms in each of a range of landform types and record whether or 

not they are visible, removing the individual’s decision about where to draw boundaries and 

what to include. This makes the process easier to implement for non-specialists. On average, 

we found it took around 2-3 minutes to complete the attribute table for each individual grid-

square (20 km x 20 km). At the suggested grid sizes, it would take around an hour to 

complete 25 grid-squares (100 km x 100 km). If further resolution was needed, finer grids 

could be added. These would be able to carry the null and zero values forward from the 

coarser grids, meaning only areas with positive values for that landform would need to be 

examined, so that to increase the resolution for the whole strip, the whole map would not 

need to be re-examined. Therefore, it is a scalable approach. Similarly, if a landform type 

needs to be split into two or more different sub-categories, then only those grid-squares that 

contain the parent category need to be re-examined. Hence, a hierarchy of high spatial 

resolution and detailed classifications could be built up by employing smaller and smaller 

grids, and sub-classifying individual landform types, where needed. 

Unlike traditional landform mapping, grid-based mapping enables a set of landforms, of 

multiple scales, to be catalogued efficiently in a single pass, minimising the time spent 

looking over the same images. However, if an additional landform type needed to be added 

later, it would require re-examining the whole dataset, meaning that starting with more 

landforms and combining classes afterwards if needed, is preferential. This also reinforces the 

need for good reconnaissance work, aimed at determining the total range of thematically 

relevant landform types in a study area. 

As each grid-square is systematically searched, for each individual landform type, grid-based 

mapping rapidly ensures the whole mapping area is covered at full resolution, actively 

marking negative results. Thus, it is possible to distinguish between absence of landforms and 
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absence of data. Both the mapping squares and the data collected by grid-based mapping are 

discrete meaning that grid-based mapping is scalable with group efforts. Transitions between 

colleagues are simpler to merge than using traditional mapping methods, as there are no 

contact lines or units to match up. However, to provide a consistent result, all mappers need 

to be able to come to a consensus on which individual landforms are going to be recorded 

under which landform type. This is where reconnaissance and test mapping comparisons 

between mappers are advantageous. Note that this sort of checking system can be added to 

the approach to maximise inter-operator consistency by requiring certain grid-squares 

throughout the overall study area to be mapped by all mappers. With the grid-based mapping 

method there is the potential problem of double accounting of large discrete landforms. If 

large landforms occur on overlapping cells, they would likely be recorded twice. This is not a 

major issue for most situations but it is important to consider that some large landforms could 

be over represented by double counting. 

The discrete data outputs for each landform type make it easy for comparisons between 

multiple landform types. This is particularly highlighted by the dual landform maps such as 

Figure 5d. The dual maps make it relatively easy to see where landforms appear to be 

mutually exclusive and where they consistently overlap, allowing landform assemblages to be 

constructed. The clearly defined grid also makes wider comparisons relatively easy, as 

multiple strips can be aligned alongside one another to check for spatial patterns and 

relationships, such as latitudinal trends. 

The tabular nature of the dataset allows for effective statistical manipulation. Summary 

statistics can be produced through batch coding and quickly plotted to look for trends in large 

datasets. As each entry in the dataset refers to a specific area, with a predefined size, the 

resulting data are easily comparable with pre-existing datasets. To allow for direct 

comparison between the results of grid-based mapping and other data products it may be 
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desirable to display other data in the grid-based mapping format. These can be used to 

compare results with, for example, mean, minimum, maximum and ranges of elevation, slope 

geometrics, surface roughness, surface concavity/convexity and compositional properties. 

This is particularly useful for assessing correlation between relief and landform types.  

The main disadvantage of grid-based mapping is that it is an imprecise approach. The current 

method assigns the same weight to one landform as it does to a hundred. This could be easily 

modified, however, by entering a “percentage of the surface covered” estimate, or “number in 

the grid-square” when recording each landform type in the attribute table for each grid-

square. On the other hand, this increases the time taken both to make decisions about the 

landforms and to enter the data, so a cost-benefit analysis must be made when modifying the 

approach. Another disadvantage to the grid mapping approach is that the method does not 

record morphometrics of landforms and only classifies landforms based on the categories 

determined while setting up the grid. 

4.2. Selecting the landforms, cell size and approach 

Grid-based mapping is most efficient when each grid is only viewed once, meaning that a 

project-specific “standardized” work plan, developed through reconnaissance, is essential. 

Key considerations when performing grid-based mapping are outlined in Figure 5. The first 

considerations are whether multiple classes of data are required and whether high resolution, 

continuous datasets are available. If either is not, then a more traditional style of mapping or 

surveying may be more appropriate as the main benefit of grid-based mapping is being able 

to map the spatial distribution and relative spatial frequency of multiple landform types, and 

different sizes, over large spatial extents in one pass of the data. If the primary focus of the 

data collection is density information, grid-based mapping may not provide sufficient detail 

although it may be used initially to identify specific study areas. Once the approach has been 

decided upon, and the relevant datasets have been acquired, the suite of thematically relevant 
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landform types needs to be predefined. To complete this vital stage, reconnaissance covering 

each mapping strip is required to confirm if the selected landform types are both relevant and 

consistently identifiable in the dataset(s). Subsequent to the definition of the thematically 

relevant suite of landform types, a projection that minimises distortion over the mapping strip 

must be chosen to allow for test mapping a sample of grid-squares. The purpose of the test 

mapping is to determine whether the landform types can be consistently identified over the 

entire mapping strip. 
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Figure 5 Flow chart demonstrating an idealised work process for grid-based mapping. 

Diamonds represent decisions to be made by the mappers, hexagons for preparation steps, 

quadrangles for mapping stages and octagons for endpoints. 

Do you require multiple 

classes of data ?
NO

Are you using Hi-Res

continuous datasets?

YES

NO

Is density information 

a high priority?

NO

Acquire the 

relevant datasets

Prepare a suite 

of classes

Reconnaissance

Are the classes both relevant 

and identifiable in the dataset?

NO

YES

Decide projection 

and prepare grid

Consider another 

approach.

Test Mapping

YES

YES

Analyse test data
Were the classes 

identified reliably?

YES

NO

Will there be 

multiple mappers?

Determine the 

primary mapper.

Prepare mapping areas, 

interspacing primary and 

other mappers.

Complete a 

sample of cells

Are classes being 

identified consistently?

Adapt classes or 

identiifcation criteriaNO

YES

NO

YES

Complete 

grid mapping



30 
 

4.3. Cell Completion Order and Possible Shortcuts 

When adopting a grid-based mapping approach, it is important to consider the order in which 

the cells will be completed. The most obvious approach might be to start systematically at 

one end of the grid and sequentially complete each cell before moving to the adjacent cell 

(See. Figure 6). A sequential approach has the advantage of it being immediately obvious 

how much of the project has been completed and how much is left to go. However, a 

sequential approach is very inflexible and leaves the mapper no option but to complete the 

whole study area before even the most basic analysis can occur. A sequential approach can 

also lend to a cell completion order bias, if grids are completed systematically in one 

direction the mapper is more likely to carry decisions on whether a landform is present, or 

absent, forward, particularly for landforms that are difficult to identify. Where landforms 

extend over or cover more than one grid-square, a sequential approach could also lead to 

decisions on landform presence being cumulative, rather than being taken on a square by 

square basis. While this can dramatically speed up the completion of grids, it prevents the 

identification of mistaken or outlying cell entries, which removes an opportunity to check for 

self-consistency. Another option would be to complete grid-squares randomly, perhaps 

having them served through a random number generator. While this is an excellent way to 

minimise the problem of decisions made for one grid-square affecting the decisions made for 

surrounding grid-squares, it requires the mapper to complete the grid before being able to do 

any systematic analysis.  

The mechanism we found to be most effective is to complete equally spaced grid-squares 

(such as every 2
nd

 or every 3
rd

 square) first, which can then be used to produce a coarse 

resolution landform map by extrapolating the results to surrounding grid-squares. This allows 

the mapper to review progress and assess the suitability of the grid dimensions and 

predefined thematically relevant attribute classes and, in addition, can be used to determine 
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whether all grid-squares need to be populated to adequately represent the categorical range 

and distribution of landform types within the mapping strip. This equal spacing method also 

limits multi-cell decision making, as no completely adjacent grid-squares are analysed 

sequentially. This is likely to increase reliability but at the expense of time required to 

populate each grid-square.  

It is important to note that increasing the size of a grid-square does not significantly decrease 

the time it takes to complete the grid-based mapping but does produce a coarser map. This is 

because the time taken to enter the data into the GIS is small compared to the time required to 

examine the data at full resolution and make decisions about the landforms. If full resolution 

is not required to classify the features, however, then use of larger grid-squares is appropriate 

and can speed up the task. However, there is a compromise to be made between the time 

spent completing attribute tables, time spent observing the images, and the resolution of the 

classified dataset. 

 

Figure 6 A) Adjacent cell completion; cells are completed row by row sequentially. B) 

Randomised completion; each cell is assigned a random number and completed sequentially. 

C) Coarse resolution first completion; every third cell (dark green) is completed allowing 

results to extrapolated to adjacent cells (light green) to produce a coarse resolution raster. 
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4.4. Dividing the mapping 

Considerations should be made when dividing the mapping between multiple mappers on 

how best to maintain consistency across the whole mapping strip (see Figure 5). This can 

involve using overlapping areas to promote discussion and consolidation on how landforms 

are mapped. An alternative approach is to interweave regions to be mapped by secondary 

mappers with smaller areas to be mapped by a primary mapper, ensuring that all mapper 

boundaries are between the primary mapper and one secondary mapper. This allows for inter-

operator consistency to be checked by one individual, helping to improve overall reliability.  

4.5. Possible Modifications to the Approach 

Grid-based mapping, as presented, provides little to no spatial density information on 

landform types. As the method is described, there is no mechanism to discriminate between a 

single instance of a landform type in a grid-square and many such landforms, perhaps 

covering a significant proportion of the grid-square. It is possible to produce a variation on 

how the data are recorded to include some density information; however this would come at 

the cost of both speed and ease of data collection. While not providing a definitive study on 

each individual landform type, which would require morphometrics of individual landforms 

in the type, this technique does provide an excellent way of cataloguing where landform 

types occur and could be used to target more focused and detailed research questions. It is 

worth noting that reclassifying the data to include spatial density information afterwards 

would not require looking through the entire dataset again, but only where landform types 

had been positively catalogued; and perhaps even then a sampled approach could be taken. 

One such approach could be to provide two attributes per landform type to be recorded for 

each grid-square, the first being confidence level on identification (i.e., present, probable or 

absent) the other a first order estimation of the number of landform of each type occurring in 

the grid-square. For point and linear landforms this could be recorded as an estimate of the 
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population size of each landform type within each grid-square, for surface terrain types (cf. 

landcover classes) as estimated percentage coverage. This approach could provide an 

effective compromise between collecting density data and the time required to record each 

individual occurrence of a landform type. 

4.6. Applications of the Approach 

The grid-based mapping approach has been developed to be applied to the Arcadia, Utopia 

and Acidalia regions of the martian northern plains. Other applications of the grid-based 

mapping method since include geomorphological mapping of Hellas (Voelker et al., 2015) 

and Lyot (Brooker et al., 2015) crater.  

The discrete nature of the datasets also opens up the possibility for citizen science, 

crowdsourcing large mapping areas. Mapping areas can be divided and distributed to large 

numbers of participants. To improve reliability, individuals’ results could be weighted against 

“experts” using control squares, experts being members of the appropriate science 

community who survey a sample of the mapping area. Searching for landforms in this 

manner would make possible the prospect of cataloguing landform types over the entire 

surface of Mars at CTX resolution. Crowdsourcing the task would be advantageous in that 

individuals could be selected as “specialists” in certain landforms, who could then perform 

more in-depth measurements on landform types that have been located by other users, 

providing an additional layer of information. Additional metrics such as the average time 

taken by the mapper to complete each grid-square could be recorded and provide an 

interesting and perhaps useful insight into the complexity of different regions.  

With regard to a crowdsource grid-mapping effort, somewhat comparable studies are being 

performed by NASA’s “Be a Martian” and “ClickWorkers” projects and Zooniverse’s “Moon 

Zoo” project (Joy et al., 2011). These three projects utilized the advantageous numbers in 
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citizen science largely to count and classify craters on planetary bodies. Although the data are 

largely yet to be published, preliminary observations and analysis (e.g. Kanefsky et al., 2001) 

are promising. The data collected by citizens in Kanefsky et al. (2001) was shown to be 

reliable against that collected by Nadine Barlow, an “expert” with several years of experience 

in crater counting. This encourages the consideration of applying a “grid-based mapping by 

citizen science” approach to map landforms across the northern plains and, potentially, the 

entire surface of Mars. 

5. Conclusions  

A grid-based mapping approach provides an efficient solution to the problems of mapping 

small landforms over large areas by providing a consistent and standardised approach to 

spatial data collection. Moreover, it makes data sharing and collaboration easier, more 

consistent, flexible, and effective. Unlike with traditional landform mapping, grid-based 

mapping is able to catalogue a set of landform types, of multiple sizes, efficiently in a single 

pass, minimising the time spent looking over the same images. The discrete, tabular nature of 

the dataset allows for effectual statistical manipulation for assessing correlation between 

landform types, relief, relationships and trends. The simplicity of the approach makes grid-

based mapping extremely scalable and workable for group efforts, requiring minimal user 

experience and producing consistent and repeatable results. The discrete nature of the 

datasets, simplicity of approach, and divisibility of tasks, open up the possibility of citizen 

science, in which crowdsourcing large grid-based mapping areas could be applied. A 

potential application of a “grid-based mapping by citizen science” approach would be to map 

landforms across the entire surface of Mars. 
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Highlights 

 Improved spatial resolution and coverage increases time required to analyse  

 Grid mapping allows small landforms to be mapped over large areas 

 Grid mapping forms digital landform maps best overlain on context maps 

 A tick box approach differentiates grid mapping from traditional points and polygons 

 The digital approach makes grid mapping scalable and workable for group efforts  

 Grid mapping is ideal for citizen science as it is discrete, easy to use and dividable 

 

 




