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Abstract

This paper extends the non-uniform rational basis spline (NURBS) plasticity framework
of Coombs et al. [8] to include isotropic hardening of the yield surfaces. The approach
allows any smooth isotropic yield envelope to be represented by a NURBS surface. The key
extension provided by this paper is that the yield surface can expand or contract through
the movement of control points linked to the level of inelastic straining experienced by the
material. The model is integrated using a fully implicit backward Euler algorithm that
constrains the return path to the yield surface and allows the derivation of the algorithmic
consistent tangent to ensure optimum convergence of the global equilibrium equations.
This provides a powerful framework for elasto-plastic constitutive models where, unlike
the majority of models presented in the literature, the underlying numerical algorithm
(and implemented code) remains unchanged for different yield surfaces. The performance
of the algorithm is demonstrated, and validated, using both material point and boundary
values simulations including plane stress, plane strain and three-dimensional examples for
different yield criteria.
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1. Introduction

Robust and efficient constitutive models are at the heart of every boundary value stress
analysis problem, providing the essential link between stress and strain for the material
that they represent. Elasto-plasticity is one class of inelastic material behaviour that allows
these models to predict yield and capture post-yield behaviour. Central to these models
is the concept of a yield surface that provides the boundary between elastic (inside the
surface) and elasto-plastic behaviour (on the surface). However, such models are typi-
cally developed in rate form, providing a rate relationship between stress and stain that
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conflicts with an incremental boundary value solver, such as the finite element method.
These boundary value solvers work with finite steps of stress and strain and therefore the
rate-form constitutive relationships must be integrated. Typically the form of the yield
surface impacts on the stress integration algorithm which requires changes in the numer-
ics for each implemented yield surface. This issue was overcome by the paper of Coombs
et al. [8] for yield surfaces that are fixed in stress space, known as perfect plasticity. It
allowed any smooth isotropic yield surface to be modelled without changing the numerical
algorithm or underlying code by using non-uniform rational basis spline (NURBS) sur-
faces to represent the yield envelope. This paper extends that work to allow for isotropic
expansion/contraction of the yield surface.

In this paper we do not attempt to review the vast number of constitutive models
and specific stress integration methods available in the literature and instead provide a
simplistic overview of the different approaches. The works of Yu [33], Simo and Hughes [23]
and Kojić [13] provide a review of constitutive models, detail stress integration approaches
and provide strategies for implementation within finite element analysis, respectively.

The implementation of constitutive models at a material point level can be coarsely
divided into three categories, namely: (i) explicit [12, 18, 20], (ii) implicit [9, 23, 32] and (iii)
exact stress integration [14–17, 28, 29, 31]. Critically explicit approaches do not enforce
the consistency conditions (see Section 2.1) at the updated stress state [30] and exact
integration approaches are too computationally expensive for use in general finite element
analysis [17].

Here we follow the approach of Coombs et al. [8] and adopt an implicit stress integration
algorithm (elastic prediction followed by a plastic correction) coupled with an associated
flow plasticity formulation that expresses the yield envelope as a NURBS surface. This
allows any smooth isotropic yield function to be included within the same numerical frame-
work. The key extension that we allow here is for the yield surface to expand (hardening)
or contract (softening) under plastic straining. This is achieved by allowing the position
of the control points to be a function of inelastic straining. This extends the NURBS
plasticity framework to include materials where the yield stress is a function of the history
of plastic straining that the body has experienced.

The layout of the paper is as follows, Section 2 provides the theoretical framework
for hardening NURBS-based plasticity, including the definition of the NURBS surface,
isotropic hardening through the movement of control points, the form of stress integration
used and the technique of energy mapped stress that allows us to interpret the stress
integration method as a geometric projection. Section 3 provides details on the numerical
implementation including the backward Euler stress integration process and the algorithmic
consistent tangent. Numerical examples are presented in Section 4 and, finally, conclusions
are drawn in Section 5.

The majority of the paper is presented in tensor form using index notation, the notable
exception is the numerics that are presented in matrix-vector form for ease of implemen-
tation. Consistent with the work of Coombs et al. [8], most of the paper is presented in
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terms of principal stresses with a tension positive notation and the conventional ordering

σ1 ≥ σ2 ≥ σ3.

Adopting a principal stress notation is common in other isotropic plasticity models, for
example see the work of [2, 4–6] amongst others, and does not change the generality of the
algorithm (it is suitable for 1D, 2D and 3D analysis). At the end of the stress integration
process the generalised, 6-component, stress and strain quantities are recovered using the
principal directions associated with the trial information (see Section 3.2.1 for details).

In this paper the 6-component stress and strain quantities are denoted using (̂·) when
expressed in matrix/vector format.

2. Hardening NURBS plasticity

This section provides the essential equations required to define an isotropically hard-
ening NURBS surface and include it within a plasticity framework. There is significant
overlap between the theory presented here and that of Coombs et al. [8], however the rep-
etition is retained for the sake of clarity and to provide a self-contained formulation. For
details on NURBS-based surfaces see Piegl and Tiller [21] and Coombs et al. [8] for the
particular case of perfect plasticity yield envelopes.

A general NURBS surface can be expressed as

Sk(ξ, η) =
n∑
i=0

m∑
j=0

Ri,j(ξ, η)(Ck)i,j (1)

where k is the physical index and Ck are the control point positions. The NURBS basis
functions, Ri,j , are given by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

(2)

where Ni,p and Nj,q are the pth and qth-degree B-spline basis functions, ξ and η are the
local positions within the Knot vectors and wi,j are the weights associated with the control
points. In the work of Coombs et al. [8] the control points were fixed, this paper removes
that restriction.

2.1. NURBS-based yield envelopes

Within the framework of NURBS plasticity [8], the yield surface can be expressed as

f =
(
σi − Si(ξ, η, εp

i )
)

(S,σ )i = 0, (3)
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where εp
i is the principal plastic strain state and σi the principal stress state. (S,σ )i is the

partial derivative of (1) with respect to stress which is the same as the outward normal to
the surface. This can be obtained through the cross product of the two local derivatives

(S,σ )i = (S,η ×S,ξ )i = εijk(S,η )j(S,ξ )k, (4)

where εijk is the Levi-Civita tensor1. Using the assumption of associated plasticity this
direction also provides the flow rule, that is the plastic strains evolve according to

ε̇p
i = γ̇(S,σ )i, (5)

where γ̇ is the scalar plastic multiplier which must satisfy the Kuhn-Tucker-Karush con-
sistency conditions

f(σi, ε
p
i ) ≤ 0, γ̇ ≥ 0 and f(σi, ε

p
i )γ̇ = 0. (6)

These enforce the condition that the material must either be inside the yield surface with
no inelastic straining (f ≤ 0 and γ̇ = 0) or on the yield surface undergoing elasto-plastic
deformation (f = 0 and γ̇ ≥ 0).

2.2. Isotropic hardening

Introducing hardening into the NURBS yield surfaces results in a yield surface that is
dependent on the level of inelastic straining at a material point, such as

Ck = h(εp
i )C0

k , (7)

where Ck and C0
k are the updated and the original control point positions and h(εp

i ) controls
the evolution of the control points. For linear isotropic hardening we can assume

h(εp
i ) = 1 + α||

∫ t

0
ε̇p
i dt||, (8)

where α is a material constant controlling the hardening (α > 0) or softening (α < 0) rate
and perfect plasticity is obtained with α = 0. We can approximate the isotropic hardening
function to provide an incremental function of the form

h(∆εp
i ) = hn + α||∆εp

i ||, (9)

where hn = h
(
(εp
n)i
)

is the value of the hardening function from the previously converged
state and it is assumed that initially, h0 = 1.

1εijk = 0 if i = j, j = k or k = i, εijk = 1 for even permutations of i, j and k and εijk = −1 for odd
permutations of i, j and k.
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2.3. Stress integration & energy-mapped stress space

In this paper we adopt an implicit stress integration scheme that makes an initial
estimate (or trial) for the stress state and then corrects it back onto the yield surface if it
violates the yield criterion. Central to this algorithm is the idea of an elastic trial stress

σti = De
ij(ε

e
t)j , (10)

where (εe
t)j is the elastic trial strain and De

ij contains the principal components of the linear
elastic stiffness matrix. The principal elastic trial strain is obtained from the eigenvalues
of the generalised second order tensor form of the trial elastic strain

(εe
t)ij = (εe

n)ij + ∆εij , (11)

where (εe
n)ij and ∆εij are the elastic strains from the previously converged state and the

strain increment from the current step. When the trial stress, (10), is located outside of
the yield surface (f > 0) it must be corrected back onto the yield surface. The updated
(or returned) stress can be expressed as

σri = σti −∆σp
i , where ∆σp

i = De
ij∆ε

p
j (12)

and ∆εpj is the plastic strain increment determined from the incremental form of the flow
rule at the updated stress state. Once the updated stress state has been obtained it is
straightforward to obtain the updated elastic strain using

(εe
n+1)i = Ce

ijσ
r
j , (13)

where Ce
ij is the elastic compliance matrix (the inverse of De

ij). The updated hardening
parameter, h, can also be obtained using (9). The problem of finding the updated stress
state (and other internal variables) is often solved using an iterative backward Euler (bE)
algorithm and is referred to as a closest point projection (CPP) approach. However, re-
ferring to this process as a CPP is misleading as the return stress is not the geometrically
closest point (except in the case when Poisson’s ratio is equal to zero), but rather the
return stress that minimises an energy norm over the return path [23].

Consistent with the work of Coombs et al. [8], this integration scheme is combined with
energy-mapped stress space (EMSS) [10] to reduce the stress integration process to the
problem of finding the geometrically closest point on the yield surface to the trial stress
state. A stress state in EMSS, ςi, can be obtained using the following transformation

ςi = Tijσj (14)

where, for isotropic linear elasticity, Tij is solely a function of Poisson’s ratio ν, with the
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form [8]

Tij =
(√

1− 2ν −
√

1 + ν
)
/3 + δij

√
1− ν. (15)

This mapping leads to a squashing of the yield surface in the hydrostatic direction and
a stretching in the deviatoric direction (see the work of [4, 8, 10] for examples of the
transformation for various yield surfaces).

Once obtained, the updated stress state in EMSS is simply transformed back into
conventional principal stress space using the inverse mapping of Tij .

3. Numerical implementation

Consistent with the perfect plasticity implementation of Coombs et al. [8], here we use
a coarse initial subdivision algorithm to provide the initial starting point for a bE implicit
stress integration process. In this paper we do not provided details of the subdivision
algorithm, see [8] for details. The rest of this section is focused on the implicit stress
integration algorithm and the derivation of the algorithmic consistent tangent. Within
this algorithm the return stress state σri is replaced by the local positions within the Knot
vectors, ξ and η as the primary unknowns in the CPP problem (in addition to the updated
hardening parameter).

3.1. Implicit stress integration

In this paper we adopt an implicit stress integration algorithm formulated within energy
mapped stress space with three unknowns

{x} = {ξ η h}T (16)

that must be found where the following residuals are satisfied

{r} =
{

(ςti − ςni )(S,ξ )i (ςti − ςni )(S,η )i h− h̃
}T

= {0}. (17)

The first two residuals ensure that the return path in EMSS is perpendicular to the yield
surface and the third that the hardening function has reached a stationary value, where

h̃ = hn + α||∆εp
i || and ∆εp

i = Ce
ijT
−1
jl (ςtl − ςnl ). (18)

In the above equation ∆σp
i = T−1

jl (ςtl − ςnl ) is the plastic stress increment over the stress
return path. The unknowns are updated through a standard Newton process

{δxk} = −
[
∂r

∂x

]−1

{rk−1} and {xk} = {xk−1}+ {δxk}, (19)
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where k denotes the Newton-Raphson iteration number. The derivatives required for the
Jacobian matrix, [∂r/∂x], are provided in Appendix B. The starting point on the yield
surface, (ξ0, η0), for the NR algorithm is the output from the subdivision process of Coombs
et al. [8] with h = hn (that is, the yield surface is frozen during the subdivision). As with
the algorithm for perfect plasticity, the stress return path for NR procedure described in
this paper starts and remains in the yield envelope and thereby satisfies the consistency
conditions not only at the final state but also during the stress updating algorithm.

3.2. Algorithmic consistent tangent

Efficient implementation of the constitutive model in a boundary value simulation re-
quires the derivation of the algorithmic tangent modulus to ensure asymptotic quadratic
convergence of the global out of balance force residual [25]. Here, the tangent is first con-
structed in principal stress space and then transformed into six-component stress space
using the eigenvectors associated with the trial elastic strain state (see Appendix A for
details). Following the approach of [3] (see page 29 for the full derivation), we can linearise
the constitutive model into the following form

[Ce] + ∆γ[S,σσ ] ∆γ{S,σh } {S,σ }
−{∆h̃,σ }T 1−∆h̃,h −∆h̃,∆γ

{S,σ }T f,h 0


︸ ︷︷ ︸

[Aalg ]−1


{dσ}
dh

d∆γ

 =


{dεe

t}
0

0

 , (20)

where the derivatives are determined at the updated stress state on the new yield surface.
h̃ is the hardening function, and in this case

∆h̃ = α||∆εp
i ||. (21)

The second derivative of the NURBS surface with respect to stress is

(S,σσ )ij =
(
εikl(S,η )k(S,ξξ )l + εikl(S,ηξ )k(S,ξ )l

)
(ξ,σ )j +(

εikl(S,η )k(S,ξη )l + εikl(S,ηη )k(S,ξ )l

)
(η,σ )j , (22)

where derivatives of the local Knot coordinates with respect to stress can be obtained
from the inversion of the Jacobian matrix linking the local NURBS coordinates with the
principal stress directions, that is

[J ] =

[
∂σ

∂ξ

]
=
[
(S,ξ )i (S,η )i (S,σ )i

]
. (23)
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The normal to the NURBS surface, (S,σ )i provides the third direction, orthogonal to the
tangent vectors, in the transformation. The derivatives associated with the hardening
function are

{∆h̃,σ }T = α
{∆εp}T

||∆εp
i ||

∆γ[S,σσ ], (24)

∆h̃,h = α
{∆εp}T

||∆εp
i ||

∆γ{S,σh } and (25)

∆h̃,∆γ = α
{∆εp}T

||∆εp
i ||
{S,σ }. (26)

The derivatives of the yield function and flow direction with respect to h are

f,h = −{S,h }T {S,σ } and {S,σh } = {S,σ }h−1. (27)

Multiplying both sides of (20) by [Aalg], allows us to obtain the principal components of
the consistent tangent, [Dalg], as

{dσ}
dh

d∆γ

 =


[Dalg] {Aalg12 } {A

alg
13 }

{Aalg21 }T Aalg22 Aalg23

{Aalg13 }T Aalg32 Aalg33



{dεe

t}
0

0

 , (28)

where the transpose on the vector components denote row vectors and in this case there is
symmetry between the 1-3 components of the matrix. [Dalg] provides the material tangent
that is consistent with the constitutive model such that when it is used to construct the
structural stiffness at a boundary value solver level we can obtain the optimum rate of
convergence of the global equilibrium equations when solved with a Newton process.

3.2.1. Six-component stress space

Due to the geometric nature of this paper, the plasticity framework and stress inte-
gration process has been presented in principal stress space. Within this approach, and
consistent with the approach of others [2, 4–6], we assume that the principal directions of
the updated elastic strain state are coincident with the elastic trial state. This means that
the principal directions do not change over the return path but they can changed between
previous and updated stress state (see Coombs and Crouch [4] for more details on the
consequence of crossing between sextants of stress space with implicit stress integration).
However, in order to use the plasticity model in general analysis is it necessary to map
between the principal and 6-component states and vice versa. This mapping is detailed in
Appendix A for both stress/strain vectors and stiffness matrices. However, before we can
map the material stiffness matrix it is necessary to specify its shear components in terms
of the principal stresses.
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The shear terms of the modified elastic stiffness matrix are given by

[Dc
G] = [AG][De

G], (29)

where [De
G] is a three-by-three matrix containing the shear components of the 6-component

elastic stiffness matrix. The modification matrix for the shear components is given by [2]

[AG] =


1 +

∆σp
1−∆σp

2
σr
1−σr

2
0 0

0 1 +
∆σp

1−∆σp
3

σr
1−σr

3
0

0 0 1 +
∆σp

2−∆σp
3

σr
2−σr

3

 . (30)

The stiffness matrix used in (A.1) is therefore

[D] =

[
[Dalg] [0]

[0] [Dc
G]

]
, (31)

where [0] is a three-by-three matrix full of zeros and [Dalg] is the principal elastic stiffness
matrix from (28). A pseudo-code for the isotropically hardening NURBS plasticity model
is given in Figure 1 that details fully the steps required in calculating the updated stress
state and hardening parameter.

4. Numerical simulations

This section provides material point and boundary value simulations to demonstrate
the performance of the constitutive model and the numerical stress integration algorithm
described in the previous sections.

4.1. Material point investigations

This set of numerical analyses considers an isotropically hardening von Mises yield
envelope. The yield surface can be expressed as

f = ρ− hρy = 0, (32)

where the deviatoric stress is ρ =
√

2J2 with J2 = 1
2sijsji and sij = σij − 1

3σkkδij , ρy is the
yield stress of the material and defines the radius of the von Mises cylinder. See Coombs
et al. [8] for the Knot vectors and weights for the NURBS-based von Mises surface.

Figure 2 shows the convergence of the NR algorithm for a hardening von Mises yield
surface with E = 200Pa, ν = 0.2, ρy = 1Pa and α = 10 subjected to a trial elastic strain of
{εe
t} = {−10 4 5 0 0}T ×10−3. The tolerance on the NR residual was set to 1×10−9

and two subdivisions were applied before starting the NR process. The initial hardening
function, hn, was set to unity and the converged value was h = 1.055.
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1. INPUT: physical ({εt}, E, ν, hn) & NURBS (Ξ, Ck, w, p) information.

(a) Transform the trial elastic strain, {εt}, into its principal components and store the
associated eigenvectors.

(b) Calculate the principal (elastic) trial stress, {σt} = [De]{εt}.

(c) Calculate the current control point positions [Ck] from (7) with h = hn.

(d) Transform the trial stress, {σt}, and the control point locations, [Ck], to energy
mapped stress space.

(e) Determine the closest point between the trial stress state, {ςt}, and the hardening
NURBS surface in energy mapped stress space, also obtaining hn+1, based on the bE
stress integration algorithm given in Section 3.1.

(f) Determine the value of the yield function based on the the updated control points, the
closest point and the trial state (3).

(g) IF f > tol (elasto-plastic behaviour)

i. transform the return stress state, {ςcp}, back to conventional stress space;
ii. calculate the updated elastic strain, {εen+1} = [De]−1{σn+1};
iii. determine the algorithmic consistent tangent matrix, [Da lg];

(h) ELSE (elastic behaviour)

i. updated stress equal to the trial stress, {σn+1} = {σt};
ii. updated elastic strain equal to the trial strain, {εen+1} = {εt}; and
iii. algorithmic tangent equal to the elastic tangent, [Dalg] = [De].
iv. maintain the original hardening parameter, hn+1 = hn.

(i) END IF

(j) Transform the principal components (updated stress, elastic strain and consistent
tangent) back to generalised space using the eigenvectors stored at step (a) - see
Appendix A.

2. OUTPUT: {σn+1}, {εn+1}, hn+1 and [Dalg]

Figure 1: Pseudo-code for the isotropically hardening NURBS constitutive model.
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Figure 2 plots the current NR error, ||{rn+1}||, against both the iteration number and
the residual from the previous iteration, ||{rn+1}||, the latter allows us to assess the
convergence rate of the algorithm. The algorithm achieves a quadratic convergence rate on
the final iteration demonstrating the correct implementation of the algorithm. The small
inset figure in Figure 2 shows the trial and return stress states along with the final von
Mises yield surface.

0

Figure 2: Convergence for a hardening von Mises yield surface with E = 200Pa, ν = 0.2, ρy = 1Pa and
α = 10 subjected to a trial elastic strain of {εet} = {−10 4 5 0 0}T × 10−3.

The stress integration errors for a von Mises yield surface (with the same material
properties as above) using the NURBS integration procedure are shown in Figure 3. The
stress state is initially located on the shear meridian in the σzz > σyy > σxx sextant of
stress space. This point is then subjected to a stress increment that will take the trial
stress state outside of the yield envelope into one of the three sextants shown in Figure 3.
The space of trial states was explored for ρt/ρy ∈ [1, 6] and the errors associated with the
trial state shown on the right of Figure 3. The normalised error measure used is

error =
||{σNURBS} − {σe}||

||σe||
, (33)

where {σNURBS} is the stress return location associated with the NURBS model and {σe}
is the exact stress return [14].

Although errors of over 20% are present in the model, exactly the same level of errors are
observed in the von Mises yield surface integrated with a conventional bE stress integration
procedure. As expected with any predictor-correction stress integration algorithm, the
error increases as the tangential proportion of the stress increment increases. The errors
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Figure 3: Stress return error analysis for an isotropically hardening von Mises NURBS yield envelope.

are almost identical to those reported by Coombs et al. [8] for the perfect plasticity yield
surface and are consistent with the results shown by others using implicit stress integration
[16]. Although these errors seem very large the analysis has explored a region of stress space
up to 6 times the size of the yield envelope. Provided that sufficient loadsteps are adopted
it is unlikely that a stress state would exceed the yield envelope by such a degree in a
boundary value simulation and, as commented by Krieg and Krieg [16], these errors are
unlikely to have a significantly detrimental impact. Despite this, the region of stress space
explored indicates the stability of the proposed numerical framework.

Figure 4 (i) shows the converged hardening parameter value for the same range of trial
stress states as analysed in Figure 3. As expected from (21), the value of the hardening
parameter is only dependent on the magnitude of the plastic strain increment, or equiva-
lently, the radial distance that the trial state is from the yield surface. Figure 4 (ii) gives
the normalised error in the hardening parameter, the distribution of the error is similar to
the stress errors shown in Figure 3 as the error in the stress increment will be proportional
to the error in the return stress.
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Figure 4: (i) stress return hardening parameter values and (ii) errors for an isotropically hardening von
Mises NURBS yield envelope.

4.2. Boundary value simulations

This section presents the results from three boundary value simulations to demonstrate
the performance of the proposed hardening NURBS framework. In all cases two subdivi-
sions (see Coombs et al. [8] for details) were applied before initiating the backward Euler
stress return algorithm.

4.2.1. Plane strain double notched plate

The first boundary value simulation presented in this paper is that of the plane strain
stretching of a double-notched plate. The problem was initially presented by Nagtegaal
et al. [19] and subsequently re-analysed in a number of papers, including [8, 22, 24, 26].
As shown in Figure 5, the plate was 30mm tall and 10mm wide with a 2mm unit linking
ligament at mid height. The plate had a Young’s modulus of 206.9GPa, Poisson’s ratio
of 0.29 and was modelled using an isotropically hardening von Mises yield surface with
associated flow and an initial yield stress of ρy = 0.45GPa.

The analytical limit load for the case of perfect plasticity (α = 0) is f lim ≈ 2.673kN [19].
Due to symmetry, only one quarter of the specimen was discretised, initially using 75 plane
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strain eight-noded elements with reduced four-point integration. A displacement of 0.2mm
was applied in to the top of the plate in 20 equal displacement-controlled increments.

Figure 5: Double notched plate with NURBS-based von Mises plasticity with hardening, perfect plasticity
and softening responses.

Figure 5 shows three different model responses for two finite element discretisations.
The three cases are where α = 1 (hardening or expansion of the yield surface, black dashed
line), α = 0 (perfect plasticity, fine black line) and α = −1 (softening or contraction of the
yield surface, thick grey line). As the mesh is refined the perfect plasticity response appears
to approach the analytical limit load (refer to Coombs et al. [8] for a demonstration of
this convergence over three meshes). As expected the hardening and softening responses
predict force versus displacement responses above and below the perfect plasticity response,
respectively.

The global normalised residual out of balance force

f̄oobf =
||{f ext} − {f int}||
||{f ext}||

, (34)
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is given in Table 1 for each of the global Newton iterations for four loadsteps of the 75
element simulation with a softening yield surface with α = −1. The tolerance on the
residual was set to 1 × 10−8. All of the loadsteps converged in five iterations, or fewer,
with the final iterations within each loadstep approaching a quadratic convergence rate,
demonstrating the correct implementation of the algorithmic consistent tangent for the
constitutive model, including the case of material softening. For this case by the end of
the simulation the minimum size of the yield surface had reduced to 78% of the original.

loadstep

NR iteration 2 3 10 20

1 8.953×10−2 2.502×10−1 2.392×10−2 1.553×10−3

2 6.891×10−3 6.605×10−2 9.518×10−4 8.705×10−5

3 4.050×10−5 2.205×10−3 1.278×10−6 8.828×10−9

4 1.435×10−9 6.933×10−6 1.270×10−12 -

5 - 6.474×10−11 - -

Table 1: Plane strain notched plate convergence for the NURBS implementation of the von Mises yield
surface with linear isotropic softening (α = −1) with 75 elements (1× 1mm element size).

4.2.2. Plane stress perforated plate

The next example is of the plane stress stretching of a perforated plate, as analysed by
[23, 27], amongst others. Here the plane stress approach of de Borst [1] is implemented,
such that the plane stress condition is enforced at the finite element level leaving the three
dimensional constitutive model unchanged. The 1mm thick plate had a total width and
height of 20mm and 36mm, respectively, and contained a 10mm hole at its centre, as shown
in Figure 6. The material had a Young’s modulus of 70GPa and a Poisson’s ratio of 0.2. A
von Mises yield surface was used with an initial yield radius of 0.198GPa and the hardening
parameter was set to α = 0.82 (note that here the yield stress a factor of

√
2/3 smaller

than that used in [27] due to the difference in the von Mises yield criterion used in that
work). Only one quarter of the plate was modelled due to the inherent symmetry in the
problem and a displacement of 0.14mm was applied to the top edge of the plate over 7 equal
loadsteps. The plate was initially discretised using 384 four-noded bi-linear quadrilateral
elements integrated using 4-point Gaussian quadrature (note that volumetric locking is not
an issue here due to the plane stress assumption in the third direction).

The left of Figure 6 compares the force versus displacement result of de Souza Neto
et al. [27], shown by black squares, with the hardening NURBS model for two different
meshes. The coarser mesh (384 elements, solid grey line) shows excellent agree with the
result of [27] and there is little difference in the result when the mesh is refined to 768
elements (dashed black line). The right of Figure 6 (top left quarter of the plate) also
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Figure 6: Plane stress perforated plate: comparison of the NURBS hardening von Mises model with the
result of de Souza Neto et al. [27].

shows the accumulated plastic strain at the end of the simulation of the mesh with 768.
This again shows good agreement with other results published in the literature [23, 27].

The global normalised residual out of balance force is given in Table 2 for each of the
global Newton iterations for the final four loadsteps of the 384 element simulation. The
tolerance on the residual was set to 1×10−8. All of the loadsteps converged in five iterations,
or less, with the final iterations within each loadstep approaching a quadratic convergence
rate, demonstrating the correct implementation of both the algorithmic consistent tangent
for the constitutive model and the consistency of the plane stress implementation.

loadstep

NR iteration 4 5 6 7

1 3.883×10−2 3.433×10−2 1.245×10−2 7.405×10−3

2 1.127×10−2 3.520×10−3 7.248×10−4 8.531×10−4

3 1.760×10−3 1.120×10−4 2.804×10−6 3.699×10−6

4 4.533×10−6 1.113×10−7 2.836×10−11 9.444×10−11

5 9.632×10−11 1.049×10−13 - -

Table 2: Plane stress perforated plate convergence for the NURBS implementation of the von Mises yield
surface with linear isotropic hardening with 384 elements.
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4.2.3. Plane strain rigid footing

The penultimate example is that of a 1m wide plane strain rigid footing displacing
into a weightless 10m by 5m domain with a Young’s modulus of E = 1 × 107kPa and a
Poisson’s ratio of ν = 0.48. The yielding of the material was governed by a Drucker-Prager
(D-P) yield envelope [11] with cohesion of c = 490kPa and a friction angle of θ = π/9 (20
degrees).

The D-P yield envelope can be expressed as

f = ρ+ β(ξ − ξa) = 0, (35)

where ξ = σii/
√

3, β = tan(θ) is the opening angle of the cone and ξa = c
√

3 cot(φ) is the
location of the cone’s tensile apex. The tensile apex of the yield surface poses an issue
for the stress return algorithm presented in this paper as the derivatives of the NURBS
surface are undefined at this point. Here we follow the same approach as Coombs et al. [8]
and locally round the apex, as shown in Figure 7 with ξa = 0. The yield surface is shown
in both hydrostatic versus deviatoric stress space and principal stress space for both the
original and rounded surfaces. The Knot vector and associated control point weights for
the grey curve shown in Figure 7 (i) are

Ξ = {0, 0, 0, 1, 1, 2, 2, 2} and w = {1, 1, 1, cos(φ/2), 1}.

The radius of the rounding curve can be obtained from the hydrostatic position of the
point where the true and rounded curves depart, point C in Figure 7 (i), that is

R = ξC
tan(θ)

cos(θ)
, where θ = arctan(β),

ξC < ξa and the arc angle is φ = π/2− θ. The hydrostatic locations of points D and E can
be subsequently obtained from ξC and R, where point D lies on the intersection between
the original yield curve and a line of constant hydrostatic pressure from the tensile limit
of the rounded surface.

Without loss of generality in the level of error, we can consider the special case when
the un-rounded yield surface is pinned at the hydrostatic axis (that is, ξa = 0) and the
start of the rounding is expressed in terms of a deviation from the apex, ξC = ξa − δ. In
this case the maximum hydrostatic error caused by the rounding can be expressed as

error = δ

(
1 +

β

cos(θ)

)
. (36)

For a given opening angle, β, the error varies linearly with δ that can be set based on the
precision required.

The normalised pressure versus displacement results for the footing problem are shown
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Figure 7: Drucker-Prager yield surface in: (i) hydrostatic, ξ, versus deviatoric, ρ, stress space and (ii)
principal stress space showing both the rounded and original cones.

in Figure 8, where B is the footing width, p is the footing pressure and v is the vertical
displacement of the footing. The problem was analysed using a mesh comprising 135 eight-
noded bi-quadratic quadrilateral elements integrated using reduced four-point quadrature.
Due to symmetry only half of the problem was modelled and the mesh detail around the
corner of the footing is shown in the inset figure. The mesh is the same as that used by
[4, 6–8, 27]. A vertical displacement of 4mm was applied to the footing over 20 equal
loadsteps.

First we consider perfect plasticity (α = 0) and validate the rounded D-P implementa-
tion. The solid grey line in Figure 8 shows the response of a conventional backward Euler
implementation of the D-P perfect plasticity model that includes a tensile apex and the
dashed black line the response of the rounded NURBS model for the case where δ = 1MPa
(note that the apex hydrostatic stress, ξa, is 2.33MPa for these material constants). The
result from de Souza Neto et al. [27] is also shown by the discrete white squares. All three
models show excellent agreement with the results being indistinguishable at the scale pre-
sented, with no stress states returning to the rounded part of the yield surface. The case
of linear isotropic hardening is also presented with α = 100 and the expected hardening
response in the normalised pressure versus displacement behaviour is seen. At the end of
the simulation there has been significant hardening in the model with a maximum value of
h of 67.2.

4.2.4. Three-dimensional unit cube

The final example presented in this paper is that of a unit cube constrained with roller
boundary conditions on three faces and subjected to two point loads on the unconstrained
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Figure 8: Plane strain footing analysis with a Drucker-Prager constitutive model.

corner, as shown by the inset figure in Figure 9 (i). The purpose of this demonstration
example is twofold: (i) to demonstrate the NURBS plasticity framework on a non-standard
yield function and (ii) to validate its use in three-dimensional analysis. Although this is a
simple problem in terms of geometry and boundary conditions it is a challenging problem
for the individual finite element due to the high stress gradient across the material and the
highly non-linear nature of the force versus displacement response.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4

5

Figure 9: Three-dimensional unit cube: (i) force versus displacement response and (ii) stress paths for
perfect plasticity.

The cube was modelled using a single fully-integrated 8-noded hexahedral element with
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a Young’s modulus and Poisson’s ratio of E = 1MPa and ν = 0.2, respectively. Yielding
of the material was governed by a spherical yield surface

f = ||σi|| − hσy = 0, (37)

where σy = 20kPa and the evolution of h was controlled through (9). The yield envelope
was represented using a bi-quadratic NURBS surface (a circle in the two local directions),
as shown in Figure 9 (ii).

A load of 4.9kN was applied to the unconstrained corner in both the negative y and
z directions over 20 equal loadsteps and the force versus displacement response for both
perfect plasticity (α = 0) and isotropic hardening (with α = 10) are shown in Figure 9 (i).
In both cases the first 13 loadsteps are elastic (the grey shaded region in Figure 9 (i)) and
the responses of the two models are identical. As expected the hardening material has a
stiffer post-yield response due to the expansion of the yield surface with inelastic straining.

Figure 9 (ii) shows the stress paths of the eight Gauss points through the simulation.
The spherical yield surface is shown by the light grey lines whereas the stress paths are
solid black lines. The stress paths are shown in two views, one showing the whole yield
surface aligned with the σ1-σ2 plane and the other showing part of the yield surface aligned
with the σ1-σ3 plane. The stress paths are linear until the first Gauss point reaches yield.
The stress path of the Gauss point reaching the yield envelop is obviously constrained to
lie on the yield surface but this also causes changes in the direction of the stress paths of
the other Gauss points due to stress redistribution within the cube.

Table 3 gives the global normalised residual out of balance force in the case of perfect
plasticity for each of the global Newton iterations for loadsteps 16 through 20. The tol-
erance on the residual was set to 1× 10−9 and the maximum number of iterations within
any loadstep was 5. The final iteration within each loadstep demonstrates quadratic (or
near quadratic when hampered by machine precision) convergence indicating the correct
implementation of the algorithmic tangent. The convergence of the hardening yield surface
follows a similar pattern with a maximum number of iterations within a loadstep of 5. The
total number of iterations over the 20 loadsteps was the same as the perfect plasticity case
at 38.

The analysis was also conducted with a conventional perfect plasticity bE implementa-
tion of the spherical yield surface. As expected, the global force displacement response was
identical to the NURBS model, as shown by the thick solid grey line in Figure 9 (i), and
the total number of iterations was also 38. However, the bespoke bE algorithm was faster
than the NURBS model with a average run time per iteration of 6.9× 10−3s compared to
18.5× 10−3s for the NURBS implementation. The major cost of the NURBS algorithm is
the repeated calculation of the basis functions and their derivatives at each iteration within
the plasticity model. This cost can be reduced by reducing the number of control points
used to define the surface through only defining the yield surface over the one sextant of
principal stress space where σ1 ≥ σ2 ≥ σ3. In this case the number of control points was
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reduced from 45 to 15 and the run time per iteration to 16.1× 10−3s.

loadstep

NR iteration 16 17 18 19 20

1 2.47×10−4 1.68×10−4 1.53×10−2 5.92×10−3 5.43×10−2

2 2.91×10−8 1.08×10−8 4.08×10−4 4.54×10−5 2.35×10−2

3 1.08×10−15 4.24×10−16 1.78×10−7 3.04×10−9 1.75×10−3

4 - - 6.50×10−14 8.56×10−16 9.02×10−6

5 - - - - 2.68×10−10

Table 3: Three-dimensional unit cube convergence for perfect plasticity (α = 0).

5. Conclusions

This paper has extended the work of Coombs et al. [8] on NURBS-based isotropic per-
fect plasticity to include isotropic hardening. The proposed framework allows any smooth
isotropic yield envelope to the represented an evolve with inelastic straining. The implicit
backward Euler stress integration contains three unknowns, the local knot position on the
surface, (ξ, η) and the hardening parameter, h, and enforces the consistency conditions
throughout the stress return path and not just at the updated stress state. This results
in an efficient (only iteratively inverting a three by three system) and stable (remaining
on the yield surface) algorithm that converges at the correct asymptotic quadratic rate.
Although this stress integration approach is unlikely to be as efficient as a bespoke con-
stitutive model for a specific yield surface, the impact of the efficiency of the constitutive
model on the overall run time of a finite element simulation reduces as the analysis size
increases due to more time being spent in the linear solution as compared to the integration
of stiffness and internal force. The efficiency of the NURBS plasticity approach can also be
increased through the reduction of the number of control points by only defining the yield
envelope over the σ1 ≥ σ2 ≥ σ3 portion of stress space. The algorithm also allows for the
derivation of the algorithmic consistent tangent that ensures optimum convergence of the
global equilibrium iterations. The framework has been demonstrated on both pressure
insensitive (von Mises) and sensitive (Drucker-Prager and a sphere) yield surfaces under
the conditions of perfect plasticity, hardening and softening for plane stress, plane strain
and three-dimensional problems. Where possible the models have been validated against
published results and the errors in the stress return algorithm, both in terms of the updated
stress path and the hardening parameter, quantified.

The key advantage of the proposed formulation is that it allows any smooth isotropic
yield surface to be modelled by only changing the control point information and does not
require any modification to the implemented code.
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[27] E.A. de Souza Neto, D. Perić, D.R.J. Owen, Computational methods for plasticity:
Theory and applications, John Wiley & Sons Ltd, 2008.
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[29] L. Szabó, A. Kossa, A new exact integration method for the DruckerPrager elasto-
plastic model with linear isotropic hardening, In. J. Solids Struct. 49 (2012) 170–190.
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Appendix A. Stress transformation

The following relations can be used to transform between six-component and principal
stress and strain space

{σ̂} = [Q]T

{
{σ}
{0}

}
, {ε̂} = [Q]−1

{
{ε}
{0}

}
and [D̂] = [Q]T [D][Q], (A.1)

where (̂·) denotes the six-component stress and strain quantities. The transformation
matrix is given by

[Q] =



(q1)2 (q2)2 (q3)2 q1q2 q2q3 q3q1

(q4)2 (q5)2 (q6)2 q4q5 q5q6 q6q4

(q7)2 (q8)2 (q9)2 q7q8 q8q9 q9q7

2q1q4 2q2q5 2q3q6 q1q5 + q4q2 q2q6 + q5q3 q3q4 + q6q1

2q4q7 2q5q8 2q6q9 q4q8 + q7q5 q5q9 + q8q6 q6q7 + q9q4

2q7q1 2q8q2 2q9q3 q7q2 + q1q8 q8q3 + q2q9 q9q1 + q3q7


,

(A.2)

where the components qi are associated with the trial elastic strain eigenvectors

[q] =


q1 q4 q7

q2 q5 q8

q3 q6 q9


.

(A.3)
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Appendix B. Jacobian matrix

The components of the Jacobian matrix, [∂r/∂x], required for the backward Euler stress
integration algorithm are

∂r1

∂ξ
= −(S,ξ )i(S,ξ )i + (ςti − ςni )(S,ξξ )i, (B.1)

∂r1

∂η
= −(S,η )i(S,ξ )i + (ςti − ςni )(S,ξη )i, (B.2)

∂r1

∂h
= −(S,h )i(S,ξ )i + (ςti − ςni )(S,ξh )i, (B.3)

∂r2

∂ξ
= −(S,ξ )i(S,η )i + (ςti − ςni )(S,ηξ )i, (B.4)

∂r2

∂η
= −(S,η )i(S,η )i + (ςti − ςni )(S,ηη )i, (B.5)

∂r2

∂h
= −(S,h )i(S,η )i + (ςti − ςni )(S,ηh )i, (B.6)

∂r3

∂ξ
= −h̃,||∆εpi || ||∆ε

p||,ξ , (B.7)

∂r3

∂η
= −h̃,||∆εpi || ||∆ε

p||,η and (B.8)

∂r3

∂h
= 1− h̃,||∆εpi || ||∆ε

p||,h . (B.9)

See Piegl and Tiller [21] for efficient methods of calculating the first and second derivatives
of the NURBS surface, Si. The derivatives with respect to the hardening function are given
by

(S,h )i = RC0
p , (S,ξh )i = R,ξ C

0
p , and (S,ηh )i = R,η C

0
p (B.10)

where the derivative of the plastic strain increment with respect to h is

(∆εp,h )i = −Ce
ijT
−1
jk (RC0

p)k. (B.11)

The derivatives of the plastic strain increment with respect to ξ and η are

(∆εp,ξ )i = −Ce
ijT
−1
jk (S,ξ )k and (∆εp,η )i = −Ce

ijT
−1
jk (S,η )k. (B.12)

The derivative of the hardening function with respect to the L2 norm of the plastic strain
increment is

∂h̃

∂||∆εp
i ||

= α
∆εp

i

||∆εp||
(B.13)
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Note the relative magnitudes of the residuals in (17), with the first two residuals will be of
the order of stress squared and the third close to unity. Normalising the first two residuals
(and the appropriate entries in the Jacobian matrix) with respect to Young’s modulus
reduces the potential for ill conditioning of the Jacobian matrix.
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