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a b s t r a c t 

This paper presents an enriched finite element model for three dimensional elastic wave 

problems, in the frequency domain, capable of containing many wavelengths per nodal 

spacing. This is achieved by applying the plane wave basis decomposition to the three- 

dimensional (3D) elastic wave equation and expressing the displacement field as a sum 

of both pressure (P) and shear (S) plane waves. The implementation of this model in 3D 

presents a number of issues in comparison to its 2D counterpart, especially regarding how 

S-waves are used in the basis at each node and how to choose the balance between P and 

S-waves in the approximation space. Various proposed techniques that could be used for 

the selection of wave directions in 3D are also summarised and used. The developed ele- 

ments allow us to relax the traditional requirement which consists to consider many nodal 

points per wavelength, used with low order polynomial based finite elements, and there- 

fore solve elastic wave problems without refining the mesh of the computational domain 

at each frequency. The effectiveness of the proposed technique is determined by compar- 

ing solutions for selected problems with available analytical models or to high resolution 

numerical results using conventional finite elements, by considering the effect of the mesh 

size and the number of enriching 3D plane waves. Both balanced and unbalanced choices 

of plane wave directions in space on structured mesh grids are investigated for assessing 

the accuracy and conditioning of this 3D PUFEM model for elastic waves. 

© 2017 Published by Elsevier Inc. 

 

 

 

 

 

 

1. Introduction 

Growing research activities have been taking place in various wave numerical modelling fields such as acoustics, surface

water waves, radar waves, seismology, geophysics and biomedical ultrasound. The related problems in the frequency domain

are modelled using mainly the Helmholtz equation [1–3] , Maxwell equation [4] and Navier equation [5–8] depending on the

wave propagation medium and the type of application. 

A number of different numerical methods have been used to solve such problems and the most commonly used is the

finite element method (FEM) due to its flexibility in handling complex geometries and its ability to model different types

of media. However, the use of low order polynomial based finite elements for solving wave problems requires fine mesh
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grids with many nodal points per wavelength. At medium and high frequencies, this leads to large memory requirements

and high CPU time. Moreover, because of the so-called pollution error, even finer mesh grids would be required to maintain

an acceptable accuracy. 

The last two decades saw the development of numerical techniques aiming at modelling wave problems with improved

accuracy and reduced computational cost, in comparison to the conventional FEM. These techniques involve the incorpora-

tion of a priori knowledge of the wave field in the numerical model. Indeed, the wave field is expanded into sets of ana-

lytical functions, for example, in the form of plane waves propagating in different directions. For the case of the Helmholtz

equation, various methods have been successful in efficiently solving wave problems with coarse mesh grids in both 2D

and 3D with reduced computational effort and better accuracy, in comparison to standard polynomial based FEM. Among

these methods are the least-squares method [9] , the partition of unity finite element method (PUFEM) [10–16] , the ultra

weak variational formulation (UWVF) [17,18] , Plane wave discontinuous Galerkin (PWDG) [19] , the generalized finite ele-

ment method [20] and the discontinuous enrichment method (DEM) [21] . In the case of the boundary element method, a

partition of unity boundary element method (PUBEM) has been developed for two and three dimensional Helmholtz prob-

lems [15,22] and an isogeometric wave-enriched method within the context of boundary elements (XIBEM) was presented

for two and three dimensional Helmholtz problems [23,24] . Other solutions were also considered such as the oscillated finite

element polynomials [25] and in a more recent work the stable discontinuous Galerkin method [ 26 ]. The variational theory

of complex rays (VTCR) [27] and the phase reduction finite element method (PR-FEM) [28] are other dedicated strategies for

solving short wave problems with coarse mesh grids. 

Some of these techniques have been extended to deal with Helmholtz problems in non-homogeneous media [1–3] and

flow acoustics [29] . They were also extended to deal with two-dimensional elastic wave problems, for example, PUBEM [30] ,

UWVF [31] , DEM [32] and PUFEM [5–7] . Other applications include fluid-solid interaction [33] , evanescent wave problems at

solid-fluid interface [34] , solid-solid interface [35] , acoustic fields in cavities with absorbing materials [36] and simulation of

Biot ′ s waves in poroelastic materials [37] . These techniques have recently been reviewed in [38] for the Helmholtz equation

and further references are indicated. 

In the current work, the PUFEM concept is extended to three-dimensional time-harmonic elastic wave problems. To the

authors’ knowledge, only the works [39,40] have dealt with three-dimensional plane wave enriched elements for elastic

wave problems within DEM and UWVF frameworks, respectively. In both DEM [39] and UWVF [40] the approximating plane

waves are defined at the element level and hence inter-element continuity must be enforced in the formulation. However,

in the presented PUFEM elastic model, the plane waves defined at the nodes of the elements are multiplied by the Lagrange

polynomial shape functions and hence continuity is automatically ensured. 

In this model, the components of the displacement field are first expressed as sums of both pressure (P) and shear (S)

wave contributions, like in the two-dimensional case [5] . The main difference with the three-dimensional case consists in

the direction of S-wave induced displacement, which is orthogonal to the direction of propagation. While in two dimensions

the orthogonal direction is well defined via a single vector, in three-dimensions the orthogonal direction is contained within

the orthogonal plane to the propagation direction and therefore two vectors are required for its resolution. Furthermore, in

two dimensions, the directions of the approximating plane waves are easily defined whether in a uniform or nonuniform

distribution. This is not the case in three dimensions where the distribution of plane waves in space, either uniform or

nonuniform, is not straightforward. 

Indeed, in the implementation of the three-dimensional version of PUFEM the uniform distribution of directions in space

is a challenging issue, unlike in the two-dimensional case. In fact, the uniform distribution of a set of points on a sphere has

attracted the attention of researchers from various fields including meteorology and quantum theory. In this paper, different

approaches for uniform distribution of directions in space are summarised and then some of them are used to obtain sets

of linearly independent directions. Moreover, to keep the conditioning within acceptable limits, unbalanced numbers of

directions for the pressure and shear waves are used. 

The outline of the paper is as follows. In Section 2 , the model problem and the used notations are presented. Section 3 is

dedicated to the variational formulation and Section 4 presents the PUFEM approximated solution. In Section 5 , various

approaches to uniformly distribute sets of plane waves in space are presented. The PUFEM discrete model is given in

Sections 6 and 7 presents a validation of the model against problems with analytical solutions such as progressive plane

waves in an elastic infinite medium and elastic wave scattering by a spherical rigid body. For the latter problem, a compari-

son between PUFEM and the commonly used low order FEM is also attempted. Finally some concluding remarks are drawn

in Section 6 . 

2. Problem statement 

Let � be the spatial domain in R 

3 occupied by an elastic medium. Let us denote by ( e 1 , e 2 , e 3 ) the cartesian vector

system, and x = x 1 e 1 + x 2 e 2 + x 3 e 3 a generic point in R 

3 . The propagation of elastic waves in a 3D homogeneous isotropic

medium is governed by the wave equation [41] 

ρ∂ tt U − ∇ · σ(U ) = ρF , (1)

where ρ is the density of the medium and F is a body force. The notation ∂ tt stands for the second partial derivative with

respect to the time variable t . The stress tensor σ , evaluated at a displacement U = U e + U e + U e , is given by the
1 1 2 2 3 3 
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classical Hooke’s law 

σ(U ) = λ∇ · U I + μ
[∇U + ( ∇U ) � 

]
, (2) 

where I is the identity matrix in R 

3 ×3 (3 × 3 matrix), λ and μ are the Lamé parameters of the elastic material, assumed

constant, and ∇U = ( ∇ U 1 , ∇ U 2 , ∇ U 3 ) 
� 

. We will denote here by ‘ � ’ the transpose of a given vector or tensor. The dot product

‘ ·’ of ∇ with a tensor field A = ( A 1 , A 2 , A 3 ) 
� in R 

3 ×3 is defined by 

∇ · A = 

( ∇ · A 1 

∇ · A 2 

∇ · A 3 

) 

. (3) 

However, for a vector field in R 

3 , ‘ · ’ is the usual dot product. 

The case of harmonic motion has practical interest. Suppose that F = exp ( i ωt) f , where ω is the circular frequency and

i = 

√ −1 is the imaginary unit number. If U = exp ( i ωt) u is a solution of (1) then the strong form of the problem in terms

of u can be rewritten as follows 

−ρω 

2 u − ∇ · σ(u ) = ρf , in �, (4) 

with the following boundary condition 

σ(u ) n = i ((λ + 2 μ) k P (u · n ) n + μk S (u · t ) t ) + g , on �, (5)

where n and t denote, respectively, the outward unit normal and tangent vectors to the boundary � ( � = ∂�) and g is the

source term. Details on how this boundary condition is deduced are given in reference [31] . Note that (5) is an absorbing

boundary condition of the first order for elastic wave equations when g = 0 on �. The aim of this work consists to validate

the presented numerical model and therefore the source term g is introduced analytically in expression (5) to enable the

solution of the problem. 

It is well known from the elastic wave theory [41] that a displacement field solution of (4) is a superposition of two types

of purely oscillatory waves: P-wave (primary, or compressional) and S-wave (secondary, or shear). This can be demonstrated

by writing 

∇ · σ(u ) = (λ + 2 μ) ∇(∇ · u ) − μ∇ ×∇ × u , (6)

The P and S waves travel with speeds 

c P = 

√ 

λ + 2 μ

ρ
and c S = 

√ 

μ

ρ
. (7) 

The corresponding compressional wave number k P and shear wave number k S are given by 

k P = 

ω 

c P 
and k S = 

ω 

c S 
. (8) 

These last two physical quantities are useful for the numerical modelling approach that we will discuss and investigate in

this paper. 

3. Variational formulation 

Since PUFEM is a finite element type method, we will need to establish a variational formulation for the time-harmonic

problem (4) and (5) . We first introduce the following Sobolev spaces 

V = { v ∈ H 

1 (�) 3 ; v = 0 on �} . (9) 

Unless otherwise specified, standard notations of Sobolev spaces are adopted. Then the weak variational formulation of

PUFEM can be described as: Find u ∈ V such that 

a (u , ̄v ) = b ( ̄v ) , ∀ ̄v ∈ V, (10) 

where v̄ is the complex conjugate of a test function v in V and a, b are bilinear and linear forms defined respectively as: 

a (u , ̄v ) = −ω 

2 ρ

∫ 
�

u · v̄ d� + 

∫ 
�

σ(u ) : ∇ ̄v d� −
∫ 
�
σ(u ) n · v̄ d�, 

b ( ̄v ) = ρ

∫ 
�

f · v̄ d�. (11) 

The product of two tensor fields A = (A 1 , A 2 , A 3 ) 
� and B = (B 1 , B 2 , B 3 ) 

� in R 

3 ×3 is given by 

A : B = A 1 · B 1 + A 2 · B 2 + A 3 · B 3 . (12)



M.S. Mahmood et al. / Applied Mathematical Modelling 49 (2017) 568–586 571 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curl operator ∇× is defined for a vector field v = (v 1 , v 2 , v 3 ) � by 

∇ × v = 

( 

∂ 2 v 3 − ∂ 3 v 2 
∂ 3 v 1 − ∂ 1 v 3 
∂ 1 v 2 − ∂ 2 v 1 

) 

. (13)

Under the previous notations and definitions, the tensor σ can be written as follows 

σ(u ) = λ∇ · u I + μ[ ∇ × u ] 
× + 2 μ∇u , (14)

where the matrix [ ∇ × u ] × is defined by 

[ ∇ × u ] 
× = 

( 

0 ∂ 1 u 2 − ∂ 2 u 1 ∂ 1 u 3 − ∂ 3 u 1 

∂ 2 u 1 − ∂ 1 u 2 0 ∂ 2 u 3 − ∂ 3 u 2 

∂ 3 u 1 − ∂ 1 u 3 ∂ 3 u 2 − ∂ 2 u 3 0 

) 

, (15)

with u = (u 1 , u 2 , u 3 ) 
� . Let us notice that the product σ(u ) : ∇ ̄v in (11) can be written, using (14) , under a form involving

the operators ∇ , ∇ · and ∇ × : 

σ(u ) : ∇ ̄v = λ(∇ · u )(∇ · v̄ ) + 2 μ∇u : ∇ ̄v − μ(∇ × u ) · (∇ × v̄ ) . (16)

Then thanks to the boundary condition (5) , we rewrite a and b of expression (11) in the following formulations: 

a (u , ̄v ) = −ω 

2 ρ

∫ 
�

u · v̄ d� + 2 μ

∫ 
�

∇u : ∇ ̄v d� − μ

∫ 
�
(∇ × u ) · (∇ × v̄ ) d�

−λ

∫ 
�
(∇ · u )(∇ · v̄ ) d� − i 

∫ 
�
((λ + 2 μ) k P (u · n )( ̄v · n ) + μk S (u · t )( ̄v · t )) d�, 

b ( ̄v ) = ρ

∫ 
�

f · v̄ d� + 

∫ 
�

g · v̄ d�. (17)

From the mathematical point of view, according to the boundary condition (5) on �, the problem in (10) and (17) is

well-posed and an existence and uniqueness result can be established by virtue of Fredholm’s alternative theorem and

continuation arguments [42,43] , under weak assumptions, i.e., let us consider that � is a bounded Lipshitz domain,

g ∈ H 

− 1 
2 (�) × H 

− 1 
2 (�) , and that f ∈ V 

∗, where V 

∗ denotes the topological dual space of V . 

4. PUFEM approximated solution 

We now need to approximate the problem stated in expression (10) by the PUFEM, based on plane wave basis and

polynomial shape functions. For this purpose, let us consider a finite element mesh containing n nodes, denoted z, z = 1 , n .

We denote by { N z } the partition of unity by polynomial finite element shape functions, and respectively by m P and m S the

numbers of approximating P and S plane waves. Following the two-dimensional PUFEM approximation [5] , the displacement

field u is approximated by superimposing pressure and shear displacements as follows 

u h = u 

P 
h + u 

S 
h . (18)

However, in three dimensions the shear wave induced displacement is resolved into two components as follows 

u 

S 
h = u 

S, 1 
h 

+ u 

S, 2 
h 

. (19)

Therefore, using the plane wave enrichment approach, the approximated displacement field u h is then expressed in the

following form 

u h = 

∑ 

z=1 ,n 

∑ 

l=1 ,m P 

N z A 

P 
z,l exp ( i k P x · d 

l 
P ) d 

l 
P + 

∑ 

z=1 ,n 

∑ 

l=1 ,m S 

N z A 

S, 1 
z,l 

exp ( i k S x · d 

l 
S ) d 

l, 1 
S, ⊥ 

+ 

∑ 

z=1 ,n 

∑ 

l=1 ,m S 

N z A 

S, 2 
z,l 

exp ( i k S x · d 

l 
S ) d 

l, 2 
S, ⊥ . (20)

The orthogonal unit S-vector d S , ⊥ , to the unit P-vector d , is resolved into two orthogonal vectors denoted by d 

l, 1 
S, ⊥ and d 

l, 2 
S, ⊥

and are defined by 

d 

l, 1 

S, ⊥ = d 

×
P and d 

l, 2 

S, ⊥ = d 

l, 1 

S, ⊥ × d 

×
P , (21)

such that 

‖ d 

l 
S ‖ 

2 
2 = ‖ d 

l, 1 

S, ⊥ ‖ 

2 
2 + ‖ d 

l, 2 

S, ⊥ ‖ 

2 
2 , (22)

and then 

d 

l, 1 
S, ⊥ = 

d 

×
P 

‖ d 

l ‖ 2 

and d 

l, 2 
S, ⊥ = 

d 

l, 1 

S, ⊥ × d 

×
P 

‖ d 

l ‖ 2 

, (23)

S S 
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Table 1 

Examples of sets of directions (points) relatively uniform (equally spaced) on unit sphere for different ap- 

proaches. 

Method Number of directions 

Regular icosahedron [47] 12 42 162 642 

Kurihara distribution [44] 6 18 38 66 102 

Cube boundary meshing [15] 8 26 58 98 154 

Corrected Beverly distribution [48] 6 12 22 34 46 58 84 106 128 156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with ‖·‖ 2 denoting the L 2 -norm. Note that, in 3D, there is an infinite number of vectors that are orthogonal to a given

vector. As a result, finding the perpendicular vector d 

×
P 

to d 

l 
P 

can be chosen in different ways, one of them being 

d 

×
P = 

( 

0 −1 1 

1 0 −1 

−1 1 0 

) 

d 

l 
P , (24) 

where d 

l 
P 

= ( sin θl cos φl , sin θl sin φl , cos θl ) , with θ l and φl being the two angles of the spherical coordinate system with 0

≤ θ l ≤ π and 0 ≤ φl ≤ 2 π . In the case of d 

l 
P 

with the same components such as d 

l 
P 

= (a, a, a ) then the perpendicular vector

is given by d 

×
P 

= (−a/ 2 , −a/ 2 , a ) . 

Notice that ∇ × u 

p 

h 
= 0 and ∇ · u 

S, 1 
h 

= ∇ · u 

S, 2 
h 

= 0 . In expression (20) , h describes the computational mesh size. For sim-

plicity of the notations, the dependency of the numerical solution u h on the numbers of approximating P and S plane waves,

m P and m S , is not indicated. 

The above approximation (20) can be derived from the Helmholtz decomposition theorem, as discussed in [30] . The

unknowns are no longer the nodal values of the displacement u h , but are now the amplitudes A 

P 
z,l 

, A 

S, 1 
z,l 

and A 

S, 2 
z,l 

attached to

a node z and corresponding to P and S plane waves travelling in the directions d 

l 
P 

and d 

l 
S 
, respectively. 

5. Choice of plane wave directions in space 

In two dimensions, the choice of the plane waves and their uniform spacing or clustering around directions of preference

is a trivial problem. The move to the three dimensional case presents however some difficulties. In fact, in three dimensions,

it is neither intuitive nor an easy task to define m uniform divisions of the 4 π solid angle, m being any integer number,

a part from a few known solutions. In previous work [15] , the authors used a uniform boundary meshing of a cube. A

reasonably well spaced set of points is defined by the vectors joining the centre of the cube to each node on the cube’s

boundary. However, this approach is also limited to a few special cases of m for which a boundary-meshed cube is available.

Specifically, the algorithm is limited to values of m = p 3 − (p − 2) 3 for all p > 1, thus giving m = 8, 26, 56, 98, ... etc. 

The uniform distribution of a set of points on a sphere attracted the attention of researchers from various fields. Early

work in meteorological modelling, for example by Kurihara [44] , resulted in algorithms that produce distributions based on

the mapping of a regular grid on an equilateral triangle to each octant of the sphere. However, this is limited to values

of m = 4 p 2 + 4 p − 2 , where p + 1 is the number of grid points from the north pole to the equator. The icosahedral grid

of Williamson [45] uses the vertices of the regular icosahedron with the possibility of subdividing each triangular face in

a similar manner to the Kurihara grid [46] or in a symmetrical manner such as performed in reference [47] . All these

possibilities produce distributions with limitations on the values of m . For example, in reference [47] , it is given as m =
10 p 2 + 2 where p = 2 q with q ≥ 0 being the number of equal intervals into which each side of the original icosahedral

triangles is divided. 

With the motivation to define sets of plane waves forming bases for the DEM, Grosu and Harari [48] corrected the

technique of Beverly [49] finding equally spaced points on latitudinal lines of a sphere which are themselves equally spaced

along the longitudinal lines. This technique provides sets of approximately uniform distributions of points on a sphere with

more possibilities, in comparison to the previously cited approaches (see Table 1 ). 

In the case of the UWVF [40] , a library was used in which the selection of m directions in space, with 4 ≤ m ≤ 130,

was based on minimising the distances between points on a surface of a sphere. The recursive zonal equal-area partition

proposed by Leopardi [50] offers the possibility to generate any number m of points on the sphere through the partitioning

into regions of equal area and small equivalent diameter. In this approach, it is required to find the colatitudes of polar caps

(zones between adjacent latitudinal lines), then determine the collar angle which provides the number of regions in each

collar. 

More recently, Peake et al. [51] presented a method of uniformly spacing a set of points on a sphere based on static

equilibrium of charged particles and hence named it the Coulomb force method. This work is motivated by the need to

use uniform wave directions in space within PUBEM. It is shown that the performance of the enriched elements, within

PUBEM, is not sensitive to small variations in the uniformity of the plane wave direction distribution. The interested readers

in methods dealing with uniform distribution of points on a sphere are referred to the references included in [51] . 

Using sets of plane waves in space with approximately uniform distributions is of great importance to the proposed

PUFEM model. To this end, two approaches for selecting plane waves in space are used in this work. The first approach
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Fig. 1. Distribution examples of 58 points on the surface of a sphere: Cube-boundary meshing (CM) [15] (left), Corrected Beverly (CB) [48] (middle) and 

Leopardi methods [50] (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consists to use the Cube-boundary Meshing (CM) which was previously used in PUFEM for 3D Helmholtz problems [15] .

This allows a number of directions m = p 3 − (p − 2) 3 for all integer p > 1, which gives m = 8, 26, 56, 98, ... etc. For even p

numbers, two further directions are added pointing to the north and south poles leading to m = 10, 26, 58, 98, ... etc. The

second approach is the Corrected Beverly (CB) method [48] which consists to find equally spaced points on latitudinal lines

of a sphere which themselves are equally spaced along the longitudinal lines. The approach sets the chord between two

adjacent points on the n th latitudinal line equal to the chord between the n th and (n + 1) th latitudinal lines. The number

N n of points at the n th latitudinal line is then given by 

N n = π/ sin 

−1 

(
sin (φ0 / 2) 

sin (nφ0 ) 

)
, (25)

where φ0 is a constant angle between two consecutive latitudinal lines. 

Fig. 1 shows distribution examples of 58 points obtained by the cube-boundary meshing (left), the corrected Beverly

method (middle) and the Leopardi method (right). It is obvious that the cube-boundary meshing distribution provides points

relatively more spaced around the equator in comparison to the regions around the south and north poles, while the two

other methods provide relatively uniform distributions. Moreover, the corrected Beverly method and the Leopardi method

lead to very similar distributions for m = 6 , 12, 22, 34 ... etc. If the south cap, or the north cap, of the Leopardi method is

rotated by a certain angle, both methods lead to the same distribution. 

6. PUFEM discretization 

In this work, the displacement field is approximated via propagating plane waves in space in which both balanced ( m P =
m S ) and unbalanced ( m P 
 = m S ) choices of plane waves are considered in expression (20) of the approximated displacement

field. Let us set 

p l := exp ( i k P x · d 

l 
P ) d 

l 
P s 1 l := exp ( i k S x · d 

l 
S ) d 

l, 1 
S, ⊥ , s 2 l := exp ( i k S x · d 

l 
S ) d 

l, 2 
S, ⊥ . (26)

A finite element approximation of the variational problem (17) is derived by using N z ̄p l , N z ̄s 
1 
l 

and N z ̄s 
2 
l 
: 

−ω 

2 ρ

∫ 
�

u h · (N z p l ) d� + λ

∫ 
�
(∇ · u h )(∇ · (N z p l )) d� + 2 μ

∫ 
�

∇ u h : ∇ (N z ̄p l ) d�

−μ

∫ 
�
(∇ × u h ) · (∇ × (N z p l )) d�

−i 

∫ 
�r 

((λ + 2 μ) k P (u h · n )(N z p l · n ) + μk S (u h · t )(N z p l · t )) d�

= ρ

∫ 
�

f · (N z p l ) d� + 

∫ 
�

g · (N z p l ) d�, l = 1 , m P , (27)

−ω 

2 ρ

∫ 
�

u h · (N z s 
1 
l ) d� + λ

∫ 
�
(∇ · u h )(∇ · (N z s 

1 
l )) d�

+ 2 μ

∫ 
�

∇ u h : ∇ (N z ̄s 
1 
l ) d� − μ

∫ 
�
(∇ × u h ) · (∇ × (N z s 

1 
l )) d�

− i 

∫ 
�r 

((λ + 2 μ) k P (u h · n )(N z s 
1 
l · n ) + μk S (u h · t )(N z s 

1 
l · t )) d�

= ρ

∫ 
f · (N z s 

1 
l ) d� + 

∫ 
g · (N z s 

1 
l ) d�, l = 1 , m S , (28)
� �
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−ω 

2 ρ

∫ 
�

u h · (N z s 
2 
l ) d� + λ

∫ 
�
(∇ · u h )(∇ · (N z s 

2 
l )) d� + 2 μ

∫ 
�

∇ u h : ∇ (N z ̄s 
2 
l ) d�

−μ

∫ 
�
(∇ × u h ) · (∇ × (N z s 

2 
l )) d�

− i 

∫ 
�r 

((λ + 2 μ) k P (u h · n )(N z s 
2 
l · n ) + μk S (u h · t )(N z s 

2 
l · t )) d�

= ρ

∫ 
�

f · (N z s 
2 
l ) d� + 

∫ 
�

g · (N z s 
2 
l ) d�, l = 1 , m S . (29) 

The main feature of the discrete scheme (27), (28) and (29) , thanks to the stress tensor form (14) and the numerical ap-

proximation of the displacement field (20) , is that the resulting matrices can be easily computed as in the case of the scalar

Helmholtz equation [12] , in terms of the oscillatory shape functions 

N 

P 
z,l := exp ( i k P x · d 

l 
P ) N z and N 

S 
z,l := exp ( i k S x · d 

l 
S ) N z . (30) 

Indeed, as N z p l = N 

P 
z,l 

d 

l 
P 
, N z s 

1 
l 

= N 

S 
z,l 

d 

l, 1 
S, ⊥ and N z s 

2 
l 

= N 

S 
z,l 

d 

l, 2 
S, ⊥ , the mass matrix coefficients are such that ∫ 

�
(N z p l ) · (N z p l ) d� = d 

l 
P 

· d 

l 
P 

∫ 
�

N 

P 
z , l N̄ 

P 
z,l d�, ∫ 

�
(N z s 

1 
l ) · (N z p l ) d� = d 

l , 1 
S, ⊥ · d 

l 
P 

∫ 
�

N 

S 
z , l N̄ 

P 
z,l d�, ∫ 

�
(N z s 

2 
l ) · (N z p l ) d� = d 

l , 2 
S, ⊥ · d 

l 
P 

∫ 
�

N 

S 
z , l N̄ 

P 
z,l d�, ∫ 

�
(N z s 

1 
l ) · (N z s 

1 
l ) d� = d 

l , 1 
S, ⊥ · d 

l, 1 
S, ⊥ 

∫ 
�

N 

S 
z , l N̄ 

S 
z,l d�, ∫ 

�
(N z s 

2 
l ) · (N z s 

2 
l ) d� = d 

l , 2 
S, ⊥ · d 

l, 2 
S, ⊥ 

∫ 
�

N 

S 
z , l N̄ 

S 
z,l d�, ∫ 

�
(N z s 

1 
l ) · (N z s 

2 
l ) d� = d 

l , 1 
S, ⊥ · d 

l, 2 
S, ⊥ 

∫ 
�

N 

S 
z , l N̄ 

S 
z,l d�, ∫ 

�
(N z s 

2 
l ) · (N z s 

1 
l ) d� = d 

l , 2 
S, ⊥ · d 

l, 1 
S, ⊥ 

∫ 
�

N 

S 
z , l N̄ 

S 
z,l d�. (31) 

The other matrices involved in (27), (28) and (29) can be written, in a similar way as for the mass matrix, in terms of the

product of the new oscillatory shape functions. The numerical evaluation of the above integrals is performed with high-order

Gauss–Legendre scheme. 

A nodal point z , with z = 1 , n, has m P + 2 m S degrees of freedom. So the total number of degrees of freedom is n (m P +
2 m S ) , and the unknown amplitudes A 

P 
z,l 

, A 

S, 1 
z,l 

and A 

S, 2 
z,l 

for z = 1 , n can be stored in n blocks of vectors in R 

m P +2 m S of the

form ( A 

P 
z 
� 
, A 

S 1 
z 

� 
, A 

S 2 
z 

� 
) � . The global unknown amplitude vector can be stored as follows 

A = ( A 

P 
1 

� 
, A 

S 1 
1 

� 
, A 

S 2 
1 

� 
, ..., A 

P 
n 

� 
, A 

S 1 
n 

� 
, A 

S 2 
n 

� 
) � , (32) 

and the global matrix resulting from (27), (28) and (29) has the following form 

W = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

W 

P , P 
1 , 1 

W 

P,S 1 
1 , 1 

W 

P,S 2 
1 , 1 

. . . W 

P,P 
1 ,n 

W 

P,S 1 
1 ,n 

W 

P,S 2 
1 ,n 

W 

S 1 ,P 
1 , 1 

W 

S 1 ,S 1 
1 , 1 

W 

S 1 ,S 2 
1 , 1 

. . . W 

S 1 ,P 
1 ,n 

W 

S 1 ,S 1 
1 ,n 

W 

S 1 ,S 2 
1 ,n 

W 

S 2 ,P 
1 , 1 

W 

S 2 ,S 1 
1 , 1 

W 

S 2 ,S 2 
1 , 1 

. . . W 

S 2 ,P 
1 ,n 

W 

S 2 ,S 1 
1 ,n 

W 

S 2 ,S 2 
1 ,n 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

W 

P,P 
n, 1 

W 

P,S 1 
n, 1 

W 

P,S 2 
n, 1 

. . . W 

P,P 
n,n W 

P,S 1 
n,n W 

P,S 2 
n,n 

W 

S 1 ,P 
n, 1 

W 

S 1 ,S 1 
n, 1 

W 

S 1 ,S 2 
n, 1 

. . . W 

S 1 ,P 
n,n W 

S 1 ,S 1 
n,n W 

S 1 ,S 2 
n,n 

W 

S 2 ,P 
n, 1 

W 

S 2 ,S 1 
n, 1 

W 

S 2 ,S 2 
n, 1 

. . . W 

S 2 ,P 
n,n W 

S 2 ,S 1 
n,n W 

S 2 ,S 2 
n,n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (33) 

where the blocks W 

P,P 
z, z , W 

S 1 ,S 1 
z, z , W 

S 2 ,S 2 
z, z are square matrices in R 

m P ×m P , R 

m S ×m S and R 

m S ×m S , respectively, with z, z = 1 , n . The

blocks W 

P,S 1 
z, z , W 

P,S 2 
z, z , W 

S 1 ,P 
z, z and W 

S 2 ,P 
z, z are eventually, if m P 
 = m S , rectangular matrices in R 

m P ×m S or R 

m S ×m P . Last, the blocks

W 

S 1 ,S 2 
z, z and W 

S 2 ,S 1 
z, z are square matrices in R 

m S ×m S . 
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Fig. 2. Considered mesh grids: (left) h 1 , (middle) h 1 
2 

and (right) h 1 
4 

. 

Table 2 

Values of h / λS for various mesh sizes 

and circular frequencies. 

ω 1 10 15 20 

h 1 0.32 3.18 4.77 6.37 

h 1 
2 

0.16 1.59 2.39 3.18 

h 1 
4 

0.08 0.79 1.19 1.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Galerkin weighting is used in this work and hence the global matrix of the resulting system is symmetric and block

banded. It is stored using a steering vector to locate the elements and the solution of the final system is obtained via

a direct solver [52] based on LDL T decomposition where L T is the transpose of the lower triangular matrix L and D is a

diagonal matrix. 

7. Numerical analysis 

In this section, the developed numerical model for selected elastic wave problems is investigated with respect to the

computational mesh size h and the plane wave enrichment, in terms of the numbers m P and m S of the approximating P and

S plane waves. In the convergence analysis considered below, special care is taken so that the incident wave direction d 

inc
P 

is not too close to the plane wave directions used in the approximating model. The computational domain is defined by 

� = { x = (x 1 , x 2 , x 3 ) ; 1 ≤ x 1 , x 2 , x 3 ≤ 3 } . (34)

All parameters a, λ, μ and ρ are taken equal to 1 with their respective corresponding units. The finite elements used here

are 8-node hexahedral elements, for which the geometry is interpolated via linear Lagrange polynomials. Three uniform

mesh grids are considered. They are denoted by h 1 , h 1 
2 

and h 1 
4 
, see Fig. 2 . The coarser mesh h 1 has 8 elements. It is

hierarchically refined to obtain h 1 
2 

and h 1 
4 

mesh grids with 64 and 512 elements, respectively. The Euclidean norm in R 

3

of the real part of the computed displacement field u h is denoted by | Re ( u h )| and the accuracy of the numerical solution is

measured by the following L 2 error 

ε 2 = 

|| u h − u || L 2 (�) 

|| u || L 2 (�) 

× 100% (35)

where u represents the analytical solution of the considered problem. 

To quantify the number of degrees of freedom (DOF) per P and S wavelengths, respectively, the parameters τ P and τ S

are introduced in the following forms [5] 

τP = 

π

k P 
( n m P ) 

1 / 3 and τS = 

π

k S 
( n m S ) 

1 / 3 
, (36)

where n , as mentioned before, is the number of nodal points in the mesh grid. 

Let us denote by α the average rate of convergence with respect to h such that the L 2 error ε 2 = O (h α) , where α is

to be evaluated numerically via α = ( log ε (1 / 4) 
2 

− log ε (1 / 2) 
2 

) / ( log h 1 / 4 − log h 1 / 2 ) , when considering mesh grids h 1/4 and h 1/2 ,

for example. Table 2 shows the number of shear wavelengths λS per element size h of the considered mesh grids ( Fig. 2 ),

for circular frequencies ω = 1, 10, 15 and 20. The comparison of the mesh size with the shear wavelength reveals that for

low circular frequency ω, each finite element contains a fraction of λS whereas at higher ω, each finite element becomes

multi-wavelength sized. For example, for the mesh grid h 1 
2 
, h = 0 . 16 λS at ω = 1 . However, at ω = 20 , h = 3 . 18 λS . This latest

remark will have a direct consequence on the number n gauss of integration points required for the numerical evaluation of

the element matrices. Therefore, this number is adjusted in the three spatial directions, within each element, by adopting
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Table 3 

Progressive plane wave problem: L 2 error in % for ω = 10 . 

( m p , m s ) (10,10) (26,26) (58,58) (98,98) 

h 1 83.6 14.4 0.964 0.0377 

h 1 
2 

3.93 0.50 0.0032 0.0019 

h 1 
4 

0.237 0.0123 0.0 0 0 02 0.0 0 0 02 

α 4.2 5.1 7.8 5.4 

Table 4 

Progressive plane wave problem: L 2 error in % for ω = 15 . 

( m p , m s ) (10,10) (26,26) (58,58) (98,98) 

h 1 109.4 105.5 2.31 0.213 

h 1 
2 

44.4 1.13 0.097 0.019 

h 1 
4 

1.59 0.205 0.0 0 066 0.0 0 017 

α 3.1 4.5 5.9 5.1 

Table 5 

Progressive plane wave problem: L 2 error in % for ω = 20 . 

( m p , m s ) (10,10) (26,26) (58,58) (98,98) 

h 1 113.6 103.4 76.3 40.2 

h 1 
2 

102.5 26.5 0.973 0.310 

h 1 
4 

3.91 0.711 0.0076 0.0 0 089 

α 2.4 3.6 6.7 7.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the empirical expression giving n gauss = 10 × � h/λS � + 2 , to ensure enough integration points are used. It is possible to de-

velop semi-analytical integration schemes such as done in [6,53] to avoid the burden of the high order scheme, but this is

not the objective of the current work. All computations are carried out in Fortran with double-precision complex numbers

on Workstation Intel Core i7 3.5 GHz with 32 GB RAM. 

7.1. Progressive plane wave test problem 

Let us first consider a simple mathematical model consisting of a progressive plane wave in a three dimensional infinite

elastic medium. This problem has an analytical solution and the expression of the displacement field is given by 

u = exp ( i k P x · d 

inc 
P ) d 

inc 
P + exp ( i k S x · d S ) d 

1 
S, ⊥ + exp ( i k S x · d S ) d 

2 
S, ⊥ , (37) 

where d 

inc 
P 

is chosen such that 

(d 

inc ) � = ( sin β1 cos β2 , sin β1 sin β2 cos β1 ) , β1 = 33 . 33 

o , β2 = 333 . 33 

o , (38) 

and the two components d 

1 
S, ⊥ and d 

2 
S, ⊥ of vector d S orthogonal to the direction d 

inc 
P 

are given by 

d 

1 
S, ⊥ = (d 

inc 
P ) × and d 

2 
S, ⊥ = d 

1 
S, ⊥ × d 

inc 
P , (39) 

where (d 

inc 
P 

) × is defined in expression (24) . 

The source term g of expression (5) is calculated from the traction σ( u ) n on �, evaluated with the analytical solution u

given in expression (37) . Note that this is only possible when exact boundary conditions are prescribed on �. 

Tables 3–5 show the L 2 error in % as well as the average rate of convergence α for the three considered mesh grids

h 1 , h 1 
2 

and h 1 
4 

when the numbers ( m P , m S ) of the approximating plane waves are increased for the values of the circular

frequency ω= 10, 15 and 30, respectively. Note that none of the sets of approximating plane waves contains the considered

direction of the imposed progressive plane wave of expression (38) . 

From the numerical results it is obvious that h -refinement improves the accuracy of the scheme for all cases of frequen-

cies and plane wave enrichments. Increasing the numbers of approximating plane waves, for a fixed h , does also improve

the accuracy of the plane wave enrichment model. In fact, this is expected as both the mesh refinement and the increase in

the number of approximating plane waves lead to higher numbers τ P and τ S of DOF per P and S wavelengths, respectively.

Nevertheless, two remarks are worth mentioning. The first one concerns the cases of coarse mesh grids, in comparison to

the wavelength, with low numbers of approximating plane waves. In such cases, the L 2 error is high and the reason lies

in the fact that the discretization level represented by the numbers of DOF per P- and S-wavelength, τ P and τ S , is very

low. For example, for the mesh grid h 1 
2 

at ω = 15 , the L 2 error is very high, ε 2 = 44 . 4% , for (m P , m S ) = (10 , 10) for which

(τP , τS ) = (3 . 1 , 1 . 8) . For a higher enrichment, (m P , m S ) = (26 , 26) the L 2 error is a lot lower in comparison to the previous

case, ε = 1 . 13% , due to the increase of the discretization level to (τ , τ ) = (4 . 3 , 2 . 5) . When the latter is further increased
2 P S 
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to (τP , τS ) = (5 . 6 , 3 . 2) , for (m P , m S ) = (58 , 58) , the L 2 error is even lower, ε 2 = 0 . 097% , and then for (m P , m S ) = (98 , 98) the

L 2 error reduces to ε 2 = 0 . 019% . 

The second remark is related to the average rate of convergence α. From the three Tables 2 –5 , for fixed numbers ( m P ,

m S ) of approximating plane waves, the results show an exponential decrease of the L 2 error with respect to h -refinement. In

general, the average rate α increases with the increase of the numbers of approximating plane waves, such as shown for the

case of ω = 20 . However, continuing to increase the number of approximating plane waves, for a fixed circular frequency,

does not necessarily lead to an increase in the rate of convergence. This is the case for ( m P , m S ) = (98, 98), at ω = 10 and 15

where the rate has decreased from 7.8 to 5.4 and from 5.9 to 5.1, respectively. This is most likely due to the ill conditioning

issue, which is an inherent feature of the plane wave basis finite element approaches. This aspect is investigated in the next

test example dealing with elastic wave scattering by a rigid sphere. 

7.2. Wave scattering test problem 

The problem of harmonic waves scattered by a spherical rigid body contained in a three dimensional homogenous and

isotropic infinite elastic space is considered. An upward P-wave with amplitude �0 , for which the the potential is given

by 

� = �0 exp (−i k P x 3 ) exp ( i ωt) , (40)

where �0 = 

i 
k p 

, impinges on a spherical body of radius a . The incident displacement field is obtained from 

u 

in = ∇�. (41)

The total displacement field u is a superposition of the incident u 

in and scattered u 

sc fields, u = u 

in + u 

sc . In fact, a P-wave

impinging on a rigid body would lead to both scattered P and S waves, in an infinite elastic medium. The total displacement

can be written in terms of its components 

u = u r e r + u θ e θ + u φe φ, (42)

with respect to the spherical unit vectors e r , e θ and e φ with 

u r = 

1 

r 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
1 

(ν, r) + A νε 
p(1) 
1 

(ν, r) + B νε 
s (1) 
1 

(ν, r) 
)
P ν ( cos θ ) , (43)

u θ = 

1 

r 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
2 

(ν, r) + A νε 
p(1) 
2 

(ν, r) + B νε 
s (1) 
2 

(ν, r) 
)dP ν ( cos θ ) 

dθ
, (44)

u φ = 0 , (45)

where P ν are Legendre polynomials for ν = 0 , ∞ . The constants A ν and B ν are chosen such that u | r= a = 0 representing the

total reflection condition on the boundary � of the spherical rigid body. This is obtained via 

�0 ε 
p(0) 
1 

(ν, a ) + A νε 
p(1) 
1 

(ν, a ) + B νε 
s (1) 
1 

(ν, a ) = 0 , 

�0 ε 
p(0) 
2 

(ν, a ) + A νε 
p(1) 
2 

(ν, a ) + B νε 
s (1) 
2 

(ν, a ) = 0 , (46)

for all ν in N . The associated stress field σ( u ) is then obtained from the displacement field (42) in terms of its spherical

components 

σrr = 

2 μ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
3 

(ν, r) + A νε 
p(1) 
3 

(ν, r) + B νε 
s (1) 
3 

(ν, r) 
)
P ν ( cos θ ) , (47)

σrθ = 

2 μ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
4 

(ν, r) + A νε 
p(1) 
4 

(ν, r) + B νε 
s (1) 
4 

(ν, r) 
)dP ν ( cos θ ) 

dθ
, (48)

σθθ = 

λ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
5 

(ν, r) + A νε 
p(1) 
51 

(ν, r) 
)
P ν ( cos θ ) 

+ 

2 μ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
6 

(ν, r) + A νε 
p(1) 
6 

(ν, r) + B νε 
s (1) 
6 

(ν, r) 
)
P ν ( cos θ ) 

+ 

2 μ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
7 

(ν, r) + A νε 
p(1) 
7 

(ν, r) + B νε 
s (1) 
7 

(ν, r) 
)dP ν ( cos θ ) 

dθ
(49)



578 M.S. Mahmood et al. / Applied Mathematical Modelling 49 (2017) 568–586 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 

σφφ = 

λ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
5 

(ν, r) + A νε 
p(1) 
5 

(ν, r) 
)
P ν ( cos θ ) 

+ 

2 μ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
8 

(ν, r) + A νε 
p(1) 
8 

(ν, r) + B νε 
s (1) 
8 

(ν, r) 
)
P ν ( cos θ ) 

+ 

2 μ

r 2 

∑ 

ν=0 , ∞ 

(
�0 ε 

p(0) 
9 

(ν, r) + A νε 
p(1) 
9 

(ν, r) + B νε 
s (1) 
9 

(ν, r) 
)dP ν ( cos θ ) 

dθ
. (50) 

The symbols ε p(0) 
i 

, ε p(1) 
i 

and ε s (1) 
i 

, for i = 1 , 9 , are coefficients obtained form the various derivatives. The radial spherical

functions are defined as, see [54] : 

ε p(i ) 
1 

(ν, r) = A { nξ p(i ) 
ν (k P r) − k P r ξ

p(i ) 
ν (k P r ) } , 

ε p(i ) 
2 

(ν, r) = A { ξ p(i ) 
ν (k P r) } , 

ε p(i ) 
3 

(ν, r) = A 

{ (
n 

2 − n − 1 

2 

(k S r) 
2 
)
ξ p(i ) 
ν (k P r) + 2 k P r ξ

p(i ) 
ν+1 

(k P r ) 
} 

, 

ε p(i ) 
4 

(ν, r) = A { (n − 1) 2 ξ p(i ) 
ν (k P r) − k P r ξ

p(i ) 
ν+1 

(k P r ) } , 
ε p(i ) 

5 
(ν, r) = A {−k 2 P ξ

p(i ) 
ν (k P r) } , 

ε p(i ) 
6 

(ν, r) = A {−n 

2 ξ p(i ) 
ν (k P r) − k P r ξ

p(i ) 
ν+1 

(k P r ) } , 
ε p(i ) 

7 
(ν, r) = A {− cot (θ ) ξ p(i ) 

ν (k P r) } , 
ε p(i ) 

8 
(ν, r) = A { n 

2 ξ p(i ) 
ν (k P r) − k P r ξ

p(i ) 
ν+1 

(k P r ) } , 
ε p(i ) 

9 
(ν, r) = A { cot (θ ) ξ p(i ) 

ν (k P r) } , (51) 

where i = 0 or i = 1 such that ξ p(0) 
ν (k P r) = J ν (k P r) is the spherical Bessel function of first kind and order n and P 0 n ( cos θ ) is

Legendre’s polynomial of order n and degree m = 0 . A = (−i ) ν (2 n + 1) and ξ p(1) 
ν (k P r) = H ν (k P r) , A = 1 

ε s (1) 
1 

(ν, r) = −n (n + 1) H ν (k S r) , 

ε s (1) 
2 

(ν, r) = −n (n + 1) H ν (k S r) + k S r H ν+1 (k S r ) , 

ε s (1) 
3 

(ν, r) = −n (n + 1) { (n − 1) H ν (k S r) − k S r H ν+1 (k S r ) } , 
ε s (1) 

4 
(ν, r) = −

(
n 

2 − n − 1 

2 

(k S r) 
2 
)

H ν (k S r) − k P rH ν+1 (k S r) , 

ε s (1) 
5 

(ν, r) = −n (n + 1) H ν (k S r) , 

ε s (1) 
6 

(ν, r) = −n (n + 1) { (n + 1) H ν (k S r) − k S r H ν+1 (k S r ) } , 
ε s (1) 

7 
(ν, r) = − cot (θ ) { (n + 1) H ν (k S r) − k S r H ν+1 (k S r ) } , 

ε s (1) 
8 

(ν, r) = −n (n + 1) H ν (k S r) , 

ε s (1) 
9 

(ν, r) = cot (θ ) { (n + 1) H ν (k S r) − k S r H ν+1 (k S r ) } . (52) 

The stress field is then used in the evaluation of the source term g of expression (5) to be used in the boundary condition

of the elastic wave scattering problem. The series used in expressions (43) and (44) are truncated when a sufficient number

N t of terms is included. This number is taken such that N t ≥ k S R where R is the radius of the most distant point of the

considered computational domain [55] . For illustration purpose, Fig. 3 shows contour plots of the components of | Re ( u h )|

in the computational domain for the case of ω = 40 when a P-wave travelling upward along the x 3 -axis impinges on a

spherical rigid object of unit radius. The centre of the rigid scatterer coincides with the centre of the Cartesian system and

hence the considered computational domain is in the vicinity of the scattering object. The scattered field contains both body

waves, P and S, which interfere around the hard scatterer. The first and second components are opposite each other and the

third component has higher values due to the incident wave propagating along x 3 -axis. To obtain the contour plots of Fig. 3 ,

the computed nodal values from the problem solution are used in conjunction with the model of expression (20) . 

The same numerical analysis is followed for this elastic wave scattering problem considering the same parameters already

used for the case of the progressive plane wave test problem but with more options regarding the used sets of approximat-

ing plane waves. Indeed, in this case, plane wave distributions obtained form the Cube-boundary Meshing (CM) and the

Corrected Beverly (CB) method are used. The two approaches, CM and CB, offer more flexibility in the choice of uniformly

distributed plane waves in space and even when they allow the same number of plane waves the CM and CB distributions

are different. Tables 6 –8 summarise the error analysis results for the mesh grids h 1 , h 1 and h 1 when the numbers of the

2 4 
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Fig. 3. Elastic wave scattering by a rigid sphere, contour plots (a), (b) and (c) of first, second and third components of Re ( u h ) respectively, ω = 40 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximating plane waves are increased, for ω = 10 , 15 and 20, respectively. They also give the average rate of convergence

computed numerically from the obtained L 2 errors. 

From Tables 6 –8 , it can be seen that, in general, the obtained results lead to similar conclusions already drawn from the

case of the progressive plane wave test problem. Basically, the L 2 error improves as the numbers ( m P , m S ) of the approx-

imating P and S plane waves increase for all cases of mesh grids and frequencies presented here. However, we notice in

certain cases after reaching a low L 2 error a further increase in the number of enriching plane waves does not necessarily

improve the accuracy such as reflected in the case of h 1 
4 

and ω = 10 when increasing ( m P , m S ) form (58, 58) to (106, 106).

In all these cases, the L 2 error remained unchanged at ε 2 = 0 . 0 0 0 02% . For frequencies ω = 15 and ω = 20 , this is again seen

for the mesh grid h 1 
4 

when ( m P , m S ) increased from (98, 98) to (106, 106) and for both enrichments the L 2 error stagnated

at ε 2 = 0 . 0 0 0 04% and 0.0 0 0 06%, respectively. Moreover, in the case of frequency ω = 20 and the mesh grids h 1 and h 1 
2 
, for

high numbers of enriching plane waves the quality of the results deteriorates instead of improving, or at least stagnating.

This is seen when ( m P , m S ) increased from (98, 98) to (106, 106), for which the L 2 error increased from 4.00% to 7.19% in

the case of mesh grid h 1 and increased slightly from 0.0022% to 0.0024% for the mesh grid h 1 
2 

. This is known to be caused

by the ill conditioning aspect, which is investigated here. 

The results overall also confirm the exponential convergence with respect to h -refinement. It is noticed that the average

rate of convergence increases with the increase of the numbers of approximating plane waves up to a certain level but

continuing to increase ( m P , m S ), for a fixed circular frequency, does not necessarily lead to an increase of the rate of conver-

gence. In fact, it could even decrease such as for the cases of ( m , m ) > (58, 58), for ω = 10 , in which α decreased from
P S 
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Table 6 

Elastic wave scattering problem: L 2 error in % for ω = 10 . 

( m p , m s ) h 1 h 1 
2 

h 1 
4 

α

(6,6) CB 32.5 16.2 1.42 2.3 

(10,10) CM 13.0 1.43 0.162 3.2 

(12,12) CB 14.2 1.97 0.0917 3.6 

(22,22) CB 7.25 0.311 0.0095 4.8 

(26,26) CM 2.01 0.092 0.0033 4.6 

(34,34) CB 0.831 0.0219 0.0 0 046 5.4 

(46,46) CB 0.347 0.0057 0.0 0 0 06 6.2 

(58,58) CM 0.119 0.0011 0.0 0 0 02 5.8 

(58,58) CB 0.107 0.0013 0.0 0 0 02 6.1 

(84,84) CB 0.0133 0.0 0 0 09 0.0 0 0 02 4.7 

(98,98) CM 0.0047 0.0 0 0 03 0.0 0 0 02 4.0 

(106,106) CB 0.0026 0.0 0 0 02 0.0 0 0 02 3.5 

Table 7 

Elastic wave scattering problem: L 2 error in % for ω = 

15 . 

( m p , m s ) h 1 h 1 
2 

h 1 
4 

α

(6,6) CB 32.9 28.9 6.46 1.2 

(10,10) CM 22.6 5.73 0.519 2.7 

(12,12) CB 21.1 14.0 0.376 2.9 

(22,22) CB 23.0 3.71 0.112 3.8 

(26,26) CM 19.5 0.850 0.0326 4.3 

(34,34) CB 16.4 0.35 0.0079 5.5 

(46,46) CB 9.50 0.121 0.0015 6.3 

(58,58) CM 2.06 0.0251 0.0 0 025 6.5 

(58,58) CB 3.30 0.0468 0.0 0 032 6.7 

(84,84) CB 0.45 0.0046 0.0 0 0 07 6.3 

(98,98) CM 0.189 0.00139 0.0 0 0 04 6.0 

(106,106) CB 0.232 0.00124 0.0 0 0 04 6.3 

Table 8 

Elastic wave scattering problem: L 2 error in % for ω = 

20 . 

( m p , m s ) h 1 h 1 
2 

h 1 
4 

α

(6,6) CB 32.7 28.9 16.3 0.5 

(10,10) CM 27.4 17.6 1.56 2.1 

(12,12) CB 24.0 23.1 1.00 2.3 

(22,22) CB 25.6 19.6 0.502 2.9 

(26,26) CM 22.5 4.03 0.137 3.7 

(34,34) CB 23.8 1.72 0.0567 4.5 

(46,46) CB 21.2 0.949 0.0116 5.5 

(58,58) CM 13.1 0.218 0.0025 6.2 

(58,58) CB 19.2 0.419 0.0038 6.2 

(84,84) CB 12.5 0.0046 0.0 0 027 7.75 

(98,98) CM 4.00 0.0022 0.0 0 0 06 8.1 

(106,106) CB 7.19 0.0024 0.0 0 0 06 8.4 

 

 

 

 

 

 

 

 

 

 

 

6.1 to 4.7, 4.0 and 3.5. It can also be seen that the L 2 error stagnated at the value of 0.0 0 0 06% for the mesh size h 1 
4 

. As will

be shown next, this is obviously due to the ill conditioning of the plane wave enrichment model which is known to occur

for relatively small size elements, in comparison to the wavelength, with high numbers of approximating plane waves. 

The behaviour of the condition number denoted κ = ‖ W ‖‖ W 

−1 ‖ , with respect to the 1-norm, is numerically investigated

for the considered circular frequencies ω = 10, 15 and 20, mesh grids h 1 , h 1 
2 

and h 1 
4 
, and various plane wave enrichments.

The package MF71 of the Harwell Subroutine Library [56] , which provides an estimate of the 1-norm for sparse or not

explicitly available matrices, is used with our LDL T linear solver to evaluate the condition number. Fig. 4 clearly shows that,

for fixed circular frequency ω and plane wave enrichment m = m P = m S , the conditioning deteriorates with h -refinement. In

general, log κ increases linearly with m as shown for the mesh grids h 1 and h 1 
2 

but when the condition number is relatively

high, which is the case of mesh grid h 1 
4 
, the machine precision does not allow the computation of the true condition number

anymore ( Fig. 4 ). However, it is obvious that it decreases with the increase if the circular frequency for which the elements

are relatively of large size in comparisons to the wavelengths. For example for the mesh grid h 1 , κ ≈ 10 22 for ω = 10 , while

4 
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Fig. 5. Irregular mesh grid h 1/2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it is about 10 18 and 10 16 for ω= 15 and 20, respectively. This shows that the proposed numerical model is more suitable for

the high frequency range where coarse mesh grids, in comparison to the wavelength, are used with relatively high numbers

of approximating plane waves. For such cases, it is obvious from the results of Fig. 4 that the condition number remains

within acceptable limits. 

7.3. PUFEM with unbalanced choices of plane waves on irregular mesh grid 

So far, only balanced choices of plane wave sets were used i.e. m P = m S . Moreover, the mesh grids h 1 , h 1 
2 

and h 1 
4 

are

structured meshes in which all elements are of the same shape and size, within the same mesh grid. Next, the behaviour

of the proposed plane wave enrichment for 3D elastic wave scattering is investigated when the numbers of approximating

plane waves m P and m S are unbalanced i.e. m P 
 = m S . The equivalent of mesh grid h 1 
2 

of Fig. 2 has been generated by random

perturbation of its nodal points to obtain the mesh grid of Fig. 5 . 

Previous work [6] has shown that a careful choice of the numbers of approximating P and S plane waves may improve

the accuracy of the PUFEM and its conditioning. This is due to the fact that k S is always greater than k P and hence the

multi-wavelength mesh size h contains more S wavelengths than P wavelengths. Therefore, it makes sense to choose more

S plane waves than P plane waves in the approximating sets, m P < m S . It was suggested to choose m S / m P of the same order

of k S / k P [6] . See also references [31] and [57] . 

In this case, the scattering problem with ω = 20 is solved with various combinations of m P and m S plane waves. The

considered sets m P for the approximating P plane waves are m P = 128 , 102, 84, 66, 58, 46, 34, 22 and 12. For each of the

values of m S = 128 , 102, 84 and 66, selected numbers of m P are chosen such that m P ≤ m S . For example, for m S = 128 all

values m P = 128 , 102, 84, 66, 58, 46, 34, 22 and 12 are considered. While for m S = 66 , only values of m P = 66 , 58, 46, 34,

22 and 12 are considered. 

The results of Fig. 6 show the behaviour of the L 2 error and the condition number for various combinations of m P and

m S plane waves, with the total number of approximating plane waves being m P + 2 m S . It is obvious again, as previously

mentioned, that increasing the number of approximating plane waves in general improves the quality of the results but

leads to an increase of the condition number. Moreover, it is also revealed that balanced choices of P and S plane waves do

not lead to the best quality of results. This is clearly shown by the cases of m S = 102 and 128. For the first case, m S = 102 ,

the lowest L 2 error is provided for the total number of plane waves equal to 288 leading to m P = 84 . For the second case,

m S = 128 , the lowest L 2 error is obtained for m P + 2 m S = 322 giving m P = 66 . In both cases, m S / m P > 1 and more precisely

m S /m P = 1 . 21 and 1.93, respectively. It is worth noting that the suggestion to choose m S / m P of the order of k S / k P ≈ 1.73

was drawn from past work for indication [6] . But given that the element sizes are not constant throughout the mesh grid

it is anticipated to see variations in the values of the ratio m S / m P . As for conditioning, it was expected to increase with the

increase of the total number of approximating plane waves, as the mesh size and the frequency are both fixed. 
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Fig. 6. L 2 -error and condition number versus the total number of plane waves for the scattering problem using an irregular mesh grid, ω = 20 . 

 

 

 

 

7.4. FEM and PUFEM solutions for elastic short wave scattering problems 

The plane wave basis finite element model presented in this work is compared to polynomial based finite elements for

the solution of the scattering problem dealt with above for the range of frequencies ω = 1, 5, 10 and 15. This is achieved

by comparing the accuracy of the results based on the L 2 error, the total number of degrees of freedom (totdof) required in

the solution as well as the total number of storage locations (totsys) of the final system matrix to be solved. The resolution
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Table 9 

Elastic wave scattering problem: comparison between PUFEM and FEM, tri-linear and tri- 

quadratic. 

PUFEM 

ω m Mesh totdof totsys τ S ε2 [%] CPU time (min) 

1 10 h 1 810 223,155 20 0.003 0.25 

5 26 h 1 2,106 1,506,843 5.56 0.031 0.55 

10 58 h 1 4,698 7,495,660 3.64 0.119 5.45 

15 98 h 1 7,938 21,396,880 2.9 0.189 28.58 

15 154 h 1 12,474 52,833,628 3.34 0.0199 68.33 

15 58 h 1 
2 

21,750 95,758,726 3.24 0.0251 30.58 

FEM1 (tri-linear) 

ω Mesh totdof totsys τ S ε2 [%] CPU time (min) 

1 h 1 
4 

2,187 535,086 40.77 0.33 0.17 

5 h 1 
9 

20,577 22,223,697 17.21 1.80 2.68 

10 h 1 
16 

107,811 352,424,358 15.00 1.59 28.6 

15 h 1 
23 

311,469 2,064,708,120 14.20 1.48 897.05 

FEM2 (tri-quadratic) 

ω Mesh totdof totsys τ S ε2 [%] CPU time (min) 

1 h 1 
4 

2,187 800,442 40.77 0.041 0.02 

5 h 1 
8 

14,739 19,193,636 15.40 0.457 2.28 

10 h 1 
15 

89,373 386,659,311 14.00 0.350 36.88 

15 h 1 
20 

206,763 1,564,449,546 12.40 0.387 226.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

level used in both schemes is also indicated via the number τ S of DOF per S-wavelength. In PUFEM approach the elements

are 8-node hexahedrons with linearly interpolated geometry. While for FEM 8-node and 27-node hexahedral elements have

been used for tri-linear and tri-quadratic cases, denoted respectively by FEM1 and FEM2. To improve the accuracy of the

PUFEM model, plane wave enrichment m = m P = m S is gradually increased with mainly the mesh grid h 1 and once with

h 1 
2 

. For the FEM case, different h -refinements are adopted to obtain h 1 
4 
, h 1 

9 
, h 1 

16 
and h 1 

23 
for the mesh based on tri-linear

elements, and h 1 
4 
, h 1 

8 
, h 1 

15 
and h 1 

20 
for the tri-quadratic case. The refinement approach ensures that each S-wavelength is

modelled by a sufficient number of elements reflected in the discretization level τ S . 

Before considering the results, it is worth mentioning that this is not a fair comparison since PUFEM is a high order ap-

proach while for FEM only low order elements are used. However, from the practice point of view, when solving engineering

problems it is very common to use low order elements, mainly linear and quadratic, and if these low order elements are

enriched via the incorporation of a priori knowledge of the wave field in the numerical model, such as done here with the

use of enriching P and S plane waves, improved quality results with low discretization levels would be achieved, as will be

shown next. 

The results of Table 9 show that the PUFEM approach leads to better quality results as well as to significant reductions of

the total number of degrees of freedom (totdof), the total number of storage locations (totsys) and the number of degrees of

freedom per wavelength ( τ S ). For example, for ω = 1, mesh grid h 1 combined with a plane wave enrichment with m = 10

and a discretization level τ s = 20, PUFEM leads to a very low L 2 error of 0.003%. For the same frequency, FEM1 produced an

error of 0.33% with τs = 40 . 77 while requiring more than double in terms of totdof and totsys. At other circular frequencies,

the performance of the PUFEM model is even more obvious as it leads to relatively very low L 2 errors with discretization

levels as low as 2.9, for example in the case of ω = 15 and m = 98 . For the latter case, the L 2 error ε 2 = 0 . 189% while with

FEM1 the most refined mesh leads to ε 2 = 1 . 66% with a discretization level of 14 DOF/ λS and very high numbers related

to totdof and totsys. Using PUFEM, offers the possibility to further enrich the model with m = 154 and hence decrease the

L 2 error to 0.0199% or even use the mesh grid h 1 
2 

with m = 58 to achieve ε 2 = 0 . 0251% . In both cases, the discretization

level with respect to the S-wavelength remains around 3.3. Furthermore, with PUFEM, there is also room to increase the

circular frequency of the problem and achieve good quality results with practical parameters for totdof and totsys. However,

in the case of FEM, further refining the mesh would lead to more than a quarter of a million entries for totdof and around

2 billions for totsys, which becomes impractical to run on most personal computers. In such cases, computers with high

specifications would be required. 

Table 9 also shows that using tri-quadratic finite elements (FEM2) improves the quality of the results in comparison

to tri-linear elements (FEM1). The tendency shows that it also reduces the required total number of degrees of freedom

(totdof) and the total number of storage locations (totsys). Continuing to increase the order of the polynomial based FEM

may lead to significantly better quality results and lower computational requirements in terms of totdof, totsys and τ S . As

already mentioned, comparing PUFEM to FEM1 and FEM2 is not fair as significantly better results could be obtained using
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elements of higher order than quadratic. This should be investigated but, in practice, often linear and quadratic elements are

used. Moreover, the incorporation of the wave numbers k P and k S into the enrichment model of expression (20) , via P and S

plane waves, incorporates valuable knowledge in the presented finite element model about the wave problem at hand. This

latter aspect may play a key role in making PUFEM competitive in solving elastic wave problems at high frequencies. 

Last, it is important to add that for PUFEM a high integration scheme is used to evaluate the highly oscillatory integrands

of the element matrices. This uses thousands of integration points at high frequencies. So, at this stage, the computational

time is mostly taken by the assembling process while the solution part represents only a fraction of the total time thanks to

the drastic reduction of the required total number of degrees of freedom. However, developing semi-analytical integration

schemes in three dimensions similar to those presented in the two-dimensional case [6,53] would significantly reduce the

computational effort and would make the PUFEM model even more attractive. 

8. Conclusions 

In this work, plane wave enriched finite elements are developed within the framework of PUFEM for the solution of

three dimensional elastic wave problems. These elements are capable of containing many wavelengths per nodal spacing

and consequently allow the relaxation of the traditional requirement of several nodal points per wavelength, used in low

order polynomial based FEM. 

This is achieved by expanding the displacement field into discrete series of displacements with respect to many direc-

tions corresponding to P and S plane waves, each propagating at a specified angle in the three-dimensional space. The

displacement due to a P plane wave lies in its direction of propagation whereas the displacement due to the S plane wave

is normal to its propagation direction and hence it is resolved into two components contained in the plane normal to the S

plane wave direction. 

It is shown that the proposed approach provides better quality results with significantly reduced requirements in terms

of the total number of degrees of freedom and total number of storage locations due to the fact that the elements may

contain many wavelengths per nodal spacing. However, in order to make the current model competitive, the high order

numerical integration issue must be addressed by developing fast integration schemes similar to those produced for the

two-dimensional elastic wave problems [6] . 

It is shown that using an unbalanced choice of the plane wave enrichment leads to better quality results and lower con-

dition number in comparison to the balanced choice option. Moreover, flexibility in the choice of the plane wave directions

in space is an important aspect for the good performance of the method. This could be overcome by using some of the many

strategies already developed in other research fields, some of them referenced herein, and providing uniform distributions

for any chosen number of directions. 

Last, ill conditioning being an inherent feature of the plane wave enrichment, even if it is possible to choose parame-

ters in terms of the mesh size and plane wave enrichment for a given frequency such that the condition number is kept

within acceptable limits, developing suitable preconditioners as well as using iterative solvers for large problems would be

of practical interest. 
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