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Abstract

This paper presents nonparametric predictive inference for future order statistics. Given

data consisting of n real-valued observations, m future observations are considered and

predictive probabilities are presented for the r-th ordered future observation. In addition,

joint and conditional probabilities for events involving multiple future order statistics are

presented. The paper further presents the use of such predictive probabilities for order

statistics in statistical inference, in particular considering pairwise and multiple compar-

isons based on two or more independent groups of data.

Keywords: Future order statistics, lower and upper probabilities, multiple comparisons,

nonparametric predictive inference, pairwise comparisons.

1 Introduction

Nonparametric predictive inference (NPI) [6, 8] is a statistical framework which uses few mod-

elling assumptions, with inferences explicitly in terms of future observations. For real-valued

random quantities attention has thus far been mostly restricted to a single future observation,
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although multiple future observations have been considered for NPI methods for statistical

process control [4, 5] and system reliability [9].

In this paper, we consider m future real-valued observations, given n data observations, and

we focus on the order statistics of these m future observations. Initial results were presented

before by the first and second authors of this paper, in a conference paper [11], which only

included the predictive probability for a single future order statistics (Equation (2) in the

current paper) and pairwise comparisons (part of the current Section 3.1). We present the joint

probability distribution for any collection of such order statistics over the intervals created by the

partition of the real-line formed by the n data observations. We derive some properties for this

probability distribution and we present its use for several inferential problems. Without making

further assumptions, some of these inferences require the use of lower and upper probabilities, as

such this work fits in the theory of imprecise probability [7, 24] and interval probability [25, 26].

Assume that we have real-valued ordered data x1 < x2 < . . . < xn, with n ≥ 1. For ease of

notation, define x0 = −∞ and xn+1 =∞. The n observations create a partition of the real-line

into n + 1 intervals Ij = (xj−1, xj) for j = 1, . . . , n + 1. We assume throughout this paper

that ties do not occur. If we wish to allow ties, also between past and future observations, we

could e.g. use closed intervals [xj−1, xj ] or half-open intervals instead of these open intervals

Ij , the difference is rather minimal and to keep presentation easy we have opted not to do

this here. We are interested in m ≥ 1 future observations, Xn+i for i = 1, . . . ,m. It should

be emphasized that the future observations Xn+i are assumed to come from the same data

collecting process as the n data observations, the use of the indices n + i does not imply that

the Xn+i are ordered in any way, so they are also not assumed to exceed the largest data

observation xn. We link the data and future observations via Hill’s assumption A(n) [19], or,

more precisely, via A(n+m−1) (which implies A(n+k) for all k = 0, 1, . . . ,m − 2; we will refer to

this generically as ’the A(n) assumptions’), which can be considered as a post-data version of

a finite exchangeability assumption for n+m random quantities. The A(n) assumptions imply

that all possible orderings of the n data observations and the m future observations are equally

likely, where the n data observations are not distinguished among each other and neither are

the m future observations. Let Sj = #{Xn+i ∈ Ij , i = 1, . . . ,m}, then the A(n) assumptions

lead to

P (

n+1⋂
j=1

{Sj = sj}) =

(
n+m

n

)−1
(1)

where sj are non-negative integers with
∑n+1

j=1 sj = m. Another convenient way to interpret

the A(n) assumptions with n data observations and m future observations is to think that n

randomly chosen observations out of all n+m real-valued observations are revealed, following

which you wish to make inferences about the m unrevealed observations. The A(n) assumptions

then imply that one has no information about whether specific values of neighbouring revealed

observations make it less or more likely that a future observation falls in between them. For
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any event involving the m future observations, (1) implies that we can count the number of

such orderings for which this event holds. Generally in NPI a lower probability for the event

of interest is derived by counting all orderings for which this event has to hold, while the

corresponding upper probability is derived by counting all orderings for which this event can

hold [6, 8].

NPI is close in nature to predictive inference for the low structure stochastic case as briefly

outlined by Geisser [18], which is in line with many earlier nonparametric test methods where

the interpretation of the inferences is in terms of confidence levels or intervals. In NPI the A(n)

assumptions justify the use of these inferences directly as predictive probabilities. Using only

precise probabilities or confidence statements, such inferences cannot be used for many events

of interest, but in NPI we use the fact, in line with De Finetti’s Fundamental Theorem of Prob-

ability [15], that corresponding optimal bounds can be derived for all events of interest [6]. NPI

provides exactly calibrated frequentist inferences [20], and it has strong consistency properties

in theory of interval probability [6]. In NPI the n observations are explicitly used through the

A(n) assumptions, yet as there is no use of conditioning as in the Bayesian framework, we do

not use an explicit notation to indicate this use of the data. It is important to emphasize that

there is no assumed population from which the n observations were randomly drawn, and hence

also no assumptions on the sampling process. However, the m future observations must result

from the same sampling method as the n data observations in order to have full exchangeabil-

ity. NPI is totally based on the A(n) assumptions, which however should be considered with

care as they imply e.g. that the specific ordering in which the data appeared is irrelevant, so

accepting A(n) implies an exchangeability judgement for the n observations. It is attractive that

the appropriateness of this approach can be decided upon after the n observations have become

available. NPI is always in line with inferences based on empirical distributions, which is an

attractive property when aiming at objectivity [8].

This paper is organized as follows: In Section 2 we present the probability distributions

for any collection of one or more future order statistics over the intervals Ij created by the

n data observations, and we derive some properties of these distributions. The use of these

distributions for a variety of inferential problems is presented in Section 3, with main focus

on pairwise and multiple comparisons. Examples are provided to illustrate the new inferences.

The paper ends with some concluding remarks in Section 4.

2 NPI for future order statistics

This section presents the core probability results on NPI for future order statistics. These

will enable statistical inference involving order statistics for m future observations as presented

in Section 3, and they also enable development of NPI methods for a range of problems in

probability, statistics and related topic areas, as will be explored in future research.
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2.1 NPI for the r-th ordered future observation

Let X(r), for r = 1, . . . ,m, be the r-th ordered future observation, so X(r) = Xn+i for one

i = 1, . . . ,m and X(1) < X(2) < . . . < X(m). The following probabilities are derived by counting

the relevant orderings and use of Equation (1). For j = 1, . . . , n+ 1 and r = 1, . . . ,m,

P (X(r) ∈ Ij) =

(
j + r − 2

j − 1

)(
n− j + 1 +m− r

n− j + 1

)(
n+m

n

)−1
(2)

For this event NPI provides a precise probability, as each of the
(
n+m
n

)
equally likely orderings

of n past and m future observations has the r-th ordered future observation in precisely one

interval Ij . As Equation (2) only specifies the probabilities for the events that X(r) belongs to

intervals Ij , it can be considered to provide a partial specification of a probability distribution

for X(r), no assumptions are made about the distribution of the probability masses within such

intervals Ij .

Analysis of the probability in Equation (2) leads to some interesting results, including the

logical symmetry P (X(r) ∈ Ij) = P (X(m+1−r) ∈ In+2−j). For all r, the probability for X(r) ∈ Ij
is unimodal in j, with the maximum probability assigned to interval Ij∗ with

(
r−1
m−1

)
(n+ 1) ≤

j∗ ≤
(

r−1
m−1

)
(n + 1) + 1. A further interesting property occurs for the special case where the

number of future observations is equal to the number of data observations, so m = n. In

this case, P (X(r) < xr) = P (X(r) > xr) = 0.5 holds for all r = 1, . . . ,m. This fact can be

proven by considering all
(
2n
n

)
equally likely orderings, where clearly in precisely half of these

orderings the r-th future observation occurs before the r-th data observation due to the overall

exchangeability assumption. The special case m = n is not considered further in this paper, but

it plays an important role in analysis of reproducibility of statistical hypothesis tests, for which

the explicitly predictive nature of NPI is attractive [10]. Research into such reproducibility of

tests using order statistics is currently being undertaken, results will be reported by Alqifari [2].

It is worth commenting on extreme values, in particular inference involving X(1) or X(m)

for m large compared to the value of n. In these cases, NPI assigns large probabilities to

the intervals I1 or In+1, respectively, which are outside the range of the observed data and

unbounded unless the random quantities of interest are logically bounded (e.g. zero as lower

bound for lifetime data). This indicates that, for such inferences, little can be concluded without

further assumptions on the probability masses within these end intervals, so outside of the range

of observed data.

2.2 Multiple order statistics of m future observations

The joint probability distribution of multiple order statistics of m future observations is of

interest and can also be important for statistical inference. By straightforward combinatorial

arguments, again counting the number of orderings for which the event of interest holds and
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using Equation (1), a partial specification of the probability distribution of any subset of the

order statistics can be derived. Let R = {r1, . . . , rt} ⊂ {1, . . . ,m}, with r1 < r2 < . . . < rt and

1 ≤ t ≤ m. For any set IR = {jr1 , . . . , jrt} ⊂ {1, . . . , n+ 1}, with jr1 ≤ jr2 ≤ . . . ≤ jrt , the A(n)

assumptions imply the probabilities

P

(⋂
r∈R

{
X(r) ∈ Ijr

})
=

(
n+m

n

)−1(r1 + jr1 − 2

r1 − 1

)
×

t∏
i=2

(
ri − ri−1 − 1 + jri − jri−1

ri − ri−1 − 1

)
×
(
m− rt + n− jrt + 1

m− rt

)
(3)

For the special case of two order statistics, using notation X(r) and X(s) with r < s and with

j ≤ l, we have

P (X(r) ∈ Ij , X(s) ∈ Il) =

(
n+m

n

)−1(r + j − 2

r − 1

)(
s− r − 1 + l − j

s− r − 1

)(
m− s+ n− l + 1

m− s

)
(4)

2.3 Conditional probabilities given some future order statistics

Conditional probabilities on events involving a subset R of the order statistics, given information

about another subset D of the future order statistics, is also of interest. Let D = {d1, . . . , dv},
with d1 < d2 < . . . < dv with 1 ≤ v ≤ m − t and such that R ∩ D = ∅, and let ID =

{jd1 , . . . , jdv} ⊂ {1, . . . , n + 1}, with jd1 ≤ jd2 ≤ . . . ≤ jdv . To consider the conditional

probability, we need to consider the joint probability for events involving all X(c) with c ∈
C = R ∪ D, for which we use the notation C = {c1, . . . , cw}, where c1 < c2 < . . . < cw with

w = t+ v, and IC = {jc1 , . . . , jcw} ⊂ {1, . . . , n+ 1}, with jc1 ≤ jc2 ≤ . . . ≤ jcw .

The A(n) assumptions lead to the following conditional probabilities

P

(⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

})
=
P
(⋂

r∈R
{
X(r) ∈ Ijr

}
∩
⋂

d∈D
{
X(d) ∈ Ijd

})
P
(⋂

d∈D
{
X(d) ∈ Ijd

}) =

P
(⋂

c∈C
{
X(c) ∈ Ijc

})
P
(⋂

d∈D
{
X(d) ∈ Ijd

}) =

(c1+jc1−2
c1−1

)
×
∏w

i=2

(ci−ci−1−1+jci−jci−1
ci−ci−1−1

)
×
(
m−cw+n−jcw+1

m−cw
)

(d1+jd1−2
d1−1

)
×
∏v

i=2

(di−di−1−1+jdi−jdi−1

di−di−1−1

)
×
(m−dv+n−jdv+1

m−dv

) (5)

In case of interest in one future order statistic X(r) given information about one other future

order statistic X(d), so the general case above with t = v = 1, this conditional probability for

the case r > d with j ≥ l is

P
(
X(r) ∈ Ij | X(d) ∈ Il

)
=
P
({
X(d) ∈ Il

}
∩
{
X(r) ∈ Ij

})
P
(
X(d) ∈ Il

) =

(
r−d−1+j−l

r−d−1
)(

m−r+n−j+1
m−r

)(
n−l+1+m−d

m−d
) (6)
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and for the case r < d with j ≤ l this conditional probability is

P
(
X(r) ∈ Ij | X(d) ∈ Il

)
=
P
({
X(r) ∈ Ij

}
∩
{
X(d) ∈ Il

})
P
(
X(d) ∈ Il

) =

(
r+j−2
r−1

)(
d−r−1+l−j

d−r−1
)(

d+l−2
d−1

) (7)

For completeness, the obvious case with r = d gives P
(
X(d) ∈ Ij | X(d) ∈ Il

)
is equal to 1 if

j = l and is equal to 0 else.

It is straightforward to show that for the general conditional probability (5) the following

property holds

P

(⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

})
= P

⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂

d∈DR

{
X(d) ∈ Ijd

} (8)

with DR ⊂ D consisting of elements of D which in the combined set C = R∪D have an element

of R as neighbour, so

DR = {ci ∈ C | ci ∈ D and (ci−1 ∈ R or ci+1 ∈ R), i ∈ {1, . . . , w}}

where the ‘or’ is of course not strict and events concerning the non-existent c0 or cw+1 do not

hold. Property (8) is easily shown to hold as factors for any d ∈ D such that all its neighbouring

values in C also belong to D appear in both the numerator and denominator of (5). Although

this property is important in general, its main use may well be in predicting later order statistics

on the basis of early order statistics [21], in which case it is a Markov property that also holds

for order statistics in the classical theory [3, Sect. 2.4]. If dv < r1 and jdv ≤ jr1 then

P

(⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

})
= P

(⋂
r∈R

{
X(r) ∈ Ijr

}
| X(dv) ∈ Ijdv

)

=

(r1−dv−1+jr1−jdv
r1−dv−1

)
×
∏t

i=2

(ri−ri−1−1+jri−jri−1
ri−ri−1−1

)
×
(m−rt+n−jrt+1

m−rt

)(m−dv+n−jdv+1
m−dv

) (9)

The backward analogue of this result may also be of use: If d1 > rt and jd1 ≥ jrt then

P

(⋂
r∈R

{
X(r) ∈ Ijr

}
|
⋂
d∈D

{
X(d) ∈ Ijd

})
= P

(⋂
r∈R

{
X(r) ∈ Ijr

}
| X(d1) ∈ Ijd1

)

=

(r1+jr1−2
r1−1

)
×
∏t

i=2

(ri−ri−1−1+jri−jri−1
ri−ri−1−1

)
×
(d1−rt−1+jd1−jrt

d1−rt−1
)

(d1+jd1−2
d1−1

) (10)

An interesting special case of the probability (6) is inference on a future order statistic X(r)

given information about X(r−1), which by the above Markov property also includes the case of
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additional information on further earlier order statistics. For j ≥ l,

P (X(r) ∈ Ij | X(r−1) ∈ Il) =
m− r + 1

n− l +m− r + 2

m−r+1∏
k=2

(
n− j + k

n− l + k

)

This is exactly the same as the probability for the event that X(1) ∈ Ij−l+1, as given by Equation

(2), for the case with n − l + 1 data observations and m − r + 1 future observations. A more

general form of this result is presented in the following proposition, followed by a special case

given as a corollary. The proofs of these properties are straightforward and hence not included.

Proposition 1. For r > d and j ≥ l, the NPI probability that the rth future observation belongs

to interval Ij, given that the dth future observation belongs to Il, as given by Equation (6), is

equal to the NPI probability for the event that X(r−d) ∈ Ij−l+1, as given by Equation (2), for

n − l + 1 data observations and m − d future observations. Similarly, for r < d and j ≤ l,

the NPI probability for the event that the rth future observation belongs to Ij, given that the

dth future observation belongs to Il, as given by Equation (7), is equal to the probability for the

event that X(d−r) ∈ Il−j+1, as given by Equation (2), for l−1 data observations and d−1 future

observations.

Corollary 1. The conditional probability (6) for j = l and r > d,

P (X(r) ∈ Ij |X(d) ∈ Ij) =
r−d−1∏
k=0

m− r + 1 + k

m− r + n− j + 2 + k
=

r−d−1∏
k=0

P (X(r−k) ∈ Ij |X(r−k−1) ∈ Ij)

That is, the probability for the event that the rth future observation belongs to Ij given

that the dth future observation belongs to the same interval, is equal to the product of the

probabilities for the events X(r−k) ∈ Ij given that its previous neighbour X(r−k−1) ∈ Ij , for

k = 0, . . . , r − d − 1. From Proposition 1, this probability is equal to the probability for the

event that X(r−d) ∈ I1, as given by Equation (2), for n − j + 1 data observations and m − d
future observations.

Corollary 2. The conditional probability (7) for j = l and r < d,

P (X(r) ∈ Ij |X(d) ∈ Ij) =
d−r−1∏
k=0

r + k

r + j − 1 + k
=

d−r−1∏
k=0

P (X(r+k) ∈ Ij |X(r+1+k) ∈ Ij)

That is, the probability for the event that the rth future observation belongs to Ij given that

the dth future observation belongs to the same interval is equal to the product of the probabilities

for the events X(r+k) ∈ Ij given that its next neighbour X(r+1+k) ∈ Ij , for k = 0, . . . , d− r− 1.

From Proposition 1, this probability is equal to the probability for the event that X(d−r) ∈ I1,
as given by Equation (2), for j − 1 data observations and d− 1 future observations.
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If one has information about two future order statistics, one either side of the X(r) of interest,

than a similar result is presented next.

Proposition 2. The conditional probability for X(r) ∈ Ij given that X(d1) ∈ Ijd1 and X(d2) ∈
Ijd2 , for d1 < r < d2, is equal to the probability of X(r−d1) ∈ Ij−jd1+1, as given by Equation (2),

for jd2 − jd1 data observations and d2 − d1 − 1 future observations.

Proof. The proof is straightforward using Equation (5) for the conditional probability P (X(r) ∈
Ij |X(d1) ∈ Ijd1 , X(d2) ∈ Ijd2 ) and Equation (2) for the probability for the event that X(r−d1) ∈
Ij−jd1+1, for jd2 − jd1 data observations and d2 − d1 − 1 future observations.

The information used in the conditional probability (5) provides for each X(d), with d ∈ D,

the interval in the partition created by the n observations in which this future order statistic

is. One may wish to consider instead information in the form of precise values for some of the

future order statistics. Due to the nature of NPI, where the A(n)-based probabilities are assigned

to intervals without further assumptions about their distribution within such intervals, such

detailed information for some order statistics makes no difference to the probabilities assigned

to intervals for other order statistics, except for the obviously required ordering of the order

statistics.

Analysis of the conditional probability (7) leads to an interesting property of stochastic

ordering for the comparison of two different conditional events for the same random quantities.

Let Fr|d(j|l) be the conditional cumulative distribution function (cdf) for X(r) given X(d) ∈ Il,
which is defined as

Fr|d(j|l) = P (X(r) ∈
j⋃

k=1

Ik|X(d) ∈ Il) =

j∑
k=1

P (X(r) ∈ Ik|X(d) ∈ Il) for j = 1, . . . , n+ 1 (11)

where Fr|d(n+ 1|l) = 1 and Fr|d(1|1) = 1.

Theorem 1. Consider two future order observations X(r) and X(d) with r < d, and intervals

Ij = (xj−1, xj) and Il−1 = (xl−2, xl−1) with j ≤ l − 1. If

Fr|d(j|l − 1) ≥ Fr|d(j|l) for all j (12)

where Fr|d(.|.) is the conditional cdf, then X(r) ∈ Ij |X(d) ∈ Il−1 is said to be stochastically

smaller than X(r) ∈ Ij |X(d) ∈ Il, denoted by X(r) ∈ Ij |X(d) ∈ Il−1 ≤st X(r) ∈ Ij |X(d) ∈ Il. In

general, for l = 1, . . . , n+ 1, we have

Fr|d(j|n+ 1) ≤ Fr|d(j|n) ≤ . . . ≤ Fr|d(j|2) ≤ Fr|d(j|1)

So X(r) ∈ Ij |X(d) ∈ In+1 ≥st X(r) ∈ Ij |X(d) ∈ In ≥st . . . ≥st X(r) ∈ Ij |X(d) ∈ I1.

The proof of Theorem 1 is given in the appendix.
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2.4 NPI for X(r) ∈ Sl with Sl any subset of the real values

Thus far, we have considered probabilities for events X(r) ∈ Ij , and related joint and conditional

events. For all these, the A(n) assumptions provide precise probabilities. More generally, interest

may be in the event X(r) ∈ Sl with Sl any subset of the real values, for example an interval not

equal to one of the Ij created by the data. Generally, NPI provides bounds for the probability

for such an event, where the maximum lower bound and minimum upper bound are lower and

upper probabilities, respectively [6, 7, 24, 25, 26]. This can be regarded as an application of De

Finetti’s ‘Fundamental Theorem of Probability’ [15]. For any subset Sl of the real values, we

can derive the NPI lower probability

P
(
X(r) ∈ Sl

)
=

n+1∑
j=1

1{Ij ⊆ Sl}P
(
X(r) ∈ Ij

)
(13)

and the corresponding NPI upper probability

P
(
X(r) ∈ Sl

)
=

n+1∑
j=1

1{Ij ∩ Sl 6= φ}P
(
X(r) ∈ Ij

)
(14)

3 Statistical inference

In this section, we present the application of NPI for future order statistics to statistical inference

problems. We mainly focus on pairwise and multiple comparisons, and briefly outline some

further possible inferences. As the classical theory of order statistics [3] has many applications

to important statistical inference problems, there are many possible further applications that

can be developed as topics for future research.

3.1 Pairwise comparisons

Suppose we have two independent groups of real-valued observations, X and Y , their ordered

observed values are x1 < x2 < . . . < xnx and y1 < y2 < . . . < yny . For ease of notation, let

x0 = y0 = −∞ and xnx+1 = yny+1 = ∞. Let Ixjx = (xjx−1, xjx) and Iyjy = (yjy−1, yjy). We

focus attention on m ≥ 1 future observations from each group (i.e. mx = my = m), so in Xnx+i

and Yny+i for i = 1, . . . ,m. The theory presented in this paper does not require limitation to

the case mx = my, but it seems to be quite logical when comparing future order statistics to

use the same number of future observations for each group; generalization to different values

for mx and my is straightforward. Suppose that we wish to compare the r-th ordered future

observation from group X to the s-th ordered future observation from group Y , by considering

the event X(r) < Y(s). The corresponding NPI lower and upper probabilities, based on the A(nx)
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and A(ny) assumptions per group, are derived by

P (X(r) < Y(s)) =

nx+1∑
jx=1

ny+1∑
jy=1

1{xjx < yjy−1}P (X(r) ∈ Ixjx)P (Y(s) ∈ I
y
jy

) (15)

P (X(r) < Y(s)) =

nx+1∑
jx=1

ny+1∑
jy=1

1{xjx−1 < yjy}P (X(r) ∈ Ixjx)P (Y(s) ∈ I
y
jy

) (16)

where 1{E} is an indicator function which is equal to 1 if event E occurs and 0 else. This NPI

lower (upper) probability follows by putting all probability masses for Y(s) corresponding to the

intervals Iyjy = (yjy−1, yjy), jy = 1, . . . , ny + 1, to the left (right) end points of these intervals,

and by putting all probability masses for X(r) corresponding to the intervals Ixjx = (xjx−1, xjx),

jx = 1, . . . , nx + 1, to the right (left) end points of these intervals.

One may wish to compare two groups by taking multiple future order statistics into account,

this can be done using the probabilities presented in the previous section. As an example,

suppose that we are interested in comparing two independent groups X and Y by simultaneously

considering the rth and the sth future order statistics from each group. We can use the joint

probability given by Equation (4) for any event involving the rth and sth future observations

per group. Suppose that we are interested in the event (X(r) < Y(r), X(s) > Y(s)), with r < s,

which can give insight into the spread of the future observations for the two groups. The NPI

lower and upper probabilities for this event are given in the following theorem. Of course, such

results for different events of interest are derived similarly.

Theorem 2. The NPI lower and upper probabilities for the event X(r) < Y(r), X(s) > Y(s) are

P (X(r) < Y(r), X(s) > Y(s)) =

lx−1∑
jx=1

nx+1∑
lx=jx+1

ny+1∑
jy=1

ny+1∑
ly=jy

1{xjx < yjy−1, xlx−1 > yly}

× P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)× P (Y(r) ∈ I
y
jy
, Y(s) ∈ I

y
ly

) (17)

P (X(r) < Y(r), X(s) > Y(s)) =

nx+1∑
jx=1

nx+1∑
lx=jx

ly−1∑
jy=1

ny+1∑
ly=jy+1

1{xjx−1 < yjy , xlx > yly−1}

× P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)× P (Y(r) ∈ I
y
jy
, Y(s) ∈ I

y
ly

)

+ max
[
P(y∗jy )

]
(18)

where

P(y∗jy )
=

nx+1∑
jx=1

nx+1∑
lx=jx

ny+1∑
ly=jy=1

1{xjx−1 < y∗jy , xlx > y∗jy}P (X(r) ∈ Ixjx , X(s) ∈ Ixlx)P (Y(r) ∈ I
y
jy
, Y(s) ∈ I

y
jy

)

(19)

The maximisation remaining in Equation (18) is over all y∗jy ∈ I
y
jy

.
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The proof of Theorem 2 is given in the appendix, where also the remaining maximisation for

the derivation of the upper probability is discussed. We illustrate such NPI pairwise comparisons

based on future order statistics in the following example.

Example 1. We consider the data set of a study of the effect of ozone environment on rats

growth [16, p.170]. One group of 22 rats were kept in an ozone containing environment and the

second group of 23 similar rats were kept in an ozone-free environment. Both groups were kept

for 7 days and their weight gains are given in Table 1.

Ozone group (X) Ozone-free group (Y )
-15.9 -14.7 -12.9 -9.9 -9.0 -9.0 -16.9 13.1 15.4 17.4 17.7 18.3
6.1 6.6 6.8 7.3 10.1 12.1 19.2 21.4 21.8 21.9 22.4 22.7
14.0 14.3 15.5 15.7 17.9 20.4 24.4 25.9 26.0 26.0 26.6 27.3
28.2 39.9 44.1 54.6 27.4 28.5 29.4 38.4 41.0

Table 1: Rats weight gain data

The NPI lower and upper probabilities (15) and (16) for the events X(r) < Y(r), r = 1, . . . ,m,

are displayed in Figure 1, where the first row gives figures corresponding to the full data for the

cases with m = 5, 25, 200, while the second row gives the corresponding figures but with the

observation −16.9 removed from group Y . This is done as this value could perhaps be considered

to be an outlier, hence it might be interesting to see its influence on these inferences. Note that

the data for group X and for group Y both contain two tied observations, at −9.0 and 26.0,

respectively. As tied observations are within the same group, we just add a very small amount

to one of them, not affecting their rankings within the group nor with the data for both groups

combined, and therefore not affecting the inferences. This can be interpreted as assuming that

these values actually differ in a further decimal, not reported due to rounding. If observations

where tied among the two groups, the same breaking of ties could be performed, with the NPI

method presented in this paper applied to all possible ways to do so, and the smallest (largest)

of the corresponding lower (upper) probabilities for the event of interest would be used as the

NPI lower (upper) probability. The possibility to break ties in this manner is an attractive

feature of statistical methods using lower and upper probabilities, as it does not require further

assumptions for such tied values. We should emphasize that the suggested manner for dealing

with ties in NPI, discussed in Section 1, by replacing open intervals by closed intervals for the

A(n) assumption, could also have been used here, it would have led to the same results as the

simple method of breaking the ties we employed here, because the ties only occur within the

same groups and the inferences presented only depend on the rankings of the X and Y group

observations among eachother, which are not affected by very small additional values to break

the ties nor by change to closed intervals in A(n).
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Figure 1: [P , P ](X(r) < Y(r))

This example shows that these data strongly support the event X(r) < Y(r) for future order

statistics that are likely to be in the middle area of the data ranges, with the values of the NPI

lower and upper probabilities reflecting the amount of overlap in the observed data for groups

X and Y . For extreme future order statistics the imprecision is very large when m is greater

than n, due to the fact that those future order statistics are quite likely to both fall in the

first or last interval, in which case very little can be said about the comparison of their values.

Deleting the smallest Y value from the data, as shown in the second row in this figure, has quite

some effect on inferences for small values of r, as the lower parts of the plots in rows 1 and 2

in Figure 1 clearly illustrate, but deleting this possible outlier does not have a noticable effect

when larger values of r are used for the pairwise comparison.

To illustrate pairwise comparison using different order statistics for the two groups, we

consider the case with m = 200 and interest in events X(r) < Y(s). Figure 2 presents the NPI

lower and upper probability for these events for the values r = 1, 50, 100, 150, 200 and for all

s = 1, . . . ,m. Note that here the smallest Y observation, −16.9, has been deleted from the data.

For r = 1 it is very likely that Y(s) > X(1) for nearly all s, apart from the smallest values of s

for which we get almost vacuous lower and upper probabilities for this event, that means upper

probability of about 1 and lower probability of about 0, so imprecision (difference between the

upper and lower probabilities for an event) close to 1. This reflects that the X data set contains

quite a few observations which are smaller than all Y data values, and also the earlier discussed

fact that one gets much imprecision for extreme future order observations if m is substantially

greater than nx and ny. Note that for r = 200 the effect is very similar, due to the X group

data containing the two overall largest observations. The plot for r = 150 may well be most

12



informative, with e.g. the event X(150) < Y(s) having lower probability greater than 0.5 already

for s from just below 60 onwards.

r=1 r=50 r=100 r=150 r=200

20

40

60

80

100

120

140

160

180

200

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

s

Figure 2: [P , P ](X(r) < Y(s)) for m = 200

The NPI lower and upper probabilities for the events (X(r) < Y(r), Y(s) < X(s)), with r < s,

are presented for these data in Figure 3, for the case with m = 100 future observations for both

groups X and Y . Note that again the smallest Y observation, −16.9, has been deleted. The

presented cases are for r = 5, 10, 25, 50, 75, and for all s = r+ 1, . . . ,m. So this event of interest

is whether the values Y(r) and Y(s) will both be in the interval (X(r), X(s)). For small values of

r it is likely that X(r) < Y(r), as the X data contain the smallest overall observations. So the

results for the case r = 5 are largely influenced by the event Y(s) < X(s), which for most values

of s is quite unlikely to happen, yet for large values of s it becomes well possible, reflecting that

the two largest overall data observations belong to group X. Again we see much imprecision

for the extreme order statistics.
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Figure 3: [P , P ](X(r) < Y(r), Y(s) < X(s)) for r < s and m = 100
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3.2 Multiple comparisons

Coolen and van der Laan [12] presented NPI methods for comparisons of multiple groups,

with different events of interest formulated in terms of the next future observation from each

group, selecting the best group, the subset of best groups, and the subset that includes the best

group. In this section we present NPI multiple comparisons methods based on order statistics

of multiple future observations.

First we consider the selection of the best group based on the value of a single future

order statistic. Suppose that there are k ≥ 2 independent groups of real-valued observations,

X1, X2, . . . , Xk, their ordered observed values are xg1 < xg2 < . . . < xgng for each group g =

1, . . . , k. For ease of notation let xg0 = −∞ and xgng+1 = ∞, and let Igjg = (xgjg−1, x
g
jg

). We

are interested in m ≥ 1 future observations from each group, so in Xg
ng+i for i = 1, . . . ,m,

g = 1 . . . , k. As before, we consider inference based on the A(n) assumptions for each group.

We are interested in the event that a specific X l
(r) is the maximum of all future observations

Xg
(r), g = 1, . . . , k. For this event, the following NPI lower and upper probabilities hold,

P l = P (X l
(r) = max

1≤g≤k
Xg

(r)) =

nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg < xljl−1}p(X
g
(r) ∈ I

g
jg

)p(X l
(r) ∈ I

l
jl

)(20)

P l = P (X l
(r) = max

1≤g≤k
Xg

(r)) =

nl+1∑
jl=1

k∏
g=1
g 6=l

ng+1∑
jg=1

1{xgjg−1 < xljl}p(X
g
(r) ∈ I

g
jg

)p(X l
(r) ∈ I

l
jl

)(21)

This NPI lower probability is obtained by putting the probability mass per interval at end

points; for group l at the left end point and for all other groups at the right end point. Similarly,

this NPI upper probability is obtained by putting the probability mass per interval for group l

at the right end point and for all other groups at the left end point. We will refer to these as

the lower and upper probabilities that group l is the best of all groups, where ‘best group’ is

clearly to be interpreted in terms of the rth ordered future observation for each group.

In theory of statistical selection [12, 22] the interest is often in subsets of the groups, for

example for use in screening processes where initially all groups are involved in tests, but later

stages of testing can only involve a subset of the groups. One logical problem formulation

involves selecting a subset of the groups which is most likely to contain all the best groups. We

now derive the NPI method for such inferences, again with ‘best group’ in terms of the value of

the r-th ordered value from m future observations. Suppose that a subset of the k independent

groups contains w groups, with 2 ≤ w ≤ k − 1. Let S = {l1, . . . , lw} ⊂ {1, . . . , k} be the subset

of indices of these w groups, and let NS = {1, . . . , k}/S be the subset of indices of the k − w
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groups not in this subset. The NPI lower and upper probabilities for this event of interest are

PS = P (min
l∈S

X l
(r) > max

g∈NS
Xg

(r)) =

nl1
+1∑

jl1=1

. . .

nlw+1∑
jlw=1

∏
g∈NS

ng+1∑
jg=1

1{xgjg < min
l∈S

xlsjls−1
}×

P (Xg
(r) ∈ I

g
jg

)× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (22)

PS = P (min
l∈S

X l
(r) > max

g∈NS
Xg

(r)) =

nl1
+1∑

jl1=1

. . .

nlw+1∑
jlw=1

∏
g∈NS

ng+1∑
jg=1

1{xgjg−1 < min
l∈S

xlsjls
}×

P (Xg
(r) ∈ I

g
jg

)× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (23)

The proofs of (22) and (23) are given in the appendix.

A second common group selection problem for which classical statistical methods have been

presented is the variation with the aim that the selected subset should contain the single best

group, so in our case the group which provides the maximum r-th ordered future observation.

We can use the same notation as just introduced for selection of the subset containing all the

best groups. The NPI lower and upper probabilities for the event that the rth future observation

from (at least) one of the selected groups in S is greater than the rth future observation from

all nonselected groups in NS, are derived similarly to the NPI lower and upper probabilities

(22) and (23), as presented in the appendix, but with min everywhere replaced by max. These

NPI lower and upper probabilities are

P ∗S = P (max
l∈S

X l
(r) > max

g∈NS
Xg

(r)) =

nl1
+1∑

jl1=1

. . .

nlw+1∑
jlw=1

∏
g∈NS

ng+1∑
jg=1

1{xgjg < max
l∈S

xlsjls−1
}×

P (Xg
(r) ∈ I

g
jg

)× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (24)

P
∗
S = P (max

l∈S
X l

(r) > max
g∈NS

Xg
(r)) =

nl1
+1∑

jl1=1

. . .

nlw+1∑
jlw=1

∏
g∈NS

ng+1∑
jg=1

1{xgjg−1 < max
l∈S

xlsjls
}×

P (Xg
(r) ∈ I

g
jg

)× P (X l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

) (25)

This second subset selection method is illustrated in the following example. There are,

of course, a substantial number of further subset selection problem formulations that could

be considered, including subsets containing the two best groups or criteria based on multiple

future ordered observations. The NPI approach to such problems follows steps that are similar

to those presented here, investigation of properties and performance will be of interest but is

left as a topic for future research.

Example 2. We illustrate some of the above presented NPI methods for multiple comparisons

based on order statistics of future observations, using data from Coolen and van der Laan [12]

with sample sizes n1 = 20, n2 = 18, n3 = 15, n4 = 3 as presented in Table 2. A wider range of
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such methods are considered and illustrated by Alqifari [2].

l Data

1 5.01 5.04 5.60 5.78 6.43 6.53 6.96 7.00 7.21 7.58 8.12 8.26 8.27 8.34 8.62 8.66 8.91 8.94 9.05 9.16
2 4.50 4.86 5.10 5.15 5.17 5.34 5.99 6.18 6.72 7.39 7.44 7.46 7.47 7.76 8.38 8.42 8.52 8.81
3 6.84 6.91 7.22 7.24 7.25 7.35 7.55 7.62 7.69 7.98 7.99 8.04 8.08 8.18 8.97
4 4.71 8.20 9.03

Table 2: Ordered data, Example 2

The NPI lower and upper probabilities for group l to be best, in terms of providing the

largest value of the r-th ordered out of m = 5 future observations, for each group, are presented

in Table 3, so these are P l and P l as given in Equations (20) and (21). These NPI lower and

upper probabilities are also presented, for the case with m = 10 and all r = 1, . . . , 10, in Figure

4. The imprecision in these lower and upper probabilities tends to be largest for small and large

values of r, reflecting the earlier discussed feature of increased imprecision due to probabilities

assigned to the first or last intervals. Group 3 is most likely to provide the largest future value

for r = 1, but is quite unlikely to provide the largest future value for r > m/2, which appears

most likely to come from Group 4. However, imprecision in these lower and upper probabilities

is largest for Group 4, which reflects the fact that there are only 3 data observations from this

group.

r P 1 P 1 P 2 P 2 P 3 P 3 P 4 P 4

1 0.0682 0.2732 0.0199 0.1296 0.3798 0.7752 0.1034 0.3804
2 0.1342 0.2946 0.0373 0.1207 0.1818 0.4700 0.2389 0.5883
3 0.1893 0.4216 0.0422 0.1427 0.0543 0.2218 0.3138 0.6753
4 0.1716 0.4922 0.0364 0.1736 0.0185 0.1424 0.3166 0.7268
5 0.1003 0.6010 0.0079 0.2582 0.0105 0.2981 0.1840 0.7965

Table 3: [P l, P l](X
l
(r) = max

1≤g≤k
Xg

(r)) for m = 5

l=1 l=2 l=3 l=4

1

2

3

4

5

6

7

8

9

10

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

r

Figure 4: [P l, P l](X
l
(r) = maxXg

(r)) for m = 10

As Group 4 only has 3 data observations, it is of interest to consider the effect on these
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inferences when this group is deleted. We denote the NPI lower and upper probabilities in this

case by P
(−4)
l and P

(−4)
l , they are presented in Table 4 for m = 5 and in Figure 5 for m = 10. Of

course, as Group 4 was quite likely to lead to the largest r-th ordered future observation for the

larger values of r, with this group deleted the corresponding lower and upper probabilities for

the 3 remaining groups have increased, where particularly Group 1 benefits from the absence of

Group 4. The overall pattern of these lower and upper probabilities for different values of r, as

best seen from Figure 5, remains quite similar for these 3 groups in both cases with and without

Group 4, but imprecision has decreased. This shows that the presence of a group with only

few observations results in more imprecision for the other groups, so inclusion of a group with

only few observations may reduce the overall quality of statistical inferences for such selection

problems in the following sense. NPI provides exactly calibrated frequentist inferences [20], as

discussed in Section 1, but it only provides inferences in terms of lower and upper probabilities.

Hence, one can consider the level of imprecision a reflection of quality of the statistical inferences,

which remain exactly calibrated both with and without inclusion of Group 4 in this example,

but less imprecision provides more insight.

r P
(−4)
1 P

(−4)
1 P

(−4)
2 P

(−4)
2 P

(−4)
3 P

(−4)
3

1 0.0987 0.3022 0.0311 0.1481 0.6076 0.8682
2 0.2425 0.3569 0.0883 0.1595 0.5079 0.6564
3 0.4284 0.5504 0.1166 0.2064 0.2891 0.4200
4 0.5239 0.6971 0.1353 0.2587 0.1323 0.2673
5 0.4003 0.7648 0.0744 0.3266 0.1045 0.3865

Table 4: [P
(−4)
l , P

(−4)
l ](X l

(r) = max
1≤g≤k

Xg
(r)) for m = 5

l=1 l=2 l=3

1

2

3

4

5

6

7

8

9

10

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

r

Figure 5: [P
(−4)
l , P

(−4)
l ](X l

(r) = maxXg
(r)) for m = 10

Figure 6 presents the NPI lower and upper probabilities for pairwise comparisons between

these groups based on the r-th ordered future observation, for m = 10 and each r = 1, . . . , 10.

So the events considered are X l
(r) > Xg

(r) for l, g = 1, . . . , 4 and l 6= g. It should be noted

that NPI lower and upper probabilities for events not included in this figure can be deduced
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using the conjugacy property, that is P (A) = 1−P (Ac), for any event A and its complementary

event Ac, which holds for NPI-based inferences and is a common property in theory of imprecise

probability [6, 7]. These pairwise comparisons also show that Group 3 is most likely to provide

the largest r-th ordered future observation for small values of r, while it is also clear that the

lower and upper probabilities for comparisons involving Group 4 are more imprecise than for

comparisons not involving Group 4, which again results from the small data set for Group 4.

l=1, g=2 l=1, g=3 l=1, g=4 l=2, g=3 l=2, g=4 l=3, g=4
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r

Figure 6: [P , P ](X l
(r) > Xg

(r)) for m = 10

To illustrate subset selection, we focus attention on subsets containing the best group, for

which the NPI lower and upper probabilities are given by Equations (24) and (25). Similar illus-

trations for subsets containing all best groups are provided by Alqifari [2], who also investigates

the effect of different values of m on such inferences. Table 5 and Figures 7 and 8 present the

NPI lower and upper probabilities for any subset S, consisting of 2 of the 4 groups, to contain

the group which provides the largest r-th ordered future observation out of m observations for

each group, with m = 5 in Table 5, m = 10 in Figure 7 and m = 100 in Figure 8. Imprecision

is again largest for extreme values of r and the values in this table and these figures illustrate

the conjugacy relation P (A) = 1−P (Ac). Note that the NPI lower and upper probabilities for

these events with subset S consisting of 3 of the 4 groups can be derived, again by the conjugacy

relation, from the corresponding lower and upper probabilities for such events with S consisting

of a single group, as presented in Table 3 for m = 5 and in Figure 4 for m = 10.

S : {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
r P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S P ∗S P

∗
S

1 0.0893 0.3540 0.5389 0.8685 0.1949 0.5634 0.4366 0.8051 0.1315 0.4611 0.6460 0.9107
2 0.1768 0.3974 0.3483 0.6919 0.4510 0.7642 0.2358 0.5490 0.3081 0.6517 0.6026 0.8232
3 0.2437 0.5340 0.2599 0.5965 0.6639 0.8951 0.1049 0.3361 0.4035 0.7401 0.4660 0.7563
4 0.2282 0.6108 0.2085 0.5814 0.7074 0.9395 0.0605 0.2926 0.4186 0.7915 0.3892 0.7718
5 0.1390 0.7175 0.1477 0.7370 0.5193 0.9758 0.0242 0.4807 0.2630 0.8523 0.2825 0.8610

Table 5: [P ∗S , P
∗
S ](max

l∈S
X l

(r) > max
g∈NS

Xg
(r)) for m = 5

18



S={1,2} S={1,3} S={1,4} S={2,3} S={2,4} S={3,4}

1

2

3

4

5

6

7

8

9

10

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

r

Figure 7: [P ∗S , P
∗
S ](max

S
X l

(r) > max
NS

Xg
(r)) for m = 10
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Figure 8: [P ∗S , P
∗
S ](max

S
X l

(r) > max
NS

Xg
(r)) for m = 100

These NPI lower and upper probabilities can be used in a variety of ways. For example, one

may be interested in a subset of smallest size such that the lower probability of it containing

the best subset in terms of a specific r-th ordered future observation exceeds a specific value.

The flexibility of the NPI approach provides methods for a wide range of problem formulations,

for which derivations of the lower and upper probabilities always follow the same basic steps.

3.3 Further inferences

The NPI methods for future order statistics presented in this paper enable a wide range of

further statistical inferences, as long as problems of interest are formulated in terms of such

future order statistics. For example, one may be interested in prediction intervals [17], e.g.

outer prediction intervals can be derived as the interval between two of the first n observations

(or possibly with −∞ or ∞ as end points), say (xa, xb) with a < b, such that this interval

contains the predictive interval [X(r), X(s)] for r < s. The corresponding predictive probability
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of interest, which is easily computed using Equation (4), is

P (xa < X(r) < X(s) < xb) =

b∑
j=a+1

b∑
l=j

P (X(r) ∈ Ij , X(s) ∈ Il) (26)

One may also be interested in a corresponding inner prediction interval (xc, xd) which is con-

tained in [X(r), X(s)], the corresponding predictive probability is

P (X(r) < xc < xd < X(s)) =
c∑

j=1

n+1∑
l=d+1

P (X(r) ∈ Ij , X(s) ∈ Il) (27)

One may typically be interested in the shortest outer interval, or the longest inner interval, for

which the corresponding probability (26) or (27) exceeds a chosen threshold value, for given r

and s. Of course, one may also just want to use these probabilities directly for inferences on

X(r) and X(s). The idea of such outer and inner prediction intervals is used by Ahmadi et al [1]

for intervals between future records.

One may also be interested in the number of future observations in an interval between two

data observations. Let Cm
a,b = u denote the event that exactly u out of m future observations

are in the interval (xa, xb), with 1 ≤ a < b ≤ n and 1 ≤ u ≤ m. The NPI probability for this

event is equal to

P (Cm
a,b = u) =

m−u∑
ma=0

(
a−1+ma

ma

)(
b−a−1+u

u

)(
n−b+m−u−ma

m−u−ma

)(
n+m
n

) (28)

This probability only depends on the number of intervals in the partition of the real line created

by the data between xa and xb, hence only on the value b − a. An alternative expression for

this NPI probability is

P (Cm
a,b = u) =

(
n+a−b+m−u

m−u
)(

b−a−1+u
u

)(
n+m
n

)
Both these expressions are easily derived by combinatorics using the basic probability results

presented in this paper. For the special case with b = n+ 1, so considering the interval (xa,∞),

we have

P (Cm
a,n+1 = u) =

(
a−1+m−u

m−u
)(

n−a+u
u

)(
n+m
n

) (29)

This result is equal to the distribution of the number of exceedances in the classical theory of

statistics, although the derivation method differs due to the different starting points of NPI and

the classical theory [3].

Spacings between order statistics have also attracted interest [3, p.32], the NPI approach

enables consideration of spacings between future order statistics. Let Wr,s = X(s) − X(r) for

1 ≤ r < s ≤ m. We can use the joint probabilities given in Equation (4), for the event that
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X(r) ∈ Ij = (xj−1, xj) and X(s) ∈ Il = (xl−1, xl), for j ≤ l, for inferences on Wr,s, which will

mostly be in the form of lower and upper probabilities. For example, for the event Wr,s < T

for some T > 0, the NPI lower and upper probabilities are derived by

P (Wr,s < T ) =
n+1∑
j=1

n+1∑
l=j

1{xl − xj−1 < T}P (X(r) ∈ Ij , X(s) ∈ Il) (30)

P (Wr,s < T ) =

n+1∑
j=1

n+1∑
l=j

1{xl−1 − xj < T}P (X(r) ∈ Ij , X(s) ∈ Il) (31)

The NPI lower probability (30) is derived by summing up the probabilities for events X(r) ∈
Ij , X(s) ∈ Il) for which X(s) −X(r) < T necessarily holds while the corresponding NPI upper

probability (31) is derived by summing up the probabilities for all such events values for which

X(s) −X(r) < T can possibly be true, given that the predictive probabilities based on the A(n)

assumptions are only specified on the intervals between consecutive data observations without

any further assumptions on the distributions of such probabilities within these intervals. A

range of further inferences, together with illustrative examples, will be presented by Alqifari [2].

4 Concluding remarks

The results presented in this paper provide new tools for predictive inference on order statis-

tics of future observations. While for some inferences these coincide with classical results on

order statistics [3], the explicit use of the A(n) assumptions and restriction to m future obser-

vations, make derivation of some results more straightforward than in the classical framework,

where typically both the data observations and future observations are considered to be ran-

dom quantities, sampled from an unknown population probability distribution, with predictive

inference arrived at through conditioning on the data observations. The use of lower and up-

per probabilities widens the range of possible inferences compared to the classical approach.

Several inferences are illustrated in this paper, in particular on multiple comparisons; the main

ideas are similar for other inferences as long as these are explicitly expressed in terms of one

or more future order statistics. Alqifari [2] presents NPI methods for a wider range of such

inferences, and also investigates the influence of the particular choice of the number m of future

observations.

A major research challenge is the generalization of NPI for future order statistics in case

of lifetime data containing right-censored observations [23], which will enable such methods to

be created for many applications in medical and engineering applications, where e.g. multi-

ple comparisons methods are often applied. The NPI approach has been presented for right-

censored data, leading to predictive lower and upper survival functions that bound the well-

known Kaplan-Meier estimate [13], and related results for multiple comparisons have also been
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presented [14], however these were explicitly in terms of only a single future observation. The

development of NPI for multiple future observations and for future order statistics, based on

right-censored data, is a challenging topic for future research.

Appendix

Proof. Proof of Theorem 1

We must show that, for all j ≤ l − 1

j∑
k=1

P (X(r) ∈ Ik|X(d) ∈ Il−1) ≥
j∑

k=1

p(X(r) ∈ Ik|X(d) ∈ Il) (32)

Note that the conditional CDF for the event X(r) ∈ Il−1|X(d) ∈ Il−1 is

Fr|d(l − 1|l − 1) =
l−1∑
k=1

p(X(r) ∈ Ik|X(d) ∈ Il−1) = 1

and the conditional CDF for the event X(r) ∈ Il−1|X(d) ∈ Il is

Fr|d(l − 1|l) =
l−1∑
k=1

p(X(r) ∈ Ik|X(d) ∈ Il) < 1

A sufficient condition for property (32) to hold is if there exists one value wr such that

P (X(r) ∈ Ik|X(d) ∈ Il−1) ≥ P (X(r) ∈ Ik|X(d) ∈ Il) for all k ≤ wr (33)

and

P (X(r) ∈ Ik|X(d) ∈ Il−1) ≤ P (X(r) ∈ Ik|X(d) ∈ Il) for all k > wr (34)

Using Equation (7), it is straightforward to show that Equation (33) holds if and only if

k ≤ r(l − 1)

(d− 1)
+ 1 (35)

Similarly, Equation (34) holds if and only if

k ≥ r(l − 1)

(d− 1)
+ 1 (36)

Hence, by defining wr = r(l−1)
(d−1) + 1 the sufficient condition holds and the proof is complete.

Proof. Proof of Theorem 2

These NPI lower and upper probabilities are, as always, obtained by putting the probability
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masses per interval at end points in order to minimize or maximize the probability for the event

of interest, given the joint probabilities for the order statistics based on the A(n) assumptions.

The lower probability given by Equation (17) is derived by summing up the joint probabilities

for the events X(r) ∈ Ixjx , X(s) ∈ Ixlx and Y(r) ∈ I
y
jy
, Y(s) ∈ I

y
ly

for which xjx < yjy−1, xlx−1 > yly

and xlx−1 ≥ xjx hold. This follows from putting the probability masses for X(r) and Y(s) to

the right end points of their respective intervals, and for X(s) and Y(r) to the left end points

of their respective intervals. For the case where X(r) and X(s) belong to the same interval, we

can achieve a lower probability of zero for the event that both Y(r) and Y(s) are between these

two ordered future X observations, due to the fact that the A(n) assumptions do not imply

any assumptions on the distribution of such probability masses within an interval between two

consecutive data observations.

The NPI upper probability given by Equation (18) is derived similarly, by putting the

probability masses for all 4 ordered future observations at the opposite end points of the intervals

compared to the derivation of the lower probability, as explained above. However, for the upper

probability the case where Y(r) and Y(s) belong to the same interval must be taken into account,

this leads to the additional term in Equation (18), which actually involves maximisation of the

probability given in Equation (19). In this case, Y(r) and Y(s) can be assumed to be extremely

close to each other, effectively both equal to a value y∗jy ∈ Iyjy . This is possible due to the

flexibility of placing the respective probability masses at any convenient point within the data

intervals, note that now we do not just put these probability masses at end points of the interval.

The remaining task is to maximize the term in Equation (19) with regard to y∗jy ∈ I
y
jy

, with this

term dependent on whether or not any X group data observations are within the interval Iyjy . If

there are no such X observations, then one can just put the Y probability mass in this interval

at either of its end-points. However, if there are X observations in the interval Iyjy , then these

partition this interval and we must calculate the term in Equation (19) for y∗jy in each of the

sub-intervals of this partition, and finally take the maximum over these values. Clearly, while

this is slightly awkward since there is no closed-form expression for this upper probability, it is

a straightforward algorithm which takes little computational effort due to the limited number

of X values in each Y interval.

Proof. Proof of the lower and upper probabilities (22) and (23)

We present the derivation of the NPI lower probability (22) for the event min
l∈S

X l
(r) > max

g∈NS
Xg

(r),

the corresponding NPI upper probability (23) is derived by similar arguments, just replacing

lower bounds by upper bounds (it is presented in detail by Alqifari [2]). To derive the NPI

lower probability, we derive a lower bound for the probability for this event, based on the A(n)

assumptions for all groups. This lower bound can actually be achieved by putting the probability

masses for the future order statistics per group at end points of the respective intervals between

consecutive data observations, with probability masses for groups in the selected subset S put

at left end points and for groups not in S at right end points. Hence, we derive the maximum
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lower bound for this probability, which therefore is the NPI lower probability. The steps to

derive this lower bounds are as follows

P

(
min
l∈S

X l
(r) > max

g∈NS
Xg

(r)

)
= P

 ⋂
g∈NS

{Xg
(r) < min

l∈S
X l

(r)}


=

nl1
+1∑

jl1=1

. . .

nlw+1∑
jlw=1

P

( ⋂
g∈NS

{Xg
(r) < min

l∈S
X l

(r)}|X
l1
(r) ∈ I

l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)
× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

≥
nl1

+1∑
jl1=1

. . .

nlw+1∑
jlw=1

P
 ⋂

g∈NS

{Xg
(r) < min

l∈S
xlsjls−1}


× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

≥
nl1

+1∑
jl1=1

. . .

nlw+1∑
jlw=1

 ∏
g∈NS

P

(
Xg

(r) < min
l∈S

xlsjls−1

)
× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)

≥
nl1

+1∑
jl1=1

. . .

nlw+1∑
jlw=1

 ∏
g∈NS

ng+1∑
jg=1

1{xgjg < min
l∈S

xlsjls−1}P (Xg
(r) ∈ I

g
jg

)


× P (X l1

(r) ∈ I
l1
jl1
, . . . , X lw

(r) ∈ I
lw
jlw

)
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