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Abstract: In the present work the interaction of a finite-length crack with a discrete climb 

dislocation is studied within the framework of the generalized continuum theory of couple-stress 

elasticity. The climb dislocation is placed on the crack plane resulting in an opening crack mode. 

For the solution of the crack problem the distributed dislocation technique is employed. Due to 

the nature of the boundary conditions that arise in couple-stress elasticity, the crack is modeled 

by a continuous distribution of translational and rotational defects. The distribution of these 

defects produces both stresses and couple stresses in the body. It is shown that the interaction 

problem is governed by a system of coupled singular integral equations with both Cauchy and 

logarithmic kernels which is solved numerically using an appropriate collocation technique. The 

results for the near-tip fields differ in several respects from the predictions of classical fracture 

mechanics. It is shown that a cracked couple-stress solid behaves in a more rigid way compared 

to one governed by classical elasticity. Moreover, the evaluation of the energy release rate in the 

crack-tips and the associated driving force exerted on the dislocation reveals an interesting 

‘alternating’ behavior between strengthening and weakening of the crack, depending on the 

distance of the crack-tip to the dislocation core as well as on ratio of the material length, 

introduced by the couple-stress theory, to the length of the crack. 
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1. Introduction 

 

The interaction between a crack and a dislocation is a fundamental problem of fracture 

mechanics since it determines, in many cases, the macroscopic brittle or ductile material 

response. Extensive work on this problem is reported in the literature within the framework of 

classical isotropic and anisotropic elasticity. Rice and Thomson (1974) proposed an energy 

condition for dislocation emission from a crack-tip discussing the consequent way of fracture, 

brittle or ductile. Later, Thomson (1978) and Weertman (1978) introduced the idea of a 

dislocation shielded crack and the concept of the dislocation free zone. In this model, the emitted 

dislocation is expected to glide away from the crack-tip until the interaction force is balanced by 

the lattice friction force and the dislocation comes to rest. The distance between the crack-tip and 

the point that the dislocation comes to rest is termed as dislocation free zone. Moreover, emitted 

dislocations are known to reduce the stress field in the vicinity of the crack-tip and hence the 

local stress intensity factor. An additional solution was given by Zhang and Li (1991) who 

employed the complex potential method to calculate the stress intensity factors at the crack-tips 

and the image forces due to the presence of a discrete dislocation. Accordingly, Markenscoff 

(1993) provided a solution for the stress field ahead of the crack-tip using integral equations. On 

the other hand, there are numerous experimental observations of these phenomena and we may 

refer indicatively to Kobayashi and Ohr (1981), and Michot and George (1986). 

In the present work, the interaction of a finite-length crack with discrete dislocations is 

studied using the generalized continuum theory of couple-stress elasticity to account for effects 

induced by the material microstructure. The couple-stress elasticity theory (also known as 

constrained Cosserat theory) is a particular case of the general approach of Mindlin (1964) and is 

the simplest theory of elasticity in which couple-stresses are introduced. The fundamental 

concepts of the couple-stress theory were first presented in rudimentary form by Cosserat and 

Cosserat (1909), but the subject was generalized and reached maturity in the 1960s through the 

works of Mindlin and Tiersten (1962), Toupin (1962), and Koiter (1964). Work employing the 

couple-stress theory in elasticity and plasticity problems has been intensified in recent years (see 

e.g. Vardoulakis and Sulem, 1995; Georgiadis and Velgaki, 2003; Lubarda, 2003; Park and Gao, 

2006; Radi 2008; Bigoni and Gourgiotis, 2016 and references therein) mainly due to the 

increasing need of predicting accurately the macroscopical behaviour of advanced 
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microstructured materials (such as ceramics, polymers, foams, and cellular materials) that are 

extensively used nowadays in many engineering applications. 

Regarding crack problems in the framework of couple-stress elasticity, several solutions 

were contributed to the literature. Confining attention to plane-strain problems, Sternberg and 

Muki (1967) were the first to study the problem of a finite-length crack under mode I loading by 

applying the method of dual integral equations. One of the main findings of this investigation 

was that both stress and couple-stress fields exhibit a square root singularity at the crack-tip, just 

as in classical elasticity theory. Atkinson and Leppington (1977) studied the problem of a semi-

infinite crack with exponentially decaying normal tractions on the crack faces using the Wiener-

Hopf technique. Accordingly, Itou (1981) evaluated numerically the stress intensity factor at the 

crack-tip of a propagating Yoffe crack. Huang et al. (1997) provided the near-tip expressions for 

mode I and mode II crack problems employing the asymptotic Knein-Williams method. Later, 

Huang et al. (1999) presented full-field solutions for of semi-infinite crack problems in elastic 

and elastoplastic materials characterized by couple-stress elasticity. More recently, Gourgiotis 

and Georgiadis (2007, 2008) extended the distributed dislocation technique (DDT) to study 

finite-length cracks under constant remote loading while Gourgiotis et al. (2012) investigated the 

problem of a semi-infinite crack under concentrated shear loading using the Wiener-Hopf 

technique. Finally, Gourgiotis and Piccolroaz (2014) considered problems of dynamically 

propagating crack under mode II loading conditions in the framework of couple-stress elasticity.  

In light of the previous studies, it is anticipated that the consideration of the material 

microstructure though the introduction of couple-stresses will alter the near tip solutions of the 

interaction problem investigated herein. Our approach is based on the DDT to construct the 

integral equations that describe the crack problems (for a detailed review of the DDT, we refer to 

the treatise by Hills et al. (1996). As a first approximation, we assume that the defects lie along 

the crack-plane and are not emitted by the crack-tip. In Part I of this work, we study the 

interaction of a crack with a discrete ‘climb’
*
 dislocation, resulting to a crack opening-mode. The 

interaction of a crack with a glide and a screw dislocation, resulting to sliding and tearing modes, 

respectively, is examined in Part II of this work. 

                                                      
*
 The jargon term ‘climb’ refers to an edge dislocation with its Burgers vector perpendicular to the cut made to 

create the defect in the classic way (Hills et al., 1996). 
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Following the approach employed in similar cases, the solution to the problem is obtained 

by the superposition of solutions of two auxiliary problems: an un-cracked medium (of the same 

geometry) subjected to the field of a climb dislocation and a cracked body loaded along the crack 

faces by equal and opposite tractions to those generated in the first auxiliary problem (corrective 

solution). Contrary to the classical elasticity case, in order to satisfy the boundary conditions of 

the second auxiliary problem, it is necessary to distribute both translational and rotational defects 

along the crack faces (see e.g. Gourgiotis and Georgiadis, 2008). This rotational defect was 

termed by the latter authors as ‘constrained’ wedge disclination and, in fact, corresponds to 

crystal twinning. The continuous distribution of these discontinuities along the crack faces 

results in a coupled system of singular integral equations with Cauchy and logarithmic kernels 

which is solved numerically using an appropriate collocation technique. Of particular interest is 

the evaluation of the energy release rate in both crack-tips (J-integral) as well as the calculation 

of the driving force exerted on the discrete edge dislocation. The comparison of these quantities 

in the framework of couple-stress elasticity with the classical elasticity solutions (which are also 

obtained in closed form herein) reveals an interesting ‘alternating’ behavior between 

strengthening and weakening effects depending on the distance of the discrete climb dislocation 

from the crack-tip and the magnitude of the characteristic material length with respect to the 

length of the crack. 

 

2. Basic equations of couple-stress elasticity in plane strain 

The general idea in the so-called generalized continuum theories (one of which is the couple-

stress theory) is considering a continuum with material particles (macro-volumes), behaving like 

deformable bodies (Mindlin, 1964). This behavior can easily be realized if such a material 

particle is viewed as a collection of sub-particles. It is further assumed that internal forces (called 

dipolar or double forces) are developed between the sub-particles. Although each pair of the 

dipolar forces has a zero resultant force, it generally produces a non-zero moment and therefore 

gives rise to stresses on a surface called couple-stresses. This means that a surface element may 

transmit, besides the usual force vector, a couple vector as well. One can interpret physically the 

couple-stresses as created by frictional couples resisting the relative rotation of the grains (sub-

particles). The basic concepts of linear couple-stress elasticity have been well documented in the 

fundamental papers of Mindlin and Tiersten (1962) and Koiter (1964). 
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In this section, we briefly summarize the basic equations in the plane strain case under 

static loading conditions. For a body that occupies a domain in the  ,x y -plane, the two-

dimensional displacement field is described by  

 

( , ) 0 ,      ( , ) 0 ,      0x x y y zu u x y u u x y u      , (1) 

 

where the z axis is perpendicular to the  ,x y -plane. 

Regarding, the kinematical description of the elastic body, the non-vanishing components 

of the strain tensor, the rotation vector, and the curvature tensor are given as follows 

 

1
,      , ,

2

1
, ,   

2

y yx x
xx yy xy yx

y x
z xz yz

u uu u

x y y x

u u

x y x y

   

 
   

   
     
    

   
     

    

 . (2) 

 

Further, the equations of force and moment equilibrium in the absence of body forces and 

body couples reduce to 

 

0
yxxx

x y

 
 

 
,      0

xy yy

x y

  
 

 
,     0

yzxz
xy yx

mm

x y
 


   

 
 , (3) 

 

where pq  and pq  are the components of the stress tensor and couple-stress tensor (both being 

asymmetric).  

Assuming a linear and isotropic material response the strain energy density takes the 

following form  

 

      
2

2 2 2 2 2 22 2 2xx yy xx xy yy xz yzW                 .  (4) 
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where   and   are Lamé type constants,   is the Poisson’s ratio, and  is the characteristic 

material length introduced in couple-stress elasticity. 

Accordingly, the constitutive equations in the plane-strain case become 

 

   
1

2xx xx xx yy     

   
 

,      
1

2yy yy xx yy     

   
 

, 

   
1

4xy xy yx   


  , (5) 

and 

 

 
1

24xz xzm 


 ,    
1

24yz yzm 


 . (6) 

 

In view of the above, the non-vanishing components of the stress tensor can be expressed 

in terms of the displacement components as 

 

 2
yx

xx

uu

x y
   


  

 
 , (7) 

 2
y x

yy

u u

y x
   

 
  

 
 , (8) 

3 33 3
2

3 2 2 3

y y yx x x
yx

u u uu u u

y x x x y x y y
  

      
                   

 , (9) 

3 33 3
2

3 2 2 3

y y yx x x
xy

u u uu u u

y x x x y x y y
  

      
                   

 . (10) 

 

Finally, combining the equilibrium equations (3) with (7)-(10), we obtain the following system 

of coupled partial differential equations of the fourth order in terms of the components of the two 

dimensional displacement field 

 

 
4 42 4 4

2

2 3 2 2 3 4

1
2 1 0

1 2

y y yx x x x
u u uu u u u

x x y y x y x y x y y




       
                         

 , (11) 
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 
2 4 44 4

2

2 3 2 2 3 4

1
2 1 0

1 2

y y y yx x x
u u u uu u u

y y x x x y x y x y x




       
                         

 .  (12) 

 

 

3. Formulation of the crack problem 

 

Consider a straight crack of finite length 2a  in an infinite couple-stress elastic medium and a 

discrete ‘climb’ dislocation of Burgers vector  0, ,0ybb  lying at the crack-plane ( 0y  ) at a 

distance d  ( d a ) from the center of the crack (Fig. 1). No other loading is applied to the 

body. The crack faces are described by the unit vector  0, 1 n  and assumed to be traction-

free. The boundary conditions along the crack faces assume then the following form 

 

     , 0 0 , , 0 0 , , 0 0yy yx yzx x m x     ,     for   x a , (13) 

 

which are supplemented by the regularity conditions at infinity 

 

0pq   ,     0qzm  ,      as      r   , (14) 

 

where    , ,p q x y  and  
1 2

2 2r x y   is the distance from the origin. Equation (14) suggests 

that there is no external loading induced other than the one induced by the discrete climb 

dislocation. 

As it is shown in Gourgiotis and Georgiadis (2008), a discrete climb dislocation in an 

infinite isotropic couple-stress medium induces both normal stresses 
   ,0yb

yy x  and couple-

stresses 
   ,0yb

yzm x  along the slip plane 0y  . However, a climb dislocation does not induce 

shear stresses at 0y  , so that 
   ,0 0yb

yx x  . The stress field for a discrete climb dislocation in 

couple-stress elasticity has been analytically derived in Gourgiotis and Georgiadis (2008). An 

outline of the procedure is provided in Section 4 (c.f. Eqs (19) and (20)) and in Appendix A. 
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Fig. 1: Interaction of a finite length crack with a discrete climb dislocation  

placed along the crack-plane at a distance d  from the center of the crack. 

 

 

The solution to the main crack problem can be derived by superposing the solutions of 

two auxiliary problems. First, we consider an un-cracked body subjected to the loading of a 

discrete climb dislocation placed along the crack line ( 0y  ) and at a distance d  from the crack 

center (origin of the axes). Next, for the second auxiliary problem (referred often as corrective 

solution), a body of identical geometry with the initial cracked body without the discrete climb 

dislocation is considered. The only loading is applied along the crack faces consisting of equal 

and opposite tractions to those generated in the first auxiliary problem (un-cracked body). The 

boundary conditions along the crack-faces ( x a ) assume then the following form 

 

     , 0 ,0yb

yy yyx x d    ,     , 0 0yx x  ,         , 0 ,0yb

yz yzm x m x d   . (15) 

 

It is remarked that the same boundary value problem in the framework of classical isotropic 

elasticity is described by only the first two conditions in Eqs (15). In that case, a distribution of 

climb dislocations along the crack faces would be sufficient to solve the respective mode I 

problem (Hills et al. 1996). However, in couple-stress theory, it is not possible to satisfy 

simultaneously the three boundary conditions in Eq. (15) solely by distributing climb 

dislocations. Indeed, as already shown in Gourgiotis and Georgiadis (2008), the boundary 

conditions are satisfied by distributing both translational and rotational defects since the work 
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conjugates of the force traction 
y yy yP n  and the tangential couple traction z yz yR m n  are the 

displacement yu  and the rotation  , respectively (Mindlin and Tiersten, 1962; Koiter, 1964).  

In the next section, we derive the stress fields of the two defects that will serve as 

influence functions for the opening mode crack problem under consideration. 

 

4. Influence functions for the opening mode crack problem 

 

The influence functions for the opening mode crack problem in couple-stress elasticity have been 

obtained in Gourgiotis and Georgiadis (2008). In this section, for the sake of completeness, we 

will briefly summarize their derivation procedure and cite the results pertinent to our analysis. As 

it was discussed in the previous section, both translational and rotational defects must be 

distributed along the crack-faces to render the crack traction-free. To this purpose, the stress and 

couple-stress fields of a climb dislocation and of the appropriate rotational defect in infinite 

isotropic space will be obtained by solving the appropriate boundary value problems.  

Due to symmetry only the upper half plane  , 0x y      is considered. The 

boundary value problems for the two defects in couple-stress elasticity take then the following 

form: 

 

Climb dislocation: 

       , 0 , , 0 0 , ,0 0
2

y

y yx

b
u x H x x x        ,  (16) 

 

Constrained wedge disclination: 

       , 0 0 , , 0 , ,0 0
2

y yxu x x H x x   
    , (17) 

 

where  H x  is the Heaviside step function. Equations (17) describe the problem of a 

“constrained” wedge disclination with Frank vector  0, 0, Ω  in an infinite couple-stress 

material. The term constrained wedge disclination was introduced by Gourgiotis and Georgiadis 
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(2008) and is justified by the fact that the discontinuity in the rotation vector does not affect the 

normal displacement yu  as opposed to the standard wedge disclination in classical elasticity 

theory (see e.g. deWit, 1973) or in couple-stress elasticity (Anthony, 1970). Indeed, in these 

cases, the discontinuity in the rotation vector introduces also a discontinuity in the normal 

displacement at the disclination plane ( 0y  ) given by the expression: 

     , 0 2yu x x H x    (Fig. 2a). Moreover, the stresses introduced by a standard wedge 

disclination become logarithmically unbounded at infinity. Thus, the standard wedge disclination 

cannot be used to generate a traction free crack in the framework of couple-stress elasticity. 

In Mechanics of Defects, the rotational defect referred to as constrained wedge 

disclination corresponds to crystal twinning (Fig. 2b). This phenomenon occurs during crystal 

growth or under certain stress or temperature conditions and describes the formation of two or 

more intergrown crystals that share some of the same crystal lattice points in a symmetrical 

manner (denoted as ‘twinning plane’ in Fig. 2b). This procedure is more prominent in lower 

symmetry (e.g. hexagonal close packed) crystals where twins need to undertake part of the 

crystal’s plastic deformation in order to fulfill Taylor’s condition for five independent slip 

systems (see e.g. Christian and Mahajan, 1995).  

    

 

                                              

twinning
  plane

 

 

Fig. 2: (a) Standard wedge disclination with Frank vector  0, 0, Ω ,  

(b) twinning of two tetragonal twin crystals. 

 

 

a b 
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The two boundary value problems are attacked using the Fourier integral transform 

method in order to eliminate the x -dependence in the field equations (11)-(12) and the boundary 

conditions (16)-(17) (details of the procedure are provided in Appendix A). The influence 

functions, corresponding to the normal stress 
yy  and the couple-stress 

yzm  along the crack line 

0y  , are derived from the superposition of the two defects. These are given as 

 

         , 0 ,0 ,0yb

yy yy yyx x x  


  ,               , 0 ,0 ,0yb

yz yz yzm x m x m x


  ,  (18) 

 

where 

 

           
           

11 12

12 22

,0 , ,0

,0 Ω , ,0 Ω

y yb b

yy y yz y

yy yz

x b L x m x b L x

x L x m x L x




 

  


 

 ,     (19) 

 

and 

 

 
 

 

   

2

11 22

2

12 2 02

2
2,1

22 1,3 2

1

1 2, 1 2, 0

2 2

2 1

2

sgn
2 4

x
L x K

x x x

x x
L x K K

x

x
L x x G

 

  

 

 



 

   
     

     


    
       

      


    
 

. (20) 

 

Note that  iK  is the 
thi  order modified Bessel function of the second kind and  ,

,

a b

c dG  is the 

MeijerG (see e.g. Erdélyi et al., 1953).  

Regarding the characteristics of the stress field described above, the following points are 

of notice: 

(i) As 0x  , the modified Bessel functions and the MeijerG function have the following 

asymptotic behavior 
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   2 2

2 2 1 2 lnK x x O x x   ,         0 lnK x O x  ,    

 12,1 2

1,3

1

1 2, 1 2, 0
2G x O x





 
 

 
. (21) 

 

Based on the above asymptotic relations, it can be readily inferred that the normal stress 
yy  in 

(18)1 exhibits, as 0x  , a Cauchy type singularity due to the climb dislocation and a 

logarithmic singularity due to the constrained wedge disclination. On the other hand, the couple-

stress 
yzm  in (18)2 has a Cauchy type singularity due to the constrained wedge disclination and a 

logarithmic singularity due to the climb dislocation. 

(ii) As x , it can be derived that 0yy   whereas 
yzm   . Thus, the 

constrained wedge disclination does not induce normal stresses at infinity contrary to the 

standard wedge disclination where the stress becomes logarithmically unbounded both in 

classical and in couple-stress elasticity. 

(iii) As 0 , the couple-stress yzm  vanishes, that is, the constrained wedge disclination 

induces stresses and couple-stresses only when the material microstructure is considered  0 . 

Moreover, for 0 , the normal stress yy  reduces to the respective one of classical elasticity in 

the case of a discrete climb dislocation. In the latter case, the normal stress is given by the 

relation  2 1yy yb x     , which is the influence function of the classical mode-I crack 

problem (Hills et al. 1996). 

 

 

5. Singular integral equation approach 

 

The discrete defects examined in the previous Section have to be distributed along the crack 

faces so that the corrective stresses of Eq. (15) are generated. The elastic field produced by the 

continuous distributions of climb dislocations and constrained wedge disclinations is derived by 

integrating the governing equations (19) and (20) along the crack faces. Note that the second 

boundary condition in Eqs. (15) is automatically satisfied since none of these defects induces 

shear stresses at the crack plane 0y  . Eventually, the simultaneous satisfaction of the first and 
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third boundary conditions in Eq. (15) leads to a system of coupled integral equations. Employing 

asymptotic analysis, we separate the singular from the regular parts of the kernels and obtain the 

following system singular integral equations 

 

 
 

 

 
 

       
1 1

1 1

( )

1 2

3 2
,0 ln

2 1

2
,         ,

y

a a
b I

yy

aa

a a

I

a a

x tB t
x d dt W t dt

x t a

B t R x t dt W t R x t dt x a
a

  


  

 

 



 


   

 

    

 



 
 
 

 (22) 

 

 
 

 

       
1 1

1 1

2
( )

2 3

2
,0 ln

,        ,
2

y

a a
b

yz I

aa

a a

I

a a

x tW t
m x d dt B t dt

a x t

B t R x t d W t R x t dt x a
a

 

 

 


 



 


    



    

 



 
 
 

  (23) 

 

where the quantities  IB t  and  W t  are the densities of the climb dislocation and the 

constrained wedge disclination respectively, defined as 

 

 
   

   
1

1

,          

x

y y

I y I

a

db t d u t
B t u x B t dt

dt dt



     





 . (24) 

 
   

   
1

1

1
,       

x

a

d t d t
W t a a x W t dt

dt dt a






 
   





 . (25) 

 

In the above expressions,  yu x  is the relative opening displacement and  x  the relative 

rotation between the upper and lower crack faces. The climb dislocation density can be 

interpreted as the negative of the slope whereas the constrained disclination density as the 

curvature at a point on the crack faces. It should be also noted that both densities are 

dimensionless. The expressions for the normal stress 
 yb

yy  and the couple-stress 
 yb

yzm  appearing 

on the LHS of (22) and (23) are given in Eq. (19)1. 

Moreover, the kernels  qR x t  with 1, 2, 3q  , read 
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 
 

2

1 22

1 2 1
,

2

x t
R x t K

x t x t

   
     

    

  

 
 

2

2 2 02

2
ln ,

x t x t x t
R x t K K

x t

           
            

          

  (26) 

   
 

2

2,1

3 1,3 2

1

1 2, 1 2, 0

4
sgn .

4

x t
R x t x t G

x t

 
     
  
 

  

 

Employing the asymptotic properties of the modified Bessel functions and the MeijerG function 

in Eqs (21), it can be shown that the above kernels are regular as x t .  

In addition to the governing equations of the problem, the following closure conditions 

must be satisfied in order to ensure that the normal displacement and the rotation are single-

valued 

 

   0 ,         0
a a

I
a a
B t dt W t dt

 
    . (27) 

 

In the special case that the discrete dislocation lies at the crack-tip, the LHS of Eqs (22) and (23) 

tends to zero and the contribution of the defect is described by letting the first of (27) be equal to 

the Burgers vector 
yb  of the discrete climb dislocation (Markenscoff, 1993). This configuration 

corresponds to a crack partially filled with a rigid wedge (Barenblatt, 1962).  

Regarding the influence of the characteristic length  on the governing equations of the 

problem, two extreme cases are worth investigating. First, assuming 0 , it is readily shown 

that the integral equation (23) vanishes identically while Eq. (22) is reduced to the corresponding 

equation of classical elasticity, written as (Markenscoff, 1993) 

 

 1
,         .

a

I

a

B t
dt x a

x d x t

 
 





  (28) 

 

Next, let us consider the limit  . Multiplying Eq. (23) with 
2
 and noting that  
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   2 32 2

1 1 1
lim ln 0 , lim 0 , lim 0 ,

x t
R x t R x t

  


       (29) 

 

the system of singular integral equations (22) and (23) becomes uncoupled. Observing further 

that  1lim 0R x t


  , the integral equation (22) becomes finally 

 

 

  

 

 

 3 2 3 2
,         ,

2 1 2 1

a

I

a

B t
dt x a

x d x t

   

    

 
 

   





  (30) 

 

which is the same integral equation that occurs in classical isotropic elasticity (c.f. Eq. (28)).  

We now proceed to the solution of the system of singular integral equations (22) and 

(23). First, the unknown defect densities,  IB t  and  W t , should be expressed in such a way to 

account for the asymptotic behavior of the displacement and rotation at the crack-tips. In couple-

stress theory, Sternberg and Muki (1967) and later Huang et al. (1997) showed that both the 

displacement 
yu  and the rotation   behave as 1 2R  near the crack-tips, where R  is now the 

radial distance from the crack-tip. This asymptotic behavior was verified by the uniqueness 

theorem for crack problems in couple-stress theory (Grentzelou and Georgiadis, 2005), which 

suggests that both the displacement and the rotation have to be bounded near the crack-tip 

region. Taking into account the asymptotic behavior of the defect densities near the crack-tips 

and utilizing the dimensionless quantities: x x a , t t a , and d d a , we express the 

densities  IB t  and  W t  in the following form 

 

         
1 2 1 2

2 2

0 0

1 ,     1 ,     1I n n n n

n n

B t b T t t W t c T t t t
 

 

 

       , (31) 

 

where  nT t  are the Chebyshev polynomials of the first kind (see e.g. Abramowitz and Stegun, 

1964), and  ,n nb c  are unknown parameters (constants). After appropriate normalization over 

the interval  1, 1 , the system is written as 
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   

 

  

  

       

1

1

1 2( ) 1 2

0 1

1
1 2

2

0 1

1 2

0 0

,0 13 2

2 1

1 ln

2 ,         1 ,

yb

yy n

n

n

n n

n

n n n n

n n

ax ad T t t
b dt

x t

a
c T t t x t dt

b Q x c Q x x

 

 




 




 

 

 

 
 

 

 
   

 

  













 

             (32) 

 

    

  

       

1

1

1 2( ) 1 22

2
0 1

1
1 2

2

0 1

2 3

0 0

,0 12

1 ln

,         1 ,
2

yb

yz n

n

n

n n

n

n n n n

n n

m ax ad T t t
c dt

a x t

a
b T t t x t dt

b Q x c Q x x
a








 




 

 

 

 
  



 
   

 

  













 

  (33) 

 

where the functions    s

nQ x  are defined as 

 

        
1 1 2

2

1
1

s

n n sQ x T t t R ax at dt



    ,   1, 2, 3s  . (34) 

 

The integrals in Eq. (34) are regular and are evaluated using the standard Gauss-Chebyshev 

quadrature while the singular and weakly singular (logarithmic) integrals in Eq. (32) and (33) are 

calculated in closed form in Appendix B using Eqs (B1) and (B2), respectively. Moreover, 

employing the auxiliary conditions (27) it can be readily shown that the constants 0b  and 0c  are 

equal to zero.  

In light of the above, the system of integral equations assumes the following discretized 

form for 1x   

 

   

 
 

 

       

( )

1

1 1

1 2

1 1

,0 3 2

2 1

2

yb

yy n n

n n

n n

n n n n

n n

ax ad c T x
b U x

n

b Q x c Q x

 

 

 



 

 

 

 
   



 

 

 

 , (35) 
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 
 

 

       

( )
2

12
1 1

2 3

1 1

,0 2

2

yb

yz n n

n n

n n

n n n n

n n

m ax ad b T x
c U x

a n

b Q x c Q x
a



 



 

 

 


  

 

 

 

 . (36) 

 

The system of algebraic equations (35) and (36) is solved numerically by truncating the series at 

n N  and using an appropriate collocation technique, where the collocation points are chosen as 

the roots of the first kind Chebyshev polynomial  NU x , viz.   cos 1jx j N   with 

1,2,...,j N . Equations (35) and (36) form then an algebraic system of 2N  equations with 2N  

unknowns. Solution convergence was accomplished for different number of collocation points 

depending on the ratio a  as shown in Table 1 (Section 7). After calculating the parameters nb  

and nc  ( 1,...,n N ), the densities of the two defects can be evaluated employing Eq. (31). 

Finally, it should be noted that the numerical scheme employed herein differs from the one 

utilized in Gourgiotis and Georgiadis (2008). 

 

 

6. Energy release rate and the Peach-Koehler force 

 

In this Section, we derive the expressions for the energy release rate (J-integral) at the crack-tip 

and the Peach-Koehler force exerted on the climb dislocation and examine their dependence 

upon the material and geometrical length scales of the problem. In the framework of couple-

stress theory, the energy release rate (ERR) was derived first by Atkinson and Leppington (1974) 

and proved to be path independent (see also Atkinson and Leppington, 1977; Lubarda and 

Markenscoff, 2000). For the plane strain case, the J-integral takes the following simple form 

(Gourgiotis and Georgiadis, 2008) 

 

y x
yy yx yz

C

u u
J Wdy m dC

x x x


 

  
    

   





, (37) 
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where C  is a piecewise smooth contour that surrounds the crack-tip and W  is the strain energy 

density. A convenient contour for the evaluation of the J-integral is a rectangular shaped 

integration path with vanishing height along the y-direction that surrounds the (left or right) 

crack-tip as 0   (Fig. 3). This concept was first introduced by Freund (1972) to calculate the 

energy flux during dynamic crack propagation and has thereafter been used to compute energy 

quantities in the vicinity of crack-tips (see e.g. Burridge, 1976; Georgiadis, 2003; Gourgiotis and 

Georgiadis, 2008, 2009; Gourgiotis and Piccolroaz, 2014). The benefit of this approach is that 

only the asymptotic near tip stress and displacement fields suffice for the evaluation of the J-

integral. Note that the term 
C
Wdy  in Eq. (37) vanishes as the height of the rectangular contour 

tends to zero. Furthermore, taking into account that the shear stress yx  is zero along the crack 

plane ( 0y  ), the J-integral (for the right or left crack-tip) may be written as 

 

 
 

 
 

0

,0 ,0
2 lim ,0 ,0

a

y

yy yz

u x x
J x m x dx

x x





 




 
 

 



 

    
    

     






 . (38) 

 

 

 

 

Fig. 3: Rectangular shaped contour for the calculation of J-integral  

around the right crack-tip. 

 

 

It should be noted that the dominant near-tip behavior of the normal stress 
yy  and the couple-

stress 
yzm  is attributed to the Cauchy type integrals in Eqs (22) and (23), respectively. The 
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asymptotic behavior of these stresses near the right ( x a ) and left ( x a ) crack-tips is 

given as (see Eq. (B3) in Appendix B) 

 

 
 

 
 

 
 

 
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n
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x

x a b x

 




 




 



 




  




      
 





,   (39) 
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1

2
,0 1

, 1
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,0 1 1

N
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n

N
n
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n
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a

x

m x a c x
a




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

 




   





    








. (40) 

 

Moreover, in view of the definitions (24) and (25), the following asymptotic relations hold for 

the gradients of the displacement and rotation  
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 
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 
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
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



 , (41) 
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



 





 





 
  
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

  
  







. (42) 

 

Based on the previous results, the J-integral for the right crack-tip is written in the form 
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       
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1 2 1 2

1 2
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r r

J a x x dx
a

a

a


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



 

 


    
          

     

  
     

   


  , (43) 

 

where 
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 

2
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1
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4 1

N
r

n

n

b


 

  
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  
 ,   

 
2

2

1

N
r

n

n

c


 
   

 
 , (44) 

 

and 1x x  . Note that for any real number  , excluding the values 1, 2, 3, ...     , the 

distributions of the bisection type x


 and x


 in Eq. (43) are defined as (Gel’fand and Shilov, 

1964) 

 

, 0

0 , 0

x x

x

x







 


 
 


          and         

0 , 0

, 0

x

x

x x







 


 




 . (45) 

 

The integral in Εq. (43) is evaluated using Fisher’s theorem for products of distributions of the 

bisection type (Fisher, 1971). More specifically, we employ the 

relation        
11

2sinx x x
 

 
 

       , where 1, 2, 3, ...      and  x  is the Dirac 

delta distribution, as well as the fundamental property of the Dirac delta distribution, i.e., 

   1x dx






 .  

A strictly analogous procedure is followed for the evaluation of the J-integral at the left 

crack-tip. In this case, we obtain the following result 

 

   
2

1 2
2

J a
a

   
      

   
 , (46) 
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where 

 

   
 

 
2

1

1

3 2
1

4 1

N
n

n

n

b


 

  
   

  
 ,      

   
2

2

1

1
N

n

n

n

c


 
   

 
 . (47) 

 

The corresponding values for the J-integral in classical elasticity may be obtained in 

closed form by utilizing a similar contour as the one used earlier and the elastic fields of the 

problem. Indeed, following the same procedure as described above, we obtain the following 

forms for the J-integral at the right and left crack-tips 

 

 

  

 

  

1 2
1 2

2 2 2

.

1 2
1 2

2 2 2

.

1

,
8 1

1

.
8 1

y

clas

r

y

clas

d a
b d a d a

d a
J

a d a

d a
b d a d a

d a
J

a d a



 



 

               
 

                
 

  (48) 

 

To the best of our knowledge, these expressions were not available in the literature and these are 

given here for the first time. 

Besides evaluating the energy release rate at the crack-tips, it is interesting to calculate 

the driving force exerted on the discrete climb dislocation due to its interaction with the finite-

length crack. The well-known Peach-Koehler force may be calculated based on its definition 

using the expression for the normal stress 
yy  (Εq. (51)), excluding the contribution of the 

discrete climb dislocation  yb

yy  (Dundurs and Markenscoff, 1989). Alternatively, considering a 

contour that surrounds both the crack and the discrete dislocation (Fig. 4) and using the 

connection between Peach-Koehler force and J-integral around a dislocation (Eshelby, 1951; Ni 

and Markenscoff, 2008), we may write the expression 

 

 sd

x rF J J    , (49) 
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where sd

xF  (or equivalently dJ ) is the Peach-Koehler force in the x -direction for the discrete 

climb dislocation (Fig. 4). In the next Section, the Peach-Koehler force will be calculated based 

on its definition and verified using Eq. (49). The latter expression is another way to assess the 

convergence of the numerical solution. The relevant value for the Peach-Koehler force in 

classical elasticity is given as (Zhang and Li, 1991) 

 

 

 
1 2

2 22

, .

2 22 1

ysd clas

x

d d ab
F

d a



 

 
 

 
 . (50) 

 

 

 

Fig. 4: Contour for the calculation of Peach-Koehler force  

around the discrete climb dislocation. 

 

 

8. Results and discussion 

 

In this Section, we present representative results with a view toward highlighting the deviations 

from the classical elasticity theory when couple-stresses are introduced. In Fig. 5a the 

dependence of the normal crack-face displacement (Εq. (24)) upon the ratio a  is displayed for 

a climb dislocation lying at a distance 2.5d a   for a couple-stress material with Poisson’s ratio 

0.3  . It is observed that as the crack length becomes comparable to the characteristic length 

, the material exhibits a more stiff behaviour, i.e. the crack-face displacements become smaller 

in magnitude compared to the respective ones in classical elasticity (rigidity effect). Further, it is 
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a b 

noted that the classical elasticity solution (dashed line) serves as an upper bound for couple-

stress elasticity. In Fig. 5b the influence of the dislocation distance to the crack-face 

displacement is examined. The material properties are 10a   and 0.3  . The resulting 

displacements vary significantly both in shape and magnitude. It is recalled that in the limit case 

1.0d a   (dislocated crack problem), the loading in the left hand side of Εq. (35) and (36) 

vanishes and the contribution of the dislocation is introduced through the complementary 

conditions (27). In that case, the crack remains open at one end. It is observed that the shape of 

the ‘dislocated crack’ differs significantly from the classical solution (Tada et al, 2000) when 

couple-stresses are considered.  

 

         

 

Fig. 5: a) Normalized upper-half crack face displacement profile for various ratios a  due to the 

interaction with a climb dislocation lying at 2.5d a  . b) Normalized upper-half crack face displacement 

profile for various dislocation positions in a material with 10a  . The Poisson’s ratio is 0.3   in all 

cases. 

 

Accordingly, using Eq. (25), we calculate the upper-half crack rotation for the same cases. In 

Fig. 6a the variation of the upper crack-face rotation for several values of the ratio a  is 

depicted. It is observed that the produced fields are bounded contrary to the prediction of 

classical elasticity where the rotation exhibits a square-root singularity at the crack-tips. Note 

that as 0 , the rotation becomes pointwise convergent to the respective unbounded rotation 

in classical elasticity, revealing, thus, a boundary layer effect in the solution of couple-stress 
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theory. In Fig. 6b the change in the rotation profile for different distances of the discrete 

dislocation is presented. It is noted that as the dislocation approaches the crack, the rotation of 

the right crack-tip increases significantly. In the special case 1d a   the rotation is positive 

throughout the crack length since the displacement field is increasing monotonically.  

Next, we examine the behavior or the normal stress 
yy  and couple-stress 

yzm  ahead of 

the crack-tip. Employing Eqs (22) and (23), we derive the expressions 

 

   
 

 

 
 

       
1 1

1 1

( )

1 2

3 2
, 0 ,0 ln

2 1

2

y

a a
b I

yy yy

aa

a a

I

a a

x tB t
x a x d dt W t dt

x t a

B t R x t dt W t R x t dt
a a

  
 

  

 

 



 


    

 

   

 



 
 
 

 , (51) 

 

   
 

 

       
1 1

1 1
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2 3
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, 0 ,0 ln

2

y

a a
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yz yz I
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a a

I

a a
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m x a m x d dt B t dt

a x t

B t R x t dt W t R x t dt
a

 

 

 

 



 


    



   

 



 
 
 

 . (52) 

 

The integrals in Εqs. (51) and (52) are not singular for x a  and are evaluated in closed form 

using Eqs (B3) and (B4) in Appendix B. Moreover, in view of Eqs (39) and (40), it is readily 

inferred that both the normal stress 
yy  and the couple-stress 

yzm  exhibit a square-root 

singularity ahead of the crack-tips ( x a ). This conclusion is in agreement with the 

asymptotic results of Sternberg and Muki (1967) and Huang et al. (1997). 
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Fig. 6: a) Normalized upper-half crack rotation profile for various ratios a  due to the interaction with a 

climb dislocation lying at 2.5d a  . b) Normalized upper-half crack rotation profile for various 

dislocation positions in a material with 10a  . The Poisson’s ratio is 0.3   in all cases. 

 

 

In Fig. 7a, the distribution of the normal stress 
yy (Eq. (51)) due to the interaction with a 

discrete climb dislocation lying at a distance 2.5d a   is given, in a medium with 10a   and 

Poisson’s ratio 0.3  . For convenience, a new variable x x a   is introduced that measures 

the distance ahead of the right crack-tip. We notice that the couple-stress effects are dominant 

within a zone of length 3  near the crack-tip and 5  around the dislocation core. Outside this 

zone the field gradually approaches the distribution given by classical elasticity. The solution 

depends upon the ratio a  and the Poisson’s ratio, as shown in Εq. (51). The Cauchy type 

singularity for the yy  stress induced by the dislocation is retained also in couple-stress theory. 

Qualitatively similar distributions for the stress field are observed for all distances of the discrete 

edge dislocation except for the special case 1d a  . As seen in Fig. 7a, the normal stress in this 

case is negative for all 0x   since the dislocation is now situated at the right crack-tip. The 

distribution of the couple-stress 
yzm  (52) is plotted in Fig. 7b. Again, the couple-stress effects are 

significant in a zone of length 3  ahead of the crack-tip and 10  around the dislocation core. At 

a b 
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the point of the dislocation tip  15x  , the couple-stress becomes logarithmically unbounded 

as is predicted by Eqs (19)-(21). 

 

 

       

 

Fig. 7: Variation of a) the normal stress yy  and b) the couple-stress yzm  ahead of the right crack-tip due 

to the interaction with a climb dislocation lying at 2.5d a   in a medium with 10a   and Poisson’s 

ratio 0.3  . 

 

 

Next, we examine the variation of the stress intensity factor (SIF) in both crack-tips in 

couple-stress theory. For the right crack-tip, the SIF is defined as 

   
1 2

lim 2 , 0I yy
x a

K x a x 


    , where the asymptotic behavior of the normal stress  , 0yy x  

is provided in Eq. (39)1. The SIF at the left crack-tip is determined in a similar manner. In Fig. 

8a, the variation of the ratio .clas

I IK K  on both crack-tips with respect to the ratio a  and the 

Poisson’s ratio   is depicted, for a climb dislocation lying at 2.5d a  . It is observed that the 

ratio of the SIFs depends significantly on the Poisson’s ratio and that there is a general increase 

when couple-stress effects are considered for any microstructural ratio a  (stress aggravation). 

The response is significantly different in the two crack-tips due to the asymmetric loading 

imposed. The right crack-tip curves (continuous lines) monotonically increase as the ratio a  

increases, while the left crack-tip response (dashed lines) shows an initial decreasing branch and 

a b 
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then increases as the couple-stress effects become more prominent. It should be noted that in the 

case 0a   (no couple-stress effects considered), the above ratio should evidently approach 

unity. On the contrary, the SIFs ratio exhibits a finite jump discontinuity at the limit 0a  . This 

behavior has been reported in the past in many crack problems in the framework of couple-stress 

theory. Sternberg and Muki (1967) attributed this behavior to the severe boundary layer effects 

arising in couple-stress elasticity in singular stress-concentration problems. It should be finally 

noted that as a  , the ratio .clas

I IK K  approaches asymptotically the value  3 2 . 

 

 

Table 1: Convergence of the SIFs ratio .

, ,

clas

I r I rK K  at the right crack-tip for increasing collocation points N . 

The climb dislocation lies at a distance 2.0d a   in a couple-stress material with Poisson’s ratio 0  . 

N  1.0a   0.8a   0.5a   0.2a   0.1a   0.05a   0.01a   0.005a   

10 2.61055 2.47282 2.11815 1.52564 1.35979 1.33328 1.88755 2.31070 

20 2.61055 2.47282 2.11816 1.52565 1.35930 1.31383 1.33701 1.51537 

30   2.11816 1.52565 1.35930 1.31382 1.30031 1.32368 

40      1.31382 1.29958 1.30113 

50       1.29945 1.29925 

60       1.29945 1.29924 

70        1.29924 

 

 

         

 

Fig. 8: a) Variation of the ratio of SIFs .clas

I IK K in couple-stress theory and in classical elasticity with 

a  for a climb dislocation lying at 2.5d a  . b) Variation of .clas

I IK K  in the right crack-tip with the 

dislocation distance d a  in a material with 10a  . 

 

a b 
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In Fig. 8b, the variation of the ratio .clas

I IK K  ahead of the right crack-tip is plotted for various 

values of the dislocation distance d a  and the Poisson’s ratio   in a medium with 10a  . 

The ratio diminishes monotonically as the dislocation is placed farther from the crack-tip and 

quickly reaches a constant value. This value coincides with the corresponding value of the ratio 

in the problem of a finite-length crack under constant remote loading (mode I), for the same ratio 

a . Indeed, Gourgiotis and Georgiadis (2008) reported a ratio of 1.28 for 0.1a   and 0   

while for 0.25   and 0.5   the values are 1.23 and 1.17, respectively. A similar response is 

observed at the left crack-tip.  

Based on the analysis presented in Section 6, the ERR (crack driving force) is evaluated 

next and its dependence upon the microstructural ratio a , the Poisson’s ratio  , and the 

distance of the dislocation from the crack-tip is investigated. In particular, in Fig. 9a the variation 

of the ratio 
.clasJ J  on both crack-tips with respect to a  and the Poisson’s ratio   is 

illustrated, for a climb dislocation lying at 2.5d a  . Contrary to the SIF behavior, we observe 

that as 0a   the J-integral in couple-stress theory tends to the corresponding result of 

classical elasticity. In particular, as 0a   the second term in the J-integral (38), regarding the 

couple-stress contribution, becomes vanishingly small. This can be easily checked by inspection 

of the asymptotic relations (40) and (42). On the other hand, regarding the first (standard) term in 

the J-integral (38), we remark that although the SIF increases as compared to its classical value 

(stress aggravation effect), the crack face displacement yu  decreases significantly (see Fig. 5) 

compensating for the increase in the SIF. Hence, the as 0a   this term converges to the 

classical elasticity result. This behavior of the J-integral has been reported also in other crack 

problems in couple-stress theory (see e.g. Atkinson and Leppington, 1977; Gourgiotis and 

Georgiadis, 2008; Gourgiotis et al., 2012). It should be noted that in all curves, as a  increases, 

an initial decreasing response of the ratio is observed  .clasJ J  until a minimum value is 

reached for 0.2 0.25a   (this range varies depending on the Poisson’s ratio and the 

dislocation distance d a ) and then the ratio increases monotonically  .clasJ J . Therefore, for 

small values of the ratio a  the ERR decreases as compared to the classical value showing a 
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strengthening effect when couple-stresses are taken into account (Gourgiotis and Georgiadis, 

2008; Gourgiotis and Piccolroaz, 2014). However, as a  increases further (the couple-stress 

effects become more pronounced) the ratio .clasJ J  increases above unity revealing, thus, an 

interesting weakening effect. The term weakening is justified from the fact that the crack driving 

force is increased as compared to the classical value when the couple-stress effects are dominant. 

In fact, assuming that cJ  is the experimentally observed (under specific environmental 

conditions) critical value of the ERR at which crack advancement occurs, it may happen that 

couple-stress elasticity predicts that cJ J , while 
.clas

cJ J . It is worth noting that a similar 

behavior was observed in the context of couple-stress elasticity in the cases of: (i) a crack loaded 

by concentrated shear force at the crack faces (Gourgiotis et al. 2012) and (ii) in a mode-III 

steady state propagating crack loaded by a distribution of antiplane shear tractions along the 

crack faces (Morini et al. 2014). Finally, it is remarked that as a   the ratio tends 

asymptotically to the value  3 2 . 

In Fig. 9b, the variation of the ratio .clasJ J  at the right crack-tip is presented with respect 

to the dislocation distance d a  and the Poisson’s ratio   for a couple-stress medium with 

10a  . The behavior is similar to the one exhibited by the SIFs ratio (Fig. 8b), monotonically 

decreasing until a constant value is reached. Again, this limiting value can be related to the 

corresponding value of the ratio 
.clasJ J  in the mode-I crack problem. In particular, as it was 

shown by Gourgiotis and Georgiadis (2008), the ratio reaches a value of 0.86 for a couple-stress 

material with 0.1a   and 0  , while for 0.25   and 0.5   the ratio becomes 0.88 and 

0.92, respectively. An analogous response is reported for the left crack-tip. 
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Fig. 9: a) Variation of the ratio of J-integrals ( .clasJ J ) in couple-stress theory and in classical elasticity 

a) with respect to a  for a climb dislocation lying at 2.5d a  . b) with respect to the dislocation 

distance d a  in a material with 10a  . 

 

 

             

 

Fig. 10: Level sets of the ratio .clasJ J  with respect to a  and d a  for Poisson’s ratios  

a) 0   and b) 0.5  . 

 

 

In order to further explore the phenomenon of decrease or increase of the ERR in couple-

stress theory as presented in Fig. 9a, we attempt a parametric analysis of the problem for various 

a b 

a b 
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values of the ratios a , d a , and Poisson’s ratio. In Fig. 10 the effect of a  and d a  upon the 

ratio .clasJ J  at the right crack-tip is depicted, for Poisson’s ratios 0   (Fig. 10a) and 0.5   

(Fig. 10b). The contour . 1clasJ J   sets the limit between increase and decrease of the ERR (or 

the crack driving force) in couple-stress elasticity as compared to the respective one in the 

classical theory. Therefore, there is a distinct region defined by the contour . 1clasJ J   as 

1d a  , where the energy release rate or the crack driving force increases in couple-stress 

theory. The area of this region diminishes as the Poisson’s ratio increases. 

In light of the previous results regarding the behavior of the J-integral, we anticipate also 

the Peach-Koehler force exerted on the dislocation to depend strongly upon the characteristic 

length , the distance d, and the Poisson’s ratio  . In Fig. 11, the dependence of the ratio 

, .sd sd clas

x xF F  on the ratios a  and d a  is presented in an isocontour plot for Poisson’s ratios 

0   (Fig. 11a) and 0.5   (Fig. 11b). In accordance to the results obtained for the J-integral, a 

region on the right of the contour , . 1sd sd clas

x xF F   is formed where the value of the Peach-

Koehler force is higher in couple-stress theory, predicting a weakening effect for the material 

under consideration. The area of this region is larger compared to the relevant region for the J-

integral (Fig. 10) and reduces as the Poisson’s ratio increases. 

 

        

 

Fig. 11: Variation of the ratio , .sd sd clas

x x
F F  with respect to a  and d a   

for Poisson’s ratios a) 0   and b) 0.5  . 

a b 
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9. Concluding remarks 

 

In the present study, the interaction of a discrete climb dislocation with a finite-length crack in 

the framework of couple-stress elasticity was investigated. The crack problem was solved using 

the distributed dislocation technique. In order to satisfy the boundary conditions that arise in 

couple-stress elasticity, both translational and rotational defects need to be distributed along the 

crack faces. The necessary rotational defect which was previously coined as ‘constrained’ wedge 

disclination in fact corresponds to crystal twinning. Following the standard distributed 

dislocation approach, the interaction problem was modeled by a system of coupled singular 

integral equations with Cauchy and logarithmic kernels which was accordingly solved 

numerically using an appropriate collocation technique. 

Several interesting and novel results were revealed comparing the present solution to the 

classical one. Looking at the kinematics, a rigidity effect was observed, i.e. the crack-face 

displacements become smaller in magnitude than their counterparts in classical elasticity when 

the crack length is comparable with the characteristic material length. Accordingly, the produced 

rotation field becomes bounded contrary to the prediction of classical elasticity. Regarding the 

stress and couple-stress fields, it was shown that the couple-stress effects are dominant within a 

small zone adjacent to the crack-tip and around the dislocation core. Both fields remain 

unbounded around the defects tips, while the stress level within a small zone adjacent to the tip is 

significantly higher than the classical one. The behavior of the driving (configurational) forces at 

the crack-tips and at the climb dislocation was thoroughly examined. It was shown that the ERR 

at the crack-tips and the Peach-Koehler force at the dislocation may either become lower than the 

ones predicted by the classical elasticity revealing, thus, a strengthening effect, or higher 

providing a weakening effect estimation. This alternating behavior depends upon the distance 

between the crack-tip and the dislocation core as well as the magnitude of the characteristic 

material length with respect to the length of the crack. 
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Appendix A 

 

The expressions for the displacement, stress, and couple-stress fields due to a single climb 

dislocation with Burgers vector  0, , 0ybb  and a constrained wedge disclination with Frank 

vector  0, 0, Ω  lying in an infinite couple-stress isotropic medium are derived here in 

closed form. The boundary value problems for the two defects, as described by Eqs. (16) and 

(17), are attacked employing a Fourier transform analysis. The direct Fourier transform and its 

inverse are defined as 

 

 
 

 1 2

1
, ,

2

ixf y f x y e dx
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
  ,  (A1) 

  

where  
1 2

1i   . Transforming the field Eqs. (11) and (12), we obtain a system of ordinary 

differential equations in terms of the transformed displacements  * *,x yu u  which has the 

following bounded solution as y    
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xu y A e A ye A e
     

      , (A2) 

     
 

     1 2 3

3 4
, sgn sgn

y
y

yu y i A i y A e i A e


 
     

 


 

     
 

,  (A3) 

 

where    
1 2

2 21      ,  sgn  denotes the signum function, and  qA   are unknown 

functions that will be determined through the enforcement of the boundary conditions of each 

problem. Applying the Fourier transform to the boundary conditions (16) and (17), we derive 

 

         
1 2* * *, 0 2 , , 0 0 , ,0 0y y yxu b         

    , (A4) 

         
1 2* * *, 0 0 , , 0 2 , ,0 0y yxu          

    , (A5) 
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where      2 2i          is the Heisenberg delta function (see e.g. Roos, 1969) and 

    is the Dirac delta distribution. It should be mentioned that the contribution of the Dirac 

delta distribution corresponds to a rigid body displacement in the dislocation problem and a rigid 

body rotation in the disclination problem.  

Further, combining equations (A2)-(A3). and using, accordingly, the inverse Fourier 

transform and results from the theory of distributions (Roos, 1969; Gourgiotis and Georgiadis, 

2008), the final expressions for the displacements assume the following form 

 

 
 

 

 
 

 2 2 2 2 2

22 2 2

2

0 112

1 2 2
, ln

4 1 8 1 2

,
2 4

y yy

x

y

b y x b y xb r
u x y r K

r r r

b r x y
K I

r



    

 

    
      

    

   
    

 

 , (A6) 

 
 

2
1

22 2 2

2

2 22

2
, tan

2 4 1

2

2 2 4

y y y

y

b b xy b xyy r
u x y K

x r r r

y r y r x
K K

r

   

 

     
       

    

      
       

    

,  (A7) 

 

and, accordingly, the rotation ω becomes 

 

 
2

2 0 102 2 2

2
,

4 4 2 4

y yb y b yr r
x y K K I

r


  

      
         

    
 , (A8) 

 

where    1

10 10
0

, sin
y

I I x y e x d


  
 





  , and  11 10yI I   . It should be noted that a rigid 

body displacement  4yb  and rotation  4  have been added in Eqs. (A7) and (A8), so that 

the normal displacement yu  and the rotation ω are null at the plane  0 , 0y x  . 
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The full field solution for the stresses and couple-stresses resulting from the superposition 

of the two defects is obtained then using Eqs. (A6)-(A8) and the constitutive equations (5), (6),  

in conjunction with Eqs. (7)-(10)
#
 

 

 

   

 

2 2 2 2 2

24 4 2

2 22 2

2 0 2 02 2 2 2

32 2

2 1

2

y y

xx

y

x y y xb x b x r
K

r r r

x yb xy r r r r
K K K K

r r r

 


  

 

  

    
     

   

            
             

          

 , (A9) 

 

 

   

 

2 2 2 2 2

24 4 2

2 22 2

2 0 2 02 2 2 2

3 32 2

2 1

2

y y

yy

y

y x y xb x b x r
K

r r r

x yb xy r r r r
K K K K

r r r

 


  

 

  

    
     

   

            
             

          

,  (A10) 

 

 

   2 2 2 2 2

24 4 2

2 2

2 0 22 2 2 2

32 2

2 1

2 2

y y

yx

y

y x y x yb b y r
K

r r r

b yx r r xy r
K K K

r r r

 


  

 

 

    
     

   

        
          

        

 , (A11) 

 

2 24xy yx       , (A12) 

 

2

2 2 02 2

2 2y

xz

b xy r r r
m K y K K

r r

 

 

         
            

       
 , (A13) 

 2 2 2

2 0 112 2

2 2y y

yz

x yb br r
m K K I

r r

  

  

      
       

    
 . (A14) 

 

                                                      
# Note that in Gourgiotis and Georgiadis (2008) the expressions for 

xx
  and 

yy
  (see Eqs. (A8) and (A9) in that 

paper) contained a misprint that does not, however, affect their final results in any way. 
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It is interesting to note that for 0y  , the integral 11I  is evaluated analytically as 

 

   
2

2,1

11 1,3 2

1

1 2, 1 2, 0

1
,0 sgn

4 4

x
I x x G



 
   

 
 , (A15) 

 

where  ,

,

a b

c dG  is the MeijerG function (see e.g. Erdélyi et al., 1953; Abramowitz and Stegun, 

1964). 

In view of the above, the influence functions of the problem are derived in closed form 

and provided in Eqs (19) and (20). Finally, it is remarked that once the dislocation density  IB t  

and the disclination density  W t  (Eqs. (24) and (25)) are evaluated, the stresses and couple-

stresses at any point of the cracked body can be obtained utilizing Eqs. (A9)-(A14).  

 

 

Appendix B 

 

In this Appendix, we provide the closed-form expressions for the singular (Cauchy) and weakly 

singular (logarithmic) integrals involving Chebyshev polynomials that were utilized in Section 5.  

For 1x  , these integrals are computed as (see e.g. Chrysakis and Tsamasphyros, 1992; 

Chan et al. 2003) 

 

  
 

1 21 2

11

1 0 , 0

, 1

n

n

T t t n
dt

U x nx t 





 
 

  





 , (B1) 

    
 

1

1

1
1 2

2

1

ln 2 , 0

1 ln
, 1

n

n

n

T t t x t dt
T x n

n








 


   
 






  , (B2) 

 

where  nT t  are the Chebyshev polynomials of the first kind. 

For 1x  , the above integrals are no longer singular and are evaluated according to the 

following expressions 
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  
 

  

 

1 2
1 2 21 2
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1

sgn 11
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1
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 ,    0n  ,  (B3) 
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