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1 Introduction

The dynamics of five-dimensional supersymmetric gauge theories has many interesting fea-

tures. From the Lagrangian perspective these field theories are not renormalisable. How-

ever, by using string theoretic methods along with field theory analysis, it was demonstrated

that a number of such field theories can be considered as flowing from certain non-trivial

superconformal field theories in the ultraviolet (UV) [1–4]. Such UV fixed points at infinite

gauge coupling may exhibit an enhancement of the global symmetry. In particular, in the

seminal work [1], it was pointed out that the UV fixed point of 5d N = 1 SU(2) gauge

theory with Nf ≤ 7 flavours exhibits ENf+1 flavour symmetry, which enhances from the

global symmetry SO(2Nf )×U(1) apparent in the Lagrangian at finite coupling. Since then

a large class of five dimensional supersymmetric field theories have been constructed using

webs of five-branes [5–7] and the enhancement of the global symmetry of these theories has

been studied using various approaches, including superconformal indices [8–19], Nekrasov

partition functions and (refined) topological string partition functions [20–28].

In five dimensions, instantons are particles charged under the the U(1) global symmetry

associated with the topological conserved current J = 1
8π2 Tr ∗(F∧F ); this global symmetry

is denoted by U(1)I in the rest of the paper. In the UV superconformal field theory, the

instanton particles are created by local operators known as instanton operators, that insert

a topological defect at a spacetime point and impose certain singular boundary conditions

on the fields [29–31]. These operators play an important role in enhancing the global

symmetry of the theory. For 5d N = 1 field theories at infinite coupling, it was argued

that instanton operators with charge I = ±1, form a multiplet under the supersymmetry

and flavour symmetry [31]. In 5d N = 2 Yang-Mills theory with simply laced gauge group,

it is believed that the instanton operators constitute the Kaluza-Klein tower that enhances

the Poincaré symmetry and provides the UV completion by uplifting this five dimensional

theory to the 6d N = (2, 0) CFT [29, 32, 33].

Standard lore says that the Higgs branch of theories with 8 supercharges in dimensions

3 to 6 are classically exact, and do not receive quantum corrections. In 5 dimensions, this

statement turns out to be imprecise, and should be corrected. In fact, one of the main

points of the paper, is that there are three different regimes, given by 0, finite, and infinite

gauge coupling. The hypermultiplet moduli space, which we always refer to as the Higgs

branch, turns out to be different in each of these regimes, and hence our analysis corrects

and sharpens the standard lore. The main goal of the paper is to understand how, at infinite

coupling, instanton operators correct the chiral ring relations satisfied by the classical fields

at finite coupling.

In order to perform such an analysis we start from the known Higgs branch at infi-

nite coupling and write the Hilbert series of such a moduli space for various 5d N = 1

– 2 –
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theories. We mostly focus on the SU(2) gauge theories with Nf flavours, for which string

theory arguments show that the Higgs branch at infinite coupling is the reduced moduli

space of one ENf+1 instanton on C2 [1, 6]. The Hilbert series counts the holomorphic func-

tions that parametrise the Higgs branch, graded with respect to the Cartan subalgebra

of the (enhanced) flavour symmetry and the highest weight of the SU(2) R-symmetry of

the theory:

H(t, y) = TrH

(
t2RyHAA

)
, (1.1)

where H is the Hilbert space of chiral operators of the SCFT, R the SU(2)R isospin and

HA the Cartan generators of the enhanced global symmetry.

Such a Hilbert series can then be expressed in terms of the global symmetry of the

theory at finite coupling — the latter is a subgroup of the enhanced symmetry at infi-

nite coupling:

H(t, y(x, q)) = TrH

(
t2RqIxHaa

)
, (1.2)

where I is the topological charge and Ha the Cartan generators of the SO(2Nf ) flavour

symmetry. This decomposition allows us to extract the contributions of the classical fields

and the instanton operators to the Higgs branch chiral ring and explicitly write down the

relations they satisfy.

The paper is organised as follows. In section 2 we study the Higgs branch of SU(2)

gauge theories with Nf ≤ 7 flavours, spell out the relations in the chiral ring in terms of

mesons, glueball and instanton operators, and discuss the dressing of instanton operators.

We generalise the analysis to pure USp(2k) Yang-Mills theories with an antisymmetric

hypermultiplet in sections 3 and 4, and to pure SU(N) Yang-Mills in section 5. We close

the paper with a discussion of our results and an outlook in section 6. Several technical

results are relegated to appendices.

2 SU(2) with Nf flavours: one ENf+1 instanton on C2

The dynamics of 5d N = 1 SU(2) gauge theory with Nf ≤ 7 flavours was studied in

detail in [1]. In there it was argued that, despite being power counting non-renormalisable,

these theories possess strongly interacting UV fixed points. Moreover a classification was

proposed where the global symmetry, which at finite coupling is SO(2Nf ) × U(1)I , with

U(1)I the global symmetry associated with a topologically conserved current, enhances

to ENf+1, where Ẽ1 = U(1), E1 = SU(2), E2 = SU(2) × U(1), E3 = SU(3) × SU(2),

E4 = SU(5), E5 = SO(10) and E6, E7, E8 are the usual exceptional symmetries.

The analysis presented in this paper focuses on how the Higgs branch of these 5d

theories changes along the RG flow. In particular we take care in distinguishing three

different regimes for these theories, the operators that contribute to the chiral ring on the

Higgs branch1 and the defining equations that these operators satisfy:

1Even though we discuss theories with minimal N = 1 supersymmetry (that is 8 Poincaré supercharges)
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• In the classical regime, where fermions are neglected, these 5d theories have the usual

Higgs branch which is just given by M̃1,SO(2Nf ), the centred (or reduced) moduli space

of one SO(2Nf ) instanton. The gauge invariant operators that generate this space

are mesons Mab, constructed out of chiral matter superfields in the bifundamental

of the SU(2) gauge group and SO(2Nf ) flavour group. The relations that these

generators satisfy on the moduli space can be extrapolated from its description as

the minimal nilpotent orbit of SO(2Nf ) [34]. They are the usual Joseph relations [35]

and their transformation properties can be read off from the decomposition of the

second symmetric product of the adjoint, the representation in which the generator

transforms. Let V (θ) denote the adjoint representation. The decomposition

Sym2V (θ) = V (2θ) + I2 (2.1)

prescribes that the relations transform in the representation I2.

For SO(2Nf )

I2 = Sym2[1, 0, . . .] + ∧4[1, 0, . . .] . (2.2)

We can construct these representations from the adjoint mesons Mab as follows. Take

M to be an antisymmetric 2Nf ×2Nf matrix, Mab = −M ba, a, b = 1, . . . , 2Nf . Then

the two terms of (2.2) correspond respectively to:

M2 = 0 (2.3)

M [abM cd] = 0 . (2.4)

We call the last equation the rank 1 condition, since for an antisymmetric matrix it

is equivalent to the vanishing of all degree 2 minors.

• When the coupling is finite, one needs to take into account the contribution from the

gaugino sector. In particular, the glueball superfield S, which is a chiral superfield

bilinear in the gaugino superfield W, is now no longer suppressed and will de jure

appear in the chiral ring. This operator satisfies a classical relation in the chiral ring

as in four dimensions [36], namely

S2 = 0 , (2.5)

hence S is the only extra operator that one needs to consider at finite coupling.

At first sight it might seem counterintuitive that S contributes to the Higgs branch

as it is a bilinear in the vector multiplet. In fact in 5d the Higgs branch is the

only complex branch of the full moduli space. As such, any chiral operator, and in

in 5 dimensions, we are interested in the chiral ring as defined in terms of a subsuperalgebra with 4 su-

percharges, and the Higgs branch as a complex algebraic variety. We therefore use 4d N = 1 notation

and terminology throughout this paper. Even though this formalism is not consistent with Poincaré super-

symmetry in five dimensions, it is necessary to discuss chiral operators and holomorphic functions on the

Higgs branch.

– 4 –
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particular the glueball superfield S, belongs to the class of Higgs operators. This will

become even clearer later, when we recover the finite coupling Higgs branch from the

one at infinite coupling.

Geometrically we interpret the operator S as generating a 2-point space, which by

a slight abuse of notation we denote by Z2. Algebraically the Hilbert series for this

space is simply written as

HS(Z2; t) = 1 + t2 (2.6)

where 1 signifies the identity operator and the t2 term is associated to the quadratic

operator S. The fugacity t grades operators by their SU(2)R representation and the

normalisation is chosen so that the power is twice the isospin. The meson Mab and

the glueball superfield S obey the chiral ring relation [36, 37]

SMab = 0 . (2.7)

This signifies that the spaces M̃1,SO(2Nf ) and Z2 intersect only at the origin.

From an algebraic perspective, when two moduli spaces X and Y intersect, the Hilbert

series of their union is given by the surgery formula

HX∪Y = HX +HY −HX∩Y , (2.8)

where the subtraction is done to avoid double counting [38]. Thus, when Z2 is glued

to M̃1,SO(2Nf ), the net effect on the Hilbert series is simply that of adding a t2 to the

Hilbert series of M̃1,SO(2Nf ).

The plethystic logarithm2 of this newly obtained expression is interesting: it shows

that at order t4 there are two extra relations compared to the classical regime, one

transforming in the singlet and one transforming in the adjoint of SO(2Nf ). The

singlet relation is (2.5). For the adjoint relation the only possible extra operator that

one can construct in such a representation is SMab. The adjoint relation is then

precisely (2.7).

• At infinite coupling, the moduli space is a different space altogether. Instanton oper-

ators, carrying charge under U(1)I , contribute to the chiral ring and are responsible

for prompting symmetry enhancement: the Higgs branch in this regime becomes iso-

morphic to the reduced moduli space M̃1,ENf+1
of one ENf+1 instanton on C2 [1]. In

order for this to happen a crucial event on the chiral ring takes place: instanton and

anti-instanton operators I and Ĩ of U(1)I charge ±1 correct the relation (2.5).3

2The plethystic logarithm of a multivariate function f(x1, . . . , xn) such that f(0, . . . , 0) = 1 is

PL[f(x1, . . . , xn)] =

∞∑
k=1

1

k
µ(k) log f(xk1 , . . . , x

k
n) (2.9)

where µ(k) is the Moebius function. The plethystic logarithm of the Hilbert series encodes generators and

relations of the chiral ring.
3We call the instanton operator Ĩ of topological charge −1 “anti-instanton operator”, even though it is

mutually BPS with the positively charged instanton operator I.
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This is the most dramatic dynamical mechanism happening at infinite coupling: the

operator S is no longer a nilpotent bilinear in the vector multiplet and it becomes,

for all intents and purposes, a chiral bosonic operator on the Higgs branch. The con-

tribution of S to the chiral ring will no longer amount to (2.6), but instead an infinite

tower of operators will appear generating a factor (1 − t2)−1 in the Hilbert series.

The purpose of this paper is to explore these statements quantitatively for known cases

of UV-IR pairs of theories. We do this as follows. We start from the UV theory at infinite

gauge coupling, which has ENf+1 symmetry acting on the hypermultiplet moduli space.

As soon as the dimensionful gauge coupling becomes finite, a term is added to the scalar

potential which is proportional to the norm squared of the moment maps of the broken

symmetries in the breaking ENf+1 → SO(2Nf )×U(1)I . Consequently, the broken moment

maps must vanish on the Higgs branch of the theory at finite coupling. In terms of the

chiral ring, this sets to zero the instanton operators I and Ĩ.4

Computationally, one starts with the Hilbert series of the reduced one ENf+1 instanton

moduli space written in terms of representations of ENf+1 [39] and decomposes them into

representations of SO(2Nf ) × U(1)I . For all theories of our interest, the Hilbert series

after this decomposition admits a very simple expression in terms of the highest weight

generating function [40]. This allows us to analyse the generators of the moduli space in

terms of instanton operators and classical fields, and in many cases the relations between

such generators are sufficiently simple to be written down explicitly.

2.1 E0

The E0 theory is the trivial case. There is no hypermultiplet moduli space. Consequently

the Hilbert series for this theory is just given by 1, corresponding to the identity operator.

The theory has no RG flow. Its interest lies in it being the limiting case of all the theories

we consider in this section since none of the operators (M ,S,I, Ĩ) makes an appearance.

2.2 Nf = 0

A pure SU(2) SYM theory with N = 1 supersymmetry in 5d can be obtained by flowing

from two UV fixed points which have different global symmetry. The existence of these

two theories is dictated by a discrete θ parameter taking value in π4(Sp(1)) = Z2 [2]. For

the non-trivial element the global symmetry at infinite coupling is Ẽ1 = U(1) whilst for

the identity element the global symmetry is E1 = SU(2).

2.2.1 The Ẽ1 theory

For the theory with θ = π no enhancement of the global symmetry occurs: the global

symmetry at finite and infinite coupling is the instanton charge symmetry U(1)I . Here

instanton operators are absent and the generator of the moduli space is just S obeying

S2 = 0, both at infinite and finite coupling. The moduli space generated by this operator

is simply Z2. Classically the moduli space is trivial.

4Although this argument applies to most of the theories we study in this paper, it is in general not useful

for theories where instanton operators have SU(2)R spin higher than 1, e.g. as in section 5.
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2.2.2 The E1 theory

For the theory associated to the trivial element of the Z2 valued θ parameter the U(1)I
topological symmetry is enhanced to SU(2) by instanton operators at infinite coupling. In

this regime the Higgs branch of the theory is isomorphic to the reduced moduli space of

one-SU(2) instanton M̃1,SU(2), which is the orbifold C2/Z2. This theory is the prototypical

example of the class we study. Since there is no flavour symmetry, we can understand the

three regimes by means of simple physical arguments.

As we flow away from the UV fixed point, the Higgs branch is lifted and its only rem-

nant is a discrete Z2 space generated by S. Classically, even this contribution can be ne-

glected and the Higgs branch is completely absent. This is a remarkable effect whereby from

no Higgs branch in the classical regime a full Higgs branch opens up at infinite coupling.

Algebraically we start from the Hilbert series for C2/Z2 and decompose it in represen-

tations of U(1)I so that we can identify the contribution from instanton operators, as well

as the finite coupling chiral operators, and their relations.

The Hilbert series for C2/Z2 can be written as

H[M̃1,SU(2)](t;x) =

∞∑
n=0

[2n]xt
2n =

1− t4

(1− t2x2)(1− t2)(1− t2x−2)
, (2.10)

where t is the fugacity for the SU(2)R symmetry, x is the fugacity for the SU(2) global

symmetry acting on C2/Z2, and [2n]x stands for the character, as a function of x, of the

representation of SU(2) with such a Dynkin label. Identifying the Cartan subalgebra of

the SU(2) symmetry with U(1)I , we obtain

H[M̃1,SU(2)](t; q
1/2) =

1− t4

(1− t2q)(1− t2)(1− t2q−1)

=
1

1− t2
∞∑

j=−∞
t2|j|qj .

(2.11)

2.2.3 The generators and their relations

Eq. (2.11) has a natural interpretation in terms of operators at infinite coupling:

• Each term in the sum t2|j|qj corresponds to an instanton operator I+|j| for j > 0

and an anti-instanton operator I−|j| for j < 0 that is the highest weight state of the

SU(2)R representation with highest weight 2|j|.5 q is the fugacity for the instanton

number U(1)I . The plethystic logarithm of the Hilbert series shows that the instanton

operator I+|j| is generated by the charge 1 operator I+1 ≡ I through the relation

I+|j| = (I)j . Similarly I−|j| = (Ĩ)j where Ĩ ≡ I−1.

• The tower of operators generated by S can be identified with the factor (1 − t2)−1.
This enhancement in the number of operators constructed from powers of S is crucial:

5Notice how the SU(2)R spin of an instanton operator of charge ±j is |j|. Whilst we can easily extract

the SU(2)R spin as a function of instanton number, it is not clear how to do so for the representation under

the global symmetry, as will be seen for the cases with higher number of flavours.
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at infinite coupling S is a full-on operator on the Higgs branch and, together with

the instanton and anti-instanton operators I, Ĩ, forms a triplet of the SU(2) that

generates C2/Z2.

From this form of the Hilbert series we can also give another interpretation to the Higgs

branch at infinite coupling. Instanton operators on the Higgs branch in 5d N = 1 theories

play a similar role to monopole operators in 3d N = 4 [41] and N = 2 theories [42, 43]: in

this sense (2.11) can be interpreted as the space of dressed instanton operators, where the

factor 1
1−t2 is the dressing from the operator S and it is freely generated.

The numerator in the rational function of (2.11) signifies a relation quadratic in the

operators which can only be given by

S2 = IĨ , (2.12)

the defining equation for C2/Z2.

At finite coupling, where I, Ĩ = 0, we recover the known chiral ring relation (2.5), i.e.

the nilpotency of the operator S. As we have explained, the only remnant of C2/Z2 is a

residual Z2 generated precisely by S.

Classically, we can set S = 0 and lift the Higgs branch entirely.

2.3 Nf = 1

For Nf = 1 and Nf = 2 the infinite coupling Higgs branch is the moduli space of one

instanton for a product gauge group. In such cases the moduli space is given by the

union of the one instanton moduli space for each factor. For the case of Nf = 1, i.e

E2 = SU(2) × U(1), the Higgs branch at infinite coupling is thus the union of the one

SU(2) and the one U(1) instanton moduli spaces.

For the U(1) instanton moduli space, there are two possible ADHM constructions that

one may consider: (1) USp(2) gauge theory with one flavour, and (2) U(1) gauge theory

with one flavour. As analysed below, the Higgs branch of the former is Z2 whereas the

Higgs branch of the latter is a point. A priori it might not be apparent which option is the

correct one but consistency with the finite coupling regime points out that the right choice

is the former. We provide an independent argument below.

Let us begin with the first option. The Higgs branch of the ADHM gauge theory given

by USp(2) with one flavour describes the moduli space of one SO(2) instanton.6 There is

only one operator in the chiral ring, P , subject to a quadratic nilpotency relation, P 2 = 0.

The moduli space of one SO(2) instanton is thus Z2.
7

On the other hand, one may consider a U(1) gauge theory with one flavour, whose

Higgs branch is often referred to as “the moduli space of one U(1) instanton”. The gauge

invariant quantity is QQ̃ but is set to zero by the F-terms. The moduli space is thus trivial:

it consists of one point only rather than two.

6To be precise, the flavour symmetry of the quiver gauge theory is O(2), not SO(2). (We thank the

referee for raising this point.) However the moduli space of instantons in question is insensitive to the

difference between the two groups.
7Note that as rings C[P ]/〈P 2〉 6= C[P ]/〈P 〉.
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The reduced moduli space M̃1,E2 of one E2 instanton is thus either isomorphic to the

space C2/Z2 ∪ Z2 or to C2/Z2 ∪ {1}, depending on which of the above options is correct.

With the first option, the Hilbert series of M̃1,E2 can be written using (2.8) as:

H[M̃1,E2 ](t;x) = H[M̃1,SU(2)] +H[Z2]− 1

=
1− t4

(1− x2t2)(1− t2)(1− x−2t2)
+ t2

(2.13)

where H[Z2] = 1 + t2 is generated by P .

With the second option, the Hilbert series of M̃1,E2 is

H[M̃1,E2 ](t;x) = H[M̃1,SU(2)]

=
1− t4

(1− x2t2)(1− t2)(1− x−2t2)
.

(2.14)

The generator of the C2/Z2 factor is Φij , i = 1, 2, with Φij = Φji and it obeys the

quadratic nilpotency:

ΦijεjkΦ
kl = 0 (2.15)

where εij is defined by its antisymmetry property and ε12 = 1.

The extra generator, P , is there only in the case of a union of C2/Z2 with a two point

moduli space. In its presence, beside (2.15), two further relations hold:

P 2 = 0

PΦij = 0
(2.16)

(2.15) is the usual Joseph relation for the SU(2) minimal nilpotent orbit C2/Z2. The last

equation encodes the fact that the two spaces, C2/Z2 and Z2, only intersect at one point,

the origin of the moduli space.

Let us proceed without making any assumption on whether M̃1,E2 is given by C2/Z2 ∪
Z2 or C2/Z2 ∪ {1}. In the next subsection, we show that consistency with the finite coupling

result tells us that the correct choice is the former.

2.3.1 The generators and their relations

The theory at finite coupling has a Higgs branch which is isomorphic to the union of

M̃1,SO(2) with Z2, the former generated by a meson, M , subject to a quadratic nilpotency

and the latter by the glueball superfield S, itself quadratically nilpotent. The finite coupling

chiral ring is thus defined by:

M2 = S2 = SM = 0 (2.17)

where the last equation signifies that the two spaces, M̃1,SO(2) generated by M and Z2

generated by S, are orthogonal to each other and intersect only at the origin. Moreover

since M̃1,SO(2)
∼= Z2, the Higgs branch at finite coupling is given by Z2 ∪ Z2.

– 9 –
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The goal is to reproduce the set of equations (2.17) from the ones at infinite coupling

by setting the instanton operators appearing there to zero. This can be achieved as follows.

Decompose the generators Φij of M̃1,E2 by letting

Φ11 = I (2.18)

Φ12 = M (2.19)

Φ22 = −Ĩ (2.20)

where M is the SO(2) mesonic operator and I, Ĩ are the instanton and anti-instanton

operators respectively. The relation in (2.15) can then be rewritten as:

M2 = IĨ . (2.21)

It is clear that, by setting the instanton operators to zero, only one of the three equations

in (2.17) can be recovered for the finite coupling limit. However, if the extra operator P

and the extra relations in (2.16) are also taken into account, the classical regime can be

precisely recovered. To this avail, let P be decomposed as:

P = S −M , (2.22)

i.e. a linear combination of the meson M and the glueball S. Then (2.15) and (2.16)

together can be rewritten as:

M2 = ĨI (2.23)

S2 = ĨI (2.24)

SM = ĨI (2.25)

MI = SI (2.26)

ĨM = ĨS . (2.27)

This time, setting I, Ĩ = 0, the finite coupling relations (2.17) are finally recovered.

In the classical regime, where we neglect the contribution from S, we recover the space

Z2, the reduced moduli space of one SO(2) instanton generated by M , such that M2 = 0.

This is the required consistency that we mentioned above: M̃1,E2 is indeed C2/Z2 ∪ Z2,

the latter being given by the ADHM construction of USp(2) with 1 flavour.

Let us provide a complementary argument based on symmetries that supports the iden-

tification of M̃1,E2 with C2/Z2 ∪ Z2. The ADHM construction for U(1) with Nf flavours

provides the moduli space of U(Nf )/U(1) instantons, which for Nf = 1 corresponds to an

empty symmetry group and thus a trivial moduli space. Furthermore, in the presence of a

flavour symmetry, an SU(2)R spin-1 operator is a necessary requirement for the existence

of a linear hypermultiplet containing the conserved current. For a U(1) gauge theory with

1 flavour, there is no flavour symmetry and hence no associated generator. Identifying

M̃1,E2 with C2/Z2 ∪{1}, there would be only three generators transforming in the adjoint

representation of SU(2) associated with C2/Z2 but no extra generator associated with the

aforementioned U(1) symmetry, as in (2.14). On the other hand, for a USp(2) gauge theory
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with 1 flavour, there is an SO(2) ∼= U(1) flavour symmetry; hence there is a generator at

order t2 associated with this symmetry. We see that only when we identify M̃1,E2 with

C2/Z2 ∪ Z2 there are four generators transforming in the adjoint representation of the

global symmetry SU(2)×U(1) ∼= E2 as one can see explicitly in (2.13).

2.3.2 Expansion in the instanton fugacity

It is instructive to rewrite (2.13) as an expansion in q, the U(1)I fugacity. Replacing x, the

fugacity for SU(2), by q1/2 we have that:

H[M̃1,E2 ](t; y, q1/2) =
1

(1− t2)

∞∑
n=−∞

qnt|2n| + t2 . (2.28)

Hence a bare instanton operator with U(1)I charge n is the highest weight state of the spin

|n| representation of the SU(2)R symmetry. For n 6= 0, the tower of states originating from

the glueball (1− t2)−1, i.e the space C, acts as a dressing for the instanton operators. For

n = 0, the dressing is a different space, due to the presence of an extra piece of the moduli

space unaffected by instantons. It is in fact the space generated by S and M , subject to

the relations SM = 0 and M2 = 0, i.e C ∪ Z2.

2.4 Nf = 2

The reduced moduli space of one E3 = SU(3)×SU(2)A instanton8 is isomorphic to the union

of two hyperKähler cones, the reduced moduli space of one SU(3) instanton, M̃1,SU(3), and

the reduced moduli space of one SU(2)A instanton M̃1,SU(2)A , meeting at a point. As

an algebraic variety it is generated by operators transforming in the reducible adjoint

representation subject to the Joseph relations, which can be extracted from (2.1). The

Hilbert series can again be written using the surgery formula (2.8) as

H[M̃1,E3 ](t;x, y) = H[M̃1,SU(3)](t;x) +H[M̃1,SU(2)A ](t; y)− 1

=

∞∑
m1=0

[m1,m1]
SU(3)
x t2m1 +

∞∑
m2=0

[2m2]
SU(2)A
y t2m2 − 1 ,

(2.29)

where x = (x1, x2) are the fugacities for SU(3) and y is the fugacity for SU(2)A.

The SU(3) factor of the enhanced global symmetry E3 is broken to SU(2)B × U(1)I
when one flows away from the fixed point. The U(1) factor is identified with the topo-

logical symmetry U(1)I , up to a normalisation of charges that is explained below. The

SU(2)B factor instead combines with the SU(2)A factor in E3, which acts as a spectator

for the breaking, and together they form a global symmetry SO(4). Hence, we decompose

the representations of SU(3) in (2.29), whilst keeping the representations of SU(2)A, i.e

we break:

SU(3)× SU(2)A ⊃ SU(2)B × SU(2)A ×U(1)I ∼= SO(4)×U(1)I (2.30)

8The subscript A is used to differentiate from SU(2)B which is defined in the next paragraph.
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A possible projection matrix that maps the weights of SU(3) to SU(2)B × U(1) is

given by

PSU(3)→SU(2)B×U(1) =

(
0 1

2 1

)
, (2.31)

Let x = (x1, x2) be the fugacities of SU(3); z and w be those of SU(2)B and U(1) respec-

tively (the fugacity w for the U(1) factor will be related to the fugacity q for U(1)I shortly).

Under the action of this matrix, the weights of the fundamental representation of SU(3)

are mapped as follows:

(1, 0)→ (0, 2) , (−1, 1)→ (1,−1) . (2.32)

In other words, we have

x1 = w2 , x2x
−1
1 = zw−1 ⇔ x1 = w2 , x2 = zw . (2.33)

The character of the fundamental representation of SU(3) is mapped to that of SU(2)B ×
U(1) as

[1, 0] = x1 + x2x
−1
1 + x−12 = w2 + zw−1 + z−1w−1 = [02] + [1−1] , (2.34)

while the adjoint representation decomposes as

[1, 1]→ [00] + [20] + [13] + [1−3] . (2.35)

The U(1) charge is a multiple of 3 for states in the root lattice. To obtain integer instanton

numbers I ∈ Z, we set w3 = q, where q is the fugacity for U(1)I .

Under this map, the Hilbert series of the reduced moduli space of one SU(3) instanton

becomes

H[M̃1,SU(3)](t; z, q) =
∞∑
m=0

m∑
n1=0

m∑
n2=0

[n1 + n2]zq
n1−n2t2m , (2.36)

where z is the SU(2)B fugacity and q is the U(1)I fugacity.

The highest weight generating function9 [40] associated to this Hilbert series is

G[M̃1,SU(3)](t;µ, q) = PE
[
(1 + µq + µq−1 + µ2)t2 − µ2t4

]
, (2.38)

where µ is the fugacity for the highest weight of SU(2)B.

9The highest weight generating function for group of rank r is defined as follows:

G(t;µi) =
∑
ni,k

bn1,...,nr,k µ
n1
1 . . . µnr

r tk (2.37)

where {µi}ri=1 are highest weight fugacities s.t. [n1, . . . , nr] 7→ µn1
1 . . . µnr

r and {bn1,...,nr,k} are the series

coefficients.
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Thus, the highest weight generating function for (2.29) becomes

G[M̃1,E3 ](t;µ, ν, q) = PE
[
(1 + µq + µq−1 + µ2)t2 − µ2t4

]
+ PE[ν2t2]− 1 ,

(2.39)

where µ and ν are the fugacities corresponding to the highest weights of SO(4) ∼= SU(2)A×
SU(2)B.

The highest weight generating function (2.39) provides five dominant representations

that generate the highest weight lattice in a simple way. The information can be read as

follows. Inside the first PE we can identify the SU(2)R spin 2 generators: the singlet S, the

instanton operator µq which we denote by I ≡ I1, the anti-instanton operator µq−1 which

we denote by Ĩ ≡ I−1, and the meson transforming in the adjoint of SU(2)B, µ2, which

we denote by Tαβ and is subject to the traceless condition Tαβεαβ = 0. We also identify

a relation quadratic in the generators and transforming in the adjoint representation of

SU(2)B, the term −µ2t4. The second PE is the contribution from the spectator SU(2)A,

with the only representation ν2, the inert meson that we denote by T̃ α̇β̇ .

Eq. (2.39) is an expression that carries information about the representation theory

more concisely than the Hilbert series and furthermore the lattice it encodes is a complete

intersection. However in order to write the relations between the operators on the chiral

ring explicitly, we consider what the Joseph relations for M̃1,E3 imply.

2.4.1 The generators and their relations

For the M̃1,E3 case, the generators are Φi
j , with i = 1, 2, 3 and Φi

i = 0, transforming in

the [1, 1; 0] of SU(3) × SU(2)A, and T̃ α̇β̇ with T̃ α̇β̇εα̇β̇ = 0, transforming in the [0, 0; 2] of

SU(3)× SU(2)A. The relations can be read off from (2.1):

Sym2([1, 1; 0] + [0, 0; 2]) = Sym2[1, 1; 0] + Sym2[0, 0; 2] + [1, 1; 2] where

Sym2([1, 1; 0]) = [2, 2; 0] + [1, 1; 0] + [0, 0; 0]

Sym2([0, 0; 2]) = [0, 0; 4] + [0, 0; 0]

(2.40)

Hence the generator Φi
j obeys a quadratic relation transforming in the reducible represen-

tation [1, 1; 0] + [0, 0; 0] whilst T̃ α̇β̇ obeys a singlet relation. This is to be expected, since

the minimal nilpotent orbit of traceless 2 × 2 matrix is the subset of matrices with zero

determinant. There is also a quadratic relation mixing Φi
j and T̃ α̇β̇ transforming in the

[1, 1; 2]. We can write these relations as follows:10

[1, 1; 0] + [0, 0; 0] : Φi
jΦ

j
k = 0

[0, 0; 0] : Tr(T̃ 2) ≡ T̃ α̇β̇εα̇σ̇εβ̇ρ̇T̃
ρ̇σ̇ = 0

[1, 1; 2] : Φi
j T̃

α̇β̇ = 0 ,

(2.41)

where the indices of T̃ are contracted by the epsilon tensor, e.g. (T̃ 2)α̇σ̇ = T̃ α̇β̇εβ̇ρ̇T̃
ρ̇σ̇ .

10For T̃ a symmetric 2 × 2 matrix, i.e. T̃ α̇β̇εα̇β̇ = 0, the following statements are equivalent: T̃ 2 = 0,

det T̃ = 0 and Tr T̃ 2 = 0.
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The glueball operator, the instanton and anti-instanton operators and the meson are

embedded into the generator Φi
j since this is the one transforming nontrivially under the

SU(3) factor that breaks into SU(2)B ×U(1). We choose the following embedding:

Φα
β = Tαγεγβ − 1

2Sδ
α
β α, β = 1, 2

Φα
3 = Iα

Φ3
α = εαβ Ĩ

β

Φ3
3 = S

(2.42)

where Tαβ is a traceless 2 × 2 matrix, Tαβεαβ = 0. Notice that the choice of Φα
β ensures

that Φi
j is traceless since Φi

i = Φα
α + Φ3

3 = 0.

The aim is to decompose the relations in the first and third equations of (2.41). Under

SU(3)× SU(2)A ⊃ SU(2)B ×U(1)I × SU(2)A the representations decompose as

[1, 1; 0] + [0, 0; 0] → [20; 0] + [11, 0] + [1−1, 0] + 2[00, 0]

[1, 1; 2] → [20; 2] + [11; 2] + [1−1; 2] + [00; 2] .
(2.43)

Thus the relations in the first equation of (2.41) decompose into the five relations

[20; 0] : STαβ = −IαĨβ + 1
2(Iρερσ Ĩ

σ)εαβ

[11, 0] : IβεβγT
γα = 1

2I
αS

[1−1, 0] : ĨβεβγT
γα = −1

2 Ĩ
αS

2[00, 0] : S2 = ĨαεαβI
β = 2 Tr(T 2) .

(2.44)

The relations in the second line of (2.43) can be explicitly written as:

[20; 2] : TαβT̃ α̇β̇ = 0

[11; 2] : IαT̃ α̇β̇ = 0

[1−1; 2] : ĨαT̃ α̇β̇ = 0

[00; 2] : ST̃ α̇β̇ = 0 .

(2.45)

Recall also from (2.41) that

[00; 0] : Tr(T̃ 2) = 0 . (2.46)

In total there are thus 10 equations, namely (2.44), (2.45) and (2.46).11

The finite coupling result that S be nilpotent is obtained by virtue of the last equation

of (2.44) when we set I, Ĩ = 0. Consequently we also restore the condition Tr(T 2) =

0, which, for a traceless 2 × 2 matrix, is equivalent to T 2 = 0, the classical relation.

Moreover (2.7) is also recovered.

11Notice that the meson T̃ α̇β̇ , the generator for the spectator SU(2)A, is made up of the same fundamental

fields (quarks) as the meson Tαβ . Before considering gauge invariant combinations, the quarks Qαα̇a,

with α, α̇ = 1, 2 and a = 1, 2, transform in the vector representation of the global symmetry SO(4) ∼=
SU(2)A×SU(2)B and in the fundamental representation of the gauge group SU(2). Out of these quarks the

following gauge invariant mesons can be constructed: Tαβ = Qαα̇aQ
ββ̇

bε
abεα̇β̇ and T̃ α̇β̇ = Qαα̇aQ

ββ̇
bε

abεαβ .

The difference between these two mesons is in the relations they satisfy at infinite coupling, one being

quantum corrected whilst the other being unaffected: Tr(T̃ 2) = 0 vs 2 Tr(T 2) = S2 = I · Ĩ.
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Another approach to see these 10 relations between the operators at infinite coupling

is to rewrite (2.29) in terms of characters of representations of SO(4)×U(1) and compute

its plethystic logarithm. For reference, we present such a Hilbert series up to order t4

as follows:

H[E3](t;x1, x2, q) = 1 +
(

1 + [2, 0] + [0, 2] + (q + q−1)[1, 0]
)
t2

+
(

1+[2, 0]+[4, 0]+[0, 4]+(q+q−1)([1, 0] + [3, 0]) + (q2+q−2)[2, 0]
)
t4

+ . . . . (2.47)

The plethystic logarithm of this Hilbert series is

PL [H[E3](t;x1, x2, q)] =
(

1 + [2, 0] + [0, 2] + (q + q−1)[1, 0]
)
t2+

−
(

3 + [2, 0] + [0, 2] + [2, 2] + (q + q−1)([1, 2] + [1, 0])
)
t4

+ . . . .

(2.48)

Indeed, the 10 relations listed in (2.44), (2.45) and (2.46) are in correspondence with the

terms at order t4 in (2.48). We emphasise here that the computation of the plethystic

logarithm provides an efficient way to write down the relations that are crucial to describe

the moduli space. This method is applied for the cases of higher Nf in subsequent sections.

We can rewrite these relations in terms of a 4× 4 adjoint matrix Mab, with a, b, c, d =

1, . . . , 4 vector indices of SO(4), such that

Mab = −M ba , (2.49)

as follows:

[2, 2] + [0, 0] : MabM bc = (εαβI
αĨβ)δac (2.50)

[0, 0] : εabcdM
abM cd = εαβI

αĨβ (2.51)

[0, 0] : S2 = εαβI
αĨβ (2.52)

[2, 0] : SMab(γab)αβ = Ĩ(αIβ) (2.53)

[0, 2] : SMab(γab)α̇β̇ = 0 (2.54)

q([1, 2] + [1, 0]) : MabIβ(γb)βα̇ = SIβ(γa)βα̇ (2.55)

q−1([1, 2] + [1, 0]) : MabĨβ(γb)βα̇ = SĨβ(γa)βα̇ . (2.56)

The gamma matrices γa for SO(4) take the following index form:

(γa)αα̇ (2.57)

and the product of two gamma matrices is defined as:

(γab)αβ ≡ (γ[a)αα̇(γb])ββ̇ε
α̇β̇ and (γab)α̇β̇ ≡ (γ[a)αα̇(γb])ββ̇ε

αβ ; (2.58)

where the spinor indices are raised and lowered with the epsilon tensor.
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2.4.2 Expansion in the instanton fugacity

It is useful to rewrite (2.39) in terms of an expansion in q:

G[M̃1,E3 ](t;µ, ν, q) =
1

(1− t2)(1− t2µ2)

∞∑
n=−∞

qnt2|n|µ|n| +
1

1− ν2t2
− 1 (2.59)

From here, we can extract the transformation properties of instanton operators of charge n

under the U(1)I . They transform as spin |n| highest weight states for SU(2)R and as spin

|n|/2 representations of SU(2)B.

The classical dressing for each qn instanton operator, the factor outside the sum, is, for

n 6= 0, a space generated by the SU(2)B adjoint meson Tαβ = Mab(γab)αβ and the glueball

operator S obeying the relation:

Tr(T 2) = S2 (2.60)

For n = 0 there is a contribution coming from the SU(2)A, the second term in (2.59),

which modifies the classical dressing entirely. The latter is in fact, for this charge zero

sector, generated by Mab and S subject to the following relations:

[2, 2] + [0, 0] : MabM bc = S2δac (2.61)

[0, 0] : εabcdM
abM cd = S2 (2.62)

[0, 2] : SMab(γab)α̇β̇ = 0 (2.63)

These relations are a subset of (2.50) - (2.56) constructed in the following way: we take

the first two equations and we substitute the instanton bilinear on the right hand side with

the glueball operator by means of (2.52). Moreover we keep (2.54) as it is a relation not

corrected by instanton operators.

2.5 Nf = 3

The moduli space of the reduced one E4 = SU(5) instanton, M̃1,E4=SU(5), is the nilpotent

orbit generated by the adjoint representation of SU(5). Its associated Hilbert series can

thus be written as

H[M̃1,SU(5)](t;x) =

∞∑
n=0

[n, 0, 0, n]xt
2n , (2.64)

where [1, 0, 0, 1]x is the character of the adjoint representation of SU(5) with fugacities

x = (x1, x2, x3, x4). In order to proceed with a decomposition from weights of SU(5)

representations to those of SO(6) ×U(1), we choose the projection matrix

PA4→D3×U(1) =


0 0 1 0

0 0 0 1

0 1 0 0

4 3 2 1

 , (2.65)
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which gives the fugacity map

x1 = w4 , x2x
−1
1 = y3w

−1 , x3x
−1
2 = y1y

−1
3 w−1 , x4x

−1
3 = y−11 y2w

−1 ,

⇔ x1 = w4 , x2 = y3w
3 , x3 = y1w

2 , x4 = y2w .

(2.66)

States in the root lattice carry a charge multiple of 5 for the U(1) associated to the fugacity

w, hence we set w5 = q in the following, where q is the fugacity for the integer quantized

instanton number U(1)I . Then (2.64) can be written in terms of the character expansion

of SO(6)×U(1) ⊃ SU(5) as

H[M̃1,SU(5)](t;y, q) =

∞∑
n=0

n∑
n1=0

n∑
n2=0

[0, n1, n2]yq
n1−n2t2n , (2.67)

where [p1, p2, p3]y is the character of a representation of SO(6) as a function of fugacities

y = (y1, y2, y3). The information contained in this equation can be carried compactly by

means of the associated highest weight generating function

G[M̃1,SU(5)](t;µ2, µ3; q) = PE
[
t2(1 + µ2q + µ3q

−1 + µ2µ3)− t4µ2µ3
]

(2.68)

where at t2 we can again recognise the contribution of S, a singlet of SO(6), the instanton

and the anti-instanton operators in the spinor [0, 1, 0] and cospinor [0, 0, 1] representations,

and the meson in the adjoint representation [0, 1, 1], while at order t4 is the basic rela-

tion between the operators. Notice that (2.68) is a generating function for a lattice with

conifold structure.

2.5.1 The generators and their relations

The generators and the relations can be extracted from the plethystic logarithm of the

Hilbert series. The Hilbert series of the reduced moduli space of 1 E4 instanton can be

written in terms of characters of SO(6) ×U(1) up to O(t4) as:

H[E4](t;x, q) = 1 + (1 + [0, 1, 1] + q−1[0, 0, 1] + q[0, 1, 0])t2

+
(

1 + [0, 1, 1] + [0, 2, 2] + q−1([0, 0, 1] + [0, 1, 2])

+ q([0, 1, 0] + [0, 2, 1]) + q−2[0, 0, 2] + q2[0, 2, 0]
)
t4 + . . . .

(2.69)

The plethystic logarithm of this Hilbert series is

PL [H[E4](t;x, q)] = (1 + [0, 1, 1] + q−1[0, 0, 1] + q[0, 1, 0])t2

−
(

2 + 2[0, 1, 1] + [2, 0, 0] + q([1, 0, 1] + [0, 1, 0])

+ q−1([1, 1, 0] + [0, 0, 1])
)
t4 + . . . .

(2.70)

Below we write down the generators corresponding to the terms at t2 and the explicit

relations corresponding to the terms at order t4 of (2.70).
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For SO(6), we use a, b, c, d = 1, . . . , 6 to denote vector indices and use α, β, ρ, σ =

1, . . . , 4 to denote spinor indices. Note that the spinor representation of SO(6) is complex.

The delta symbol carries has one upper and one lower index:

δαβ . (2.71)

The gamma matrices γa can take the following forms:

(γa)αβ and (γb)αβ , (2.72)

where the α, β indices are antisymmetric. The product of two gamma matrices has one

lower spinor index and one upper spinor index:

(γab)αρ ≡ (γ[a)αβ(γb])βρ . (2.73)

From (2.70) the generators of the moduli space are Mab, a 6×6 antisymmetric matrix, the

instanton operators Iα and Ĩα and the gaugino bilinear S. The relations corresponding to

the terms at order t4 of (2.70) can be written as follows:

[2, 0, 0] + [0, 0, 0] : MabM bc = (IαĨα)δac (2.74)

[0, 1, 1] : εabcdefM cdM ef = Ĩβ(γab)βαI
α (2.75)

[0, 0, 0] : S2 = IαĨα (2.76)

[0, 1, 1] : SMab = Ĩβ(γab)βαI
α (2.77)

q([1, 0, 1] + [0, 1, 0]) : MabIα(γb)αβ = SIα(γa)αβ (2.78)

q−1([1, 1, 0] + [0, 0, 1]) : MabĨα(γb)αβ = SĨα(γa)αβ . (2.79)

As can be seen, the classical relations are corrected by instanton bilinears and this is a

recurrent feature for all number of flavours. These relations can also be rewritten in terms

of an SU(4) matrix Mα
β using the following relation

Mab = Mα
β(γab)βα . (2.80)

2.5.2 Expansion in the instanton fugacity

We rewrite (2.68) as an expansion in q as follows:

G[M̃1,SU(5)](t;µ2, µ3, q) =
1

(1− t2)(1−t2µ2µ3)

(∑
n≥0

qn(t2µ2)
n +

∑
n<0

qn(t2µ3)
−n
)
. (2.81)

Two very interesting features emerge from the q expansion. Firstly, an instanton oper-

ator of charge n has SU(2)R spin |n| and it transforms as an |n|-spinor — a representation

with |n| on a spinor Dynkin label — of the global flavour group SO(6). Whilst in [31] it

was found that this result holds for n = 1, here we find a prediction for all n.

Secondly the instanton operators are dressed by a factor, the one in front of the sum,

which is generated by S and Mab, subject to the following relations:

[2, 0, 0] + [0, 0, 0] : MabM bc = S2δac (2.82)

[0, 1, 1] : εabcdefM cdM ef = SMab . (2.83)
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Interestingly, such relations can be extracted directly from (2.74) - (2.79) by keeping only

those relations that are not corrected by the instanton operators. This feature is a recurrent

theme for higher number of flavours.

2.6 Nf = 4

The Higgs branch at infinite coupling for an SU(2) theory with Nf = 4 flavours is isomor-

phic to the reduced moduli space of one E5 = SO(10) instanton M̃1,E5=SO(10), which is

given by the minimal nilpotent orbit of SO(10). Its Hilbert series is

H[M̃1,SO(10)](t;x) =

∞∑
n=0

[0, n, 0, 0, 0]xt
2n , (2.84)

where [0, 1, 0, 0, 0]x is the character of the adjoint representation of SO(10).

At finite coupling the theory has a global symmetry SO(8) × U(1). Hence we rewrite

this Hilbert series in terms of an SO(8) ×U(1) character expansion as

H[M̃1,SO(10)](t;y, q) =
1

1− t2
∑

n1,n2,n3≥0
[0, n1, 0, n2 + n3]yq

n2−n3t2n1+2n2+2n3 , (2.85)

where we decompose representations of SO(8) × U(1) ⊂ SO(10) using a projection matrix

that maps the weights of SO(10) representations to those of SO(8) ×U(1) as follows

PD5→D4×U(1) =


0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

−2 −2 −2 −1 −1

 . (2.86)

Under the action of this matrix, the fugacities x of SO(10) are mapped to the fugacities y

of SO(8) and w of U(1) as follows:

(x1, x2x
−1
1 , x3x

−1
2 , x4x5x

−1
3 , x5x

−1
4 ) =

(
w−2, y4, y2y

−1
4 , y1y

−1
2 y3, y1y

−1
3

)
⇔ (x1, x2, x3, x4, x5) =

(
1

w2
,
y4
w2
,
y2
w2
,
y3
w
,
y1
w

)
.

(2.87)

In (2.85) we set w2 = q to have integer instanton numbers, rather than even.

The corresponding highest weight generating function is

G[M̃1,SO(10)](t;µ2, µ4; q) = PE
[
t2(1 + µ2 + µ4q + µ4q

−1)
]

(2.88)

where we recognise the usual SU(2)R spin-2 generators: the glueball superfield S, a singlet

of SO(8), the instanton operators Iα and Ĩα associated to µ4q and µ4q
−1, both transforming

in the same spinor representation of SO(8) with opposite U(1) charge, as well as the meson

Mab, associated to µ2. The highest weight lattice is freely, generated as we see from the

lack of relations at order t4.

– 19 –



J
H
E
P
0
4
(
2
0
1
7
)
0
4
2

2.6.1 The generators and their relations

The expansion of (2.85) up to order t4 is given by

H[E5](t;x, q) = 1 +
(

1 + [0, 1, 0, 0] + (q + q−1)[0, 0, 0, 1]
)
t2

+
(

1 + [0, 1, 0, 0] + [0, 0, 0, 2] + [0, 2, 0, 0]

+ (q + q−1)([0, 0, 0, 1] + [0, 1, 0, 1]) + (q2 + q−2)[0, 0, 0, 2]
)
t4

+ . . . .

(2.89)

The plethystic logarithm of this Hilbert series is

PL [H[E5](t;x, q)] =
(

1 + [0, 1, 0, 0] + (q + q−1)[0, 0, 0, 1]
)
t2

−
(

2 + [2, 0, 0, 0] + [0, 1, 0, 0] + [0, 0, 2, 0] + [0, 0, 0, 2]

+ (q + q−1)([1, 0, 1, 0] + [0, 0, 0, 1]) + (q2 + q−2)
)
t4 + . . . .

(2.90)

From this collection of representations we can write the defining equations for the Higgs

branch at infinite coupling by constructing the relevant operators. For SO(8), we use

a, b, c, d = 1, . . . , 8 to denote the vector indices, α, β, ρ, σ = 1, . . . , 8 to denote those in the

spinor representation [0, 0, 0, 1] and α̇, β̇, ρ̇, σ̇ = 1, . . . , 8 to denote those in the conjugate

spinor representation [0, 0, 1, 0]. The delta symbol has the following forms:

δαβ or δαβ or δα̇β̇ or δα̇β̇ . (2.91)

The gamma matrices γa can take the following forms:

(γa)αα̇ or (γa)αα̇ . (2.92)

The product of two gamma matrices has the following forms:

(γab)αβ ≡ (γ[a)αβ̇(γb])ββ̇ and (γab)α̇β̇ ≡ (γ[a)αα̇(γb])αβ̇ (2.93)

and similarly for both upper indices; the indices α, β and α̇, β̇ are antisymmetric. The

product of four gamma matrices has the following forms:

(γabcd)αβ ≡ (γ[a)αβ̇(γb)ρβ̇(γc)ρσ̇(γd])βσ̇

(γabcd)α̇β̇ ≡ (γ[a)αα̇(γb)αρ̇(γ
c)ρρ̇(γ

d])ρβ̇
(2.94)

and similarly for both upper indices; the indices α, β and α̇, β̇ are symmetric.

The generators of the moduli space are Mab, which is a 8 × 8 antisymmetric matrix;

the instanton operators Iα and Ĩα; and the glueball superfield S.

The relations corresponding to terms at order t4 of (2.90) can be written as

[2, 0, 0, 0] + [0, 0, 0, 0] : MabM bc = (IαĨα)δac (2.95)

[0, 0, 2, 0] : MabM cd(γabcd)α̇β̇ = 0 (2.96)
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[0, 0, 0, 2] : MabM cd(γabcd)αβ = I(αĨβ) −
1

8
(IρĨρ)δαβ (2.97)

[0, 0, 0, 0] : S2 = IαĨβδ
αβ (2.98)

[0, 1, 0, 0] : SMab = IαĨβ(γab)αβ (2.99)

q([1, 0, 1, 0] + [0, 0, 0, 1]) : MabIβ(γb)βα̇ = SIβ(γa)βα̇ (2.100)

q−1([1, 0, 1, 0] + [0, 0, 0, 1]) : MabĨβ(γb)βα̇ = SĨβ(γa)βα̇ (2.101)

(q2 + q−2)[0, 0, 0, 0] : IαIβδαβ = ĨαĨβδαβ = 0 . (2.102)

2.6.2 Expansion in the instanton fugacity

In terms of an expansion in q, (2.88) can be written as

G[M̃1,SO(10)](t;µ2, µ4; q) =
1

(1− t2)(1− µ2t2)(1− µ24t4)

∞∑
n=−∞

qnµ
|n|
4 t2|n| . (2.103)

Here again we find that instanton operators of charge n are spin |n| of SU(2)R and transform

in |n|-spinor representations of SO(8).

However the interpretation of the classical dressing is more subtle than in previous

cases. The prefactor in the q expansion signifies a space which is algebraically determined by

some of the conditions that define the moduli space of one SO(8) instanton; in particular it

is a space generated by two operators, Mab, in the adjoint representation [0, 1, 0, 0] of SO(8),

and S, in the singlet [0, 0, 0, 0], subject to relations that transform in the representations

[2, 0, 0, 0], [0, 0, 0, 0] and [0, 0, 2, 0]. Explicitly these relations are:

[2, 0, 0, 0] + [0, 0, 0, 0] : MabM bc = S2δac (2.104)

[0, 0, 2, 0] : MabM cd(γabcd)α̇β̇ = 0 . (2.105)

The following features can be observed. Whilst the classical moduli space of one SO(8)

instanton is generated by (2.3) and (2.4), here the anti-self-dual 4th rank antisymmetric

representation is missing.12 Such a space has complex dimension 13 and, by adding the

dimension originating from the sum over the instanton number, the correct 14 dimensional

moduli space of one SO(10) instanton is recovered. Again, the classical dressing can be

guessed from the set of equations in (2.95)-(2.102) by keeping only the relations that are

not corrected by the instanton operators.

2.7 Nf = 5

The Hilbert series of M̃1,E6 can be written as

H[M̃1,E6 ](t;x) =

∞∑
n=0

[
n

0 0 0 0 0

]
x

t2n . (2.106)

12Recall that for SO(8), ∧4[1, 0, 0, 0] = [0, 0, 2, 0] + [0, 0, 0, 2] is a reducible representation.
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A projection matrix that maps the weights of E6 to those of D5 ×U(1) is given by

PE6→D5×U(1) =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

−4 −3 −5 −6 −4 −2


. (2.107)

Under the action of this matrix, the fugacities of x of E6 are mapped to the fugacities y

of SO(10) and w of U(1) as follows:

(x1, x1x
−1
2 , x1x

−1
3 , x2x

−1
6 , x3x

−1
5 , x3x

−1
4 ) =

(
1

w4
,

1

wy5
,
w

y4
,
y5
wy1

,
y4
wy2

,
wy4
y3

)
⇔ (x1, x2, x3, x4, x5, x6) =

(
1

w4
,
y5
w3
,
y4
w5
,
y3
w6
,
y2
w4
,
y1
w2

)
. (2.108)

The fugacity of U(1)I is q = w3. Thus, the Hilbert series H[M̃1,E6 ] can be written in terms

of characters of representations of SO(10) ×U(1)I as

H[M̃1,E6 ](t;y, q) =
1

1− t2
∑

n1,n2,n3≥0
[0, n1, 0, n2, n3]yq

n2−n3t2n1+2n2+2n3 , (2.109)

The corresponding highest weight generating function is

G[M̃1,E6 ](t;µ2, µ4; q) = PE
[
t2(1 + µ2 + µ4q + µ5q

−1)
]
. (2.110)

2.7.1 The generators and their relations

The expansion of (2.109) up to order t4 is given by

H[E6](t;x, q) = 1 + (1 + [0, 1, 0, 0, 0] + q−1[0, 0, 0, 0, 1] + q[0, 0, 0, 1, 0])t2+

+
(

1 + [0, 1, 0, 0, 0] + [0, 2, 0, 0, 0] + [0, 0, 0, 1, 1]

+ q−1([0, 0, 0, 0, 1] + [0, 1, 0, 0, 1]) + q([0, 0, 0, 1, 0] + [0, 1, 0, 1, 0])

+ q−2[0, 0, 0, 0, 2] + q2[0, 0, 0, 2, 0]
)
t4 + . . . .

(2.111)

The plethystic logarithm of this Hilbert series is

PL [H[E6](t;x, q)] = (1 + [0, 1, 0, 0, 0] + q−1[0, 0, 0, 0, 1] + q[0, 0, 0, 1, 0])t2

−
(

2 + [0, 1, 0, 0, 0] + [2, 0, 0, 0, 0] + [0, 0, 0, 1, 1]

+ q([1, 0, 0, 0, 1] + [0, 0, 0, 1, 0]) + q−1([1, 0, 0, 1, 0] + [0, 0, 0, 0, 1])

+ (q2 + q−2)[1, 0, 0, 0, 0]
)
t4 + . . . .

(2.112)
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For SO(10), we use a, b, c, d = 1, . . . , 10 to denote vector indices and α, β, ρ, σ =

1, . . . , 16 to denote spinor indices. Note that the spinor representation of SO(10) is complex.

The delta symbol has the following form:

δαβ . (2.113)

The gamma matrices γa can take the following forms:

(γa)αβ and (γa)αβ , (2.114)

where the α, β indices are symmetric. The product of two gamma matrices has the follow-

ing form:

(γab)αρ ≡ (γ[a)αβ(γb])βρ . (2.115)

The product of four gamma matrices has the following form:

(γabcd)αβ ≡ (γ[a)ασ1(γb)σ1σ2(γc)σ2σ3(γd])σ3β . (2.116)

The generators of the moduli space are Mab, which is a 10× 10 antisymmetric matrix;

the instanton operators Iα and Ĩα; and the gaugino superfield S.

The relations appearing in the plethystic logarithm (2.112) are as follows:

[2, 0, 0, 0, 0] + [0, 0, 0, 0, 0] : MabM bc = (IαĨα)δac , (2.117)

[0, 0, 0, 1, 1] : M [a1a2Ma3a4] = Ĩβ(γa1···a4)βαI
α , (2.118)

[0, 0, 0, 0, 0] : S2 = IαĨα , (2.119)

[0, 1, 0, 0, 0] : SMab = Ĩβ(γab)βαI
α , (2.120)

q([1, 0, 0, 0, 1] + [0, 0, 0, 1, 0]) : MabIα(γb)βα = SIα(γa)βα , (2.121)

q−1([1, 0, 0, 0, 1] + [0, 0, 0, 1, 0]) : MabĨβ(γb)βα = SĨβ(γa)βα , (2.122)

(q2 + q−2)[1, 0, 0, 0, 0] : IαIβ(γa)αβ = ĨαĨβ(γa)αβ = 0 . (2.123)

2.7.2 Expansion in the instanton fugacity

The highest weight generating function (2.110) can be expanded in the instanton number

fugacity q as

G[M̃1,E6 ](t;µ2, µ4, , µ5; q) =
1

(1− t2)(1− t2µ2)(1− t4µ4µ5)

×

(∑
n≥0

qn(t2µ4)
n +

∑
n<0

qn(t2µ5)
−n

)
.

(2.124)

From this formula we see that the instanton operators of charge n are spin |n| highest

weight states under SU(2)R and transform in the n-spinor representation [0, 0, 0, n, 0] of

SO(10) for n > 0 and the conjugate |n|-spinor representation [0, 0, 0, 0, |n|] for n < 0.
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The dressing factor has the features previously encountered in that is generated by the

classical operators Mab and S, subject to the relations

[2, 0, 0, 0, 0] + [0, 0, 0, 0, 0] : MabM bc = S2δac . (2.125)

Comparing this space to the moduli space of one SO(10) instanton given by (2.3) and (2.4),

it is clear that here the rank-1 condition (2.4) is missing altogether. As we have explained in

the previous case, this can be at once read off from the relations (2.117)-(2.123), by keeping

only the ones which are not corrected by instanton bilinears. The classical dressing is a

space of dimension 21 and again, by adding the contribution from the sum over instantons,

we recover the correct 22-dimensional moduli space of one E6 instanton.

2.8 Nf = 6

The Hilbert series of M̃1,E7 can be written as

H[M̃1,E7 ](t;x) =
∞∑
n=0

[
0

n 0 0 0 0 0

]
x

t2n . (2.126)

The E7 representations can be decomposed into those of SO(12) × U(1) using the projec-

tion matrix:

PE7→D6×U(1) =



0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

−2 −2 −3 −4 −3 −2 −1


. (2.127)

Under the action of this matrix, the fugacities x of E7 are mapped to the fugacities y of

SO(12) and the fugacity q of U(1) as

x =

(
1

q2
,
y6
q2
,
y5
q3
,
y4
q4
,
y3
q3
,
y2
q2
,
y1
q

)
. (2.128)

We then have the following highest weight generating function:

G[M̃1,E7 ](t;µ2, µ4, µ5; q)

= PE
[(

1 + µ2 + µ5(q + q−1) + (q2 + q−2)
)
t2 + µ4t

4
]
,

(2.129)

where at order t2 we recognise the contributions of: S, which is a singlet of SO(12); the

instanton and the anti-instanton operators with U(1)I charge ±1 in the spinor represen-

tation [0, 0, 0, 0, 1, 0]; the instanton and the anti-instanton operators with U(1)I charge ±2

which are singlets of SO(12); the meson in the adjoint representation [0, 1, 0, 0, 0, 0]. In

addition there is a fourth-rank antisymmetric tensor of SO(12) at order t4.
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2.8.1 The generators and their relations

The expansion up to order t4 of (2.129) is given by

H[E7](t;x, q) = 1 +
(

1 + [0, 1, 0, 0, 0, 0] + (q + q−1)[0, 0, 0, 0, 1, 0] + (q2 + q−2)
)
t2

+
(

2 + [0, 2, 0, 0, 0, 0] + [0, 0, 0, 0, 2, 0] + [0, 0, 0, 1, 0, 0] + [0, 1, 0, 0, 0, 0]

+ (q + q−1)(2[0, 0, 0, 0, 1, 0] + [0, 1, 0, 0, 1, 0])

+ (q2 + q−2)(1 + [0, 0, 0, 0, 2, 0] + [0, 1, 0, 0, 0, 0])

+ (q3 + q−3)[0, 0, 0, 0, 1, 0] + (q4 + q−4)
)
t4 + . . . . (2.130)

The plethystic logarithm of this Hilbert series is given by

PL [H[E7](t;x, q)] =
(

1 + [0, 1, 0, 0, 0, 0] + (q + q−1)[0, 0, 0, 0, 1, 0] + (q2 + q−2)
)
t2

−
(

2 + [0, 0, 0, 1, 0, 0] + [0, 1, 0, 0, 0, 0] + [2, 0, 0, 0, 0, 0]

+ (q + q−1)([0, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 1])

+ (q2 + q−2)[0, 1, 0, 0, 0, 0]
)
t4 + . . . . (2.131)

For SO(12), we use a, b, c, d = 1, . . . , 12 to denote vector indices, α, β, ρ, σ = 1, . . . , 32

to denote indices of the spinor representation [0, 0, 0, 0, 1, 0], and α̇, β̇, ρ̇, σ̇ = 1, . . . , 32 to

denote indices of the conjugate spinor representation [0, 0, 0, 0, 0, 1]. The spinor represen-

tation of SO(12) is pseudoreal, hence all contractions of the spinor indices are made with

the epsilon tensor, which takes the forms

εαβ or εαβ or εα̇β̇ or εα̇β̇ . (2.132)

Gamma matrices γa take the forms

(γa)αβ̇ . (2.133)

The product of two gamma matrices has the following forms:

(γab)αβ ≡ (γ[a)αα̇(γb])ββ̇ε
α̇β̇ and (γab)α̇β̇ ≡ (γ[a)αα̇(γb])ββ̇ε

αβ , (2.134)

where the spinor indices are symmetric. The product of four gamma matrices has the

following forms:

(γabcd)ασ ≡ (γ[a)αα̇(γb)ββ̇(γc)ρρ̇(γ
d])σσ̇ε

α̇β̇εβρερ̇σ̇ (2.135)

(γabcd)α̇σ̇ ≡ (γ[a)αα̇(γb)ββ̇(γc)ρρ̇(γ
d])σσ̇ε

αβεβ̇ρ̇ερσ , (2.136)

where the spinor indices are antisymmetric.

The generators of the moduli space are Mab, which is a 12× 12 antisymmetric matrix,

the instanton operators Iα1+, I
α
1− and I2+, I2−, and the glueball superfield S.
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From (2.131), we have the following sets of relations:

[2, 0, 0, 0, 0, 0] + [0, 0, 0, 0, 0, 0] : MabM bc = (Iα1+εαβI
β
1−)δac (2.137)

[0, 0, 0, 1, 0, 0] : M [a1a2Ma3a4] = Iα1+I
β
1−(γa1···a4)αβ (2.138)

[0, 0, 0, 0, 0, 0] : S2 + I2+I2− = Iα1+I
β
1−εαβ (2.139)

[0, 1, 0, 0, 0, 0] : SMab = Iα1+I
β
1−(γab)αβ (2.140)

(q2 + q−2)[0, 1, 0, 0, 0, 0] : I2±M
ab = Iα1±I

β
1±(γab)αβ (2.141)

(q + q−1)([1, 0, 0, 0, 0, 1] + [0, 0, 0, 0, 1, 0]) : MabIα1±(γb)αβ̇ = (SIα1± + I2±I
α
1∓)(γa)αβ̇ .

(2.142)

To aid computations it is useful to rewrite (2.130) and (2.131) in terms of characters of

SO(12)× SU(2). The reader can find the relevant formulae in appendix B.

2.8.2 Expansion in the instanton fugacity

The highest weight generating function (2.129) can be expanded in powers of the instanton

number fugacity q as

G[M̃1,E7 ](t;µ2, µ4, µ5; q)

=
1

(1−t2)(1−µ2t2)(1−µ4t4)(1−µ25t4)(1−t4)
∑
m∈Z

(t2µ5)
|m|qm

∑
n∈Z

t2|n|q2n

= PE[(µ25 + 1 + µ2)t
2 + µ4t

4 + µ25t
6]

×

(
1 + µ25t

4

1− t4
∑

m even

t|m|qm − (tµ5)
2

1− µ25t4
∑

m even

µ
|m|
5 t2|m|qm

+
(1 + t2)µ5t

1− t4
∑
m odd

t|m|qm − (tµ5)
2

1− µ25t4
∑
m odd

µ
|m|
5 t2|m|qm

)
.

(2.143)

The first equality is a q expansion in terms of a double sum. This separates the classical

dressing from the one and two instanton contributions. It is precisely the presence of both

types of instantons as quadratic generators that, for Nf > 5, complicates the features of

the q expansion in terms of a one sum only. We still write such an expansion in the second

equality, splitting it into odd and even terms.

2.9 Nf = 7

The Hilbert series of M̃1,E8 can be written as

H[M̃1,E8 ](t;x) =

∞∑
n=0

[
0

0 0 0 0 0 0 n

]
x

t2n . (2.144)

– 26 –



J
H
E
P
0
4
(
2
0
1
7
)
0
4
2

The E8 representations can be decomposed into those of SO(14)×U(1) using the projection

matrix

PE8→D7×U(1) =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

−4 −5 −7 −10 −8 −6 −4 −2


. (2.145)

Under the action of this matrix, the fugacities x of E8 are mapped to the fugacities y of

SO(14) and the fugacity q of U(1) as

x =

(
1

q4
,
y7
q5
,
y6
q7
,
y5
q10

,
y4
q8
,
y3
q6
,
y2
q4
,
y1
q2

)
. (2.146)

We then have the following highest weight generating function:

G[M̃1,E8 ](t;µ; q) = PE
[
t2
(
1 + µ2 + µ6q + µ7q

−1 + µ1(q
2 + q−2)

)
+ t4

(
1 + µ2 + µ4 + µ6q + µ7q

−1 + µ3(q
2 + q−2)

)
+ t6

(
µ4 + µ5(q

2 + q−2)
) ]

.

(2.147)

2.9.1 The generators and their relations

The Hilbert series of the reduced moduli space of 1 E8 instanton can be written in terms

of characters of SO(14)×U(1) as

H[E8](t;x, q)

= 1 +
(

(1 + [0, 1, 0, 0, 0, 0, 0]) + [0, 0, 0, 0, 0, 1, 0]q + [0, 0, 0, 0, 0, 0, 1]q−1

+ [1, 0, 0, 0, 0, 0, 0](q2 + q−2)
)
t2 +

(
2 + [0, 0, 0, 0, 0, 1, 1] + [0, 0, 0, 1, 0, 0, 0]

+ 2[0, 1, 0, 0, 0, 0, 0] + [0, 2, 0, 0, 0, 0, 0] + [2, 0, 0, 0, 0, 0, 0]

+ (2[0, 0, 0, 0, 0, 1, 0] + [0, 1, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 0, 1])q

+ (2[0, 0, 0, 0, 0, 0, 1] + [0, 1, 0, 0, 0, 0, 1] + [1, 0, 0, 0, 0, 1, 0])q−1

+ ([0, 0, 0, 0, 0, 2, 0] + [0, 0, 1, 0, 0, 0, 0] + [1, 0, 0, 0, 0, 0, 0] + [1, 1, 0, 0, 0, 0, 0])q2

+ ([0, 0, 0, 0, 0, 0, 2] + [0, 0, 1, 0, 0, 0, 0] + [1, 0, 0, 0, 0, 0, 0] + [1, 1, 0, 0, 0, 0, 0])q−2

+ [1, 0, 0, 0, 0, 1, 0](q3 + q−3) + [2, 0, 0, 0, 0, 0, 0](q4 + q−4)
)
t4 + . . . . (2.148)

The plethystic logarithm of this Hilbert series is given by

PL [H[E8](t;x, q)]

=
(

(1 + [0, 1, 0, 0, 0, 0, 0]) + [0, 0, 0, 0, 0, 1, 0]q + [0, 0, 0, 0, 0, 0, 1]q−1
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+ [1, 0, 0, 0, 0, 0, 0](q2 + q−2)
)
t2 −

(
2 + [2, 0, 0, 0, 0, 0, 0] + [0, 0, 0, 1, 0, 0, 0]

+ [0, 1, 0, 0, 0, 0, 0] + ([0, 0, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 0, 1])q

+ ([0, 0, 0, 0, 0, 0, 1] + [1, 0, 0, 0, 0, 1, 0])q−1

+ ([0, 0, 1, 0, 0, 0, 0] + [1, 0, 0, 0, 0, 0, 0])(q2 + q−2)

+ [0, 0, 0, 0, 0, 0, 1]q3 + [0, 0, 0, 0, 0, 1, 0]q−3 + (q4 + q−4)
)
t4 + . . . . (2.149)

It is also useful to write the Hilbert series written in terms of characters of represen-

tations of SO(16):

H[E8](t; z)

= 1 + ([0, 0, 0, 0, 0, 0, 0, 1] + [0, 1, 0, 0, 0, 0, 0, 0])t2

+ (1 + [0, 0, 0, 0, 0, 0, 0, 1] + [0, 0, 0, 0, 0, 0, 0, 2]

+ [0, 0, 0, 1, 0, 0, 0, 0] + [0, 1, 0, 0, 0, 0, 0, 1] + [0, 2, 0, 0, 0, 0, 0, 0])t4 . . . . (2.150)

The plethystic logarithm of this Hilbert series is

PL[H[E8](t; z)]

= ([0, 0, 0, 0, 0, 0, 0, 1] + [0, 1, 0, 0, 0, 0, 0, 0])t2 −
(

1 + [0, 0, 0, 1, 0, 0, 0, 0]

+ [1, 0, 0, 0, 0, 0, 1, 0] + [2, 0, 0, 0, 0, 0, 0, 0]
)
t4 + . . . .

(2.151)

Note that the spinor representation [0, 0, 0, 0, 0, 0, 0, 1] of SO(16) branches to those of

SO(14)×U(1) as

[0, 0, 0, 0, 0, 0, 0, 1] −→ [0, 0, 0, 0, 0, 0, 1]−1 + [0, 0, 0, 0, 0, 1, 0]+1 , (2.152)

corresponding to the charge ±1 instanton operators I1− and I1+, whereas the field X in

the adjoint representation [0, 1, 0, 0, 0, 0, 0, 0] of SO(16) contains the charge ±2 instanton

operators I2+, I2−, the glueball superfields S and the meson M .

Thus, one independent singlet at order t4 of (2.150) implies that I1+I1− is proportional

to the singlet formed by I2+, I2−, S and M in X. The adjoint field X of SO(16) satisfies

the matrix relation

X2 = 0 , (2.153)

transforming in the rank two symmetric representation [2, 0, 0, 0, 0, 0, 0, 0] +

[0, 0, 0, 0, 0, 0, 0, 0] of SO(16). This representation branches into those of SO(14) ×U(1) as

[2, 0, 0, 0, 0, 0, 0, 0] −→ 1 + [0, 0, 0, 0, 0, 0, 0]−4 + [0, 0, 0, 0, 0, 0, 0]+4 (2.154)

+ [1, 0, 0, 0, 0, 0, 0]−2 + [1, 0, 0, 0, 0, 0, 0]+2 + [2, 0, 0, 0, 0, 0, 0]0.

Upon expanding (2.153) in components, we see that the vanishing components (X2)15,15,

(X2)16,16 and (X2)15,16 imply that

Ia2+I
a
2+ = 0 , Ia2−I

a
2− = 0 , S2 + Ia2+I

a
2− = 0 . (2.155)

These relations are collected in (2.165) and (2.175).
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For future reference, the branching rule of the representation [1, 0, 0, 0, 0, 0, 1, 0] of

SO(16) to those of SO(14)×U(1) is

[1, 0, 0, 0, 0, 0, 1, 0] −→ [0, 0, 0, 0, 0, 0, 1]−3 + [0, 0, 0, 0, 0, 0, 1]+1 + [0, 0, 0, 0, 0, 1, 0]−1

+ [0, 0, 0, 0, 0, 1, 0]+3 + [1, 0, 0, 0, 0, 0, 1]−1 + [1, 0, 0, 0, 0, 1, 0]+1 ,

(2.156)

and the branching rule of the representation [0, 0, 0, 1, 0, 0, 0, 0] of SO(16) is

[0, 0, 0, 1, 0, 0, 0, 0] −→ [0, 0, 0, 1, 0, 0, 0]0 + [0, 0, 1, 0, 0, 0, 0]−2 + [0, 0, 1, 0, 0, 0, 0]+2

+ [0, 1, 0, 0, 0, 0, 0]0 . (2.157)

For SO(14), we use a, b, c, d = 1, . . . , 14 to denote vector indices and α, β, ρ, σ =

1, . . . , 64 to denote the spinor indices. Note that the spinor representation of SO(14) is

complex. The delta symbol has the form

δαβ . (2.158)

The gamma matrices γa can take the following forms:

(γa)αβ or (γa)αβ , (2.159)

where the α, β indices are antisymmetric. The product of two gamma matrices is

(γab)αρ ≡ (γ[a)αβ(γb])βρ . (2.160)

The product of three gamma matrices has the forms

(γabc)αρ ≡ (γ[a)αβ(γb)βσ(γc])σρ and (γabc)αρ ≡ (γ[a)αβ(γb)βσ(γc])σρ , (2.161)

symmetric in the spinor indices. The product of four gamma matrices is

(γabcd)αβ ≡ (γ[a)ασ1(γb)σ1σ2(γc)σ2σ3(γd])σ3β . (2.162)

The generators of the moduli space are Mab, which is a 14× 14 antisymmetric matrix; the

instanton operators Iα and Ĩα; and the gaugino superfield S.

The relations corresponding to order t4 of (2.149) are as follows:

[2, 0, 0, 0, 0, 0, 0] + [0, 0, 0, 0, 0, 0, 0] : MabM bc + I
(a
2+I

c)
2− = Iα1+(I1−)αδ

ac (2.163)

[0, 0, 0, 1, 0, 0, 0] : M [a1a2Ma3a4] = (I1−)β(γa1···a4)βαI
α
1+ (2.164)

[0, 0, 0, 0, 0, 0, 0] : S2 + Ia2+I
a
2− = 0 (2.165)

[0, 1, 0, 0, 0, 0, 0] : SMab + I
[a
2+I

b]
2− = Iα1+(I1−)β(γab)βα (2.166)

q([0, 0, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 0, 1]) : MabIα1+(γb)αβ

= SIα1+(γa)αβ + Ia2+(I1−)β (2.167)

q−1([0, 0, 0, 0, 0, 0, 1] + [1, 0, 0, 0, 0, 1, 0]) : Mab(I1−)α(γb)αβ

= S(I1−)α(γa)αβ + Ia2−I
β
1+ (2.168)
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q2[0, 0, 1, 0, 0, 0, 0] : M [abI
c]
2+ = Iα1+(γabc)αβI

β
1+ (2.169)

q−2[0, 0, 1, 0, 0, 0, 0] : M [abI
c]
2− = (I1−)α(γabc)αβ(I1−)β (2.170)

q2[1, 0, 0, 0, 0, 0, 0] : MabIb2+ = SIa2+ (2.171)

q−2[1, 0, 0, 0, 0, 0, 0] : MabIb2− = SIa2− (2.172)

q3[0, 0, 0, 0, 0, 0, 1] : Ia2+I
α
1+(γa)αβ = 0 (2.173)

q−3[0, 0, 0, 0, 0, 0, 1] : Ia2−(I1−)α(γa)αβ = 0 (2.174)

(q4 + q−4)[0, 0, 0, 0, 0, 0, 0] : Ia2+I
a
2+ = Ia2−I

a
2− = 0 . (2.175)

2.9.2 Expansion in the instanton fugacity

The highest weight generating function (2.147) can be rewritten in terms of an implicit

expansion in q involving 5 sums:

G[M̃1,E8 ](t;µ; q) = PE
[

(1 + µ2) t
2 + (1 + µ2 + µ4) t

4 + µ4t
6
]

× PE
[
(µ6µ7 + µ21)t

4 + (µ6µ7 + µ23)t
8 + µ25t

12
]

×

( ∑
n1≥0

(µ6t
2q)n1 +

∑
n1<0

(µ7t
2)−n1qn1

) ∑
n2∈Z

(µ1t
2)|n2|q2n2

×

( ∑
n3≥0

(µ6t
4q)n3 +

∑
n3<0

(µ7t
4)−n3qn3

)
×
∑
n4∈Z

(µ3t
4)|n4|q2n4

∑
n5∈Z

(µ5t
6)|n5|q2n5 .

(2.176)

3 USp(4) with one antisymmetric hypermultiplet

In this theory, we pick the trivial value of the discrete theta angle for the USp(4) gauge

group. The Higgs branch at infinite coupling of this theory is identified with the reduced

moduli space of 2 SU(2) instantons on C2 [4], whose global symmetry is SU(2) × SU(2).

The Hilbert series is given by (3.14) of [44]. For reference, we provide here the explicit

expression of the Hilbert series up to order t6:

H[M̃2,SU(2)](t; y, x) = 1 + ([0; 2] + [2; 0])t2 + [1; 2]t3 + (1 + [0; 4] + [2; 2] + [4; 0])t4

+ ([1; 2] + [1; 4] + [3; 2])t5 + ([0; 2] + [0; 6] + [2; 0]

+ 2[2; 4] + [4; 2] + [6; 0])t6 + . . . . (3.1)

The plethystic logarithm of this expression is

PL
[
H[M̃2,SU(2)](t; y, x)

]
= ([0; 2] + [2; 0])t2 + [1; 2]t3 − t4 − ([1; 2] + [1; 0])t5

− ([2; 0] + [0; 2])t6 + . . . .
(3.2)

The corresponding highest weight generating function is (see (4.25) of [40])

G[M̃2,SU(2)](t;µ1, µ2) = PE
[
(µ21 + µ22)t

2 + µ1µ
2
2t

3 + t4 + µ1µ
2
2t

5 − µ21µ42t10
]
, (3.3)
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where µ1 and µ2 are respectively the fugacities for the highest weights of the SU(2) acting

on the centre of instantons and the SU(2) associated with the internal degrees of freedom.

Let us use the indices a, b, c, d = 1, 2 for the first SU(2) and i, j, k, l = 1, 2 for the

second SU(2). The generators of the moduli space are as follows.

• Order t2: the rank two symmetric tensors Pab and Mij in the representation [2; 0]

and [0; 2] of SU(2)× SU(2):

Pab = Pba , Mij = Mji . (3.4)

• Order t3: a doublet of rank two symmetric tensors (Aa)ij , with

(Aa)ij = (Aa)ji , (3.5)

in the representation [1; 2] of SU(2) × SU(2).

The singlet relation at order t4 can be written as

[0; 0]t4 : Tr(P 2) = Tr(M2) . (3.6)

The relations at order t5 are

[1; 0]t5 : εii
′
εjj
′
(Aa)ijMi′j′ = 0 , (3.7)

[1; 2]t5 : εbb
′
Pab(Ab′)ij = εkk

′
Mik(Aa)k′j + (i↔ j) . (3.8)

The relations at order t6 are

[2; 0]t6 : Tr(P 2)Pab = εii
′
εjj
′
(Aa)ij(Ab)i′j′ , (3.9)

[0; 2]t6 : Tr(M2)Mij = εabεkk
′
(Aa)ik(Ab)k′j . (3.10)

Let us now rewrite the above statements in SU(2) × U(1) language. Up to charge

normalisation, we identify the Cartan subalgebra of the latter SU(2) associated with µ2
with the U(1)I symmetry. More precisely, if w is the fugacity associated to the Cartan

generator of the latter SU(2), then q = w2 is the fugacity for the topological symmetry.

The highest weight generating function can then be written as

G[M̃2,SU(2)](t;µ1; q) = PE
[(

1 + µ21 + (q + q−1)
)
t2 +

(
µ1 + µ1(q + q−1)

)
t3

− µ1t5 − µ21t6
]
.

(3.11)

This can be written as a power series in q as

G[M̃2,SU(2)](t;µ1; q) =
1

(1− t2) (1− t4) (1− µ1t)
(
1− µ21t2

)
(1− µ1t3)

×

(
(1− µ21t6)

∞∑
j=−∞

qjt2|j| −
(
1− t4

) ∞∑
j=−∞

qjt2|j|(µ1t)
|j|+1

)
.

(3.12)
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The Hilbert series up to order t6 can be written explicitly as follows:

H[M̃2,SU(2)](t; y, q) = 1 +
(

1 + [2] + (q + q−1)
)
t2 +

(
[1] + [1](q + q−1)

)
t3

+
(

2 + [2] + [4] + (1 + [2])(q + q−1) + (q2 + q−2)
)
t4

+
(

2[1] + [3] + (2[1] + [3])(q + q−1) + [1](q2 + q−2)
)
t5

+
(

2 + 3[2] + [4] + [6] + (2 + 2[2] + [4])(q + q−1)

+ (1 + 2[2])(q2 + q−2) + (q3 + q−3)
)
t6 + . . . .

(3.13)

The plethystic logarithm of this Hilbert series is given by

PL
[
H[M̃2,SU(2)](t; y, q)

]
=
(

1 + [2] + (q + q−1)
)
t2 +

(
[1] + [1](q + q−1)

)
t3 − t4

−
(

2[1] + [1](q + q−1)
)
t5 −

(
1 + [2] + (q + q−1)

)
t6

+ . . . . (3.14)

The generators. At order t2, the generators are

[2] : Pab with Pab = Pba , (3.15)

q, q−1, 1 : I, Ĩ, S . (3.16)

The generators Pab are identified as a product of two antisymmetric tensors:

Pab = Tr(XaXb) . (3.17)

At order 3, the generators are denoted by

q[1], q−1[1], [1] : Ja , J̃a , Ta . (3.18)

where the generators Ta are identified as a product of two gauginos and one antisymmetric

tensor

Ta = Tr (XaWW) . (3.19)

The relations. The relation at order t4 can be written as

[0]t4 : Tr(P 2) + S2 = IĨ . (3.20)

The relations at order t5 can be written as

[1]t5 : STa = ĨJa + IJ̃a , (3.21)

q[1]t5 : PabJb′ε
bb′ + ITa + SJa = 0 , (3.22)

[1]t5 : PabTb′ε
bb′ + 2STa = 0 , (3.23)

q−1[1]t5 : PabJ̃b′ε
bb′ + ĨTa + SJ̃a = 0 . (3.24)
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The relations at order t6 can be written as

[2]t6 : S2Pab + TaTb = J(aJ̃b) + IĨPab , (3.25)

qt6 : S2I = εabJaTb + I2Ĩ , (3.26)

t6 : S3 = εabJaJ̃b + SIĨ , (3.27)

q−1t6 : S2Ĩ = εabJ̃aTb + Ĩ2I . (3.28)

4 USp(2k) with one antisymmetric hypermultiplet

As in the previous sections, we pick the trivial value of the discrete theta angle for USp(2k)

gauge group. The Higgs branch of the conformal field theory at infinite coupling is identified

with the moduli space of k SU(2) instantons on C2 [4]. Below we consider the moduli space

of the theory at finite coupling.

For k = 1, the Higgs branch at finite coupling is

C2 × Z2 , (4.1)

where C2 is the classical moduli space of a USp(2) gauge theory with 1 antisymmetric

hypermultiplet and Z2 is the moduli space generated by the glueball superfield S such that

S2 = 0. The Hilbert series is then given by

Hk=1(t;x,w) = H[Z2](t;w)H[C2](t;x)

= (1 + w2t2) PE
[
t(x+ x−1)

]
=

1 + w2t2

(1− tx)(1− tx−1)
,

(4.2)

where the fugacity w corresponds to the number of gaugino superfields.

For higher k, the theory in question can be realised as the worldvolume theory of k

coincident D4-branes on an O8− plane. Hence, the moduli space is expected to be the k-th

symmetric power of C2 × Z2, whose Hilbert series is given by

Hk(t, x, w) =

∮
|ν|=1

dν

2πiνk+1
exp

( ∞∑
m=1

νm

m
Hk=1(t

m;xm, wm)

)

=
k∑
j=0

(wt)2jH[SymjC2](t, x)H[Symk−jC2](t, x) ,

(4.3)

where H[SymnC2](t, x) is the Hilbert series for the n-th symmetric power of C2:

H[SymnC2](t, x) =

∮
|ν|=1

dν

2πiνn+1
exp

( ∞∑
m=1

νm

m

1

(1− tmxm)(1− tmx−m)

)
. (4.4)

We tested the result for k = 2 directly from the field theory side using Macaulay2; the

details are presented in appendix A.

Note that this result also holds for USp(2k) gauge theory with 1 antisymmetric hy-

permultiplet and 1 fundamental hypermultiplet. This is because the classical moduli space
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of this theory is the moduli space of k SO(2) instantons on C2 — this space is in fact the

k-symmetric power of the moduli space of 1 SO(2) instanton on C2, which is identical to C2.

Since the symmetric product Symk(C2 × Z2) has a C2 component that can be fac-

tored out, it is natural to define the Hilbert series H̃k(t;x,w) of the reduced moduli space

as follows:

Hk(t;x,w) = H[C2](t;x)H̃k(t;x,w) =
1

(1− tx)(1− tx−1)
H̃k(t;x,w) . (4.5)

Examples. For k = 2, we have

H̃k=2(t, x, w) = (1 + w4t4)(1− t4) PE[(x2 + 1 + x−2)t2] + (wt)2 PE[(x+ x−1)t]

= 1 + ([2] + w2)t2 + [1]w2t3 + ([4] + [2]w2 + w4)t4 + ([3]w2)t5

+ ([6] + [4]w2 + [2]w4)t6 + . . . . (4.6)

The plethystic logarithm of this Hilbert series is

PL[H̃k=2(t, x, w)] = ([2] + w2)t2 + [1]w2t3 − t4 − [1](w2 + w4)t5 − ([2]w4 + w6)t6 + . . . .

(4.7)

For k = 3, we have

H̃k=3(t, x, w) = 1 + ([2] + w2)t2 + ([3] + [1]w2)t3 + (1 + [4] + 2[2]w2 + w4)t4

+ ([3] + [5] + ([1] + 2[3])w2 + [1]w4)t5 +
(

[2] + 2[6]

+ (1 + [2] + 3[4])w2 + 2[2]w4 + w6
)
t6 + . . . .

(4.8)

The plethystic logarithm of this Hilbert series is

PL[H̃k=3(t, x, w)] = ([2] + w2)t2 + ([3] + [1]w2)t3 + [2]w2t4 − [1]t5

−
(

[2] + (1 + [2])w2 + [2]w4
)
t6 + . . . .

(4.9)

General k. For general k, we have two sets of generators transforming in:

1. representation [p] at order tp, for all 2 ≤ p ≤ k;

2. representation [p]w2 at order tp+2, for all 0 ≤ p ≤ k − 1;

these follow from the generators of the moduli space of two instantons, given by section

8.5 of [45]. Explicitly, these generators are

Tr(Xa1Xa2),Tr(Xa1Xa2Xa3), . . . ,Tr(Xa1Xa2 · · ·Xak), (4.10)

Tr(WW), Tr(Xa1WW), Tr(X(a1Xa2)WW) , . . . , Tr(X(a1 · · ·Xak−1)WW)

where a1, a2, . . . , ak = 1, 2. The set of relations with the lowest dimension transform in the

representation [k − 2] at order tk+2.

In the limit k → ∞, the moduli space is thus freely generated by (4.10).13 A similar

situation was considered in [46], where it was pointed out that the generating function of

multi-trace operators for one brane is equal to that of single trace operators for infinitely

many branes.

13We would like to express our thanks to Nick Dorey for his nice presentation at the Swansea workshop

and especially for discussing this point.
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5 Pure super Yang-Mills theories

For 5d N = 1 pure Yang-Mills theory, the Higgs branch at infinite coupling takes a

simple orbifold structure. Field theoretic and stringy arguments can be provided for

this statement.

In [31] it was argued by counting zero modes that for an SU(N) gauge group the

instanton operators transform in the spin-N2 representation of SU(2)R. In [17] the result

was generalised to arbitrary gauge groups. Using the observation of [9] that the instanton

contribution to the superconformal index is given by an “SU(2)-covariantized” version of the

Hilbert series, the SU(2)R spin of instanton operators in pure Yang-Mills theories is given

by 1
2h
∨
G, where h∨G is the dual Coxeter number of the group G. It is then straightforward

to construct the relation between the instanton operators and the glueball operator:

Sh
∨
G = IĨ . (5.1)

which reduces to the standard nilpotency for S [36] at finite coupling where the instanton

operators are set to zero. The Higgs branch at infinite coupling is thus the orbifold C2/Zh∨G .

For SU(N) pure Yang-Mills a stringy construction provides a complementary view-

point. For this therory, an SL(2,Z) transformation on the 5-brane web can be exploited to

set the charges of the external 5-brane legs to (p1, q1) = (N,−1) and (p2, q2) = (0, 1). In

this basis, the web can be depicted as follows (this example is for N = 3):

(5.2)

At infinite coupling, the two 5-branes intersect and move apart, giving a one quaternionic

dimensional Higgs branch, which has a cone structure. Using the classification of hy-

perKähler cones of dimension 1, the space has to be an ADE singularity. The existence in

the chiral ring of the operator S, which has spin-1 under SU(2)R, rules out the D and E

cases, implying that the Higgs branch has to be C2/Zm, for some m. The value of m can

be deduced by considering the intersection number, which is given by:

p1q2 − p2q1 = N . (5.3)

The Higgs branch at infinite coupling is therefore C2/ZN .14

The generators of the Higgs branch at infinite coupling are I, S, Ĩ, singlets under

SU(N), and with U(1)I charge +1, 0 and − 1 respectively. For N > 2, the isometry group

of C2/ZN is identified with U(1)I . For N = 2, the isometry of the Higgs branch is enhanced

to SU(2) and the operators form a triplet (I, S, Ĩ).

The construction can be generalised by means of orientifold planes [6] to give analogous

results for the case of classical gauge groups.

14We thank Cumrun Vafa for discussions about this point.
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6 Discussion

A coherent picture of the Higgs branch of 5d N = 1 theories for all values of the gauge

coupling emerges from this paper. In particular, we have presented explicit relations that

define the chiral ring at infinite coupling and are consistent with those at finite coupling.

A crucial result of this paper is the correction to the glueball superfield, S, which at finite

coupling is a nilpotent bilinear in the gaugino superfield and at infinite coupling becomes

an ordinary chiral operator on the Higgs branch.

For pure SU(2) theories with Nf ≤ 7 flavours a nice pattern was established. The finite

coupling relations involving mesons and the glueball operator are corrected at infinite cou-

pling by bilinears in the instanton operators, in the obvious way dictated by representation

theory. New relations also arise which exist uniquely at infinite coupling.

By expanding the highest weight generating function of the Hilbert series at infinite

coupling in powers of q, we have analysed the dressing of instanton operators by mesons

and gauginos. For Nf ≤ 5 the defining equations for the space associated to the dressing

can be obtained by keeping the relations at infinite coupling which are not corrected by

the instanton operators. For Nf = 6, 7, the presence of charge ±2 instanton operators as

generators independent from the charge ±1 ones complicates the picture and leaves the

interpretation of the classical dressing in a preliminary and unsatisfactory stage.

The techniques developed in this paper could also be applied to other 5d N = 1 theories

with known Higgs branch at infinite coupling. We leave this to future work. The long term

goal is to better understand supersymmetric instanton operators and their dressing from

first principles and use such knowledge to derive a general formula for the Hilbert series

associated to the Higgs branch at infinite coupling. We hope that the results of this paper

can shine some light in this direction.
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A Hilbert series of chiral rings with gaugino superfields

In this appendix we present a method to compute the Hilbert series of the Higgs branch

at finite coupling. In this computation we include the classical chiral operators as well as

the gaugino superfield W.

In five dimensions, the gaugino λAI carries the USp(4) spin index A = 1, . . . , 4 and the

SU(2)R index I = 1, 2. Since we focus on holomorphic functions, which are highest weights

of SU(2)R representations, we restrict ourselves to I = 1. In 4d N = 1 language, which

we adopt throughout the paper, the fundamental representation of USp(4) decomposes

to [1; 0] + [0; 1] of SU(2) × SU(2). These are usually denoted by undotted and dotted

indices, respectively. Since the latter correspond to non-chiral operators in the 4d N =

1 holomorphic approach, we adhere to the undotted SU(2) spinor index. The gaugino

superfield is henceforth denoted as Wα.

We will see that the 4d N = 1 formalism adopted in this appendix yields results for

the Hilbert series that are consistent with the chiral ring obtained by setting instanton and

anti-instanton operators to zero in the five dimensional UV fixed point, which is discussed

in the main body of the paper.

A.1 SU(2) gauge theory with Nf flavours

Let us denote the chiral matter fields appearing in the Lagrangian by Qia, with i =

1, . . . , 2Nf and a = 1, 2. The F -terms relevant to the classical Higgs branch are15

εabεcdQiaQ
i
d = 0 . (A.1)

These relations are symmetric under the interchange of the indices b and c.

Now let us discuss the inclusion of the gaugino superfield (Wα)ab. Wα is adjoint valued

and is chosen to be a traceless symmetric 2-index tensor:

εab(Wα)ab = 0 . (A.2)

Moreover, we impose the following conditions (see section 2 of [36]):

Each component of (Wα)ab is an anti-commuting variable , (A.3)

εbc(Wα)ab(Wβ)cd + (β ↔ α) = 0 ∀ α, β = 1, 2, a, d = 1, 2, (A.4)

εbc(Wα)abQ
i
c = 0 ∀ α = 1, 2, a = 1, 2, i = 1, . . . , Nf . (A.5)

The condition (A.3) follows from the fact that the lowest component of the gaugino super-

field is fermionic. The relation (A.4) follows from gauge invariance and supersymmetry.

The relation (A.5) indicates how the gaugino superfield acts on fundamental fields.

The Hilbert series of the ring of variables Qia, (Wα)ab subject to the condi-

tions (A.1), (A.2), (A.3), (A.4) and (A.5) can be computed using Macaulay2. For reference,

we provide the Macaulay2 code for the case of Nf = 3 in source code (SC) 1.

15Here and in the main body of the paper, our relations are valid in the chiral ring. As operator relations,

they hold up to a superderivative.
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After integrating over the SU(2) gauge group and restricting to the scalar sector under

the Lorentz group, we obtain the Hilbert series of the space

M̃1,SO(2Nf ) ∪ Z2 , (A.6)

where M̃1,SO(2Nf ) is the reduced moduli space of one SO(2Nf ) instanton on C2 and Z2 is

the moduli space generated by the glueball superfield S such that S2 = 0

H[M̃1,SO(2Nf ) ∪ Z2](t;x, w) = H[Z2](t;w) +H[M̃1,SO(2Nf )](t;x)− 1

= w2t2 +
∞∑
p=0

[0, p, 0, . . . , 0]t2p ,
(A.7)

where the fugacity w counts the number of gaugino superfields W and x are the fugacities

of SO(2Nf ). The plethystic logarithm up to order t4 of this is

PL
[
H[M̃1,SO(2Nf ) ∪ Z2](t;x,w)

]
= ([0, 1, 0, . . . , 0] + w2)t2 −

(
1 + [2, 0, . . . , 0]

+ [0, 0, 0, 1, 0, . . . , 0] + w2[0, 1, 0, . . . , 0] + w4
)
t4

+ . . . . (A.8)

This shows that the generators are the meson M ij = −M ji, in the adjoint representation

of SO(2Nf ), and the glueball S = − 1
32π2 TrWαWα, subject to the relations

M ijM jk = 0 , M [ijMkl] = 0 , SM ij = 0 , S2 = 0 . (A.9)

A.2 USp(2k) gauge theory with one antisymmetric hypermultiplet

The analysis is similar to the previous subsection. Let us denote the antisymmetric fields

by Xij
a , where a = 1, 2 and i, j = 1, . . . , 2k are the USp(2k) gauge indices. The F -terms

associated to the classical Higgs branch is

Jii′Jjj′Jkk′ε
abXij

a X
k′i′
b = 0 , (A.10)

where Jij is the symplectic matrix associated with USp(2k).

For the gaugino superfield W ij
α (with α = 1, 2), we impose the conditions [36]

W ij
α =Wji

α , (A.11)

each component of W ij
α is an anti-commuting variable , (A.12)

JjkW ij
(αW

kl
β) = 0, (A.13)

Jjk(W ij
α X

kl
a −Xij

a Wkl
α ) = 0 . (A.14)

After integrating over the USp(2k) gauge group and restricting to the scalar sector

under the Lorentz group, we obtain the Hilbert series of the space

Symk
(
C2 × Z2

)
, (A.15)

In particular, for k = 2, we recover the Hilbert series (4.6).
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Figure 1. A Macaulay2 code to compute the Hilbert series of the ring of variables Qia, (Wα)ab, with

Nf = 3, subject to the conditions (A.1), (A.2), (A.3), (A.4) and (A.5). Here we write Qia as Qai

and (Wα)ab as wabα. The ring R is multi-graded with respect to the following charges (in order): 1.

the R-charge associated with the fugacity t, 2. the number of gaugino superfields associated with

the fugacity w, 3. the weights of the SU(2) gauge group, and 4. the weights of the SU(2) symmetry

associated with the index α.

B Nf = 6 in representations of SO(12) × SU(2)

Here we rewrite (2.130) and (2.131) in terms of characters of representations of SO(12) ×
SU(2):

H[E7](t;x, y)

= 1 + ([0, 0, 0, 0, 0, 0; 2] + [0, 0, 0, 0, 1, 0; 1] + [0, 1, 0, 0, 0, 0; 0])t2

+ (1 + [0, 0, 0, 0, 0, 0; 4] + [0, 0, 0, 0, 1, 0; 1] + [0, 0, 0, 0, 1, 0; 3] + [0, 0, 0, 0, 2, 0; 2]

+ [0, 0, 0, 1, 0, 0; 0] + [0, 1, 0, 0, 0, 0; 2] + [0, 1, 0, 0, 1, 0; 1] + [0, 2, 0, 0, 0, 0; 0])t4

+ . . . . (B.1)

The plethystic logarithm of (B.1) is

PL [H[E7](t;x, y)]

= ([0, 0, 0, 0, 0, 0; 2] + [0, 0, 0, 0, 1, 0; 1] + [0, 1, 0, 0, 0, 0; 0])t2 −
(

2 + [0, 0, 0, 1, 0, 0; 0]
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+ [2, 0, 0, 0, 0, 0; 0] + [0, 0, 0, 0, 1, 0; 1] + [1, 0, 0, 0, 0, 1; 1] + [0, 1, 0, 0, 0, 0; 2]
)
t4

+ . . . . (B.2)

The representation [0, 0, 0, 0, 0, 0; 2] corresponds to I2+, I2− and S, [0, 0, 0, 0, 1, 0; 1] to

I1± and [0, 1, 0, 0, 0, 0; 0] to M . In the Hilbert series (B.1) there is only one independent

singlet at order t4: this means that the singlets coming from these three sets of operators

must be proportional to each other. These indeed correspond to the trace part of (2.137)

and the relation (2.139).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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