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Abstract

This paper presents an enriched finite element model foe thiraensional elastic wave problems, in the frequency
domain, capable of containing many wavelengths per nodalisg. This is achieved by applying the plane wave
basis decomposition to the three-dimensional (3D) elagdive equation and expressing the displacement field as a
sum of both pressure (P) and shear (S) plane waves. The iraptation of this model in 3D presents a number of
issues in comparison to its 2D counterpart, especiallyrdigg how S-waves are used in the basis at each node and
how to choose the balance between P and S-waves in the apitm space. Various proposed techniques that
could be used for the selection of wave directions in 3D ase slimmarised and used. The developed elements allow
us to relax the traditional requirement which consists tosttler many nodal points per wavelength, used with low
order polynomial based finite elements, and therefore sellgtic wave problems without refining the mesh of the
computational domain at each frequency. THediveness of the proposed technique is determined by aamgpa
solutions for selected problems with available analytimoaldels or to high resolution numerical results using con-
ventional finite elements, by considering thtéeet of the mesh size and the number of enriching 3D plane waves
Both balanced and unbalanced choices of plane wave dinsgtispacen structurednesh grids are investigated for
assessing the accuracy and conditioning of 3dPUFEM model for elastic waves.

Keywords: PUFEM, plane wave basis, elastic waves, pressure waves, \shges, 3D scattering

1. Introduction

Growing research activities have been taking place in uariwave numerical modelling fields such as acoustics,

surface water waves, radar waves, seismology, geophysicbiamedical ultrasound. The related problems in the
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frequency domain are modelled using mainly the Helmholtma¢iqn[20, 21, 22] Maxwell equatiorj57] and Navier
equation27, 28, 29, 56depending on the wave propagation medium and the type oicagiph.
A number of diferent numerical methods have been used to solve such prebleaithe most commonly used is the
finite element method (FEM) due to its flexibility in handliogmplex geometries and its ability to modeftdrent
types of media. However, the use of low order polynomial bdgte elements for solving wave problems requires
fine mesh grids with many nodal points per wavelength. At mm@dand high frequencies, this leads to large memory
requirements and high CPU time. Moreover, because of tteaked pollution error, even finer mesh grids would be
required to maintain an acceptable accuracy.
The last two decades saw the development of numerical tggbsiaiming at modelling wave problems with improved
accuracy and reduced computational cost, in comparisoheadnventional FEM. These techniques involve the
incorporation ofa priori knowledge of the wave field in the numerical model. Indeee ywhve field is expanded into
sets of analytical functions, for example, in the form ofn@davaves propagating inféérent directions. For the case of
the Helmholtz equation, various methods have been suct@ssfficiently solving wave problems with coarse mesh
grids in both 2D and 3D with reduced computation@&be and better accuracy, in comparison to standard polyalomi
based FEM. Among these methods are the least-squares niéihdlde partition of unity finite element method
(PUFEM) [2, 3, 4, 5, 6, 7, 8], the ultra weak variational fodation (UWVF) [9, 10], Plane wave discontinuous
Galerkin (PWDG) [11], the generalized finite element metfi&] and the discontinuous enrichment method (DEM)
[13]. In the case of the boundary element method, a partafamity boundary element method (PUBEM) has been
developed for two and three dimensional Helmholtz problgmd4] and an isogeometric wave-enriched method
within the context of boundary elements (XIBEM) was presdrfor two and three dimensional Helmholtz problems
[15, 52]. Other solutions were also considered such as thi#aded finite element polynomials [16] and in a more
recent work the stable discontinuous Galerkin method [TTfje variational theory of complex rays (VTCR) [18]
and the phase reduction finite element method (PR-FEM) [d9bther dedicated strategies for solving short wave
problems with coarse mesh grids.
Some of these techniques have been extended to deal withhidigmproblems in non-homogeneous media [20,
21, 22] and flow acoustics [23]. They were also extended tbwlitla two-dimensional elastic wave problems, for
example, PUBEM [24], UWVF [25], DEM [26] and PUFEM [27, 28, ]290ther applications include fluid-solid
interaction [30], evanescent wave problems at solid-flotdriface [31], solid-solid interface [32], acoustic fields
cavities with absorbing materials [33] and simulation odt& waves in poroelastic materials [34]. These techniques
have recently been reviewed in [35] for the Helmholtz ecqpragind further references are indicated.
In the current work, the PUFEM concept is extended to thiegedsional time-harmonic elastic wave problems. To
the authors’ knowledge, only the works [36, 37] have deathwhree-dimensional plane wave enriched elements
for elastic wave problems within DEM and UWVF frameworkspectively. In both DEM [36] and UWVF [37] the
approximating plane waves are defined at the element leddiamnce inter-element continuity must be enforced in the
formulation. However, in the presented PUFEM elastic moithel plane waves defined at the nodes of the elements
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are multiplied by the Lagrange polynomial shape functiam$zence continuity is automatically ensured.

In this model, the components of the displacement field asé éxpressed as sums of both pressure (P) and shear
(S) wave contributions, like in the two-dimensional casg][2The main diference with the three-dimensional case
consists in the direction of S-wave induced displacemehighvis orthogonal to the direction of propagation. While
in two dimensions the orthogonal direction is well defined &isingle vector, in three-dimensions the orthogonal
direction is contained within the orthogonal plane to thegaigation direction and therefore two vectors are required
for its resolution. Furthermore, in two dimensions, theediions of the approximating plane waves are easily defined
whether in a uniform or nonuniform distribution. This is ribé case in three dimensions where the distribution of
plane waves in space, either uniform or nonuniform, is naigitforward.

Indeed, in the implementation of the three-dimensionasieer of PUFEM the uniform distribution of directions in
space is a challenging issue, unlike in the two-dimensicasé. In fact, the uniform distribution of a set of points on
a sphere has attracted the attention of researchers fraaugdields including meteorology and quantum theory. In
this paper, dierent approaches for uniform distribution of directionsjiace are summarised and then some of them
are used to obtain sets of linearly independent directiblegseover, to keep the conditioning within acceptable lanit
unbalanced numbers of directions for the pressure and slaas are used.

The outline of the paper is as follows. In section 2, the mpdeblem and the used notations are presented. Section
3 is dedicated to the variational formulation and Sectiomesents the PUFEM approximated solution. In section 5,
various approaches to uniformly distribute sets of planeesan space are presented. The PUFEM discrete model is
given in Section 6 and Section 7 presents a validation of thdahagainst problems with analytical solutions such
as progressive plane waves in an elastic infinite medium stie@wave scattering by a spherical rigid body. For
the latter problem, a comparison between PUFEM and the cartyiged low order FEM is also attempted. Finally

some concluding remarks are drawn in Section 6.

2. Problem statement

Let Q be the spatial domain iR® occupied by an elastic medium. Let us denotedayeb, €3) the cartesian vector
system, and = x1€; + X6 + X3€3 a generic point irkR3. The propagation of elastic waves in a 3D homogeneous

isotropic medium is governed by the wave equation [38]
pogU -V - o(U) = pF, 1)

wherep is the density of the medium aridis a body force. The notatiasy stands for the second partial derivative
with respect to the time variabte The stress tenser, evaluated at a displacement= U;e; + Uze, + Uses, is given
by the classical Hooke's law
o(U)=AV- Ul +u[VU + (VU)T], 2)
wherel is the identity matrix ifR®<3 (3 x 3 matrix),1 andu are the Lamé parameters of the elastic material, assumed
constant, an&U = (VU1, VU,, VU3)". We will denote here byT’ the transpose of a given vector or tensor. The dot
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product *’ of V with a tensor field\ = (A1, Az, A3)" in R®>3 is defined by
V-A
V-A=| V-Ay | (3)
V-As
However, for a vector field iR, - is the usual dot product.
The case of harmonic motion has practical interest. Supthad€& = exp(wt)f, wherew is the circular frequency
and i= V-1 is the imaginary unit number. B = exp(iwt)u is a solution of (1) then the strong form of the problem

in terms ofu can be rewritten as follows
—p?u—-V-ou) =pf, in Q (4)
with the following boundary condition
own = i((A+2ukp(u-n)n+uks(u-t)t)+g, on T, (5)

wheren andt denote, respectively, the outward unit normal and tangeatovs to the boundary (I' = 9Q) and
g is the source termDetails on how this boundary condition is deduced are gimereference [25] Note that (5)
is an absorbing boundary condition of the first order fortetlasave equations wheg = 0 onI. The aim of this
work consists to validate the presented numerical modetfzer@fore the source tergis introduced analytically in
expression (5) to enable the solution of the problem.
It is well known from the elastic wave theory [38] that a dapgment field solution of (4) is a superposition of two
types of purely oscillatory waves: P-wave (primary, or coeggional) and S-wave (secondary, or shear). This can be
demonstrated by writing

Vo) = (A+2u)V(V-u) — uVxV x u, (6)

The P and S waves travel with speeds

Cp= At and Cs = K (7
\j p P

The corresponding compressional wave nunikpeand shear wave numblks are given by

w w
kp = — and ks = —. 8
s S = o (8)
These last two physical quantities are useful for the nuraémodelling approach that we will discuss and investigate

in this paper.

3. Variational formulation

Since PUFEM is a finite element type method, we will need taldisth a variational formulation for the time-

harmonic problem (4) and (5). We first introduce the follogvBobolev spaces
V = {ve HY(Q)?3v=0o0nT}. Q)
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Unless otherwise specified, standard notations of Sobplewves are adopted. Then the weak variational formulation

of PUFEM can be described as: Findt V such that
a(u,v) =b(v), VveyV, (10)

wherev is the complex conjugate of a test functioin V anda, b are bilinear and linear forms defined respectively

as:
a(u,v) = —wzpf u -\7dQ+fa(u) : Vv dQ - fa-(u)n-\le",
Q Q T (11)
b(¥) =pff VO,
Q
The product of two tensor fields = (A1, Az, Az)" andB = (B1, B,, B3)" in R®3 s given by
A:B=A1-B1+A>-B,+A3-Bs. (12)
The curl operatoFx is defined for a vector field = (vi, v, v3) " by
0oV3 — 03V
VXxv= O3vi1 —01v3 |- (13)
01V — 0oV1
Under the previous notations and definitions, the tenscan be written as follows
o) =AV-ul +u[Vxul*+2uVu, (14)
where the matrixy x u]* is defined by
0 O1Up — doU;  d1U3 — 03Uz
[Vxul* =] d,u; — U 0 Oouz — d3uy |, (15)
03Uy — 01U3  d3Up — J3Us 0

with u = (ug, up, u3)™. Let us notice that the produet(u) : Vv in (11) can be written, using (14), under a form

involving the operator¥, V- andVx:
oU): VW=AV-u)(V-V)+2uVu: Vv —pu(Vxu)- (VxV). (16)
Then thanks to the boundary condition (5), we rewaitendb of expression (11) in the following formulations:
a(u,\7)=—w2pf£2u-\7dQ+2pLVu:V\TdQ—pL(qu)~(VX\7) dQ
—AL(V ~U)(V-v) dQ —i ﬁ((d + 2u)kp(u - N)(V - n) + uks(u - t)(v- t)) dI, 7)
b(\7)=pff-\7d§2+fg-\7dr.
Q r

From the mathematical point of view, according to the boupdandition (5) onl’, the problem in (10) and (17) is
well-posed and an existence and uniqueness result canaidigistd by virtue of Fredholm’s alternative theorem and
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continuation arguments [41, 42], under weak assumptions,Jét us consider th& is a bounded Lipshitz domain,

g e H2() x H-2("), and thaf € V*, whereV* denotes the topological dual spacevof

4. PUFEM approximated solution

We now need to approximate the problem stated in expressirbf the PUFEM, based on plane wave basis and
polynomial shape functions. For this purpose, let us cargdinite element mesh containingodes, denoter] z =
1,n. We denote by{N,} the partition of unity by polynomial finite element shapedtions, and respectively byp
andmgs the numbers of approximating P and S plane waves. Folloviiedvwo-dimensional PUFEM approximation

[27], the displacement field is approximated by superimposing pressure and shear déspknts as follows
up = uf +us, (18)
However, in three dimensions the shear wave induced displant is resolved into two components as follows
up = u>t + U2 (19)

Therefore, using the plane wave enrichment approach, thegimated displacement field, is then expressed in
the following form

U= > NAT expliex - dp)dh + > > NAS expliksx - di)dg’,

z=1nl=1mp z=1nl=1mg
)0 NAST expliksx - di)dy’, (20)
z=1,nl=1mg
The orthogonal unit S-vectals , , to the unit P-vectod, is resolved into two orthogonal vectors denotedjlg?x and

d¢, and are defined by

de, =ds and dg, =dy xds, (1)
and then L
B X
o O an 2 = ds, < dp (22)
St dyllz St dllz
such that
Il = lldg", 113 + 11, 13, (23)

with || - || denoting theL,-norm. Note that, in 3D, there is an infinite number of vectors that@thogonal to a given

vector. As a result, finding the perpendicular vectpto d'P can be chosen in flerent ways, one of them being

0 -1 1
di=| 1 0 -1 |dp (24)
1 1 0
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Whered'P = (sing, cosgy, sing, singy, cosh), with 6 and¢, being the two angles of the spherical coordinate system
with 0 < < mrand 0< ¢ < 27. In the case oﬂ'P with the same components suchd#;s = (a,a a) then the
perpendicular vector is given g = (-a/2,-a/2, a).

Notice thatV x uP = 0 andV - u>* = V- u>? = 0. In expression (20} describes the computational mesh size. For
simplicity of the notations, the dependency of the numésotution uy on the numbers of approximating P and S
plane wavesme andmeg, is not indicated.

The above approximation (20) can be derived from the Heltald@composition theorem, as discussed in [24]. The
unknowns are no longer the nodal values of the displacemehtit are now the amplitud@éjl, AZl andAfi2 attached

to a nodez and corresponding to P and S plane waves travelling in tfwtitimsd'P andd's, respectively.

5. Choice of plane wave directionsin space

In two dimensions, the choice of the plane waves and thefotmispacing or clustering around directions of
preference is a trivial problem. The move to the three dinoerad case presents however som@adilties. In fact, in
three dimensions, it is neither intuitive nor an easy tasttefinem uniform divisions of the 4 solid anglem being
any integer number, a part from a few known solutions. In joeywork [7], the authors used a uniform boundary
meshing of a cube. A reasonably well spaced set of pointsfisatkby the vectors joining the centre of the cube
to each node on the cube’s boundary. However, this apprgeaallo limited to a few special casesrofor which a
boundary-meshed cube is available. Specifically, the dhyoris limited to values om = p® - (p-2)3forall p > 1,
thus givingm =8, 26, 56, 98, ... etc.

The uniform distribution of a set of points on a sphere até@the attention of researchers from various fields. Early
work in meteorological modelling, for example by Kurihadsl], resulted in algorithms that produce distributions
based on the mapping of a regular grid on an equilateralgléeto each octant of the sphere. However, this is limited
to values ofm = 4p? + 4p — 2, wherep + 1 is the number of grid points from the north pole to the equaide
icosahedral grid of Williamson [45] uses the vertices of tbgular icosahedron with the possibility of subdividing
each triangular face in a similar manner to the Kurihara #&)] or in a symmetrical manner such as performed
in reference [47]. All these possibilities produce digitibns with limitations on the values of. For example, in
reference [47], it is given as = 10p? + 2 wherep = 29 with g > 0 being the number of equal intervals into which
each side of the original icosahedral triangles is divided.

With the motivation to define sets of plane waves forming bdsethe DEM, Grosu and Harari [48] corrected the
technique of Beverly [49] finding equally spaced points ditddinal lines of a sphere which are themselves equally
spaced along the longitudinal lines. This technique prewiskts of approximately uniform distributions of points on
a sphere with more possibilities, in comparison to the nesly cited approaches (see Table 1).

In the case of the UWVF [37], a library was used in which thestbn ofm directions in space, with 4 m < 130,

was based on minimising the distances between points onfaceuof a sphere. The recursive zonal equal-area
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partition proposed by Leopardi [S0fters the possibility to generate any numbeof points on the sphere through
the partitioning into regions of equal area and small edeivadiameter. In this approach, it is required to find the
colatitudes of polar caps (zones between adjacent latiitines), then determine the collar angle which provides
the number of regions in each collar.

More recently, Peaket al. [51] presented a method of uniformly spacing a set of pointa gphere based on static
equilibrium of charged particles and hence named it the @ublforce method. This work is motivated by the need
to use uniform wave directions in space within PUBEM. It iswh that the performance of the enriched elements,
within PUBEM, is not sensitive to small variations in the fanimity of the plane wave direction distribution. The
interested readers in methods dealing with uniform distidm of points on a sphere are referred to the references
included in [51].

Using sets of plane waves in space with approximately umifdistributions is of great importance to the proposed
PUFEM model. To this end, two approaches for selecting plaaes in space are used in this work. The first
approach consists to use the Cube-boundary Meshing (CMhwins previously used in PUFEM for 3D Helmholtz
problems [7]. This allows a number of directioms= p®— (p— 2)° for all integerp > 1, which givesn =8, 26, 56, 98,

... etc. For evemp numbers, two further directions are added pointing to ththrend south poles leading to =10,

26, 58, 98, ... etc. The second approach is the CorrectedlB€@B) method [48] which consists to find equally
spaced points on latitudinal lines of a sphere which thevesehre equally spaced along the longitudinal lines. The
approach sets the chord between two adjacent points anthitatitudinal line equal to the chord between tifeand

(n+ 1) latitudinal lines. The numbeM, of points at then™ latitudinal line is then given by

| (chis2)

Nn = 7/ sin sin(do) (25)
wheregg is a constant angle between two consecutive latitudinaslin

Figure 1 shows distribution examples of 58 points obtaingithe cube-boundary meshing (left), the corrected Beverly
method (middle) and the Leopardi method (right). It is ologthat the cube-boundary meshing distribution provides
points relatively more spaced around the equator in corspatd the regions around the south and north poles, while
the two other methods provide relatively uniform distribns. Moreover, the corrected Beverly method and the
Leopardi method lead to very similar distributions for= 6, 12, 22, 34 ... etc. If the south cap, or the north cap, of

the Leopardi method is rotated by a certain angle, both nastlead to the same distribution.



Method Number of directions

Regular icosahedron [47] 12 42 162 642
Kurihara distribution [44] 6 18 38 66 102
Cube Boundary Meshing [7] 8 26 58 98 154

Corrected Beverly distribution[48] 6 12 22 34 46 58 84 106 1286

Table 1: Examples of sets of directions (points) relativalyform (equally spaced) on unit sphere fofteient approaches.

0 0
0.5 0.5 -05 0.5

= -0.! . -0.: -0.5 -0.5
Figure 1: Distribution eS(larhlpIes of 58 points on the surfata spher_el: éube—boundary Meshing (CM) [7] (Ieif}t),ilcorrdcﬁeverly (CB) [48]

(middle) and Leopardi methods [50] (right).

6. PUFEM discretization

In this work, the displacement field is approximated via jaiggiting plane waves in space in which both balanced
(mp = mg) and unbalancedf # ms) choices of plane waves are considered in expression (2beafpproximated

displacement field. Let us set
p o= explkex - dp)dp s = expliksx-dg)dg’. = exp(ksx - dg)d . (26)

A finite element approximation of the variational probleri)is derived by usind\;p;, NZ§1l andNZ§:

~ap [ un- (V) 002
A fﬂ(v UR)(V - (NGP)) dQ + 2u fﬂ Vun : V(NG dQ — fg(v X Un) - (V x (N;))) dQ

(27)
i : (2 + 2u)ke(un - M)(ND; - ) + ks (un - (NP, - 1)) dI

—p [ 1By [ g (NP ar. 1= L
Q r



—w?p f Up - (NS dQ
Q

+1 fg (V- un)(V - (N;) dQ + 2u fﬂ Vup : V(NS dQ - p fg (V x up) - (V x (N3)) dQ

i @ 20ke(un- NN - n) + uks(un - (NS - 1)) dl “
~p [ 1Ny de+ [ g (NG 1= 1ms,

~p [ un-(NF) do

w1 [ (7T (N d+ 2 [ T VNS d - [ (T3¢ (7 ¢ (NFD) 002 .

i [ (@ 20kl MNE ) + ks - O(NF 1) aF
“p [ 1) da+ [o N 1= 1ms,

The main feature of the discrete scheme (27), (28) and (Bahks to the stress tensor form (14) and the numerical
approximation of the displacement field (20), is that theiltesy matrices can be easily computed as in the case of

the scalar Helmholtz equation [4], in terms of the osciltgtshape functions
NP = exp(kex - dp)N;  and N3 := exp(ksx - dg)N. (30)

Indeed, ad\,p; = N\ di, N.s = NS dg', andN,s* = N3 ds” , the mass matrix cdicients are such that

[0 vByde = dh-dh [ NG NE do,

L(Nzﬁ_l)-(Nzﬁ)dQ - dlé,lL'dLLN_fl N—Z "~

L(stf)-(Nzﬁ)dQ = dls’i.dIPfQN;_ l\_l':l do.

L(NZ#)'(NZSB = dé,lL'd's’,ﬂLNi NG de. (31)
L(NZS'-Z)'(NZQZ) = dls'i'd's’ifg'\';_ NS, do,

L(Nﬁl)-(NzSz) dao = dlS’,lL'dIS’,ZLLN; '\Tfl do.

1.2

L (NS - (NS)do = dg -dg, L NS N, dO.
The other matrices involved in (27), (28) and (29) can betemitin a similar way as for the mass matrix, in terms of
the product of the new oscillatory shape functions. The migakevaluation of the above integrals is performed with
high-order Gauss-Legendre scheme.
A nodal pointz, with z = 1,n, hasmp + 2mg degrees of freedom. So the total number of degrees of freeslom
n(me + 2ms), and the unknown amplitudesf,, AS" and A5 for z = 1,n can be stored im blocks of vectors in

RM™+2™s of the form APT, ASt", A$2")T. The global unknown amplitude vector can be stored as fallow

A= (AP AST ST ART AST AST)T, (32)
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and the global matrix resulting from (27), (28) and (29) heesfbllowing form

PP PS; PS, PP PS; PS,
Wl,l Wl,l Wl,l oo Wl,n Wl,n Wl,n
S1,P S1,51 S1,S; S,.P S1,S1 S1.S;,
Wl,l Wl,l Wl,l oo Wl,n Wl,n Wl,n
S2,P S2,S1 S2,S2 S2,P S2,81 S2,S2
Wl,l Wl,l Wl,l o Wl,n Wl,n Wl,n
W = . . . o . . , (33)
PP PS; PS, PP PS; PSS,
Wn,l Wn,l Wn,l oo Wn,n Wn,n Wn,n
S1.P S1.S1 S1.S2 S1.P S1.S1 SLS,
Wn,l Wn,l Wn,l ot Wn,n Wn,n Wn,n
S2.P S2,51 $2.S; So.P S2.S1 S,.S,
Wn,l Wn,l Wn,l ot Wn,n Wn,n Wn,n

where the block®VF}, W33, W22 are square matrices ™™, R™*™ andR™*™, respectively, withe, z =

1,n. The blocksW57, W52, Wt" andw3z” are eventually, ifmp # ms, rectangular matrices ™™ or R™<™
Last, the block&V34* andW 3% are square matrices R™*™.

Galerkin weighting is used in this work and hence the globaitrix of the resulting system is symmetric and block
banded. It is stored using a steering vector to locate threariés and the solution of the final system is obtained via a
direct solver [39] based onDL™ decomposition wherk" is the transpose of the lower triangular mattibandD is

a diagonal matrix.

7. Numerical analysis

In this section, the developed numerical model for seleetastic wave problems is investigated with respect to the
computational mesh sizeand the plane wave enrichment, in terms of the numimerandms of the approximating
P and S plane waves. In the convergence analysis considel®ad, Ispecial care is taken so that the incident wave
direction d};‘c is not too close to the plane wave directions used in the appeding model. The computational
domain is defined by

Q = {X = (X1, %2, X3); 1 < Xg, X0, X3 < 3}. (34)

All parametersa, A, 4 andp are taken equal to 1 with their respective correspondintsuiiihe finite elements used
here are 8-node hexahedral elements, for which the geoisétrerpolated via linear Lagrange polynomials. Three
uniform mesh grids are considered. They are denotelilbpl% and h%, see Figure 2. The coarser mdghhas 8

elements. It is hierarchically refined to obtéhiin andh% mesh grids with 64 and 512 elements, respectively.
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The Euclidean norm ifR® of the real part of the computed displacement figlds denoted byRe(up)| and the

accuracy of the numerical solution is measured by the faligz, error

_ lun = Ull, @)

£ = x 100% (35)

[IUllLy ()
whereu represents the analytical solution of the considered prabl
To quantify the number of degrees of freedom (DOF) per P and\&lengths, respectively, the parametgrandrs

are introduced in the following forms [27]
_ 1/3 _ T 1/3
e = — (NMp) and 715 =-—(nmg)", (36)
ke ks

wheren, as mentioned before, is the number of nodal points in thénrgad.

Let us denote by the average rate of convergence with respettgach that thé, errore; = O(h®), wherea is to
be evaluated numerically via = (Iogs(21/4) —log 8(21/2))/009 hy/4 — loghy;2), when considering mesh gridis; 4 and
hy/2, for example Table 2 shows the number of shear wavelengthger element sizh of the considered mesh grids
(Figure 2), for circular frequencies = 1, 10, 15 and 20. The comparison of the mesh size with the steeasiength
reveals that for low circular frequeney each finite element contains a fractiomgfwhereas at highew, each finite
element becomes multi-wavelength sized. For example himniesh grim%, h = 0.164s atw = 1. However, at

w = 20,h = 3.181s. This latest remark will have a direct consequence on thebenmy,,ss of integration points

required for the numerical evaluation of the element masicTherefore, this number is adjusted in the three spatial

directions, within each element, by adopting the empigsglression givin@gauss = 10x|h/1s]+2, to ensure enough

integration points are used. It is possible to develop semalytical integration schemes such as done in [28, 54] to

avoid the burden of the high order scheme, but this is not jective of the current workAll computations are
carried out in Fortran with double-precision complex nunsben Workstation Intel Core i7 3.5 GHz with 32GB
RAM.
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w 1 10 15 20

hy 032 318 4.77 6.37
0.16 159 239 3.18
0.08 0.79 119 159

>

(NI

>

NN

Table 2: Values oh/ s for various mesh sizes and circular frequencies.

7.1. Progressive plane wave test problem

Let us first consider a simple mathematical model consisifreyprogressive plane wave in a three dimensional
infinite elastic medium. This problem has an analytical sotuand the expression of the displacement field is given
by

u = exp(kex - dp®)dE® + exp(isx - ds)dg , + exp(ksx - ds)d3 |, (37)

wheredi’® is chosen such that
(d™)T = (sinB; cosBo, SinB1 SinB cosB1) , B1 = 3332, B> = 33333, (38)
and the two component; | andd , of vectords orthogonal to the directiod!™® are given by
dg, =(dpP9* and di, =dg, xdg, (39)

where (iiF’,‘C)X is defined in expression (24).
The source terng of expression (5) is calculated from the tractofu)n on T, evaluated with the analytical solution
u given in expression (37). Note that this is only possible mveeact boundary conditions are prescribed™on
Tables 3, 4 and 5 show the error in % as well as the average rate of convergenfm the three considered mesh
gridshy, h% andh%1 when the numbersip, mg) of the approximating plane waves are increased for theegabfithe
circular frequencyw=10, 15 and 30, respectively. Note that none of the sets ofoarpating plane waves contains
the considered direction of the imposed progressive plavewf expression (38).
From the numerical results it is obvious tHatefinement improves the accuracy of the scheme for all cabes
frequencies and plane wave enrichments. Increasing théensnof approximating plane waves, for a fixgdloes
also improve the accuracy of the plane wave enrichment maéaléct, this is expected as both the mesh refinement
and the increase in the number of approximating plane waagsto higher numbers andrs of DOF per P and
S wavelengths, respectively. Nevertheless, two remaskksvarth mentioning. The first one concerns the cases of
coarse mesh grids, in comparison to the wavelength, withnlombers of approximating plane waves. In such cases,
thelL error is high and the reason lies in the fact that the distatin level represented by the numbers of DOF per
P- and S-wavelengthp andrs, is very low. For example, for the mesh gh'%d atw = 15, thel, error is very high,
&2 = 44.4%, for (mp, ms) = (10, 10) for which ¢p, 7s) = (3.1, 1.8). For a higher enrichmentyé, ms) = (26, 26) the
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L, error is a lot lower in comparison to the previous cases 1.13%, due to the increase of the discretization level to
(tp, Ts) = (4.3,2.5). When the latter is further increased tg,(rs) = (5.6, 3.2), for (mp, ms) = (58, 58), theL, error

is even lowerg, = 0.097%, and then fom@e, ms) = (98, 98) theL, error reduces te, = 0.019%.

The second remark is related to the average rate of conveggerrom the three tables 3, 4 and 5, for fixed numbers
(mp, ms) of approximating plane waves, the results show an expaletgcrease of thé, error with respect ti-
refinement. In general, the average rat@creases with the increase of the numbers of approximatange waves,
such as shown for the case®f= 20. However, continuing to increase the number of approtiilgglane waves,

for a fixed circular frequency, does not necessarily leadhtmerease in the rate of convergence. This is the case for
(mp, ms)= (98, 98), atw = 10 and 15 where the rate has decreased from 7.8 to 5.4 and feotm 5.1, respectively.
This is most likely due to the ill conditioning issue, whichan inherent feature of the plane wave basis finite element

approaches. This aspect is investigated in the next testralealing with elastic wave scattering by a rigid sphere.

7.2. \Wave scattering test problem

The problem of harmonic waves scattered by a spherical bigity contained in a three dimensional homogenous
and isotropic infinite elastic space is considered. An upvPawave with amplitudé,, for which the the potential is
given by

@ = Op exp(-ikpxs) exp(iwt), (40)

where®g = k'—p impinges on a spherical body of radiasThe incident displacement field is obtained from
u = VO. (41)

The total displacement field is a superposition of the incident" and scattered fields,u = u™ + u*. In fact, a
P-wave impinging on a rigid body would lead to both scatté?ethd S waves, in an infinite elastic medium. The total

displacement can be written in terms of its components
U= Ure + Ug€y + Ugly, (42)

with respect to the spherical unit vecterse, ande, with

1
U == 7 (@020 1) + ARV T) + Bei(r.1)) Py(coss). (43)
v=0,00
L dP,(cosd
W= Y (@000 + Act00) + B ) A, (44)
y=0,00
Up =0, (45)
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(10,10) (26,26) (58,58) (98,98)
83.6 14.4 0.964 0.0377
h% 3.93 0.50 0.0032 0.0019
h% 0.237 0.0123 0.00002 0.00002
4.2 51 7.8 54
Table 3: Progressive plane wave probldm:error in % forw = 10.
(10,10) (26,26) (58,58) (98,98)
109.4 105.5 2.31 0.213
h% 44.4 1.13 0.097 0.019
h% 1.59 0.205 0.00066 0.00017
3.1 4.5 5.9 51
Table 4: Progressive plane wave probldm:error in % forw = 15.
(10,10) (26,26) (58,58) (98,98)
113.6 103.4 76.3 40.2
h% 102.5 26.5 0.973 0.310
h% 3.91 0.711 0.0076 0.00089
2.4 3.6 6.7 7.7

Table 5: Progressive plane wave probldm:error in % forw = 20.



whereP, are Legendre polynomials for= 0, co. The constants,, andB, are chosen such thal_, = 0 representing

the total reflection condition on the boundaref the spherical rigid body.

DoePO(v,8) + A’V (v, a) + B,eXP(va) = 0,

(Dosg(o)(v, a) + Aysg(l)(v, a) + Bvsg(l)(v, a = 0,

This is obtained via

(46)

forall vin N. The associated stress fietfu) is then obtained from the displacement field (42) in ternitscdfpherical

components
Orr
Tre
]
and
T g¢

2u
= Z ((I)osg(o)(v, r + Avsg(l)(v, r)+ Bysg(l)(v, r)) P, (cosb),

v=0,00
2u 0 1 dP,(cost)
77 2, (@000 + A0 + Bl n) ==
A o L
2 ; (‘Dosg( Y,r) + Aveg(l)(v, r)) P, (cosb)
=5
+7 Z (@05 (v.1) + ARV(v.1) + B,eZdV(1.1)) P(cost)
y=0,00
2 dP,(cosd
+_l; ((DOS;J(O)(V, r) + A&, 1) + B,sS0(, r)) %
r y=0,00 0
A 0 L
2 ((DOSE( Y1) + AL, r)) P.(cost)
y=0,00
+%2 Z ((Dosg(o)(v, r) + Avsg(l)(v, r) + th“:;(l)(v, r)) PV(COSG)

+% (Cl)osg(o)(v, r)+ Avsg(l)(v, r) + Bvsg(l)(v, r)) 90
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(47)

(48)
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The symbol&ip(o), gip(l) and sis(l), fori = 1,9, are coéicients obtained form the various derivativeEhe radial

spherical functions are defined as, see [55]:

e'lj(i)(v, r
sg(i)(v, r
sg(i)(v, r
sg(i)(v, r
eg(i)(v, r
eg(i)(v, r
eg(i)(v, r
eg(i)(v, r

sg(i)(v, r

AR (ker) - kerel® (ker )},

AE (ker)),

A = n = 3(ksr)2)eR (ker) + 2ker?) (ker)),
Al(n = 1200 (ker) — kere™) (ker)),

AKX (ker)),

_ _ (51)
A2l (ker) — kere ! (ker)),

A{- cot@)£P (ker)},
Al (ker) — ker ) (ker)),

Afcot®)eP (ker)),

wherei = 0 ori = 1 such thagff(o)(kpr) = J,(kpr) is the spherical Bessel function of first kind and ordeand

PY(cos) is Legendre’s polynomial of orderand degreen = 0. A = (-i)”(2n + 1) andff(l)(kpr) =H,(kpr),A=1

si(l)(v, r
33(1)(1/, r
sg(l)(v, r
sj(l)(v, r)
sg(l)(v, r)
sz(l)(v, r)
si(l)(v, r
sg(l)(v, r

33(1)(1/, r

—-n(n+ 1)H,(ksr),
—n(n+ 1)H,(ksr) + ksrH,11(ksr),
—n(n+ 1){(n— )H, (ksr) — ksrH,+1(ksn)},
—(n? - n— 3(ksr)?)H,(ksr) — kerH,1(Ksr),
—n(n+ 1)H,(ksr),
(52)
—n(n+ 1){(n+ )H, (ksr) — ksrH,1(ksr)},
- COt(H){(n + 1)Hy(ksr) - kSrHV+1(kSr)},

—n(n+ 1)H,(ksr).

COt(@){(n + 1)Hv(ksr) - kerV+1(kSr)}.
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The stress field is then used in the evaluation of the souroe deof expression (5) to be used in the boundary
condition of the elastic wave scattering problem. The sanged in expressions (43) and (44) are truncated when a
sufficient numbem; of terms is included. This number is taken such tiat ksR whereR is the radius of the most
distant point of the considered computational domain [#@]: illustration purpose, Figure 3 shows contour plots of
the components dRe(uy)| in the computational domain for the casewf= 40 when a P-wave travelling upward
along thexsz-axis impinges on a spherical rigid object of unit radiuseTentre of the rigid scatterer coincides with
the centre of the Cartesian system and hence the considargzlitational domain is in the vicinity of the scattering
object. The scattered field contains both body waves, P amchigh interfere around the hard scatterer. The first
and second components are opposite each other and thedhigboent has higher values due to the incident wave
propagating alongs-axis. To obtain the contour plots of Figure 3, the computed nodhlesafrom the problem

solution are used in conjunction with the model of expras$§aD).

(@ ()

Figure 3: Elastic wave scattering by a rigid sphere, confats (a), (b) and (c) of first, second and third componentReii,,) respectively,
w = 40.

The same numerical analysis is followed for this elasticenssattering problem considering the same parameters
already used for the case of the progressive plane wavertgsem but with more options regarding the used sets of
approximating plane waves. Indeed, in this case, plane digugbutions obtained form the Cube-boundary Meshing
(CM) and the Corrected Beverly (CB) method are used. The pwaaches, CM and CB fi@r more flexibility in
the choice of uniformly distributed plane waves in space erah when they allow the same number of plane waves
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the CM and CB distributions areftirent. Tables 6, 7 and 8 summarise the error analysis résuttse mesh grids
hy, h% andh%1 when the numbers of the approximating plane waves are iseteforw = 10, 15 and 20, respectively.
They also give the average rate of convergence computedrivaifyefrom the obtained.; errors.
From Tables 6, 7 and 8, it can be seen that, in general, th@nebteesults lead to similar conclusions already drawn
from the case of the progressive plane wave test problenic@sthel, error improves as the numbersg, ms) of
the approximating P and S plane waves increase for all cdsesah grids and frequencies presented here. However,
we notice in certain cases after reaching a lgverror a further increase in the number of enriching planessaloes
not necessarily improve the accuracy such as reflected inaﬂ;moﬂw% andw = 10 when increasingifp, ms) form
(58, 58) to (106, 106). In all these cases, therror remained unchangedsat= 0.00002%. For frequencies = 15
andw = 20, this is again seen for the mesh gni%dwhen fmp, ms) increased from (98, 98) to (106, 106) and for both
enrichments thé&, error stagnated ab = 0.00004% and 0.00006%, respectively. Moreover, in the cafregfiency
w = 20 and the mesh gridg andh%, for high numbers of enriching plane waves the quality ofrdmilts deteriorates
instead of improving, or at least stagnating. This is seeanfnp, ms) increased from (98, 98) to (106, 106), for
which thel, error increased from 4.00% to 7.19% in the case of meshhgraahd increased slightly from 0.0022% to
0.0024% for the mesh grid%. This is known to be caused by the ill conditioning aspeciictviis investigated here.
The results overall also confirm the exponential convergevith respect td-refinement. It is noticed that the aver-
age rate of convergence increases with the increase of thbems of approximating plane waves up to a certain level
but continuing to increaserp, ms), for a fixed circular frequency, does not necessarily le@aattincrease of the rate
of convergence. In fact, it could even decrease such asdardbes ofrfip, ms) > (58,58), forw = 10, in whicha
decreased from 6.1 t0 4.7, 4.0 and 3.5. It can also be seeth#iat error stagnated at the value of 0.00006% for the
mesh sizeh%. As will be shown next, this is obviously due to the ill conaliting of the plane wave enrichment model
which is known to occur for relatively small size elementscomparison to the wavelength, with high numbers of
approximating plane waves.
The behaviour of the condition number denoted ||W||||W 2|, with respect to the 1-norm, is numerically investi-
gated for the considered circular frequencies-10, 15 and 20, mesh grids, h% and h%, and various plane wave
enrichments. The package MF71 of the Harwell Subroutinedrip[43], which provides an estimate of the 1-norm
for sparse or not explicitly available matrices, is usedwaitirLDLT linear solver to evaluate the condition number.
Figure 4 clearly shows that, for fixed circular frequeacgnd plane wave enrichmemt= mp = ms, the conditioning
deteriorates witlh-refinement. In general, logincreases linearly witim as shown for the mesh gridhs and h% but
when the condition number is relatively high, which is theeaf mesh gridh%, the machine precision does not allow
the computation of the true condition number anymore (gt However, it is obvious that it decreases with the
increase if the circular frequency for which the elemengésralatively of large size in comparisons to the wavelengths
For example for the mesh grid, « ~ 10°for w = 10, while itis about 18 and 16° for w=15 and 20, respectively.
This shows that the proposed numerical model is more seifabthe high frequency range where coarse mesh grids,
in comparison to the wavelength, are used with relativeghmumbers of approximating plane waves. For such cases,
19



it is obvious from the results of Figure 4 that the conditiember remains within acceptable limits.

(mp,ms) hl h% h% a

(6,6)°B 32.5 16.2 1.42 2.3
(10,10FM 13.0 1.43 0.162 3.2
(12,1258 14.2 1.97 0.0917 3.6
(22,22f8 7.25 0.311 0.0095 438
(26,265M 2.01 0.092 0.0033 4.6
(34,34%8 0.831 0.0219 0.00046 5.4
(46,46%B 0.347 0.0057 0.00006 6.2
(58,58FM 0.119 0.0011 0.00002 5.8
(58,58§" 0.107 0.0013 0.00002 6.1
(84,8418 0.0133 0.00009 0.00002 4.7
(98,98%M 0.0047 0.00003 0.00002 4.0
(106,106%8 0.0026 0.00002 0.00002 3.5

Table 6: Elastic wave scattering problety: error in % forw = 10.
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(6,6)°B 32.9 28.9 6.46 1.2
(10,108M 226 5.73 0.519 2.7
(12,12f8 21.1 14.0 0.376 2.9
(22,22§" 23.0 3.71 0.112 3.8
(26,26 195 0.850 0.0326 4.3
(34,34§8 16.4 0.35 0.0079 5.5
(46,46§® 9.50 0.121 0.0015 6.3
(58,58fM 2.06 0.0251 0.00025 6.5
(58,58§" 3.30 0.0468 0.00032 6.7
(84,84%8 0.45 0.0046 0.00007 6.3
(98,98fM 0.189 0.00139 0.00004 6.0
(106,106§5 0.232 0.00124 0.00004 6.3

Table 7: Elastic wave scattering problety: error in % forw = 15.
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(6,6)°B 32.7 28.9 16.3 0.5
(10,108 27.4 17.6 1.56 2.1
(12,1258 24.0 23.1 1.00 2.3
(22,22§" 25.6 19.6 0.502 2.9
(26,265M 225 4.03 0.137 3.7
(34,34§8 23.8 1.72 0.0567 4.5
(46,4655 21.2 0.949 0.0116 55
(58,58 13.1 0.218 0.0025 6.2
(58,58§" 19.2 0.419 0.0038 6.2
(84,84F®8 125 0.0046 0.00027 7.75
(98,98fM 4.00 0.0022 0.00006 8.1
(106,106§5 7.19 0.0024 0.00006 8.4

Table 8: Elastic wave scattering problety: error in % forw = 20.

22



log K

7’
’ /’ —.—h1
6 ~ .*
-
Phe _._h1/2
- h B
'4' 1/4

2 L L L L L L L L
10 20 30 40 50 60 70 80 90 100

number of plane waves m

w=15
20 T T
18 - ¢
————— ‘
-
16 - 8
R
’ ’f
’
141 L7 _ - 0.108 |1
’ ’f
’
121 . - 1
b4 ’ ’f
j=2} 7’ .
o ’ Phd
10f B
/< /’ —‘.
. Pie ==
8f .7 Phe -7 ]
'/ /’ .—‘
< o) -~
6r -7 -7 -o-h |
/’ ’4 h
- e -0-Ny
_ |
-
- -q-hy
2 . . . . . . . |

10 20 30 40 50 60 70 80 90 100
number of plane waves m

w=20
16 T T _‘_.ﬂ‘
—————
———
141 - 1
.
.,
.
12 ,/ ”, 4
. .~ 0.0971
.
’ -
10+ /z ’,’ 4
b4
2 ’ o
L ‘/ -
8r ’ /’ 7
’ Phe - a
’ - _ -
- -
/, Phe -
ey o~ .-
- _ - -@-h
- - 1
s -
-
4 > =0 =N
——— h
- - -
= 4 -hy
2 . . . . . . . |

10 20 30 40 50 60 70 80 90 100
number of plane waves m

Figure 4: The condition numberversus the numben of plane waves for the mesh gritis, h% , andh%.

23



7.3. PUFEM with unbalanced choices of plane waves on irregular mesh grid

So far, only balanced choices of plane wave sets were iusedl = ms. Moreover, the mesh grids, h% and
h% are structured meshes in which all elements are of the saape €ind size, within the same mesh grid. Next, the
behaviour of the proposed plane wave enrichment for 3Dielastve scattering is investigated when the numbers of
approximating plane wavesr andms are unbalancede. mp # ms. The equivalent of mesh grhﬂ% of Figure 2 has
been generated by random perturbation of its nodal poirdbtain the mesh grid of Figure 5.
Previous work [28] has shown that a careful choice of the rensibf approximating P and S plane waves may improve
the accuracy of the PUFEM and its conditioning. This is dubéfact thaks is always greater thagp and hence the
multi-wavelength mesh sizecontains more S wavelengths than P wavelengths. Theréfonaekes sense to choose
more S plane waves than P plane waves in the approximatisggek ms. It was suggested to choosg/mp of
the same order dfs/kp [28]. See also references [25] and [53].
In this case, the scattering problem with= 20 is solved with various combinationsmwf andms plane waves. The
considered setsp for the approximating P plane waves ang = 128, 102, 84, 66, 58, 46, 34, 22 and 12. For each
of the values ofmg = 128, 102, 84 and 66, selected numberspfare chosen such that < ms. For example, for
ms = 128 all valuesmp = 128, 102, 84, 66, 58, 46, 34, 22 and 12 are considered. Whileda= 66, only values of
mp = 66, 58, 46, 34, 22 and 12 are considered.

Figure 5:Irregular mesh gridhy .

The results of Figure 6 show the behaviour of theerror and the condition number for various combinations of
mp andms plane waves, with the total number of approximating planeaesdeingme + 2ms. It is obvious again, as
previously mentioned, that increasing the number of agprating plane waves in general improves the quality of the
results but leads to an increase of the condition numberear, it is also revealed that balanced choices of P and
S plane waves do not lead to the best quality of results. Bhikearly shown by the casesmf = 102 and 128. For
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the first casems = 102, the lowest , error is provided for the total number of plane waves equ2i3® leading to

mp = 84. For the second caseg = 128, the lowesL; error is obtained fomp + 2mgs = 322 givingme = 66. In both
casesms/mp > 1 and more preciselyns/mp = 1.21 and 1.93, respectively. It is worth noting that the sutigeso
choosams/mp of the order oks/kp ~ 1.73 was drawn from past work for indication [28]. But giventthize element
sizes are not constant throughout the mesh grid it is aatiegpto see variations in the values of the ratigymp. As

for conditioning, it was expected to increase with the iaseof the total number of approximating plane waves, as

the mesh size and the frequency are both fixed.
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Figure 6:L,-error and condition number versus the total number of pleenes for the scattering problem usingieegularmesh gridw = 20.

7.4. FEM and PUFEM solutions for elastic short wave scattering problems

The plane wave basis finite element model presented in thisiwgompared to polynomial based finite elements
for the solution of the scattering problem dealt with aboeethe range of frequencies=1, 5, 10 and 15. This
is achieved by comparing the accuracy of the results basédedry error, the total number of degrees of freedom
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(totdof) required in the solution as well as the total nundifestorage locations (totsys) of the final system matrix to
be solved. The resolution level used in both schemes isadcated via the numbeg of DOF per S-wavelength. In
PUFEM approach the elements are 8-node hexahedrons wetrlyninterpolated geometry. While for FEM 8-node
and 27-node hexahedral elements have been used for t@i-tmel tri-quadratic cases, denoted respectively by FEM1
and FEM2. To improve the accuracy of the PUFEM model, planeevemrichmentm = mp = mgs is gradually
increased with mainly the mesh gitig and once Witl’h%. For the FEM case, tferenth-refinements are adopted to
obtainh%, h%, h%e andh2_13 for the mesh based on tri-linear elements, lag,ch%, h1_15 andh%] for the tri-quadratic case.
The refinement approach ensures that each S-wavelengthdisllewby a sfficient number of elements reflected in
the discretization levets.

Before considering the results, it is worth mentioning tihé is not a fair comparison since PUFEM is a high order
approach while for FEM only low order elements are used. Hewdrom the practice point of view, when solving
engineering problems it is very common to use low order efgmenainly linear and quadratic, and if these low order
elements are enriched via the incorporatiom@fiori knowledge of the wave field in the numerical model, such as
done here with the use of enriching P and S plane waves, iredrguality results with low discretization levels would
be achieved, as will be shown next.

The results of Table 9 show that the PUFEM approach leadgterlogiality results as well as to significant reductions
of the total number of degrees of freedom (totdof), the totahber of storage locations (totsys) and the number of
degrees of freedom per wavelengtg), For example, fow=1, mesh grich;, combined with a plane wave enrichment
with m=10 and a discretization level=20, PUFEM leads to a very low, error of 0.003%. For the same frequency,
FEM1 produced an error of 0.33% witl = 40.77 while requiring more than double in terms of totdof andyst At
other circular frequencies, the performance of the PUFEMehis even more obvious as it leads to relatively very
low L, errors with discretization levels as low as 2.9, for exanipléhe case ofv = 15 andm = 98. For the latter
case, thd., errore, = 0.189% while with FEM1 the most refined mesh leadgio= 1.66% with a discretization
level of 14 DOFAs and very high numbers related to totdof and totsys. UsingENFoffers the possibility to further
enrich the model wittm = 154 and hence decrease theerror to 0.0199% or even use the mesh gr%'dNith m=58

to achieves; = 0.0251%. In both cases, the discretization level with respethe S-wavelength remains around
3.3. Furthermore, with PUFEM, there is also room to increhsecircular frequency of the problem and achieve
good quality results with practical parameters for totdwd ¢gotsys. However, in the case of FEM, further refining the
mesh would lead to more than a quarter of a million entriesdtfof and around 2 billions for totsys, which becomes

impractical to run on most personal computers. In such ¢asesputers with high specifications would be required.
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PUFEM

w m mesh totdof totsys 7s  &[%] CPU time (min)

1 10 hy 810 223,155 20 0.003 0.25
5 26 hy 2,106 1,506,843 556 0.031 0.55
10 58 hy 4,698 7,495,660 3.64 0.119 5.45
15 98 hy 7,938 21,396,880 2.9 0.189 28.58
15 154 Iy 12,474 52,833,628 3.34 0.0199 68.33
15 58 h 21,750 95,758,726 3.24 0.0251 30.58

Nl

FEM1 (tri-linear)

w mesh  totdof totsys Ts &[%] CPU time (min)
1 h% 2,187 535,086 40.77 0.33 0.17

5 hé 20,577 22,223,697 17.21 1.80 2.68

10 h%e 107,811 352,424,358 15.00 1.59 28.6

15 h 311,469 2,064,708,120 14.20 1.48 897.05

Bl

FEM2 (tri-quadratic)

w mesh totdof totsys Ts £[%] CPU time (min)
1 h% 2,187 800,442 40.77 0.041 0.02

5 h% 14,739 19,193,636  15.40 0.457 2.28

10 h%s 89,373 386,659,311 14.00 0.350 36.88

15 h 206,763 1,564,449,546 12.40 0.387 226.53

Bl

Table 9: Elastic wave scattering problem: comparison betwUFEM and FEM, tri-linear and tri-quadratic.
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Table 9 also shows that using tri-quadratic finite elemerEdM2) improves the quality of the results in compar-
ison to tri-linear elements (FEM1). The tendency shows ithalso reduces the required total number of degrees of
freedom (totdof) and the total number of storage locatitotsys). Continuing to increase the order of the polynomial
based FEM may lead to significantly better quality resulid lamwer computational requirements in terms of totdof,
totsys ands. As already mentioned, comparing PUFEM to FEM1 and FEM?2 tdaipas significantly better results
could be obtained using elements of higher order than gtiedfais should be investigated but, in practice, often lin
ear and quadratic elements are used. Moreover, the in@ipoof the wave numbeks andks into the enrichment
model of expression (20), via P and S plane waves, incorperatiuable knowledge in the presented finite element
model about the wave problem at hand. This latter aspect ragygpkey role in making PUFEM competitive in
solving elastic wave problems at high frequencies.

Last, it is important to add that for PUFEM a high integratsmmeme is used to evaluate the highly oscillatory inte-
grands of the element matrices. This uses thousands ofati@g points at high frequencies. So, at this stage, the
computational time is mostly taken by the assembling pmedsle the solution part represents only a fraction of
the total time thanks to the drastic reduction of the reqgliotal number of degrees of freedom. However, develop-
ing semi-analytical integration schemes in three dimerssgimilar to those presented in the two-dimensional case

[28, 54] would significantly reduce the computationdibet and would make the PUFEM model even more attractive.

8. Conclusions

In this work, plane wave enriched finite elements are desapithin the framework of PUFEM for the solution
of three dimensional elastic wave problems. These elenagatsapable of containing many wavelengths per nodal
spacing and consequently allow the relaxation of the fi@whl requirement of several nodal points per wavelength,
used in low order polynomial based FEM.
This is achieved by expanding the displacement field intordie series of displacements with respect to many di-
rections corresponding to P and S plane waves, each prapggat specified angle in the three-dimensional space.
The displacement due to a P plane wave lies in its directigor@pagation whereas the displacement due to the S
plane wave is normal to its propagation direction and hetisg@solved into two components contained in the plane
normal to the S plane wave direction.
Itis shown that the proposed approach provides bettertguaBults with significantly reduced requirements in terms
of the total number of degrees of freedom and total numbetoo&ge locations due to the fact that the elements may
contain many wavelengths per nodal spacing. However, ierai@ make the current model competitive, the high
order numerical integration issue must be addressed byapeng fast integration schemes similar to those produced
for the two-dimensional elastic wave problems [28].

It is shown that using an unbalanced choice of the plane wasierenent leads to better quality results and lower
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condition number in comparison to the balanced choice opfitoreover, flexibility in the choice of the plane wave
directions in space is an important aspect for the good pedoce of the method. This could be overcome by using
some of the many strategies already developed in otherrasields, some of them referenced herein, and providing
uniform distributions for any chosen number of directions.

Last, ill conditioning being an inherent feature of the @awmave enrichment, even if it is possible to choose param-
eters in terms of the mesh size and plane wave enrichmentdimea frequency such that the condition number is
kept within acceptable limits, developing suitable pretianers as well as using iterative solvers for large peais

would be of practical interest.

Acknowledgements
The authors are grateful to the Engineering and Physicahn8es Research Council (EPSRC) for funding this work
under Grant Number E®180421.

References

[1] Monk P and Wang DQ. A least-squares method for the Heltaremjuation Comput. Meth. Appl. Mech. Engng. 1999;175:121-136.

[2] Melenk JM and Babuska I. The Partition of Unity Finiteelent Method: Basic Theory and Applicatio@amput. Meths. Appl. Mech. Engrg.
1996;139:289-314.

[3] Babuska I and Melenk JM. The Partition of Unity Methaddt. Jour. Num. Meth. Eng. 1997;40:727—758.

[4] Laghrouche O and Bettess P. Short wave modelling usiegiapfinite elementslournal of Computational Acoustics 2000;8(1):189-210.

[5] Laghrouche O, Bettess P and Astley RJ. Modelling of sharte difraction problems using approximating systems of plane sdae Jour.
Num. Meth. Engng. 2002;54:1501-1533.

[6] Laghrouche O, Bettess P, Perrey-Debain E and Trevely&tahe wave basis for wave scattering in three dimensiGasim. Num. Meth.
Engng. 2003;19:715-723.

[7] Perrey-Debain E, Laghrouche O, Bettess P, TrevelyafaheRvave basis finite elements and boundary elements fee timensional wave
scatteringPhil. Trans. R. Soc. Lond. A 2004;362:561-577.

[8] Ortiz P and Sanchez E. An improved partition of unity #nilement model for éiraction problemsint. Jour. Num. Meth. Eng. 2001;
50:2727-2740.

[9] Cessenat O, Després B. Application of an ultra weakat@mal formulation of elliptic PDEs to the two-dimensibriéelmholtz problem.
SAM J. of Num. Analysis 1998;35(1):255-299.

[10] Huttunen T, Monk P, Kaipio JP. Computation aspects efittira weak variational formulatiod. Comput. Phys. 2002;182:27—46.

[11] G. Gabard, Discontinuous Galerkin methods with plaaees for time-harmonic problem&.Comput. Phys. (2007)225, 1961-1984.

[12] Strouboulis T, Babuska I, Copps K. The design and aislygf the generalized finite element meth@dmputer Methods in Appl. Mechanics
and Engr. 2000;181:43-69.

[13] Farhat C, Harari I, Franca L. The discontinuous enriehtimethodComp. Meth. Appl. Mech. Engng. 2001;190:6455-6479.

[14] E. Perrey-Debain, J. Trevelyan and P. Bettess. Newiapgave boundary elements for short wave proble@mnm. Num. Meth. Eng. 2002;
18(4);259— .

[15] Peake MJ, Trevelyan J, Coates G. Extended isogeontsitiadary element method (XIBEM) for two-dimensional Hetith problems.
Computer Methods in Appl. Mechanics and Engr. 2013;259:93-102.

[16] Gillman A, Djellouli R, Amara M. A mixed hybrid formulédn based on oscillated finite element polynomials for s@uHelmholtz prob-
lems.Journal of Computational and Applied Mathematics 2007;204:515-525.

29



[17] Amara M, Calandrab H, Dejllouli R, Grigoroscuta-Staugf M. A stable discontinuous Galerkin-type method forved efficiently
Helmholtz problemsComputers and Structures 2012;106-107:258-272.

[18] Ladeveze P. A new computational approach for strectilsrations in the medium frequency ran@eR. Acad. ci. Paris 1996;322(12):849—
856.

[19] Geuzaine C, Bedrossian J, Antoine X. An Amplitude Folatian to Reduce the Pollution Error in the Finite ElementuBon of Time-
Harmonic Scattering ProblenhEEE Transactions on Magnetics 2008;44(6):782-785.

[20] Ortiz P. Finite Elements using Plane Wave Basis for tedag of Surface Water WaveBhil. Trans. R. Soc. Lond. A 2004;362:525-540.

[21] Laghrouche O, Bettess P, Perrey-Debain E, Trevely&ade interpolation finite elements for Helmholtz problenitwvjumps in the wave
speedComput. Meth. Appl. Mech. Engng. 2005;194:367—-381.

[22] Tezaur R, Kalashnikova |, Farhat C. The discontinuonscement method for medium-frequency Helmholtz problemith a spatially
variable wavenumbe€omp. Meth. Appl. Mech. Engng. 2014;268;126-140.

[23] Astley RJ, Gamallo P. Special short wave elements fov #oousticsComp. Meth. Appl. Mech. Engng. 2005;194:341-353.

[24] Perrey-Debain E, Trevelyan J, Bettess P. P-wave and#&wecomposition in boundary integral equation for pldastedynamic problems.
Commun. Numer. Meth. Engng. 2003;19:945-958.

[25] Huttunen T, Monk P, Collino F, Kaipio JP. The ultra weakriational formulation for elastic wave problen&8AM J. Sci. Comput. 2004;
25:1717-1742.

[26] Zhang L, Tezaur R, Farhat C. The discontinuous enricttmaethod for elastic wave propagation in the medium-frequeregime.int. J.
Numer. Methods Engrg. 2006;66:2086—2114.

[27] ElKacimi A, Laghrouche O. Numerical Modelling of ElasWave propagation in Frequency Domain by the Partition mtyJFinite Element
Method,Int. Jour. Num. Meth. Eng. 2009;77:1646—1669.

[28] El Kacimi A, Laghrouche O. Improvement of PUFEM for themerical solution of high frequency elastic wave scatteion unstructured
triangular mesh griddnt. Jour. Num. Meth. Eng. 2010;84:330-350.

[29] El Kacimi A, Laghrouche O. Wavelet based ILU precordtigrs for the numerical solution by PUFEM of high frequentaséc wave
scatteringJournal of Computational Physics. 2011;230:3119-3134.

[30] Huttunen T, Kaipio JP, Monk P. An ultra-weak method fooastic fluid-solid interaction]. Comput. Appl. Math. 2008;213:166—185.

[31] Tezaur R, Zhang L, Farhat C. A discontinuous enrichnmeethod for capturing evanescent waves in multiscale fluitflamnd/solid problems.
Comp. Meth. Appl. Mech. Engng. 2008;197:1680—-1698.

[32] Laghrouche O, El Kacimi A, Trevelyan J. Extension of ldFEM to elastic wave problems in layered medurnal fo Computational
Acoustics 201220; 14 pages.

[33] Chazot J-D, Nennig B, Perrey-Debain E. Performanceh®fartition of unity finite element method for the analysiswo-dimensional
interior sound fields with absorbing materialeurnal of Sound and Vibration 2013;332(8):191-8-1929.

[34] Chazot J-D, Perrey-Debain E. The Partition of UnityiféirElement Method for the simulation of waves in air and ptastic mediaJ.
Acoust. Soc. Am. 2014,;135: 724-733.

[35] Hiptmair R, Moiola A, Perugia I. A survey of Tfi&z methods for the Helmholtz equation. arxiv.org:1506 2452015.

[36] Massimi P, Tezaur R, Farhat C. A Discontinuous Enrichtridethod for Three-Dimensional Multiscale Harmonic Waveggation Prob-
lems in Multi-Fluid and Fluid-Solid Medidnt. J. Numer. Methods Engrg. 2008;76:400—425.

[37] Luostari T, Huttunen T, Monk P. Error estimates for altveak variational formulation in linear elasticityyl2AN: Mathematical Modelling
and Numerical Analysis 2013;47 :183-211.

[38] Graf F. Wave Motion in Elastic Solid©hio State University, Ohio, 1975.

[39] Bettess P and Bettess JA. A profile matrix solver witHtkni constraint facility.Eng. Comput. 1986;3:209-216.

[40] Givoli D. Numerical methods for problems in infinite dams.Amsterdam, Elsevier Science Publishers, 1992.

[41] Gilbarg D, Trudinger NS. Elliptic partial éfierential equations of second ord&oringer-Verlag, 1983.

[42] Leis R. Boundary value problems in mathematical pts/Sieubner, Wley , 1989.

30



[43] HSL, A Collection of Fortran codes for large-scale stiec computation. httgfwww.hsl.rl.ac.uk, 2007.

[44] Kurihara Y. Numerical integration of the primitive eafions on a spherical gritiion. Wea. Rev. 1965;93:399-415.

[45] Williamson DL. Integration of the primitive baritropimodel over a spherical geodesic gionthly Weather Review 1965;98:512-520.

[46] Cullen MJP. Integration of the primitive equations ospdere using the finite element methQuarterly J. Roy. Met. Soc. 1974;100:555-562.

[47] Baumgardner JR, Frederickson PO. Icosahedral disatiein of the two-sphereSl AM Journal on Numerical Analysis 1985;22:1107-1115.

[48] Grosu E, Harari I. Three-dimensional element configans for the discontinuous enrichment method for acosstit. Jour. Num. Meth.
Eng. 2009;78:1261-1291.

[49] Beverly LLL. The creation of algorithms designed foladyzing periodic surfaces of crystals and mineralogicetiportant sites in molecular
models of crystalsPhD Dissertation, Virginia Polytechnic Institute and State University, OO

[50] Leopardi P. Distributing points on the sphere: Panisi, separation, quadrature and eneRf)D Dissertation, University of New South
Wales, 2007.

[51] Peake MJ, Trevelyan J, Coates G. The equal spacimgpafints on a sphere with application to partition-of-unitawe ditfraction problems
Engineering Analysis with Boundary ElemeniEngineering Analysis with Boundary Elements 2014;40:114-122.

[52] Peake MJ, Trevelyan J, Coates G. Extended isogeonieitindary element method (XIBEM) for three-dimensional medwave acoustic
scattering problem€omput Methods Appl Mech Eng 2015;284:762—-780.

[53] Perrey-Debain E, Plane wave decomposition in the usé ¢onvergence estimates and computational asge&@smput. Appl. Math 2006;
193:140-156.

[54] Bettess P, Shirron J, Laghrouche O, Peseux B, SugimaondRTrevelyan J. A numerical integration scheme for spédicidé elements for
Helmholtz equationint. Jour. Num. Meth. Engng. 2003;56:531-552.

[55] R. Avila-Carrera and F.J. Sanchez-Sesma, Scattering dhddtion of elastic P- and S-waves by a spherical obstacleeview of the
classical solution, Geofisica Internacoional 20883—21.

[56] I.S. Fomenko, V.M. Golub, Ch Zhang, Q.T. Bui, S.Y. Wang lasp elastic wave propagation and band-gaps in layeredduatly graded
phononic crystals Int J Solids Struct, 51 (13) (2014), pf212603

[57] T.Huttunen, M. Malinen and P. Monk, Solving Maxwells eqaas using the ultra weak variational formulation. J. Confploys. 223 (2007)
731758.

31



