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Abstract

We develop a new approach to reflect the behavior of algorithmic traders. Specif-

ically, we provide an analytical and tractable way to infer patterns of quote

volatility and price momentum consistent with different types of strategies em-

ployed by algorithmic traders, and we propose two ratios to quantify these

patterns. Quote volatility ratio is based on the rate of oscillation of the best

ask and best bid quotes over an extremely short period of time; whereas price

momentum ratio is based on identifying patterns of rapid upward or downward

movement in prices. The two ratios are evaluated across several asset classes.

We further run a two-stage Artificial Neural Network experiment on the quote

volatility ratio; the first stage is used to detect the quote volatility patterns re-

sulting from algorithmic activity, while the second is used to validate the quality

of signal detection provided by our measure.

Keywords: algorithmic trading patterns, quote volatility, price

momentum, Artificial Neural Network

1. Introduction1

Over the past decade, technological innovations and changes in financial2

regulation, e.g. Regulation National Market System in the US, and the MiFiD3

in Europe, have induced trading to become more automated. This evolution led4

to changes in the way the information is disseminated to traders. Specifically,5
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automated traders react fast to events and a subset of algorithmic traders, i.e.6

high-frequency traders (HFTs hereafter), exploit this feature [1].7

Concerns have been expressed on the growth of algorithmic traders and their8

effects on the ability of financial markets to efficiently perform their functions,9

such as risk sharing. Currently, market regulators explore methods to monitor10

the activity of these fast traders, and their effects on financial markets see11

for [2] for a literature review. For instance, the Commodity Futures Trading12

Commission employ expensive methods to monitor commodities and derivatives13

trades drawing upon complete data of many levels of order books. We propose a14

method to identify patterns of algorithmic activity that requires only anonymous15

and top-of-book information extracted from public data and can thus simplify16

the process. Further, researchers and practitioners measure algorithmic trading17

by using data on submitted orders at many levels and the speed at which these18

orders are submitted. For instance, [3] use the ratio of executions to order19

submissions, and document that this ratio is lower when algorithmic traders are20

present in the market. This ratio is widely used by the literature to proxy for21

algorithmic trading, see for [4] among others. Further,[5] use the fact that the22

cancellation of a limit order by a trader following by the resubmission of another23

order by the same trader (a linked message) in less than one second is likely to24

come from algorithmic traders. Deferring from these measures, our measures25

use price patterns and can be useful to track the effects of algorithmic activity26

in the millisecond environment, rather than only the presence of algorithmic27

traders in the market. To prove the suitability of our measures, we test them28

on three different assets: the Apple stock, the Bund futures, and the US ETF29

Oil.30

The first contribution is to provide an analytical and tractable way to infer31

patterns of quote volatility and price momentum. We propose two ratios to32

quantify these patterns. We discuss how the observed patterns are consistent33

with different types of strategies employed by algorithmic traders. Our first34

ratio, namely quote volatility, captures the rapid change of price quotes and35

expressed by the rate of oscillation of the best ask and the best bid over short36
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period of time. There are many reasons why algorithmic traders might adjust37

their quotes and stop, thus causing quote volatility. For instance, two or more38

algorithmic traders may compete by submitting limit orders at the top of the39

book and engage in several rounds of updates by undercutting each other quote40

[6]. They might be repeatedly offering the best quote that another trader is41

frequently filling. Another example is quote stuffing, a strategy that consists42

in increasing the number of order submissions followed by cancellations. These43

two examples of behavior, undercutting behavior and quote stuffing, will likely44

to have the effect of increasing quote volatility and execution costs. We identify45

episodes of rapid changes in price quotes with specific patterns occurring over46

short period of time, i.e. over 1-2 seconds. We further consider different spec-47

ifications, when aggressive quoting occurs at the best ask (in-ask), at the best48

bid (in-bid), or at both sides of the market (combined).49

Our second ratio, namely price momentum, denoted by PM, identifies pat-50

terns of price momentum following upward and downward price movements over51

two minutes on average. Algorithmic traders react fast than humans to the in-52

formation contained in the limit order book updates, and news announcements53

[7] or order anticipation [8], and try to exploit it quickly to generate profits.54

Their activity exacerbates a directional price move by contributing to price55

volatility. For the two measures, we apply a filtering technique to the data by56

selecting the observations containing the top percentile of the measures.57

Our second contribution is to provide a novel Artificial Neural Network58

(ANN hereafter) using the quote volatility ratio. The patterns discussed above59

have a long history in financial markets and they have been extensively discussed60

in the market microstructure. What is novel is the intensive use of information61

technologies to implement these strategies and the way they are implemented.62

On this, very little information is available because algorithmic traders see the63

implementation of their strategy as the source of their competitive advantage64

and naturally hide their algorithms. We further demonstrate a useful tech-65

nique (neural nets) that can accurately identify a defined set of quote volatility66

patterns consistent with an interesting group of strategies employed by algorith-67
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mic traders. Specifically, we run a two-stage ANN experiment using the quote68

volatility ratio: the first stage is to detect the patterns of quote volatility; and69

the second stage is to validate the quality of signal detection by the ratio for70

all the specifications and at different threshold levels. ANN results suggest that71

quote volatility ratio appears to be a good filter for signals, and an increase of72

the ratio threshold seems to improve the detection in ANN but only for some73

levels.74

2. Measures of algorithmic trading75

In this section, we detail the two measures we use to identify patterns of al-76

gorithmic trading. To analyze events, we use the method of rolling time-frames77

with overlap. Since the data points are unevenly distributed in time, an algo-78

rithm is used to collate them into subsamples, referred to as windows hereafter,79

spanning a specified time length. Therefore, each data point serves as a starting80

point for a window which includes a number of data points which fall within81

a pre-specified time from the first one. The time window framework allows for82

statistics to be estimated for each of the rolling subsample. This simplifies the83

task of detecting the time intervals containing algorithmic trading activity to84

designing statistics which capture the similarity of the patterns observed in a85

given window to that of typical algorithmic trading patterns. The one arbi-86

trary element in this approach is the length of time frames examined. Market87

observations provide some hints for suitable time frames, see [9].88

2.1. Quote volatility89

The first measure is based on the rate of oscillation of the best bid and90

best ask quotes detected over a very short period of time, typically lasting sev-91

eral seconds. During this time, rapid and transient quote updates occur, often92

following several specific patterns. Certainly, quotes submitted on the limit or-93

der book that move faster than human capacity are generated by algorithmic94

traders. There are many reasons why algorithms might adjust frequently their95
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quotes and then stop, thus causing volatility. For instance, two or more algo-96

rithmic traders may compete by submitting their limit orders at the top of the97

book and engage in several rounds of quote updates by undercutting each other98

quotes, see [6]. Or, one algorithmic trader might be repeatedly offering a quote99

either at the ask or at the bid for a small quantity that another algorithmic100

trader is frequently filling. Rapid small fills on short-lived orders were observed101

throughout the October 2014 flash crash event on BrokerTec. Alternatively,102

predatory behavior induces quote volatility. For instance, algorithmic traders103

would display a large amount of orders then cancel them quickly. This practice104

is intended to entice institutional traders into trading by creating an illusive105

liquidity.106

The rapid oscillation of quotes can either occur at the bid side, the ask side107

of the market or simultaneously at both sides of the market. In order to detect108

these patterns in the sample window, a ratio denoted by QV is estimated.109

The QV ratio is a geometry based metric that is inspired by the graphical110

presentation of quote oscillation on a chart. All the episodes share several111

key characteristics irrespective of the particular pattern: (i) they include small112

rapid movements in the bid, ask or both levels, which are subsequently rapidly113

reversed; (ii) this is repeated many times, over a small time frame; (iii) over the114

span of the entire time frame, the actual direction movement in the quote levels115

is low, if any.116

Let j denote the window index that includes the ask and bid quotes denoted117

by A and B respectively. The QV ratio has four components: Carryask, Bigask,118

Carrybid and Bigbid. Carryask is the sum of absolute incremental (instant-by-119

instant) changes in the ask price over the period: Carryask =
∑j

i=2 |Ai−Ai−1|;120

Bigask is the absolute change in the ask price level between the starting and121

the ending points of the period examined: Bigask = |Aj −A1|; Carrybid is122

the sum of absolute incremental (instant-by-instant) changes in the bid price123

over the period: Carrybid =
∑j

i=2 |Bi−Bi−1|; Bigbid is the absolute change124

in the bid price level between the ending and the starting point of the period:125

Bigbid = |Bj −B1|. These variables are used to compute three alternative126
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specifications of the QV ratio:127

Ask specification aims at detecting the in-ask quoting activity. This implies128

rapid quote volatility at the ask side, and a relatively passive bid side. The129

specification is:130

QVask =

carryask

bigask
carrybid

bigbid

(1)

Bid specification aims at detecting quote volatility which occurs at the bid131

side of the market. This is characterized by a rapid quote volatility at the bid132

side, while the ask price remains relatively inactive. The specification is given133

by:134

QVbid =

carrybid

bigbid
carryask

bigask

(2)

In order to guarantee the function’s solutions domain, several special cases135

are defined: if bigask=0, it is instead set at the level of the minimum tick136

increment at 0.01; if bigbid=0, it is instead set at the level of the minimum tick137

increment at 0.01; if carrybid=0, the entire denominator carrybid
bigbid or carryask

bigask138

is set to equal to 0.01. This ensures that a corresponding QV-ratio can be139

calculated for any given window.140

Combined specification aims at detecting quote volatility activity of the com-141

bined type which occurs at both the ask and the bid sides of the market. This142

is characterized by a period of high quote volatility which occurs over a short143

period of time, but it is driven by transient movements. The specification is144

given by:145

QVcombined =
carryask

bigask
+

carrybid

bigbid
(3)

For the purpose of solutions domain considerations, several specific cases are146

predefined. If bigask = 0, it is instead set at the minimum incremental tick size147
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at 0.01. If bigbid = 0 , it is instead set at the minimum incremental tick size at148

0.01.149

After the QV ratio values for each window in the sample have been calcu-150

lated, the final step of the detection is to determine which ones are indicating151

a potential period of algorithmic activity. Since a unique window is associated152

with each data point in the sample, and a QV ratio value is associated with153

each window; it is possible to use the observed distribution of QV ratio val-154

ues over the entire sample, and subsequently select a cut-off point for the most155

promising ones. The Trident tool supports a user specified cutoff point. Once a156

QV value has been estimated for each window in the sample, the entire array of157

QV values is ordered in increasing order. A specified percentage is then applied158

to select the cutoff point. This is done via the below formula:159

QVcutoff = QVarraysize−(rounddown(percentile∗arraysize)) (4)

The cutoff determined using this technique has the major benefit of coming160

from the distribution observed within the actual data, rather than an arbitrary161

level selected. A higher QV ratio should indicate higher likelihood of algorithmic162

activity. Once the cutoff is determined, it is used to filter out only the windows163

which have a QV ratio value above the cutoff point.164

2.2. Price Momentum165

Price momentum arises as a reaction in the market to news events, such as166

release of an earning report by a company, a macro announcement or changes167

in market conditions. The pattern of short-term volatility followed by price re-168

versal would be detected. Algorithmic traders can process the new information169

or the signal faster than humans even if it is already public, and could trigger170

the pattern of momentum to take advantage of the volatility surrounding the171

information release in an extremely short period of time. [7] show that algo-172

rithmic traders take advantage of a news event in the subsequent few seconds173

of its public release. They do so by taking a directional bet in one asset in174
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anticipation of an impeding price change related to news events. In addition,175

their fast access could allow algorithmic traders to detect order splitting strat-176

egy by large traders, see [8]. Specifically, the authors show that algorithmic177

traders anticipate orders submitted by large traders, and mimic these orders.178

As shown by [10], traders who infer the presence of an aggressive large trader179

have an incentive to initially trade in the same direction to amplify the down-180

ward pressure. Finally, algorithmic traders have also been accused to engage181

in price manipulation. For instance, they might place buy (sell) market orders182

in the expectation that other traders would do the same. The buying (selling)183

pressure might then push prices up (down), allowing them to liquidate their184

positions at profits. This practice known as momentum ignition might cause185

similar patterns, to those of directional strategies and order anticipation, i.e.186

upwards or downwards price momentum.187

Therefore, the second measure we propose is based on detecting specific188

price patterns during upwards and downwards price movements. This usually189

comprises three main stages: (i) an initial spike in trading volume, which is not190

accompanied by any significant changes in price; (ii) a subsequent sharp price191

move (positive or negative), accompanied by a new, even larger increase in vol-192

ume; (iii) gradual price reversal to levels observed before the event, accompanied193

by low volume.194

This pattern may last for several minutes. It is still prevalent in most traded195

instruments at least once per day with higher activity in certain sub sectors in196

the market. The duration of the events, as well as their market impact appear197

to follow a fat-tailed distribution, with a small fraction of events having major198

market impact and lasting for a prolonged period of time. This has a directly199

observable economic impact, which can be measured in relative terms (size of200

the price move in basis points), or, potentially even in absolute price change201

multiplied by the estimated position of algorithmic trading.202

The characteristic pattern of price momentum includes two dimensions:203

trade prices as well as trading volume. Let the PM ratio denotes the ratio204

used for price momentum detection. For the sake of computation efficiency,205

8



only trade prices are used as an input in the PM ratio specification used to206

detect the patterns of this algorithmic activity. Further, it is assumed that, as207

consistent with previous empirical studies of financial markets, the distribution208

of asset returns exhibits leptokurtosis see for instance [11]. Therefore, a small209

fraction of windows will contain the large moves relevant for detecting price210

momentum. The distribution derived strategy and the specification of the PM211

ratio used to ensure that the biggest relevant price moves present in the data212

are examined.213

The PM ratio used for price momentum detection is based on 3 key inputs:214

StartPrice is the Trade price in the starting point of the time period; EndPrice215

is the Trade price of the final trade in the time period; and, PriceSpan defined216

as |EndPrice− StartPrice|. If this turns out to be 0, then it is set to 0.01217

instead for domain purposes. As with quote volatility, the ratio estimated is218

inspired by the geometry of a graphical representation of the pattern. In the219

case of price momentum, this involves estimating two distances for each trade220

(t) in the window: PM1t = |Pt-Start Price| and PM2t = |Pt-End Price|.221

These metrics are used to derive a Total Distance: TPM1t = PM1t+PM2t.222

Once this is derived for each trade in the window, the largest TPM is determined223

across n number of trades which can then be used to derive the value of the224

PM ratio for the window:225

PM =
TPMmax

PriceSpan
(5)

Once a PM ratio value is estimated for each window in the sample, the226

array of PM ratio values is ordered and a cutoff point is determined. This is227

then used to filter out the top values encountered in the sample. The focus228

on price data only means that this approach will select the windows with the229

biggest price moves which have subsequently reversed back to their starting230

point. Once these are determined, one can use the built in functionality of the231

Trident Tool to look for the characteristic pattern in volume, finally yielding a232

confirmed finding.233
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3. Data and descriptive statistics234

We use data from the Thomson Reuters Tick History (TRTH) supplied by235

the Securities Industry Centre of Asia-Pacific (SIRCA hereafter). TRTH pro-236

vides millisecond-time stamped tick data, sourced from the Reuters Integrated237

Data Network (IDN) which obtains feeds directly from the exchanges. We select238

a diverse but limited variety of assets that appear to be favorite to algorithmic239

traders: Apple stock (ticker APPL) traded on US National Market System240

(NMS) markets, the US Oil ETF (ticker USO) traded on NYMEX, the Bund241

futures contracts maturing in September 2015 traded on Eurex. Apple is the242

most actively traded stock in the world with an average daily volume of over243

63 million shares in the last 50 days 1. This implies that Apple is likely to at-244

tract high levels of activity from a large amount of diverse market participants,245

including the HFTs. The Bund futures contract is extremely popular with tra-246

ditional proprietary trading firms and market makers, and it is considered one247

of the most accurate indicators of the prevailing interest rates in the Eurozone.248

Finally, the use of US Oil ETF is particularly relevant, as it is reported as one249

of the top holdings of major HFT firms such as the Virtu Financial 2.250

For this study, we use the level 1 quote and trade data for each asset. The251

level 1 data displays top-of-book data that includes the best bid and the best252

ask, i.e. highest bid and lowest ask, with corresponding quantity across multiple253

market participants or market centers. The Level 1 quote data for Apple stock is254

supplemented with the National Best Bid and Offer (NBBO) that provides the255

best quotes consolidated across all the National Market System (NMS) markets256

3. The Level 1 quote and trade data for USO are supplemented by the Chicago257

Mercantile Exchange (CME) and as reported on the electronic GLOBEX market258

1It is known that during the events of the 2010 Flash Crash, Apple stock was briefly driven
up in value to as high as $ 100 000 within a few instantaneous trades by malfunctioning
algorithms, while the majority of the other assets were collapsing [12]

2http://www.bloomberg.com/news/articles/2015-02-19/berkshire-hathaway-exotic-etfs-
among-flash-boy-holdings.

3Thirteen market centers submit quotations to the NMS for US stocks including BATS,
BATS Y, CBOE, Chicago Stock Exchange, EDGA, EDGX, NASDAQ, NASDAQ OMX BX,
NASDAQ OMX PSX, National Stock Exchange, NYSE, NYSE AMEX, and NYSE Arca.
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4. The level 1 quote data and trade for the Bund futures are supplemented by259

Eurex exchange.260

The sample period selected for Apple is the week spanning from 26-30 Jan-261

uary 2015, around the earning report release. The sample period for USO is262

13-14 of July 2015, days of significant volatility in the Oil markets after the263

lifting of international sanctions on Iran. As for the Bund, the asset is heav-264

ily influenced by the monetary policy of the European Central Bank (ECB).265

Therefore, the week selected for this study spans from June 1st till June 5th,266

as this week has been marked by significantly high volatility in European Fixed267

Income markets referred to ”‘bloodbath”’. During this week, the monthly mon-268

etary policy decisions and press conference were hosted by the ECB on the 3rd269

of June. While news’ events are periods of heightened volatility, these news270

only constitute a small fraction of all ”news” in our sample in a given day5.271

Algorithmic traders react to a myriad of signals that in principle could move272

market prices in an extremely high-frequency data, i.e. millisecond data. For273

instance, quote updates, trades and order submissions is another way to antic-274

ipate price movements in the short run. Examining data on non-news days of275

our sample and/or during periods of relatively lower intraday volatility (lower276

trading activity) is another way to anticipate price movements in the millisecond277

environment.278

Table 1 reports sample statistics for the three assets. In total, our sample279

contains 2.63 million of trades with 6.94 million of Level 1 quote updates. On280

average, Bund futures are traded with 43 297 contracts per day, each contract281

has a notion value of 100 000; while USO-ETF are traded with 26 276 contracts282

daily. For Apple stock, on average, 1.23 million shares are submitted daily at283

the Level 1 of the market, resulting in 473 546 daily trades on average.284

We compute market performance metrics such as the bid-ask spreads, total285

4The CME data does not include floor trades or negotiated block trades.
5[7] show that algorithmic traders quickly place market orders in the subsequent short

period of time, i.e. ten seconds of the macro news release. Further, [13] show that there is
a little change in the behavior of algorithmic traders by examining volatile and less volatile
days.
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Table 1: Descriptive statistics.

Bund Apple USO-ETF

Number of trades 216,487 2,367,728 52,552 [t]
Level 1 quote updates 238,921 6,117,449 584,807

Daily average number of trades 43,297 473,546 26,276
Daily average of Level 1 quote updates 47,784 1,223,490 292,404

Average quoted spread 0.0119 0.0109 0.0105
Average trade size 10.58 197.08 14.62

This table reports descriptive statistics for the three assets used in the sample: Bund
Futures, Apple stock and USO-ETF Oil. For each asset, we report the total number
of trades and the number of quote updates at the level 1; We report also the daily
averages of number of trades, Level 1 quote updates, Level 1 quoted spread, and
trade size.

market depth at the best ask and bid quotes, trading volume and implemen-286

tation shortfall (IS hereafter). The first two measures are mostly used in the287

market microstructure literature to evaluate market liquidity at any point of288

time. We use these two metrics as indicators of the level of market liquidity289

during quote volatility episodes. The trading volume is crucial for the correct290

identification of price momentum practices. We also compute the IS as it is291

widely used by practitioners. IS measures the execution performance of traders292

by benchmarking it against a hypothetical paper portfolio executed at the mid-293

point (the average of ask and bid quote prices) once the order is received. The294

result is a variable following the price movements during the period, but it is295

adjusted for the initial midpoint. It is calculated assuming a buyer point of296

view, therefore a positive value indicates that a buyer would have been better297

off executing immediately at the midpoint at the start of the time period ex-298

amined (the window), rather than delay execution partially or fully. Similarly,299

negative values indicate that the price moves lower through the window so from300

a seller point of view, it is ideal to execute immediately.301

To begin processing the data, we shed light on several important properties302

of algorithmic trading. For instance, these occur over a specific time inter-303

val marked by a starting point, a time span, and an ending point. As these are304

driven by algorithms sensitive to market conditions, the period immediately pre-305

ceding an outburst of algorithmic trading activity might be of particular interest306

to the analysis. The time spans over which events last can be quite variable,307
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and might follow a fat tailed distribution as discussed by [9]. This means that308

a one-size fits all approach could be wrong, and a certain level of flexibility is309

needed. Further, different types of events might occur over drastically different310

time horizons. While quote volatility episode may only last for several seconds311

in most cases, price momentum episode typically spans over several minutes.312

Therefore, a robust strategy for algorithmic trading patterns’ detection would313

necessitate a sufficient built in scalability to cope with this without any funda-314

mental alteration. It is also important to note the institutional features, such as315

the difference between pre-market, regular trading hours, and after hours trad-316

ing, which will have a profound impact on the level of activity during times of317

the day 6. All these considerations need to be built into the analytical strategy318

to ensure that it is appropriate for the current analysis.319

4. Patterns of algorithmic trading320

We identify 372 episodes of quote volatility and 112 episodes of price momen-321

tum. Some of the patterns observed seem to closely match patterns identified322

in the literature. This may indicate that the detection techniques utilized are323

appropriate. We first present results on the quote volatility ratio followed by324

the results of the price momentum ratio.325

4.1. Quote volatility326

The majority of events occur within the bigger time scale examined of 10327

seconds. A breakdown within the group of quote volatility events shows that the328

distribution by specifications, between in-ask, in-bid and combined are similar in329

terms of occurrence. For instance, the trade price tends to move in the direction330

of the algorithmic activity, i.e. increases when rapid quote updates occur at the331

ask side or declines if rapid quote update occurs at the bid side. These effects332

should be observable in the data, and are therefore tested for. Further results333

6Regular trading hours in local exchange time for Apple are between 9:30 and 4 pm, for
USO between 10:00 and 2:30 pm and for Bund between 7:30 am and 5:30 pm.
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indicate that a majority of in-ask and in-bid events are not accompanied by334

trading activity. The characteristic pattern is confirmed by IS results: when335

IS drifts lower to negative values during the time window examined, this is an336

indication of declining prices. Similarly, as it increases and remains positive, this337

is an indication of prices rising. It seems that the majority of quote volatility338

events exhibits the characteristic pattern. These results are especially important339

as they shed light on the impact of algorithmic presence on prices.340

Another characteristic pattern which links quote volatility with the level 1341

quoted depth is observed, as shown in Figures 1 and 2. A frequent observation342

during quote volatility episodes is that quote updates which narrow the quoted343

spread, appear to be associated with a significant decrease in level 1 quoted344

depth. This pattern is very pronounced and may have important implications345

for correctly interpreting the impact of algorithmic activity on the market.346

While these results could potentially be caused by trading activity deplet-347

ing quoted depth in the order book, the characteristic pattern is also similarly348

observed during episodes which involve no trades at all. This suggests that the349

change in depth levels could be due to new quotes being posted rather than350

old ones being depleted. Additionally, posted orders are characterized by very351

low quantities offered, which is another evidence of algorithmic activity. One of352

the most significant impact of the increasing presence of algorithmic trading in353

financial markets is a steady decline in the average trade size. The observation354

of small orders being posted and disappeared rapidly over a very short period355

of time fits the expected patterns. Moreover, this also lends support to the356

argument that liquidity provision by algorithmic activity may be transient in357

nature. Finally, this pattern could also be consistent with the technique of ping-358

ing, since the orders posted narrow the spread and may be intended to entice359

institutional traders into trading.360

A final pattern is observed at the event level which confirms the intuition361

that the quoted spread also experiences volatility particularly during one-sided362

(in-ask or in-bid only) quote volatility episodes, as shown in Figure 3. This363

finding seems to suggest that while algorithmic traders seem to provide liq-364
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uidity through posting small but competitive orders which initially narrow the365

bid-ask spread, the rapid disappearance of these orders increases quote volatil-366

ity, and may actually increase trading costs over the long run or even introduce367

an additional risk-premium for traders. This could potentially offset some or368

all of the benefits of added liquidity by algorithmic traders. A thorough inves-369

tigation of this hypothesis is beyond the scope of this paper, and may serve as370

a suggestion for future research in the area of asset pricing in the spirit of [14].371

An examination of the intraday patterns of the QV values reveals charac-372

teristic peaks around the beginning and the end of the regular trading hours373

from 9:00 a.m. till 16:00. This was observable across all the three assets as374

shown in the Figure 4. Further, an examination of the distribution of QV ratio375

values seems to strongly suggest that these follow a Chi-squared distribution,376

characterized by a fat tail, see Figure 5. This is a finding which warrants fur-377

ther investigation and could potentially lead to a more formalized quantitative378

method of detecting algorithmic activity.379

4.2. Price Momentum380

The majority of events are observed on time frames of 30, 60 and 90s. The381

total size of price changes for each event is recorded in basis points, as well as382

the potential volume traded by algorithmic traders. The method used for this is383

an approximation based on the volume observed during the initial volume peak384

and the second volume peak, as shown in Figure 6. The aim of the analysis385

is to provide an estimate of the direct economic result derived by algorithmic386

traders.387

As shown in Figure 7, an examination of the intraday PM ratio values chart388

reveals a similar pattern to the one observed for quote volatility ratio. The389

pattern observed for Bund contracts is different than the one for the exchange390

traded assets in the US. This may be due to the longer regular hours trading391

session on EUREX, as opposed to the market hours observed on US exchanges,392

where both Apple and USO are listed. A start of trading, end of trading and393

mid-day peaks are observable for the three asset classes.394
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Figure 5: QV histogram. This Figure depicts the distribution of quote volatility ratio for the
Bund futures.

While the average return per event observed in the sample is 23.09 basis395

points, this number is significant when considered within the context of the396

extremely short time frames of its occurrence between 0.5 and 1.5 minutes. The397

largest observed relative return in the sample is 106.7 basis points, during an398

event on the Bund futures market. Using Equation 6, the potential gross profit399

generated during this is EUR 82,692.5.400

GrossProfit = Quantitytraded∗IndicativePrice∗Returninbp

10000
∗TickSize (6)

Indicative price is a rough indication of the relevant assets price. For Bund401

futures, this is assumed at a constant EUR 155 for Apple shares at $113 and for402

the USO-ETF is at $17.36. The tick size of the Bund Futures contract is for a403

nominal value of EUR 10 per 0.01 change in price. The total profits generated404

over the sample studied amounts to almost $ 5.25 million. The breakdown of405

event count by day of the week reveals no particular pattern, although it seems406

to suggest that midweek days may tend to contain higher algorithmic activity.407

The distribution of the PM values appears to follow the Chi-square distri-408

bution pattern observed for quote volatility, but with even longer fat tails and409

greater skewness, as shown in Figure 8. This suggests granularity in the data,410

and the presence of extreme outliers during the episodes of algorithmic activity.411

This also provides additional basis for a further future quantitative research on412

this distribution.413
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(a)

(b)

Figure 8: PM histogram. These Figures depict the distribution of PM values for [a] USO-ETF
and [b] Bund futures.

5. ANN experiments414

A two-stage ANN experiment is carried out on the quote volatility ratio.415

The first stage is used to validate the efficiency of the proposed ratio, and the416

second stage is used to detect the quote volatility patterns consistent with the417

group of strategies as detailed in section 2.1.418

The initial stage of the neural networks is set as follows: the data is scanned419

using the QV ratio. The cutoff threshold, defined in Equation 4, is used to420

obtain the positive sample denoted as +1. An equal sample size outside the421

threshold is selected at random, and denoted as the negative sample -1. These422

two samples are combined and shuffled at random. The data is converted into423

machine readable format. The granularity used is 10 units in width and 10424

units in height, resulting in 100 identical rectangular zones on the chart for425

each window in the sample. This data is then processed 150 times as a training426

sample through the ANN algorithm. A final sample of 100 randomly scrambled427

observations is used to measure and verify the performance.428

The second stage of the neural networks experiments is to detect potential429
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commonalities which may signal that an episode of algorithmic activity may be430

ongoing or is imminent. There may be reasons to believe that at least part of431

such activity may be predictable to some extent. Fundamentally, algorithms432

are triggered by market conditions. If these conditions were known, it would433

be possible then to forecast when algorithmic activity is imminent. However,434

this information would constitute a very closely guarded company secret, and is435

almost certain to be protected as intellectual property. Therefore, an alternative436

method is to detect commonalities in market conditions immediately preceding437

an episode of algorithmic activity by running ANN experiment.438

ANNs are types of statistical learning models which are designed in a way439

that mimics the logical structure of a biological brain. These models are partic-440

ularly useful for pattern, speech and image recognitions, and have been applied441

as well for analyzing patterns of consumer behavior in financial markets. ANN442

models require at least two basic characteristics: (i) a topology and (ii) a trans-443

fer function [15]. ANNs are constructed out of nodes called neurons which act444

as simple I-O transformers. Data is fed into neurons as a signal input, and this445

is processed via a transfer function which generates an output signal. There are446

multiple transfer functions available, which have different characteristics and447

may be appropriate for analyzing specific problems. Some of the most widely448

used ones include logistic function, linear function, and a hyperbolic function,449

and a threshold function 7. For the current study, we use the following hy-450

perbolic function: O = tanh(I). The derivative of the hyperbolic function is451

approximated by: 1-I2. This ensures that outputs can take on values between452

1 and -1, as shown in Figure 9. Additionally, a large central region of the func-453

tion is characterized by a relatively constant slope, allowing for strong learning454

performance in a wider region of input values:455

The neurons of an ANN are structured in functional groups called layers.456

Most topologies will consist of 3 layers, an input layer, a hidden layer, and457

7For instance, a logistic transfer function implies that the value of the potential outputs
may range between 0 and 1. The derivative of the transfer function has important implications
for the performance of the module during learning on training data sets.
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Figure 9: Plot of the hyperbolic transfer function

output layer. Each neuron in a layer is connected to all the neurons on the458

layer immediately preceding it, and to an additional bias neuron, which has a459

constant output. These connections are assigned a specific weight each, and the460

weighted sum of the signal coming from all connections forms the total input.461

The input layer neurons are used as input nodes, where raw data feeds into the462

network directly. This is then processed via the transfer function of the neurons,463

and fed via connections to the hidden layer, which then processes the signal and464

transmits it to the output layer. The output layer generates the final output of465

the network.466

Training is a key stage of using ANN. Features or relationships which are467

influencing the data are inferred by ANN through a process of iterative learning.468

During the learning, ANN models process a data set designated for training and469

utilize an algorithm to adjust their connection weights so that their outputs470

converge closer to the desired values. While there are many strategies docu-471

mented in the literature, the most popular algorithm is back-propagation, see472

[16]. Back-propagation is a strategy which adjusts network connection weights473

using the derivative of the transfer function. The information during learning474

flows in the opposite direction to the flow observed during processing. This475

begins at the output layer with a comparison between ANN current output and476

the target output known ex ante. This is used to calculate the deviation be-477
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Figure 10: Information flows within Artificial Neural Network

tween the two also known as error. The derivative of the transfer function is478

then used to make adjustments to connection weights further down the network,479

until all connections are updated. The new information learned is incorporated480

into the connection weights. The back-propagation algorithm is used for our481

experiment.482

There are many reasons why ANN may be a suitable technique for car-483

rying out the present experiment. The evaluation of market activity over a484

short period of time can be seen as a pattern recognition exercise. Further, the485

commonalities preceding an episode of algorithmic activity, if present, are not486

known exante. However, ANN does not require such information, as long as487

all the necessary data is fed into the model. Finally, the question of whether488

a certain window is immediately preceding an algorithmic episode can be re-489

stated as a Boolean problem, with 1 denoting a period preceding algorithmic490

trading, and -1 otherwise. The narrower focus of the present experiment is on491

quote volatility by looking specifically for a graphical pattern in quote updates492

immediately prior to the episode of algorithmic activity. One significant chal-493

lenge when analyzing two-dimensional data points using ANN models is posed494

by what is known as the curse of dimensionality. This is a catch all phrase for495

many diverse issues arising from the problem of representing two dimensional496

features in a format suitable for ANN processing. There is a significant body of497

literature detailing alternative strategies for dealing with this set of issues. For498

the purposes of the present research, a simplistic approach is adopted, based on499

2-D image processing strategies [17], as shown in Figure 11.500

Each window of quote updates examined is seen as a two-dimensional area501

in time and price. This is further segmented into a number of sections of equal502

area. The exact granularity of the division along the X and Y axes is determined503

and can be set within the ANN suite of the Trident tool. A granularity of 4 in504
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(a)

(b)

(c)

(d)

Figure 11: These Figures depict [a] the initial segmentation of a chart sample. For demonstra-
tion purposes granularity is set to 4 in both dimensions, [b] the representation of the 4 input
nodes corresponding to the 4 chart segments; [c] the event Density within each region. There
are a total of 30 events (quote updates) over the sample period, [d] and the representation of
the result by filling each region with a % of black color in accordance with the event density
calculated.
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Price and 5 in Time is selected, yielding 20 segments of equal area. Once these505

regions are determined, the number of quote update events falling within each506

segment is estimated, and calculated as a fraction of the total number of quote507

updates in the time window examined. The end result is an array consisting of508

20 fractions denoting relative event density, which sums up to 1. This approach509

is very similar to the one used in image processing, where images are segmented510

into areas and pixel counts are performed in each segment to transform the511

shape of the image into digital form.512

The resulting set of inputs is readily processed by an ANN model. A training513

sample of 638 observations is used, with 319 windows immediately preceding a514

previously detected quote volatility episode, which are assigned a target value of515

1, and 319 randomly selected alternative samples which are assigned a desired516

output value of -1. The ANN models are used to process 600 iterations of the517

training dataset, and once this is accomplished, a final holdout sample consisting518

of 50 periods with a target value of +1 and 50 periods with a target value of -1,519

is used for evaluation purposes.520

In table 2, we present the first stage results of the ANN experiment for each521

asset within each quote volatility specification, i.e. in-ask, in-bid and combined.522

A success rate greater than 50% indicates detection of signals. Results sug-523

gest detection rates ranging between 50% and 60% for in-bid and in-ask quote524

volatility specifications. Further results suggest that increasing the QV ratio525

threshold (the third column) improves the detection in ANN at some levels.526

ANN does not seem to detect the signal for events with a very high data points,527

e.g. for Apple stock within the combined specification. A plausible explanation528

is that as the details in the data are too fine, the 10x10 resolution seems not529

to capture all the relevant features. Another explanation is related to the dis-530

tribution of the QV values and the existence of outliers which might decrease531

modeling accuracy in ANN, as suggested by [18]. We investigate this further532

by running an additional experiment 110 times. We consider QV % of 10, and533

move lower in increments of 1% at a time, observing the corresponding changes534

in ANN accuracy. Realizing that there is uncertainty in the actual ANN ex-535
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periment itself, we run it 10 times for each QV %, and record averages and536

standard deviations of the results. Table A in the appendix shows the results537

for the Bund futures within the in-ask specification. Interesting pattern is seen538

- accuracy increases rapidly with reduction of the QV from 10 to about 7%.539

It then declines noticeably from 6% to about 2%, before increasing again. As540

we decrease the QV % initially, accuracy rises as we reduce the noise. How-541

ever, when we reach the transition around 6% the sample begins to change as542

it contains a mix of heterogeneous data, therefore the ANN model struggles to543

detect it correctly. When QV is lowered further, the sample fully transitions544

to an homogenous state again, and the model is able to pick it up. Also, as we545

decrease QV % naturally, the number of relatively high QV % data points that546

may end up as part of the negative sample rises. It seems that ANN hardly547

distinguishes between a positive sample data point, and a just below threshold548

negative sample data point.549

The second stage of ANN experiment is used as a proof of concept for poten-550

tial forecasting techniques of our quote volatility ratio. It is set up and carried551

out as previously described. A simple rule of thumb is to check whether the fore-552

casts add any incremental value to a naive forecast of 50%. Table 3 summarizes553

the results for several alternative specifications with the basic parameters and554

topology used, and seem to suggest that models examined here have forecasting555

power.556

6. Conclusion557

We propose two measures of algorithmic activity based on patterns of quote558

volatility and price momentum. We also run a two-stage ANN experiment using559

the quote volatility measure. Results documented here have several important560

implications such as the patterns of quoted spread and trading volume during561

quote volatility episodes, the economic performance of price momentum and562

the underlying distribution followed by the proposed measures. Further, we563

provide a novel ANN framework using the quote volatility measure. ANN results564
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Table 2: ANN experiment results

Observations Asset Strategy QV ratio % Success rate %

1 Bund Ask 5 59
2 Bund Ask 1 53
3 Bund Ask 0.5 50
4 Bund Bid 5 60
5 Bund Bid 1 49
6 Bund Bid 0.5 55
7 Bund Combined 5 52
8 Bund Combined 1 48
9 Bund Combined 0.5 55
10 Apple Ask 0.1 54
11 Apple Ask 0.05 53
12 Apple Ask 0.025 60
13 Apple Bid 0.1 54
14 Apple Bid 0.05 58
15 Apple Bid 0.025 54
16 Apple Combined 0.1 40
17 Apple Combined 0.05 48
18 Apple Combined 0.025 48
19 USO Ask 0.12 55
20 USO Ask 0.06 48
21 USO Ask 0.03 51
22 USO Bid 0.12 48
23 USO Bid 0.06 56
24 USO Bid 0.03 52
25 USO Combined 0.12 56
26 USO Combined 0.06 56
27 USO Combined 0.03 49

This table reports the first stage results of ANN experiment for each asset within
each specification. [1] Note: I=100 (Input layer); H-1=15, H-2=15, H-3=1 (Hidden
layers); O=1 (Output layer); η = 0.45 (momentum coefficient) and α = 0.5 (learning
rate).

Table 3: ANN forecasting experiment results summary

1 2 3 4

Input layer I 20 20 20 20 neurons
Hidden layer H-1 3 4 4 3 neurons
Hidden layer H-2 3 4 4 3 neurons
Hidden layer H-3 1 0 0 1 neurons
Output layer O 1 1 1 1 neurons
Success rate % 53 50 50 51

Momentum coefficient η 0.45 0.45 0.75 0.75
Learning rate α 0.50 0.50 0.40 0.40

This table reports the second stage results of ANN for several alternative specifica-
tions with the basic parameters and topology used.
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suggest a detection rate that ranges from 50% to 60%, in particular during one-565

sided quote volatility episodes. By increasing the QV ratio threshold levels, we566

document an improvement in ANN detection at some levels.567

Appendix568

We run 110 times the ANN experiment within the in-ask specification for569

Bund futures.570

Table A - Additional ANN experiment results for the Bund571

Asset QV ratio % Mean Success rate % Standard deviation

Bund 10 52.5 2.6
Bund 9 52.7 4.3
Bund 8 54.5 2.3
Bund 7 55.6 3.0
Bund 6 48.5 3.6
Bund 5 47.6 5.6
Bund 2 50.9 3.0

572

This table reports additional ANN experimental results by running the experiment
110 times within the in-ask specification for Bund futures. We consider QV% of 10,
and move lower in increments of 1% at a time, observing the corresponding changes
in ANN accuracy (success rate). We run 10 times for each QV%, and report the
averages and standard deviations of the results.
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