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Abstract We investigate the uncertainty in the strong cou-
pling αS(M2

Z ) when allowing it to be a free parameter in the
recent MMHT global analyses of deep-inelastic and related
hard scattering data that was undertaken to determine the
parton distribution functions (PDFs) of the proton. The anal-
ysis uses the standard framework of leading twist fixed-order
collinear factorisation in the MS scheme. We study the con-
straints on αS(M2

Z ) coming from individual data sets by
repeating the NNLO and NLO fits spanning the range 0.108
to 0.128 in units of 0.001, making all PDFs sets available.
The inclusion of the cross section for inclusive t t̄ production
allows us to explore the correlation between the mass mt of
the top quark and αS(M2

Z ). We find that the best-fit values are
αS(M2

Z ) = 0.1201 ± 0.0015 and 0.1172 ± 0.0013 at NLO
and NNLO, respectively, with the central values changing to
αS(M2

Z ) = 0.1195 and 0.1178 when the world average of
αS(M2

Z ) is used as a data point. We investigate the interplay
between the uncertainties on αS(M2

Z ) and on the PDFs. In
particular we calculate the cross sections for key processes at
the LHC and show how the uncertainties from the PDFs and
from αS(M2

Z ) can be provided independently and be com-
bined.

1 Introduction

There has been a continual improvement in the precision and
in the variety of the data for deep-inelastic and related hard-
scattering processes. Noteworthy additions in the years since
the MSTW2008 analysis [1] have been the HERA combined
H1 and ZEUS data on the total [2] and charm structure func-
tions [3], and the variety of new data sets obtained at the LHC,
as well as updated Tevatron data (for full references see [4]).
Moreover, the procedures used in the global PDF analyses of
these data have been refined, allowing the partonic structure
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of the proton to be determined with ever-increasing accu-
racy and reliability. These improvements are important as
it is necessary to quantify the Standard Model background
as accurately as possible in order to isolate possible experi-
mental signals of New Physics. One area that needs careful
attention, at the present level of accuracy, is the treatment of
the strong coupling, αS itself, in the global analyses. Here
we extend the recent MMHT2014 global PDF analysis [4]
to study the uncertainties on αS and their implications for
predictions for processes at the LHC.

2 Treatment of αS(M2
Z) in the MMHT2014 analysis

We refer to Fig. 1 for an overview of the treatment and of
the values of αS obtained in the MMHT2014 global PDF
analysis [4]. At both NLO and NNLO the value of αS(M2

Z )

is allowed to vary just as another free parameter in the global
fit. The best-fit values are found to be

αS,NLO(M2
Z ) = 0.1201 (1)

αS,NNLO(M2
Z ) = 0.1172, (2)

as indicated by the dark arrows in Fig. 1. The corresponding
total χ2 profiles versus αS(M2

Z ) are shown in Fig. 2. These
plots clearly show the reduction in the optimum value of
αS(M2

Z ) as we go from the NLO to the NNLO analysis. In the
next section we show how the individual data sets contribute
to make up this χ2 profile versus αS(M2

Z ).
It is sometimes debated whether one should attempt to

extract the value of αS(M2
Z ) from the PDF global fits or to

simply use a fixed value taken from elsewhere – for example,
to use the world average value [5]. However, we believe that
very useful information on the coupling can be obtained from
PDF fits, and hence have performed fits where this is left as a
free parameter. As the extracted values ofαS(M2

Z ) in the NLO
and NNLO MMHT2014 analyses [4] reasonably bridge the
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Fig. 1 The dark arrows indicate the optimal values of αS(M2
Z ) found

in NLO and NNLO fits of the MMHT2014 analysis [4]. The dashed
arrows indicate the values found in the MSTW2008 analysis [1]. We
also show the world average value, which we note was obtained assum-
ing, for simplicity, that the NLO and NNLO values are the same –
which, in principle, is not the case. The short arrows are also of interest
as they indicate the NLO and NNLO values which would have been
obtained from the MMHT2014 global analyses if the world average
value (obtained without including DIS data) were to be included in the
fit. However, the default values αS,NLO = 0.120 and αS,NNLO = 0.118
were selected for the final MMHT2014 PDF sets ‘for ease of use’;
indeed, the small values of �χ2 are the minute changes in χ2

global in
going from the optimal to these default fits
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Fig. 2 The upper and lower plots show total χ2 as a function of the
value of the parameter αS(M2

Z ) for the NLO and NNLO MMHT2014
fits, respectively

world average of αS(M2
Z ) = 0.1185±0.0006 [5], we regard

these as our best fits. We note it is a common result in PDF
analyses, and in other extractions of the strong coupling, for
the best-fit value to fall slightly as the order of the theoreti-
cal calculations increases. However, in order to explore fur-
ther, as well as leaving αS(M2

Z ) as a completely independent
parameter, the MMHT2014 analyses were repeated including
the world average value (without the inclusion of DIS data
to avoid double counting) of αS(M2

Z ) = 0.1187 ± 0.0007 as
a data point in the fit. This changed the preferred values to

αS,NLO(M2
Z ) = 0.1195 and αS,NNLO(M2

Z ) = 0.1178,

(3)

as indicated by the short arrows in Fig. 1. Each of these is
about one standard deviation away from the world average,
so our PDF fit is entirely consistent with the independent
determinations of the coupling. Moreover, the quality of the
fit to the data (other than the single ‘data’ point on αS(M2

Z ))
increases by about 1.5 units in χ2 at NLO and just over one
unit at NNLO when the coupling was included as a data point.

However, ultimately for the use of PDF sets by external
users it is preferable to present the sets at common (and hence
‘rounded’) values of αS(M2

Z ) in order to compare and com-
bine with PDF sets from other groups, for example as in [6–
9]. At NLO in the MMHT2014 analysis [4] we hence chose
αS(M2

Z ) = 0.120 as the default value for which the PDF sets
with full error eigenvectors are made available. This is essen-
tially identical to the value for the best PDF fit when the cou-
pling is free, and still very similar when the world average was
included as a constraint. At NNLO, αS(M2

Z ) = 0.118 was
chosen as a rounded value, very close to both the best-fit value
and the world average, and the fit quality is still only 1.3 units
in χ2 higher than that when the coupling was free. This is
extremely close to the value determined when the world aver-
age is included as a data point. Hence, in MMHT2014 [4], we
chose to use αS(M2

Z ) = 0.118 as the default for NNLO PDFs,
a value which is very consistent with the world average. At
NLO we also made a set available with αS(M2

Z ) = 0.118, but
in this case the χ2 increases by 17.5 units from the best-fit
value. In [4] we also made available PDF sets correspond-
ing to the best fit for αS(M2

Z ) values ±0.001 relative to the
default values in order for users to determine the αS(M2

Z )-
uncertainty in predictions if so desired. We will return to the
issue of PDF+αS(M2

Z ) uncertainty later.
Before we continue we should specify how the running of

αS(Q2) is treated. There is more than one definition of the
coupling commonly used in QCD phenomenology. Although
the various prescriptions are all formally equivalent since
they differ only at higher orders, numerical differences of
the order of up to 1 % can occur. We use the definition
based on the full solution of the renormalisation group equa-
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tion, in MS scheme, at the appropriate order, with boundary
condition defined by the value of αS(M2

Z ). This is identi-
cal to the definition in public codes such as pegasus [10]
and hoppet [11], and it is now effectively the standard in
PDF analyses.1 It differs, for example, from solutions to
the renormalisation group equations truncated at a particular
order.

3 Description of data sets as a function of αS

The NNLO MMHT2014 global analysis [4] was based on a
fit to 40 different sets of data on deep-inelastic and related
hard scattering processes. There were 10 different data sets
of structure functions from the fixed-target charged lepton–
nucleon experiments of the SLAC, BCDMS, NMC and E665
collaborations, six different neutrino data sets on F2, xF3 and
dimuon production from the NuTeV, CHORUS and CCFR
collaborations, two Drell–Yan data sets from E886/NuSea,
six different data sets from HERA involving the combined
H1 and ZEUS structure function data, seven data sets from
the Tevatron giving the measurements of inclusive jet, W and
Z production by the CDF and D0 collaborations and, finally,
nine data sets from the ATLAS, CMS and LHCb collabora-
tions at the LHC. In addition, the NLO fit also used jet data
from the ATLAS, CMS and H1 and ZEUS collaborations,
which were not used at NNLO because it was judged that
at present there is not sufficient knowledge of the full jet
NNLO cross section; jet production at the Tevatron, on the
other hand, is much closer to threshold than at the LHC, so
the threshold approximation to the full NNLO calculation is
much more likely to provide a reliable estimate in this case.
The goodness-of-fit quantity, χ2

n , for each of the data sets,
n = 1, . . . , 40, is given for the NLO and NNLO global fits
in Table 5 of [4], and the χ2 definition is explained in Section
2.5 of the same article. The references to all the data that are
fitted are also given in Ref. [4].

In the NNLO global fit of [4], let us denote the contribu-
tion to the total χ2 from data set n by χ2

n,0. Here we explore

the χ2
n profiles as a function of αS(M2

Z ) by repeating the
global fit for different fixed values of αS(M2

Z ) in the neigh-
bourhood of the optimum value given in (2). The results
are shown in Figs. 3, 4, 5, 6 and 7, where we plot the χ2

n
profiles for each data set n as the difference from the value
at the global minimum, χ2

n,0, when varying αS(M2
Z ). The

points (•) in Figs. 3, 4, 5, 6 and 7 are generated for fixed val-
ues of αS(M2

Z ) between 0.108 and 0.128 in steps of 0.001.
These points are then fitted to a quadratic function of αS(M2

Z )

shown by the continuous curves. By definition we expect the

1 In the MS scheme this involves discontinuities at flavour transition
points at NNLO. For a suggestion for a smooth transition in a physical
scheme see [12].

profiles to satisfy (χ2
n − χ2

n,0) = 0 at αS(M2
Z ) = 0.1172,

corresponding to the value of αS(M2
Z ) at the NNLO global

minimum. Ideally, a data set should show a quadratic mini-
mum about this point. Of course, in practice, the various data
sets may pull, in varying degrees, to smaller or larger values
of αS(M2

Z ). There is a small amount of point-to-point fluctu-
ation for the values of (χ2

n − χ2
n,0), even near the minimum,

but near the minimum this is generally only at the level of
fractions of a unit in χ2 for a given data set. The fluctuations
become larger as we go to values of αS(M2

Z ) far from the
minimum, particularly for lower αS(M2

Z ), mainly because
changes in χ2 with small changes in αS(M2

Z ) are becoming
much greater. However, some of the “jumps” for individual
sets near αS(M2

Z ) = 0.108 imply that the global minimum in
χ2 for this choice of αS(M2

Z ) is rather flat in certain param-
eter directions, with some relatively easy trade-off between
the data sets which are poorly fit, and a transition to a dif-
ferent, approximately degenerate global minimum occurring
with a small change in αS(M2

Z ). Indeed, we have verified
that at αS(M2

Z ) = 0.108 there is a local minimum where
“jumps” are eliminated, but with slightly higher global χ2

than the result where there are “jumps”. This highlights the
fact that the PDF uncertainty is difficult to define properly
for a value of αS(M2

Z ) which is far from optimal and leads
to many data sets being badly fit.

We repeat this exercise at NLO. Then the profiles will sat-
isfy (χ2

n −χ2
n,0) = 0 at αS(M2

Z ) = 0.1201. We include in the
plots the NLO points (as triangles) and show the correspond-
ing quadratic fit by a dashed curve. In Fig. 8 we show the χ2

n
profiles for the LHC and HERA jet data that were included
in the NLO fit. Here the bullet points and profile curve cor-
respond to the NLO fit. These data were not included in the
NNLO fit.

The fixed-target structure function data in the first 14
plots in Figs. 3 and 4 have been available for several years.
These data play an important role in constraining the value of
αS(M2

Z ). There is some tension between these data sets. The
BCDMS (and also the E665) data prefer values of αS(M2

Z )

around 0.110. On the other hand the NMC data prefer values
around 0.122; and the SLAC F p,d

2 data prefer αS(M2
Z ) values

around 0.115 and 0.122, respectively. The neutrino F2 and
xF3 data prefer αS(M2

Z ) ∼ 0.120; while neutrino dimuon
production has little dependence on αS(M2

Z ), since the extra
B(D → μ) branching ratio parameter (see Eq. (19) of [4])
can partially compensate for the changes in αS(M2

Z ).
The NNLO corrections to the structure functions are pos-

itive and speed up the evolution, leading to smaller opti-
mum values of αS(M2

Z ) than those at NLO, such that the
spread of optimum values of αS(M2

Z ) for the different data
sets is somewhat reduced. Thus the overall fit to this sub-
set of the data is marginally better at NNLO. The difference
αS,NNLO < αS,NLO is clearly evident in the majority of the
corresponding plots.
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Fig. 3 χ2
n profiles obtained when varying αS(M2

Z ) for the subset of
data from deep-inelastic fixed-target experiments. The results from the
NNLO global fits are shown by bullet points (and a continuous curve),

while those from the NLO global fits are shown by triangles (and a
dashed curve). The plots are continued in the next figure
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n profiles obtained when varying αS(M2
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data from deep-inelastic fixed-target experiments. The results from the
NNLO global fits are shown by bullet points (and a continuous curve),

while those from the NLO global fits are shown by triangles (and a
dashed curve). (Continued from the previous figure)
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Fig. 5 χ2
n profiles obtained when varying αS(M2

Z ) coming from the
Drell–Yan fixed-target experiments and from the combined H1 and
ZEUS measurements at HERA. The results from the NNLO global

fits are shown by bullet points (and a continuous curve), while those
from the NLO global fits are shown by triangles (and a dashed curve)
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n profiles obtained when varying αS(M2
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subset of data of the CDF and D0 Tevatron experiments, together with
the plot for the ATLAS W and Z production data. The results from the
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global fits are shown by bullet points (and a continuous curve), while

those from the NLO global fits are shown by triangles (and a dashed
curve). The χ2

n profiles for t t data are shown in Fig. 9 and discussed in
Sect. 4
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Fig. 8 χ2
n profiles for jet data sets, included in the NLO fit, but not in the NNLO fit, when varying αS(M2

Z )

The recent combined H1 and ZEUS structure function
data from HERA prefer a value of αS(M2

Z ) of about 0.120
at NNLO. Perhaps the only surprising result is the αS(M2

Z )

behaviour of the combined data for Fcharm
2 , which prefers

a very low value of αS(M2
Z ) at NNLO, whereas the uncom-

bined data had a perfect quadratic behaviour about 0.118; see
Fig. 5 of [13]. Note, however, that the combined data con-
tains some points at the lowest Q2 which were not available
as an individual data set. These data, particularly at low Q2,
are sensitive to the value of the charm mass mc, and there is
a correlation between its value and αs(M2

Z ) [14]. This will
be studied again with the up-to-date data in a future article.

The longitudinal structure function FL leads off with an
αS term, and so the value of (χ2

n − χ2
n,0) depends more

sensitively on αS(M2
Z ). The NNLO plot shows an excel-

lent quadratic dependence on αS(M2
Z ), centred at 0.118. The

NNLO coefficient functions for FL(x, Q2) [15,16] are posi-
tive and significant, and the NLO fit tries to mimic these with
a higher value of αS(M2

Z ). Indeed, the data for FL , and also
the E866/NuSea ppDrell–Yan cross sections data, are clearly
more quadratic at NNLO than at NLO, with minima closer
to the best-fit values. This indicates a strong preference for
the NNLO description, which is not so apparent if only the
global best-fit values χ2

n,0 are known. As the E866/NuSea
data for pd/pp Drell–Yan production are a ratio of cross
sections, the sensitivity to the value of αS(M2

Z ) is small.
The Tevatron data, as well as the ATLAS W±, Z produc-

tion data and the ATLAS high-mass Drell–Yan data, show,
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at NNLO, αS(M2
Z ) profiles with quadratic behaviour with

minima close to the best-fit values. Again, the profiles are
improved to those at NLO. The counter example are the
LHCb data, which have profiles which are more reasonable at
NLO than at NNLO. In general, the charge-lepton asymmetry
measurements arising from W± production at the Tevatron
and the LHC, which are a ratio of cross sections, have much
less constraint on the value of αS(M2

Z ).
Judging from the values of (χ2

n − χ2
n,0) away from the

different minima of the various data sets or, rather, the steep-
ness of the quadratic forms in αS(M2

Z ), we see that there is
a tendency for data at lower energies or lower Q2 to lead
to more constraint on the optimum global value of αS(M2

Z ).
This is to be anticipated, as we will see in Sect. 6.

4 t t data: mt–αS correlation

There is a particularly strong, but also complicated, relation-
ship between the value of αS(M2

Z ) and the fit to data on the
inclusive cross section for t t̄ production, σt t̄ . We show the χ2

profiles at NLO and NNLO in Fig. 9. Clearly there is a pref-
erence for a lower value of αS(M2

Z ) at NNLO than at NLO,
and a strong constraint in both cases, with χ2 increasing by
a large number of units, certainly compared to the number of
data points, for small changes in αS(M2

Z ). Indeed, nominally
σt t̄ provides one of the strongest constraints of any data set
for the lower limit of αS(M2

Z ) at NLO and the upper limit of
αS(M2

Z ) at NNLO. However, the picture is more complicated
than for other data sets due to the very strong correlation with
the value of the mass mt of the top quark.

In the global fits the theory calculation of σt t̄ is per-
formed with a preferred value of the top-quark pole mass
of 172.5 GeV, since this is the default in PYTHIA, used
to extract the cross section in many of the measurements.
Moreover, the majority of the cross sections are quoted for
this value of mt . This value is also consistent with the world
average of the measured value of 173.34 GeV [5]. However,

we allow a 1 GeV uncertainty on the value of mt , which can
be thought of as accounting for the uncertainty in the value of
mt itself and also for the small variation in the extracted cross
sections with mt used; in general this is about a third the size
of the variation of the calculation of σt t̄ with mt , and the net
effect is an effective uncertainty a little lower than 1 GeV.
To be specific, mt is left as a free parameter in the fit, but
there is a χ2 penalty of χ2

mt
= (mt − 172.5 GeV)2 applied

to keep the value close to the preferred value. This penalty is
included in the values in Fig. 9. The allowed variation in mt

away from the preferred central value of 172.5 GeV results
in the NLO fit preferring a low value of mt = 171.7 GeV and
the NNLO fit preferring a high value of mt = 174.2 GeV.
The low value of mt in the global fit and the high value of
αS(M2

Z ) preferred by σt t̄ when αS(M2
Z ) is varied, both occur

for the same reason. That is, the NLO cross section tends to
undershoot the data, and raising αS(M2

Z ) and lowering mt

both raise the cross section, leading to better agreement.
The NNLO correction to the cross section in the pole mass

scheme is moderate, but large compared to the most precise
data, and hence the NNLO cross section tends to be too high.
This leads to the opposite pulls to those at NLO, i.e., NNLO
prefers αS(M2

Z ) low and mt high. Within the global fit we
find that the allowed variation with accompanying penalty
for deviations from mt = 172.5 GeV results in mt values
at the best-fit values of αS(M2

Z ) which are of order 1–2σ

away from either our preferred value or the world average,
so have no particular inconsistency, but it is useful to exam-
ine the interplay between αS(M2

Z ) and mt in rather more
detail.

4.1 Effect on χ2
global to changes of mt and αS(M2

Z )

First we investigate the quality of the global fit as a function
of both αS(M2

Z ) and mt . This is shown in Fig. 10, where we
plot χ2

global versus mt at several different values of αS(M2
Z )

(In these plots mt is varied with no χ2 penalty for deviations
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Fig. 11 χ2
n values for inclusive t t cross section data at the global minimum, as a function of the top mass mt , for different fixed values of αS(M2

Z ).
There is no χ2 penalty for varying mt

away from the “preferred” value). At NLO one can see that
regardless of mt the best global fit is always obtained quite
clearly for αS(M2

Z ) close to 0.120, with the fit quality for
αS(M2

Z ) = 0.119 or αS(M2
Z ) = 0.121 each being a few units

worse at all values of mt . It is only for mt > 180 GeV that
the quality for αS(M2

Z ) = 0.121 approaches that of 0.120
and the best fit would be for αS(M2

Z ) ≈ 0.1205. At this
mass the global χ2 is about 10 units above the minimum
though. Similarly at NNLO αS(M2

Z ) = 0.117 gives a lower
χ2

global for all masses between about 166 GeV and 181 GeV,

when αS(M2
Z ) = 0.116 and αS(M2

Z ) = 0.118, respectively,
give the same χ2

global values. Hence, even completely unrea-
sonable variations of ∼7–10 GeV result in changes of the
best-fit values of αS(M2

Z ) of only ∼0.0005. We do note, how-
ever, that without a penalty for mt variation the best global
fits are at mt = 168 GeV and mt = 180 GeV at NLO and
NNLO, respectively, so some penalty is clearly necessary.
Ultimately, the value of αS(M2

Z ) determined by the global
fit is very insensitive to the value of mt used and, indeed, to
the σt t̄ data, because these correspond to relatively few data
points. Indeed, if these are left out of the global fit the change

in the optimum value of αS(M2
Z ) is only of order 0.0001 − 2

at NLO and NNLO. However, the interplay between αS(M2
Z )

and mt is more dramatic for the σt t̄ data alone, as we will
now show.

4.2 Effect on χ2
t t̄ to changes of mt and αS(M2

Z )

The equivalent plots to Fig. 10 are shown in Fig. 11 for the
fit quality to the inclusive σt t̄ cross section data. Again, there
is no penalty applied for mt variation. At NLO it is clear
that, except for very low values of mt , the best fit is achieved
for higher values of αS(M2

Z ), i.e. αS(M2
Z ) = 0.121 or for

mt > 172 GeV, αS(M2
Z ) = 0.122. Indeed, the best possible

fit to the top cross section data is for mt ≈ 172 GeV and
αS(M2

Z ) = 0.122. However, the improvement in χ2
t t̄ com-

pared to αS(M2
Z ) = 0.120 for this mass is only ∼2 units –

far less than the deterioration in the χ2 for the rest of the data
when going from αS(M2

Z ) = 0.120 to 0.122. Overall the
minimum χ2 achieved for any αS(M2

Z ) is quite flat with mt ,
changing by at most 2 units for 168 GeV < mt < 178 GeV.
However, it is clear that the variation of χ2

t t̄ is different for
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different values of αS(M2
Z ). As αS(M2

Z ) decreases there is
a preference for a smaller mass, hence if the central value
of mt had been chosen higher than 172.5 GeV for example,
the best fit to σt t̄ would be for a higher value of αS(M2

Z ).
The constraint on αS(M2

Z ) in the upper direction would be
weakened slightly; however, this data set does provide a sig-
nificant constraint in this direction. If the penalty had been
less severe, e.g. an increase in χ2

t t̄ for �mt = 2 GeV rather
than �mt = 1 GeV, the best value of mt and αS(M2

Z ) would
not change significantly, as the fit quality does not improve
for masses of mt < 171.7 for any αS(M2

Z ), even discount-
ing the penalty. However, the χ2

t t̄ curves for lower values of
αS(M2

Z ), i.e. 0.119 and 0.118 are falling quite steeply as mt

decreases in the vicinity of mt = 172 GeV, so the increase
in χ2

t t̄ with decreasing αS(M2
Z ) seen in Fig. 9 (left) would be

less severe if for mt it was allowed to choose smaller values,
and the constraint on the lower values of αS(M2

Z ) would be
reduced somewhat. Hence, at NLO, alternative treatments of
mt would allow a slightly higher best fit αS(M2

Z ) than the
default treatment, and a little scope for a relaxation of the
lower limit on αS(M2

Z ).
At NNLO it is again clear that higher values of αS(M2

Z )

prefer higher values of mt . However, for αS(M2
Z ) = 0.118

or 0.119 the value of mt corresponding to the best fit is mt =
180 GeV or more. Again, there is little variation in the best
value of χ2

t t̄ for 168 GeV< mt < 178 GeV, but the best fit
is achieved for αS(M2

Z ) = 0.115 or 0.116,2 only becoming
αS(M2

Z ) = 0.117 at mt = 178 GeV. In this case if the
penalty for variations in mt away from the default central
value were relaxed it would make little difference, as even
for αS(M2

Z ) = 0.115 the best fit is for mt ≈ 172 GeV. It
might allow slightly better fits for αS(M2

Z ) ∼ 0.110, but
this would have no influence on the overall constraint on
αS(M2

Z ), which is constrained by many data not to be much
lower than 0.115. A potential increase inmt , either by change
of default central value, or a relaxation of the penalty, would
allow for a potentially a slightly higher value of mt for the
best fit, as the minimum possible χ2

t t̄ is almost completely
flat between 172 GeV < mt < 176 GeV. This would be
accompanied by a slight increase in αS(M2

Z ). It would also
allow a little relaxation in the constraint on higher values
of αS(M2

Z ). The χ2
t t̄ curves for αS(M2

Z ) = 0.118 and 0.119
are decreasing with increasing mt in the vicinity of mt =
174 GeV, and a higher allowed value of mt would enable the
increase in χ2 with αS(M2

Z ) in Fig. 11 (right) to be less steep.
Hence, at NNLO alternative treatments of mt would allow
a slightly higher best-fit value of αS(M2

Z ) than the default
treatment, and a little scope for a relaxation of the upper
limit on αS(M2

Z ).

2 Our constraint on αS(M2
Z ) is very consistent with that in [17].

Hence, the overall conclusion is that some added freedom
in mt would lead to potentially rather small changes in the
minima of the χ2 curves in Fig. 11, but a reduced rate of
increase of χ2 away from the minima. The implications of
this will be discussed in the next section.

5 Uncertainty on αS(M2
Z) and calculation of

PDF+αS(M2
Z) uncertainty

First, recall that in the MMHT2014 analysis [4] we deter-
mined the uncertainties of the PDFs using the Hessian
approach with a dynamical tolerance procedure. We obtained
PDF ‘error’ eigenvector sets, each corresponding to 68 %
confidence level uncertainty, where the vectors are orthogo-
nal to each other and span the PDF parameter space.

In order to determine the uncertainty on αS(M2
Z ) at NLO

and NNLO we begin by using the same technique as in the
MSTW study of Ref. [13]; that is, for the ‘error’ eigenvectors
we apply the tolerance procedure to determine the uncertainty
in each direction away from the value at the best fit when one
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Fig. 12 The upper and lower plots show the value of αS(M2
Z ) corre-

sponding to the best fit, together with the upper and lower 1σ constraints
on αS(M2

Z ) from the more constraining data sets at NLO and NNLO,
respectively

123



Eur. Phys. J. C (2015) 75 :435 Page 13 of 19 435

data set goes beyond its 68 % confidence level uncertainty.
The values at which each data set does reach its 68 % confi-
dence level uncertainty, plus the value of αS(M2

Z ) for which
each data set has its best fit (within the context of a global fit)
are shown at NLO and NNLO in Fig. 12. However, unlike
Fig. 7 of [13] we do not show all data, as with the increased
number of sets there are now too many to show clearly on a
single figure. Moreover, as seen earlier, many data sets have
very little dependence, and hence produce very little con-
straint. Hence, we show those where both limits are within
the range of αS(M2

Z ) explicitly studied, i.e. 0.108 − 0.128
or where one limit is within 0.005 of the best-fit value of
αS(M2

Z ). None of the data sets omitted using these criteria
have a significant pull on αS(M2

Z ).
The dominant constraint on αS(M2

Z ) in the downwards
direction at NLO is from the top pair cross section data
and, using the dynamical tolerance procedure, gives an
uncertainty of �αS(M2

Z ) = −0.0014. In the upwards
direction it is the BCDMSp data with an uncertainty of
�αS(M2

Z ) = +0.0012. At NNLO the dominant downward
constraint comes from NuTeV F3(x, Q2) data which gives
�αS(M2

Z ) = −0.0012 and in the upwards direction it is
the top pair cross section data, where the uncertainty is
�αS(M2

Z ) = +0.0008.
There are a number of other data sets which give almost

as strong constraints. For instance, at NLO in the down-
wards direction we find that SLAC deuterium data give
�αS(M2

Z ) = −0.0018 and in the upwards direction H1
jets give �αS(M2

Z ) = +0.0019. At NNLO in the down-
wards direction SLAC deuterium data and CDF jet data give
�αS(M2

Z ) ≈ −0.0014, and in the upwards direction, at
NNLO, the BCDMSp data give �αS(M2

Z ) = +0.0014. In
all cases there are other data sets that are not much less con-
straining than those mentioned explicitly. Hence, in no case
is it a single data set which is overwhelmingly providing the
dominant constraint on the upper or lower limit of αS(M2

Z ).
Similarly, no single data sets would change the central value
by more than 0.001 if it were to be omitted.

Two of the four dominant constraints nominally come
from σt t̄ , and at NLO we have αS(M2

Z ) = 0.1201+0.0012
−0.0014 and

at NNLO αS(M2
Z ) = 0.1172+0.0008

−0.0012. However, in the pre-
vious section we highlighted the interplay between αS(M2

Z )

and mt when examining the fit quality of the σt t̄ data. We
demonstrated that if some extra flexibility is allowed on
the choice of central value of mt and/or on the 1-σ uncer-
tainty that is used, then the constraints are relaxed to some
degree. Hence, we are reluctant to treat the constraint from
the data on σt t̄ completely rigorously. In order to see quite
how we should deal with the constraints nominally due to
these data, we first check which data sets provide the next
tightest constraint. If we were simply to ignore the con-
straints from σt t̄ we would find a change in uncertainty at
NLO of �αS(M2

Z ) = −0.0012 → −0.0017 and at NNLO

�αS(M2
Z ) = +0.0008 → +0.0014. These are significant,

but hardly dramatic changes, and it would be no surprise if
some alternative treatment of the default top mass resulted
in changes of a similar type. Hence, it might be suitable to
take these values as a simple alternative, arguing that the
constraints from σt t̄ are not sufficiently greater than those
from other data sets either to ignore the possible effects of
alternative treatments of the mass mt or to warrant a com-
pletely thorough investigation at this stage.3 However, there
is the additional feature to note – whichever criterion we use,
we have some, albeit not too dramatic, asymmetry in the
αS(M2

Z ) uncertainty. There is no strong reason to apply this
slight asymmetry, as the χ2 profile for the global fit follows
the quadratic curve very well at both NLO and NNLO, and
the degree of asymmetry obtained using the dynamical tol-
erance procedure is arguably within the “uncertainty of the
uncertainty”. Hence at NLO and NNLO we average the two
uncertainties (obtained without the σt t̄ constraint) obtaining

αS,NLO(M2
Z ) = 0.1201 ± 0.0015 (4)

αS,NNLO(M2
Z ) = 0.1172 ± 0.0013. (5)

This corresponds to �NLOχ2
global = 10.3 and �NNLO

χ2
global = 7.2. These are the sort of tolerance values typi-

cal of the majority of PDF eigenvectors.
Each of these values of αS(M2

Z ) is within 1σ of the world
average (without DIS data) of 0.1187 ± 0.0007, though in
opposite directions. As noted earlier, the inclusion ofαS(M2

Z )

as a data point leads to values of 0.1178 and 0.1195 at
NNLO and NLO, respectively. These are somewhat closer
to the world average, and very near to 0.118 at NNLO, but
still quite close to 0.120 at NLO.4 Hence, we interpret the
values in Eqs. (4) and (5) as independent measurements of
αS(M2

Z ), but acknowledge that at NNLO taking both this
determination and the world average into account a round
value of αS(M2

Z ) = 0.118 is an appropriate one at which to
present the PDFs. At NLO we would recommend the use of
αS(M2

Z ) = 0.120 as the preferred value for the PDFs, but
have made eigenvector sets available at αS(M2

Z ) = 0.118.
If a value of αS(M2

Z ) = 0.119 were desired the average of
the results at αS(M2

Z ) = 0.118 and 0.120 would provide an
excellent approximation.

3 The constraint from σt t̄ data does provide the dominant constraint
in one direction for eigenvector 15 at NNLO. However, very nearly as
strong a constraint is provided by other data sets and the eigenvector only
provides at the very most 40 % of the uncertainty on one distribution, the
gluon, at any x value, in practice at high x . Hence, a slightly increased
tolerance for this eigenvector would have a minimal impact on any PDF
uncertainties.
4 Taking a weighted average of the values in Eqs. (4) and (5) would
result in values slightly nearer to the world average, reflecting the fact
that the dynamical tolerance procedure used to determine the uncer-
tainty results in a �χ2

global > 1.
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When considering the uncertainty on the prediction for
a physical quantity we should include the uncertainty on
αS(M2

Z ), as well as that on the PDFs. This is particularly
important for cross sections that at leading order are pro-
portional to a power of the coupling, such as σt t̄ or σHiggs,
which are proportional to α2

S . A naive procedure would be to
compute the error as

�σ =
√

(�σPDF)2 + (�σαS )
2 (6)

where �σαS is the variation of the cross section when
αS(M2

Z ) is allowed to vary over a given range. However,
it is inconsistent to use different values of αS in the par-
tonic hard subprocess cross section and in the PDF evolution.
Moreover, in a global PDF analysis, there are non-negligible
correlations between the PDFs and the value of αS .

In the MSTW study [13] of the PDF+αS(M2
Z ) uncer-

tainties arising from the MSTW2008 analysis we advocated
using our best fit value of αS(M2

Z ) as the central value for
PDF predictions, and then provided additional eigenvector
sets at ±0.5σ and ±1σ values of αS(M2

Z ). The uncertainty
was then calculated by taking the envelope of the predic-
tions using all these eigenvector sets. This still seems like an
appropriate algorithm for use with the dynamical tolerance
procedure of obtaining uncertainties. However, it can only
really be applied if the central prediction is obtained using
the PDFs defined at the best-fit value of αS(M2

Z ), which is
no longer the case, and, moreover, was a rather complicated
and time-consuming procedure.

Since the MSTW study [13] was undertaken it has been
shown that, within the Hessian approach to PDF uncertain-
ties, the correct PDF+αS(M2

Z ) uncertainty on any quan-
tity can be obtained by simply taking the PDFs defined at
αS(M2

Z ) ± �αS(M2
Z ) and treating these two PDF sets (and

their accompanying value of αS(M2
Z )) as an extra pair of

eigenvectors [18]. In short, the full uncertainty is obtained
by adding the uncertainty from this extra eigenvector pair

in quadrature with the PDF uncertainty. So we are back
to the naive form (6), but now, importantly, with the cor-
relations between the PDFs and αS included. This has the
advantages of both being very simple, but also separating
out the αS(M2

Z ) uncertainty on a quantity explicitly from
the purely PDF uncertainty. Strictly speaking, the method
only holds if the central PDFs are those obtained from the
best fit when αS(M2

Z ) is left free, and if the uncertainty
�αS(M2

Z ) on αS(M2
Z ) that is used is the uncertainty obtained

from the fit. If we use PDFs defined at αS(M2
Z ) = 0.118

at NNLO we are still very near the best fit, and the error
induced will be very small. At NLO a larger error will be
induced by using the PDFs defined at αS(M2

Z ) = 0.118
than those at αS(M2

Z ) = 0.120. Any choice of �αS(M2
Z )

of 0.001 − 0.002 should only induce a small error. Hence,
overall we now advocate using this approach with NLO
PDFs defined at αS(M2

Z ) = 0.120 and NNLO PDFs defined
at αS(M2

Z ) = 0.118. The value of �αS(M2
Z ) is open to

the choice of the user to some extent, but it is recom-
mended to stay within the range �αS(M2

Z ) that we have
found.

In Sect. 7 we apply the above procedure to determination
of the PDF+αS(M2

Z ) uncertainties on the predictions for the
cross sections for benchmark processes at the Tevatron and
the LHC, but first we examine the change in the PDF sets
themselves with αS(M2

Z ).

6 Comparison of PDF sets

It is informative to see the changes in the PDFs obtained
in global fits for fixed values of αS(M2

Z ) relative to those
obtained for the central value; we only consider the NNLO
case here, but note that the NLO PDFs behave in a similar
way. These are shown in Figs. 13, 14 and 15 for the vari-
ous PDFs as a function of x for Q2 = 104 GeV2 – a value
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Fig. 13 Percentage difference in the NNLO gluon and strange-quark PDFs at Q2 = 104 GeV2 relative to central (αS(M2
Z ) = 0.118) set for fits

with different values of αS , with the percentage error bands for the central set also shown
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Fig. 15 Percentage difference in the NNLO up and down valence quark PDFs at Q2 = 104 GeV2 relative to central (αS(M2
Z ) = 0.118) set for fits

with different values of αS , with the percentage error bands for the central set also shown

of Q2 relevant to data from the LHC. In almost every case
the changes in the PDFs for the coupling varied in the range
0.116 < αS(M2

Z ) < 0.120 are well within the PDF uncer-
tainty bounds.

As expected, the gluon distribution for x < 0.1 is larger
for αS(M2

Z ) = 0.116 and smaller for αS(M2
Z ) = 0.120:

a change which preserves the product αSg, which approx-
imately determines the evolution of F2(x, Q2) with Q2 at
low x . This is the dominant constraint on the gluon, and a
smaller low x gluon leads to a larger high-x gluon (and vice
versa) due to the momentum sum rule. The u and d PDFs
have the opposite trend as αS(M2

Z ) changes. At small x val-
ues this is a marginal effect, due to the interplay of a variety
of competing elements. At high x the decreasing quark dis-
tribution with increasing αS is due to the quicker evolution
of quarks to lower x . The insensitivity of the strange-quark
PDF to variations of αS(M2

Z ) at low x is partly just due to the
relative insensitivity of all low-x quarks, but is also partially
explained by the comments in the previous section about the
MMHT analysis [4] of dimuon production in neutrino inter-
actions – where the changes in αS(M2

Z ) are, to some extent,
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Fig. 16 Percentage difference in the NNLO gluon PDFs at Q2 = 10
GeV2 relative to central (αS(M2

Z ) = 0.118) set for fits with different
values of αS , with the percentage error bands for the central set also
shown

compensated by changes in the B(D → μ) branching ratio
parameter.

In Fig. 16 we compare the changes in the gluon PDF for
different fixed values of αS(M2

Z ) at a much lower value of
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Q2, namely Q2 = 10 GeV2. Here the gluon PDF is much
more sensitive to the value of αS(M2

Z ), and the changes in the
gluon PDF lie outside its uncertainty bounds. The message is
clear. At the high value of Q2 = 104 GeV2 the long evolution
length means that the gluon PDF in the relevant broad x
range about x ∼ 0.01 is determined by PDFs at larger x ,
and is relatively insensitive to the parameters of the starting
distributions.

7 Benchmark cross sections

In this section we show uncertainties for cross sections at the
Tevatron, and for 7 and 14 TeV at the LHC. Uncertainties for
8 and 13 TeV will be very similar to those at 7 and 14 TeV,
respectively. We calculate the cross sections for W and Z
boson, Higgs boson via gluon–gluon fusion and top-quark
pair production.

We calculate the PDF and αS(M2
Z ) uncertainties for the

MMHT2014 PDFs [4] at the default values of αS(M2
Z ). We

use a value of �αS(M2
Z ) = 0.001 as an example, simply

because PDF sets are readily available with αS(M2
Z ) changes

in units of 0.001. However, for values similar to �αS(M2
Z ) =

0.001 a linear scaling of the uncertainty can be applied to a
very good approximation. As explained in Sect. 5, the full
PDF+αS(M2

Z ) uncertainty may then be obtained by adding
the two uncertainties in quadrature.

To calculate the cross section we use the same procedure
as was used in [4]. That is, for W, Z and Higgs production we
use the code provided by Stirling, based on the calculation in
[19–21], and for top pair production we use the procedure and
code of [22]. Here our primary aim is not to present defini-
tive predictions or to compare in detail to other PDF sets,
as both these results are frequently provided in the literature
with very specific choices of codes, scales and parameters
which may differ from those used here. Rather, our main
objective is to illustrate the procedure for estimating realistic
PDF+αS(M2

Z ) uncertainties.

7.1 W and Z production

We begin with the predictions for the W and Z production
cross sections. The results at NNLO are shown in Table 1.
In this case the cross sections contain zeroth-order contri-
butions in αS , with positive NLO corrections of about 20 %,
and much smaller NNLO contributions. Hence a smaller than
1 % change in αS(M2

Z ) will only directly increase the cross
section by a small fraction of a percent. The PDF uncertain-
ties on the cross sections are 2 % at the Tevatron and slightly
smaller at the LHC – the lower beam energy at the Tevatron
meaning the cross sections have higher contribution from
higher x where PDF uncertainties increase. The αS uncer-
tainty is small, about 0.6 % at the Tevatron and close to 1 %

Table 1 Predictions for W± and Z cross sections (in nb), including
leptonic branching, obtained with the NNLO MMHT2014 parton sets.
The PDF and αS uncertainties are also shown, where the αS uncertainty
corresponds to a variation of ±0.001 around its central value. The full
PDF+αS(M2

Z )uncertainty is obtained by adding these two uncertainties
in quadrature, as explained in Sect. 5

σ PDF unc. αS unc.

W Tevatron (1.96 TeV) 2.782 +0.056
−0.056

(+2.0 %
−2.0 %

) +0.018
−0.020

(+0.65 %
−0.72 %

)

Z Tevatron (1.96 TeV) 0.2559 +0.0052
−0.0046

(+2.0 %
−1.8 %

) +0.0015
−0.0018

(+0.59 %
−0.70 %

)

W+ LHC (7 TeV) 6.197 +0.103
−0.092

(+1.7 %
−1.5 %

) +0.058
−0.065

(+0.94 %
−1.0 %

)

W− LHC (7 TeV) 4.306 +0.067
−0.076

(+1.6 %
−1.8 %

) +0.043
−0.043

(+1.0 %
−1.0 %

)

Z LHC (7 TeV) 0.9638 +0.014
−0.013

(+1.5 %
−1.3 %

) +0.0091
−0.010

(+0.94 %
−1.0 %

)

W+ LHC (14 TeV) 12.48 +0.22
−0.18

(+1.8 %
−1.4 %

) +0.12
−0.14

(+0.97 %
−1.1 %

)

W− LHC (14 TeV) 9.32 +0.15
−0.14

(+1.6 %
−1.5 %

) +0.098
−0.11

(+1.1 %
−1.2 %

)

Z LHC (14 TeV) 2.065 +0.035
−0.030

(+1.7 %
−1.5 %

) +0.020
−0.025

(+0.97 %
−1.2 %

)

at the LHC, being slightly larger at 14 TeV than at 7 TeV.
Hence, the αS uncertainty is small, but more than the small
fraction of a percent expected from the direct change in the
cross section with αS . In fact the main increase in cross sec-
tions with αS is due to the change in the PDFs with the cou-
pling, rather than its direct effect on the cross section. From
Fig. 14 we see that the up and down quark PDFs increase with
αS below x ∼ 0.1–0.2 due to increased speed of evolution.
From Fig. 13 we note that the strange-quark PDF increases a
little with αS at all x values. As already mentioned the Teva-
tron cross sections are more sensitive to the high-x quarks,
which decrease with increasing αS , so this introduces a cer-
tain amount of anti-correlation of the cross section with αS .
However, the main contribution is from a sufficiently low
enough x that the distributions increase with αS , so the net
effect is an increase with αS a little larger than that coming
directly from the αs dependence of the cross section. As the
energy increases at the LHC the contributing quarks move
on average to lower x and the increase of the cross section
with αS increases – very slightly more so at 14 TeV than
at 7 TeV. However, even at 14 TeV the total PDF+αS uncer-
tainty obtained by adding the two contributions in quadrature,
is only a maximum of about 25 % greater (for W−) than the
PDF uncertainty alone if �αS(M2

Z ) = 0.001 is used.

7.2 Top-quark pair production

In Table 2 we show the analogous results for the top-quark
pair production cross section. At the Tevatron the PDFs are
probed in the region x ≈ 0.4/1.96 ≈ 0.2, and the main
production is from the qq̄ channel. As we saw, the quark dis-
tributions are reasonably insensitive to αS(M2

Z ) in this region
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Table 2 Predictions for t t cross sections (in nb), obtained with the
NNLO MMHT2014 parton sets. The PDF and αS uncertainties are also
shown, where the αS uncertainty corresponds to a variation of ±0.001
around its central value. The full PDF+αS(M2

Z ) uncertainty is obtained
by adding these two uncertainties in quadrature, as explained in Sect. 5

σ PDF unc. αS unc.

t t Tevatron (1.96 TeV) 7.51 +0.21
−0.20

(+2.8 %
−2.7 %

) +0.17
−0.15

(+2.3 %
−2.1 %

)

t t LHC (7 TeV) 175.9 +3.9
−5.5

(+2.2 %
−3.1 %

) +4.1
−3.3

(+2.3 %
−1.9 %

)

t t LHC (14 TeV) 969.9 +16
−20

(+1.6 %
−2.1 %

) +16
−14

(+1.6 %
−1.4 %

)

of x , as it is the approximate pivot point of the PDFs. Hence,
there is only a small change in cross section due to changes
in the PDFs with αS . However, the cross section for t t̄ pro-
duction begins at order α2

S , and there is a significant positive
higher-order correction at NLO and still an appreciable one
at NNLO. Therefore, a change in αS a little lower than 1 %
should give a direct change in the cross section of about 2 %.
This is roughly the change that is observed. This is compared
to a PDF-only uncertainty of nearly 3 % due to sensitivity to
higher x quarks that occurs for W, Z production.

At the LHC the dominant production at higher energies
(and with a proton–proton rather than proton–antiproton col-
lider) is gluon–gluon fusion, with the central x value probed
being x ≈ 0.4/7 ≈ 0.06 at 7 TeV, and x ≈ 0.4/14 ≈ 0.03
at 14 TeV. As seen from the left plot of Fig. 13 the gluon
decreases with increasing αS(M2

Z ) below x = 0.1 and the
maximum decrease is for x ∼ 0.02 − 0.03. The αS(M2

Z )

uncertainty on σt t̄ for 7 TeV is about 2 %, almost as large
as at the Tevatron, with the gluon above the pivot point still
contributing considerably to the cross section, so the indi-
rect αS(M2

Z ) uncertainty due to PDF variation largely can-
cels. For 14 TeV the lower x probed means that most con-
tribution is below the pivot point and there is some anti-
correlation between the direct αS variation and the indirect,
with a reduced αS uncertainty of 1.5 %. At this highest energy
the PDF-only uncertainty has also reduced to about 2 % due
to the decreased sensitivity to the uncertainty in high-x PDFs,
the gluon in this case. At the Tevatron and for 7 TeV at the
LHC the αS(M2

Z ) uncertainty is a little smaller than the PDF
uncertainty, and the total is about 1.3 times the PDF uncer-
tainty alone. At 14 TeV they are very similar in size, so the
total uncertainty, for �αS(M2

Z ) = 0.001 is about
√

2 that of
the PDF uncertainty.

7.3 Higgs boson production

In Table 3 we show the uncertainties in the rate of Higgs
boson production from gluon–gluon fusion. Again, the cross
section starts at order α2

S and there are large positive NLO
and NNLO contributions. Hence, changes in αS of about 1 %

would be expected to lead to direct changes in the cross sec-
tion of about 3 %. However, even at the Tevatron the dominant
x range probed, i.e. x ≈ 0.125/1.96 ≈ 0.06, corresponds to
a region where the gluon distribution falls with increasing
αS(M2

Z ) and at the LHC where x ≈ 0.01–0.02 at central
rapidity the anti-correlation between αS(M2

Z ) and the gluon
distribution is near its maximum. Hence, at the Tevatron the
total αS(M2

Z ) uncertainty is a little less than the direct value
at a little more than 2 %, and at the LHC it is reduced to 1.5 %.
In the former case this is a little less than the PDF uncertainty
of ∼3 %, with some sensitivity to the relatively poorly con-
strained high-x gluon, while at the LHC the PDF uncertainty
is much reduced due to the smaller x probed, and is similar to
the αS(M2

Z ) uncertainty. Hence for �αS(M2
Z ) = 0.001 the

uncertainty on the Higgs boson cross section from gluon–
gluon fusion is about

√
2 that of the PDF uncertainty alone.

We also repeat the study at NLO for the Higgs cross sec-
tion. The results are shown in Tables 4 and 5 for the central
values of αS(M2

Z ) = 0.120 and αS(M2
Z ) = 0.118, respec-

tively. The uncertainties are very different in the two cases,
with the central values of the cross sections being about 3 %
lower for αS(M2

Z ) = 0.118 than for αS(M2
Z ) = 0.120. Both

sets of predictions are about 30 % lower than at NNLO, high-
lighting the large NNLO correction for this process. The
PDF uncertainties are very similar to those at NNLO, though
a little larger in detail. However, the αS(M2

Z ) uncertainties

Table 3 Predictions for t t cross sections (in nb), obtained with the
NNLO MMHT2014 parton sets. The PDF and αS uncertainties are also
shown, where the αS uncertainty corresponds to a variation of ±0.001
around its central value. The full PDF+αS(M2

Z ) uncertainty is obtained
by adding these two uncertainties in quadrature, as explained in Sect. 5

σ PDF unc. αS unc.

t t Tevatron (1.96 TeV) 7.51 +0.21
−0.20

(+2.8 %
−2.7 %

) +0.17
−0.15

(+2.3 %
−2.1 %

)

t t LHC (7 TeV) 175.9 +3.9
−5.5

(+2.2 %
−3.1 %

) +4.1
−3.3

(+2.3 %
−1.9 %

)

t t LHC (14 TeV) 969.9 +16
−20

(+1.6 %
−2.1 %

) +16
−14

(+1.6 %
−1.4 %

)

Table 4 Predictions for the Higgs boson cross sections (in nb), obtained
with the NNLO MMHT 2014 parton sets. The PDF and αS uncertainties
are also shown, where the αS uncertainty corresponds to a variation of
±0.001 around its central value. The full PDF+αS(M2

Z ) uncertainty is
obtained by adding these two uncertainties in quadrature, as explained
in Sect. 5

σ PDF unc. αS unc.

Higgs Tevatron (1.96 TeV) 0.874 +0.024
−0.030

(+2.7 %
−3.4 %

) +0.022
−0.018

(+2.5 %
−2.1 %

)

Higgs LHC (7 TeV) 14.56 +0.21
−0.29

(+1.4 %
−2.0 %

) +0.23
−0.22

(+1.6 %
−1.5 %

)

Higgs LHC (14 TeV) 47.69 +0.63
−0.88

(+1.3 %
−1.8 %

) +0.71
−0.70

(+1.5 %
−1.5 %

)
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Table 5 Predictions for Higgs Boson cross sections (in nb), obtained
with the NLO MMHT 2014 parton sets. The PDF and αs are shown, with
the αs uncertainty corresponding to a variation of ±0.001 around the
central value (αS(M2

Z ) = 0.120). The full PDF+αS(M2
Z ) uncertainty is

obtained by adding these two uncertainties in quadrature, as explained
in Sect. 5

σ PDF unc. αS unc.

Higgs Tevatron (1.96 TeV) 0.644 +0.021
−0.022

(+3.3 %
−3.4 %

) +0.011
−0.0088

(+1.7 %
−1.4 %

)

Higgs LHC (7 TeV) 11.28 +0.21
−0.20

(+1.9 %
−1.8 %

) +0.15
−0.14

(+1.3 %
−1.2 %

)

Higgs LHC (14 TeV) 37.63 +0.67
−0.59

(+1.8 %
−1.6 %

) +0.51
−0.50

(+1.4 %
−1.3 %

)

are noticeably reduced, as the large variation in the NNLO
(O(α4

S)) cross section with αS is now absent.

8 Conclusions

The PDFs determined from global fits to deep-inelastic and
related hard-scattering data are highly correlated to the value
of αS(M2

Z ) used, and any changes in the values of αS(M2
Z )

must be accompanied by changes in the PDFs such that the
optimum fit to data is still obtained. In [4] we produced
PDF and uncertainty eigenvector sets for specific values of
αS(M2

Z ), guided by the values obtained when it was left as a
free parameter in the fit. In this article we explicitly present
PDF sets and the global fit quality at NLO and NNLO for
a wide variety of αS(M2

Z ) values, i.e. αS(M2
Z ) = 0.108 to

αS(M2
Z ) = 0.128 in steps of �αS(M2

Z ) = 0.001. Hence,
we illustrate in more detail the origin of our best fit αS(M2

Z )

values of

NLO: αS(M
2
Z ) = 0.1201 ± 0.0015 (68 % C.L.), (7)

NNLO: αS(M
2
Z ) = 0.1172 ± 0.0013 (68 % C.L.), (8)

already presented in [4], but also present the uncertainties. We
show the variation of the fit quality with αS(M2

Z ) of each data
set, within the context of the global fit, and see which are the
more and less constraining sets, and which prefer higher and
lower values. We see that most data sets show a systematic
trend of preferring a slightly lower αS(M2

Z ) value at NNLO
than at NLO, but note that no particular type of data strongly
prefers a high or low value of αS(M2

Z ). HERA and Teva-
tron data tend to prefer higher values, but are not the most
constraining data. There are examples of fixed target DIS
data which prefer either high or low values and similarly for
the LHC data sets, which are new compared to our previous
analysis [13]. Indeed our best values of αS(M2

Z ) are almost
unchanged from αS(M2

Z ) = 0.1202 (NLO) and αS(M2
Z ) =

0.1171 (NNLO). They are also very similar to the values
obtained by NNPDF of αS(M2

Z ) = 0.1191 (NLO)[23] and
αS(M2

Z ) = 0.1173 (NNLO) [24]. However, our extraction

disagrees with the recent value αS(M2
Z ) = 0.1132 (NNLO)

in [25]. We find agreement at the level of one sigma or less
with the world average value of αS(M2

Z ) = 0.1187±0.0005,
and this improves when we include the world average (with-
out the DIS determinations included) as a data point in our fit,
when we obtain αS(M2

Z ) = 0.1195 (NLO) and αS(M2
Z ) =

0.1178 (NNLO). Hence, our NNLO value including αS(M2
Z )

as an external constraint is in excellent agreement with the
preferred value, αS(M2

Z ) = 0.118, for which eigenvector
sets are made available. The PDF sets obtained at the 21 dif-
ferent values of αS(M2

Z ) at NLO and NNLO can be found
at [26] and are available from the LHAPDF library [27].
They should be useful in studies of αS(M2

Z ) by other
groups.

In order to calculate the PDF+αS(M2
Z ) uncertainty we

now advocate the approach pioneered in [18] of treating PDFs
with αS(M2

Z ) ± �αS(M2
Z ) as an extra eigenvector set. As

shown in [18], provided certain conditions are met (at least
approximately), the αS(M2

Z ) uncertainty may be correctly
added to the PDF uncertainty by simply adding in quadra-
ture the variation of any quantity under a change in coupling
�αS(M2

Z ) as long as the change in αS(M2
Z ) is accompanied

by the appropriate change in PDFs required by the global fit.
As examples, we have calculated the total cross sections for
the production of W , Z , top-quark pairs and Higgs bosons
at the Tevatron and LHC. For W and Z production, where
the LO subprocess is O(α0

S) and is quark-initiated, the com-
bined “PDF+αS” uncertainty is not much larger than the
PDF-only uncertainty with a fixed αS . However, the addi-
tional uncertainty due to αS is more important for top-quark
pair production and Higgs boson production via gluon–gluon
fusion, since the LO subprocess now is O(α2

S), though the
details depend on the correlation between αS(M2

Z ) and the
contributing PDFs.

In addition, we note that for any particular process the
details of the uncertainty can now be explicitly calculated in
a straightforward way using the PDFs we have provided in
this paper, together with the procedure for combining PDF
and αS(M2

Z ) uncertainty discussed in Sect. 5.
Moreover, it is also straightforward to apply the proce-

dure to determine the uncertainties coming from combina-
tions of PDF sets obtained by global analyses of different
groups. Using techniques given in [28–31] it is possible to
combine different PDF sets at a preferred value of αS(M2

Z )

such that the central value and the uncertainty of the com-
bination are correctly obtained. The procedure to determine
the uncertainty due to variations of αS(M2

Z ) is as follows.
If each group used in the combination also makes available
sets of PDFs obtained by repeating their global fits5 with

5 For instance, if αS(M2
Z ) = 0.118 is the preferred value then repeating

global fits at αS(M2
Z ) = 0.117 andαS(M2

Z ) = 0.119 would be sufficient
to quantify the uncertainty due variations of αS .
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αS(M2
Z ) ± �αS(M2

Z ), then an additional pair of PDF sets
representing the αS(M2

Z ) variation of the combination can
be obtained just by taking the average of the PDFs from
each group obtained at αS(M2

Z ) + �αS(M2
Z ), and by tak-

ing the average at αS(M2
Z ) − �αS(M2

Z ). As a result the
PDF+αS(M2

Z ) uncertainty for any quantity calculated using
the combined set is just the PDF induced uncertainty at
the preferred value of αS(M2

Z ) added in quadrature to the
αS(M2

Z ) uncertainty determined from the two combined sets
defined at αS(M2

Z )±�αS(M2
Z ). Hence, a user may determine

for any process the optimum prediction, the PDF uncertainty,
the αS(M2

Z ) uncertainty and the complete PDF+αS(M2
Z )

uncertainty arising from the combination of a whole col-
lection of different PDFs.
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