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Abstract. In this paper, we investigate the general notion of the slope
for families of curves f : X → Y . The main result is an answer to the
above question when dimY = 2, and we prove a lower bound for this
new slope in this case over fields of any characteristic. Both the notion
and the slope inequality are compatible with the theory for dimY = 0, 1
in a very natural way, and this gives a strong evidence that the slope for
an n-fold fibration of curves f : X → Y may be Kn

X/Y /chn−1(f∗ωX/Y ).
Rather than the usual stability methods, the whole proof of the slope

inequality here is based on a completely new method using characteristic
p > 0 geometry. A simpler version of this method yields a new proof of
the slope inequality when dimY = 1.

1. Introduction

In the study of families of curves, a fundamental notion is called the slope.
Let f : X → Y be a (non-isotrivial) fibration from a smooth surface X to a
smooth curve Y with general fiber a smooth curve of genus g ≥ 2. Assume
that there is no (−1)-curve contained in fibers. Then the slope of f refers
to the following ratio:

s(f) :=
K2
X/Y

deg f∗ωX/Y
.

Throughout the past decades, it has become one of the key problems in
algebraic geometry to investigate the bound of s(f). These bounds are
usually of great importance in many areas, including the slope conjecture
itself (see [HM90, Conjecture 0.1] for instance), the geography of surfaces
(see [Par05]), the Oort conjecture (see [LZ14, CLZ16]). Among others, one
most fundamental result related to s(f) that has been essentially used in
the aforementioned works is the following sharp lower bound:

(1.1) s(f) ≥ 4g − 4

g
.

This bound was first obtained by Horikawa [Hor81] and Persson [Per81] for
hyperelliptic fibrations over C using a very explicit double cover method.
The full version over C was proved by Xiao [Xia87] using the Harder-
Narasimhan filtration for f∗ωX/Y , and independently by Cornalba-Harris

[CH88] for semi-stable fibrations via geometric invariant theory1. Since
then, this inequality is often referred as the slope inequality or Cornalba-
Harris-Xiao inequality in the literature. Later, Moriwaki [Mor97] gave a

Date: May 18, 2017.
1Later, Stoppino [Sto08] found a way to treat non-semi-stable fibrations using the idea

of Cornalba-Harris [CH88].
1
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different proof which works also in positive characteristics. We refer the
reader to [ACG11, Chapter XIV] as well as all references therein for more
details about this slope inequality.

Not only the result itself, but also all methods mentioned above have been
proven to be quite powerful. For example, both the Harder-Narasimhan
filtration and geometric invariant theory have been applied in the study of
various moduli problems (see [Mum77, HL97] for more details).

It is fairly obvious that the above notion of the slope s(f) only fits for
one dimensional families of curves, because when dimY > 1, defining the
degree of a vector bundle over Y usually needs a polarization of which the
choice is not that canonical unless some extra assumptions can be put. This
naturally leads to the following general question:

Question. What is the slope for a general family of curves f : X → Y
where dimY > 1? Furthermore, is there a slope inequality in general?

The main purpose of this paper is to answer this question for dimY = 2,
or equivalently, for 3-fold fibrations of curves. Such an answer leads to a
formulation of the slope of general families of curves.

1.1. Main result. Throughout this paper, k always denotes an algebraically
closed field. All varieties we consider are projective.

Definition 1.1. Let f : X → Y be a morphism between two normal varieties
X and Y defined over k with connected fibers. We say that f is a fibration of
curves of genus g, if f is flat, Cohen-Macaulay with pure relative dimension
one and the general fiber of f is a smooth curve of genus g.

Example 1.2. If dimX = 1, then X is a normal hence smooth curve of
genus g over Y = Spec k. If dimX = 2 and in addition X is smooth, f is
usually called a surface fibration in the previous literature. See [BHPVdV04]
for example. Notice that the flatness and the Cohen-Macaulayness are guar-
anteed automatically in this case.

Suppose that f : X → Y is a fibration of curves of genus g over k as
in Definition 1.1. By the duality theory, the relative dualizing sheaf ωX/Y
exists as a Y -flat and generically rank one sheaf on X, compatible with
base changes (cf. [Con00, Theorem 3.5.1, 3.6.1]). Furthermore, f∗ωX/Y
is a reflexive sheaf on Y (see [Hör10, Corollary 5.26] for example), which
particularly implies that f∗ωX/Y is locally free if Y is a smooth surface.

A very important property associated to f∗ωX/Y is the positivity. Much
work related to this property in characteristic zero has been done by Fujita
[Fuj78], Kawamata [Kaw81], Viehweg [Vie83], Kollár [Kol87], etc. For ex-
ample, under Definition 1.1, if char k = 0, then f∗ωX/Y is weakly positive.
We refer the reader to [Vie83] for the explicit definition of the weak posi-
tivity. In particular, f∗ωX/Y is semi-positive as a locally free sheaf provided
that Y is a smooth surface. It turns out that this positivity becomes subtle
in positive characteristics. Even for surface fibrations in positive character-
istics, the weak positivity of f∗ωX/Y could fail [Mor81, 3.2]. We refer to
[Pat14] for more details regarding this topic.

For any fibration f : X → Y from a normal variety X to a Gorenstein
variety Y , we write ωX/Y = ωX ⊗ f∗ω−1

Y . In this case, ωX/Y is a divisorial
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sheaf. We denote by KX/Y a relative canonical divisor associated to ωX/Y .
We say that f : X → Y is relatively minimal, if KX/Y is nef. Notice that
if in addition f is flat and Cohen-Macaulay, the sheaf ωX/Y here coincides
with the one obtained by the duality theory.

When char k = 0, the above definition of the relative minimality is equiva-
lent to that the canonical divisor KX is f -nef (cf. [KMM87, Theorem 3-1-1]).
However, this equivalence seems also subtle in positive characteristics. See
[Pat14, Theorem 1.1] for more details.

Now we state the main theorem of this paper.

Theorem 1.3. Let f : X → Y be a relatively minimal fibration of curves
of genus g ≥ 2 from a normal 3-fold X to a smooth surface Y defined over
k as in Definition 1.1. Then(

1

12
+

1

6g − 6

)
K3
X/Y ≥ ch2(f∗ωX/Y ),

or equivalently

K3
X/Y ≥

12g − 12

g + 1
ch2(f∗ωX/Y ),

provided that one of the following assumptions holds:

(1) char k = 0;
(2) char k > 0 and f∗ωX/Y is semi-positive.

Here and in the following, for a vector bundle E , chi(E) refers to the ith

Chern character of E .
Let us put Theorem 1.3 into perspective. Recall that for a relatively

minimal fibration f : X → Y from a smooth surface X to a smooth curve
Y over k with general fiber a smooth curve of genus g ≥ 2, we have the
aforementioned slope inequality s(f) ≥ 4g−4

g as (1.1). Notice that in this

case, deg f∗ωX/Y = ch1(f∗ωX/Y ). Thus the slope inequality (1.1) for f just
says the following: (

1

4
+

1

4g − 4

)
K2
X/Y ≥ ch1(f∗ωX/Y ).

In fact, such type of results also exists for a single curve (zero dimensional
family of curves). Suppose that dimX = 1, i.e., f : X → Spec k is a smooth
curve of genus g ≥ 2. In this case, h0(KX/k) = ch0(f∗ωX/k). Then the
“slope” (in)equality for f is(

1

2
+

1

2g − 2

)
degKX/k = ch0(f∗ωX/k),

which is nothing but Riemann-Roch for KX/k.
Theorem 1.3 generalizes both of the above results to 3-fold fibrations

of curves of genus g ≥ 2. Moreover, their compatibility suggests that for a
relatively minimal n(≥ 4)-fold fibration f : X → Y of curves as in Definition
1.1, a suitable notion of the slope is likely to be the ratio between the
following two invariants:

Kn
X/Y and chn−1(f∗ωX/Y ).
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In a forthcoming paper [Zha16], we will investigate this proposed slope when
n ≥ 4. In particular, we will prove that there is a slope inequality between
the above two invariants when Y is an abelian variety of arbitrary dimension
in characteristic zero which is compatible with all known results.

1.2. Idea of the proof. Roughly speaking, our proof of Theorem 1.3 is
based on a characteristic p > 0 method. Namely, we first prove Theorem 1.3
in positive characteristics. Then the characteristic zero result follows from a
weaker version of Theorem 1.3 in positive characteristics and a perturbation
method.

Recall that the methods used by Xiao [Xia87], Cornalba-Harris [CH88]
and Moriwaki [Mor97] to prove (1.1) are all stability methods in various
versions, but our proof here does not employ any stability method. More-
over, the method in this paper does allow us to give a new proof of (1.1) in
arbitrary characteristic, and this will be presented at the end of this paper.2

For the convenience of the reader, in the following, we explain our proof
in more details.

Step 1: F -stable dimension in characteristic p > 0. Recall that Theorem 1.3
is a result about the self-intersection number of divisors on 3-folds and the
Chern character of vector bundles over surfaces. In this paper, we introduce
a new notion in characteristic p > 0, namely the F -stable dimension of global
sections, serving as a bridge connecting the above two invariants.

The formal definition is the following.

Definition 1.4. Let V be a variety over k of characteristic p > 0. Let F e

be the eth absolute Frobenius morphism of V . For any coherent sheaf E on
V , the F -stable dimension of global sections h0

F (E) of E is defined as

h0
F (E) := lim inf

e→∞

h0(F e∗E)

pe dimV
.

This new invariant is not easy to compute in general, but when E is a
semi-positive vector bundle over a surface in positive characteristics, we can
show that

(1.2) h0
F (E) ≥ ch2(E).

See Proposition 7.4. Therefore, to prove Theorem 1.3 in positive character-
istics, it suffices to prove the following inequality:

(1.3)

(
1

12
+

1

6g − 6

)
K3
X/Y ≥ h

0
F (f∗ωX/Y ).

This new inequality (1.3) is a comparison between the intersection number
and the dimension of global sections, although the right hand side is a limit.
However, this reduction somehow indicates that we may prove Theorem 1.3
in positive characteristics by

(i) setting up a rough estimate first, and then
(ii) taking the limit using the Frobenius morphism.

In fact, the proof does go in this way.

2It is not clear, at least to the author, that whether the aforementioned stability meth-
ods could give rise to a slope inequality over surfaces other than curves.
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Step 2: An estimate via double filtrations. Now we generalize the problem a
bit. Let char k = p > 0 and f : X → Y be a fibration from a normal 3-fold
X to a smooth surface Y defined over k with general fiber C a smooth curve
of genus g ≥ 2, not necessarily flat or Cohen-Macaulay. Let L be a nef
Q-divisor on X such that L|C ≥ KC ≥ bL|Cc. According to Step 1, we need
a rough estimate as

(1.4)

(
1

12
+

1

6g − 6

)
L3 ≥ h0(OX(bLc)) + extra term

such that the “Frobenius limit” of the extra term is zero.
The method for proving (1.4) is based on a double filtration for nef di-

visors. Replacing Y by an appropriate blowing up, we may assume that Y
is also fibered over a smooth curve B. Then we get a 2-tower of fibrations
from X to B as follows:

X
f //

π

##
Y // B

Replacing X by an appropriate blowing up, we can construct a filtration

L := L0 > L1 > . . . > LN ≥ 0

of nef divisors on X with respect to the fibration π. Denote by F a general
fiber of π. The key point is that f |F is also a fibration. Therefore, for each
Li|F , we can construct a similar filtration

Li|F := Li,0 > Li,1 > . . . > Li,Ni ≥ 0

of nef divisors on F with respect to f |F . Then we are able to compare L3

and h0(OX(bLc)) using the nef thresholds (see Definition 2.1) obtained from
this double filtration, and the proof of (1.4) can be completed in this way.
We refer to Theorem 6.1 for an explicit version of (1.4).

Step 3: Limiting method via the Frobenius base change. The idea to prove
(1.3) from (1.4) is via the Frobenius base change. Let f : X → Y be as in
Theorem 1.3. Let L be any nef Q-divisor as in Step 2. By the base change
of f via the eth Frobenius morphism F e, we get a new fibration fe : Xe → Y
where Xe = X ×F e Y . Let Le be the pullback of L to Xe. We can apply
(1.4) to get an inequality between L3

e and h0(fe∗OXe(bLec)). Finally, (1.3)
follows after we replace L by KX/Y and take e→∞.

Step 4: Weaker results which imply Theorem 1.3 in characteristic zero. Now
we go to the proof of Theorem 1.3 when char k = 0. The basic idea is to
use the reduction mod p. We could directly apply (1.2) and (1.3) to get the
desired result. However, there are some obstructions. To explain them, let
X → Y → Z be an integral model extending X → Y → Spec k. Although
KX/Y is nef and f∗ωX/Y is semi-positive, unfortunately, we do not know
whether we are able to find a closed point z ∈ Z so that KXz/Yz is nef
and fz∗ωXz/Yz is semi-positive. In fact, there are several conjectures about
whether the nefness can be kept after the reduction mod p. See the problem
[Miy87, Problem 5.4] posed by Miyaoka and a more general conjecture by
Langer in [Lan13, Conjecture 5.5] for example. Recently, Langer [Lan15]
has constructed examples of nef divisors in characteristic zero whose each
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reduction is not nef, which is somehow surprising. Nevertheless, by [Gro61,
Chap. III, Theorem 4.7.1], we can keep the ampleness via the reduction
mod p. Notice that the nefness is indeed a limit of the ampleness. This
suggests that we may perturb both KX/Y and f∗ωX/Y a bit to get a weaker
result first and then use this weaker result to approximate Theorem 1.3.

Our proof goes as follows. We find that in order to prove Theorem 1.3, it
suffices to prove

(1.5)

(
1

12
+

1

6g − 6

)
(KX/Y + εA)3 ≥ ch2(f∗ωX/Y )

for an ample divisor A ≥ 0 on X and for any ε > 0 sufficiently small.
Although weaker than Theorem 1.3, (1.5) does imply Theorem 1.3 when
taking ε → 0. A very important advantage of (1.5) is that KX/Y + εA is
ample. This allows us to use the reduction mod p method.

Let A be the universal line bundle on X extending A. Fix an ε > 0 very
small. Similar to Step 2 and 3, we are able to prove that

(1.6)

(
1

12
+

1

6g − 6

)
(KXz/Yz + εAz)3 ≥ h0

F (fz∗ωXz/Yz)

for almost z ∈ Z. It can be seen from here that in order to get (1.6), we do
need to work with Q-divisors. This illustrates the necessity why in Step 2
we have to deal with Q-divisors other than integral divisors only.

Now the issue is to compare h0
F (f∗ωXz/Yz) and ch2(fz∗ωXz/Yz). We do

not know whether fz∗ωXz/Yz is still semi-positive to ensure (1.2). However,
since fz∗ωXz/Yz is very close to be semi-positive, we are able to prove that
for any fixed ε′ > 0, the inequality

(1.7) h0
F (fz∗ωXz/Yz) ≥ ch2(fz∗ωXz/Yz)− ε′

holds for almost all z ∈ Z. Here we use the perturbation method once
more, twisting f∗ωX/Y by ample Q-divisors before reduction mod p. Since
ε′ is arbitrary, (1.6) and (1.7) together will imply (1.5). Hence the proof of
Theorem 1.3 in characteristic zero is completed.

1.3. Structure of the paper. This paper is organized as follows. In Sec-
tion 2, we introduce some basic notions and results. Section 3–6 are devoted
to the study of fibered surfaces and 3-folds, the construction of the double
filtration and the proof of (1.4). In Section 7, we focus on vector bundles
over surfaces in positive characteristics, and the main results there are (1.2)
and (1.7). Eventually, the proof of Theorem 1.3 is presented in Section 8,
where we also present an example indicating that the inequality in Theorem
1.3 is very close to be optimal. In Section 9, adopting the whole idea above,
we give a completely new (stability-free) proof of the slope inequality (1.1).
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2. Preliminaries

In this section, we list some conventions and fundamental results which
will be used throughout this paper.

2.1. Conventions. In this paper, we follow the conventions below.

Fibration. Let V1 and V2 be two varieties. A fibration f : V1 → V2 means a
surjective morphism from V1 to V2 with connected fibers.

Divisor. Let V be a variety. We say that L is a Q-divisor on V , if L =∑
aiDi where ai ∈ Q and each Di is a prime divisor on V . We denote by

bLc the integral part of L, i.e., bLc =
∑
baicDi where baic is the biggest

integer not exceeding ai. A divisor L is Q-Cartier if certain multiple of L
is Cartier. If V is smooth, we will not distinguish integral divisors and line
bundles, and we will simply denote h0(OV (L)) by h0(L) for L integral.

Vector bundle. Let V be a variety and E be a vector bundle over V . We
denote by P(E) the projectivization of E and by πE the projection P(E)→ V .
We also denote by HE a divisor associated to OP(E)(1). Notice that E is
positive (resp. semi-positive) if HE is ample (resp. nef).

2.2. Nef threshold with respect to fibrations over curves. Let f :
X → B be a fibration from a variety X to a smooth curve B with a general
fiber F integral.

Definition 2.1. Let L be a nef divisor on X. The nef threshold of L with
respect to f is the following real number:

ntf (L) := sup{a ∈ R|L− aF is nef}.

In this paper, we mainly consider the following larger integral invariant

intf (L) := bntf (L)c+ 1 = min{a ∈ Z|L− aF is not nef}.
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This notion has been used in [YZ14, Zha14]. It is easy to see that intf (L) ≥
1. Moreover, we have the following simple result about this invariant.

Proposition 2.2. Suppose that σ : X ′ → X is a birational morphism. Let

f ′ : X ′
σ→ X

f→ B be the induced fibration with a general fiber F ′ = σ∗F .
Then for any nef divisor L on X,

intf ′(σ
∗L) = intf (L).

Proof. This result follows from the observation that for any a ∈ Z, L− aF
is nef if and only if σ∗L− aF ′ is nef. �

2.3. Remark on intersection numbers. In this paper, the computation
of intersection numbers appears frequently. We will use the following result
all the time and sometimes may not mention it.

Proposition 2.3. Let V be a variety of dimension n. Let A1, · · · , An, B1,
· · · , Bn all be nef Q-divisors on V such that Bi −Ai is pseudo-effective for
any 1 ≤ i ≤ n. Then we have

A1A2 · · ·An ≤ B1B2 · · ·Bn.

Proof. Since B1 − A1 is pseudo-effective, by the nefness assumption, we
deduce that

A1A2 · · ·An ≤ B1A2 · · ·An.
Thus by induction, the proof is completed. �

3. Linear system on fibered surfaces

Let f : X → B be a fibration from a smooth surface X to a smooth curve
B defined over k such that the general fiber F is a smooth curve of genus
g ≥ 2. Let L ≥ 0 be a nef divisor on X. Denote a0 = intf (L).

Theorem 3.1. Suppose that LF > 0. Then we have the following sequence
of triples

{(Li, Zi, ai)|i = 0, . . . , N}
on X such that

• (L0, Z0, a0) = (L, 0, intf (L)).
• For any i ≥ 1, we have the decomposition

|Li−1 − ai−1F | = |Li|+ Zi,

where Zi is the fixed part of |Li−1−ai−1F | and the movable part Li of
|Li−1− ai−1F | is nef whose base locus (if not empty) has dimension
zero. Here ai = intf (Li).
• h0(LN − aNF ) = 0.
• L0F > L1F > . . . > LNF ≥ 0.

Proof. See [YZ14, Theorem 2.2]. �

Remark 3.2. A direct consequence of Theorem 3.1 is that |Li|F | is base
point free for any i > 0. Moreover, if |L0|F | = |L|F | is also base point free,
then

h0(L0|F ) > h0(L1|F ) > · · · > h0(LN |F ) ≥ 1.

All the notation in Theorem 3.1 will be used in this section.
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Proposition 3.3. Suppose that LF > 0. Then we have the following nu-
merical inequalities:

(1) h0(L) ≤
N∑
i=0

aih
0(Li|F );

(2) L2 ≥ 2(a0 − 1)L0F +

N∑
i=1

ai(Li−1F + LiF ).

Proof. See [YZ14, Proposition 2.3]. �

The main theorem in this section is the following:

Theorem 3.4. Suppose that |L| is base point free.

(1) If LF = 0, then

h0(L) ≤ a0.

(2) If LF > 0, then

h0(L) ≤ 1

2
L2 + LF.

(3) If 0 6= L|F ≤ KF , then

h0(L)− 1

4
L2 ≤ a0 +

1

2

N∑
i=1

ai +
LF

2
.

(4) If F is non-hyperelliptic and 0 6= L|F < KF , then

h0(L)− 1

4
L2 ≤ 1

2
a0 +

1

4
aN +

LF

2
.

Proof. We prove (1) first. Since LF = 0 and |L| is base point free, we may
assume that L ∼num rF for some r ≥ h0(L)− 1. Notice that a0 = intf (L).
By Definition 2.1, we know that

a0 = r + 1 ≥ h0(L).

Hence (1) is proved.
From now on, we always assume that LF > 0. Apply Theorem 3.1 to L,

and we can get triples

{(Li, Zi, ai)|i = 0, . . . , N}

on X which satisfy the conditions therein. Write

ri = h0(Li|F ) and di = LiF.

By Theorem 3.1 and Remark 3.2, we know that

(3.1) r0 > r1 > · · · > rN ≥ 1.

Since g ≥ 2, by Riemann-Roch, we have

ri ≤
{
di, if i < N ;
di + 1, if i = N.
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Therefore, by Proposition 3.3 and (3.1), we deduce that

h0(L) ≤ a0r0 +
1

2

N∑
i=1

ai(ri−1 + ri − 1)

≤ a0d0 +
1

2

N∑
i=1

ai(di−1 + di)

≤ 1

2
L2 + LF,

which is exactly (2).
To prove (3) and (4), we assume that 0 < L|F ≤ KF . Recall that the

standard Clifford’s inequality asserts that for any i,

(3.2) ri ≤
1

2
di + 1.

Thus Proposition 3.3, (3.1) and (3.2) imply that

h0(L) ≤ a0r0 +
1

2

N∑
i=1

ai(ri−1 + ri − 1)

≤
(

1

2
d0 + 1

)
a0 +

1

2

N∑
i=1

ai

(
1

2
di−1 + 1 +

1

2
di

)

=
1

2
a0d0 +

1

4

N∑
i=1

ai(di−1 + di) + a0 +
1

2

N∑
i=1

ai

≤ 1

4
L2 +

LF

2
+ a0 +

1

2

N∑
i=1

ai.

Thus the proof of (3) is completed.
If F is non-hyperelliptic and LF < KF , we have a shaper Clifford’s in-

equality

(3.3) ri ≤
1

2
di +

1

2
=

1

2
(di + 1)

for 0 ≤ i ≤ N − 1. Combine this with Proposition 3.3 and (3.1). Similar to
the above, it follows that

h0(L) ≤ a0r0 +
1

2

N∑
i=1

ai(ri−1 + ri − 1)

≤ 1

2
(d0 + 1)a0 +

1

4

N−1∑
i=1

ai(di−1 + di) +
1

4
aN (dN−1 + dN + 1)

≤ 1

4
L2 +

LF

2
+

1

2
a0 +

1

4
aN .

This proves (4), and the whole proof is completed. �
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Proposition 3.5. Suppose that P is a nef Q-divisor on X such that P |F ≥
KF . Then

PL

2g − 2
≥

N∑
i=0

ai − 1.

Proof. From Theorem 3.1, we know that

L = L0 ≥

(
N∑
i=0

ai − 1

)
F + LN − (aN − 1)F.

Moreover, since aN = intf (LN ), we know that LN − (aN − 1)F is nef. Thus
it follows that

PL ≥

(
N∑
i=0

ai − 1

)
PF + (LN − (aN − 1)F )P ≥

(
N∑
i=0

ai − 1

)
PF.

The proof is completed as PF ≥ 2g − 2. �

4. Filtration for nef divisors on fibered varieties over curves

In Section 3, for any nef divisor L on fibered surfaces, we are able to
construct a filtration of nef divisors. Using this filtration, we can estimate
h0(L), L2 and PL respectively. In this section, we generalize these results
for surfaces to higher dimensions, particularly, to dimension 3.

Let f : X → B be a fibration from a smooth variety X of dimension
n(≥ 3) to a smooth curve B defined over k such that the general fiber F is
integral, not necessarily smooth. Let L ≥ 0 be a nef divisor on X.

4.1. The filtration. Similar to the surface case, by [Zha14, Theorem 2.3],
there is a sequence of quadruples

{(Xi, Li, Zi, ai), i = 0, 1, · · · , N}
which satisfy the following three conditions:

(C1) (X0, L0, Z0, a0) = (X,L, 0, intf (L)).
(C2) For any i = 0, · · · , N − 1, πi : Xi+1 → Xi is the blowing up of the

base locus of |L − aiFi|. Here F0 = F , Fi+1 = π∗i Fi and ai+1 =

intfi+1
(Li+1) where fi+1 : Xi+1

πi→ · · · π0→ X0
f→ B is the induced

fibration. In particular, we have the following decomposition

π∗i |Li − aiFi| = |Li+1|+ Zi+1,

where Zi+1 is the base locus of π∗i |Li − aiFi| and the movable part
|Li+1| of π∗i |Li − aiFi| is base point free.

(C3) h0(LN − aNFN ) = 0.

We remark here that although [Zha14, Theorem 2.3] only concerns the case
of characteristic zero, it is easy to check that this result also holds in positive
characteristics. For the n = 3 case in which we are mostly interested, this
can be ensured also by the resolution of singularities [CP08, CP09, Cut09].

Unlike the surface case, the above quadruples are on different smooth
(birational) models of X. In order to make all quadruples be on one model
as in Theorem 3.1, we state the following theorem which can be viewed as
a generalization of Theorem 3.1, slightly better than [Zha14, Theorem 2.3].
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Theorem 4.1. Let f : X → B, F and L be as above. Then there is a
birational morphism σ : XL → X and a sequence of triples

{(Li, Zi, ai), i = 0, 1, · · · , N}
on XL with the following properties:

• (L0, Z0, a0) = (σ∗L, 0, intfL(L0)) where fL : XL
σ→ X

f→ B is the
induced fibration.
• For any i = 0, · · · , N − 1, we have the decomposition

|Li − aiFL| = |Li+1|+ Zi+1,

where Zi ≥ 0 is the fixed part of |Li − aiFi| and the movable part
|Li+1| of |Li − aiFi| is base point free. Here FL = σ∗F is a general
fiber of fL, and ai+1 = intfL(Li+1).
• h0(LN − aNFN ) = 0.

Proof. By [YZ14, Theorem 2.3], we can get the following quadruples

{(Xi, Li, Zi, a
′
i), i = 0, 1, · · · , N}

which satisfy the condition (C1) – (C3). In particular, a′i = intfi(Li).
Now take XL = XN and replace Li and Zi by their pullbacks onto XL,

by which we get a sequence of triples

{(Li, Zi, a′i), i = 0, 1, · · · , N}
on XL. We will show that these triples satisfy the required properties.

In fact, it suffices to show that

a′i = intfL(Li)

for any i. However, this equality simply follows from Proposition 2.2. Hence
the proof is completed. �

4.2. Numerical inequalities. For any nef divisor L ≥ 0 on X, by Theorem
4.1, we obtain a sequence of triples

{(Li, Zi, ai), i = 0, 1, · · · , N}
on a birational model XL of X. For simplicity, we still denote by F a general
fiber of fL : XL → B.

Proposition 4.2. We have

h0(L) ≤
N∑
i=0

aih
0(Li|F ).

Proof. See [Zha14, Proposition 2.6 (1)] in the characteristic zero case. Notice
that the proof there applies in positive characteristics verbatim. �

For any 0 ≤ i ≤ N , write

L′i := Li − (ai − 1)F.

It is easy to see from (2.1) that L′i is nef on XL and

L′i = ai+1F + Zi+1 + L′i+1.

From now on, we always assume that n = dimX = 3.
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Proposition 4.3. For any 1 ≤ i ≤ N , we have

L3 − L′3i = 3(a0 − 1)L2
0F +

i∑
j=1

ai(L
2
j−1 + Lj−1Lj + L2

j )F

+

i∑
j=1

(L′2j−1 + L′j−1L
′
j + L′2j )Zj .

Proof. This is a direct computation. For any 0 ≤ j ≤ i− 1, we have

L′3j − L′3j+1 = (L′j − L′j+1)(L′2j + L′jL
′
j+1 + L′2j+1)

= (aj+1F + Zj+1)(L′2j + L′jL
′
j+1 + L′2j+1).

Since Lj |F = L′j |F , it is easy to check that

(L′2j + L′jL
′
j+1 + L′2j+1)F = (L2

j + LjLj+1 + L2
j+1)F.

Summing up for all j, it follows that

L′30 − L′3i =
i∑

j=1

aj(L
2
j−1 + Lj−1Lj + L2

j )F +
i∑

j=1

(L′2j−1 + L′j−1L
′
j + L′2j )Zj .

Notice that
L3

0 − L′30 = 3(a0 − 1)L2
0F.

Hence the proof is completed. �

Proposition 4.4. Let P be a nef Q-divisor on X and P0 = σ∗P . Then

PL2 ≥ 2(a0 − 1)P0L0F +
N∑
i=1

ai(P0Li−1 + P0Li)F +
N∑
i=1

P0(L′i−1 + L′i)Zi.

Proof. The proof is similar to the one before, so we sketch it here. For any
0 ≤ i ≤ N − 1, we have

P0L
′2
i − P0L

′2
i+1 = P0(L′i − L′i+1)(L′i + L′i+1)

= P0(ai+1F + Zi+1)(L′i + L′i+1).

As in the proof of Proposition 4.3, we can check that the following three
(in)equalities hold:

P0(L′i + L′i+1)F = P0(Li + Li+1)F,

P0L
′2
N ≥ 0,

P0L
2
0 − P0L

′2
0 = 2P0(a0 − 1)L0F.

Hence the proposition follows immediately. �

Proposition 4.5. Let P be a nef Q-divisor on X such that P ≥ L. Then

P 3 ≥

(
N∑
i=0

ai − 1

)
P 2F.

Proof. By the decomposition in Theorem 4.1, we have

L0 ≥

(
N∑
i=0

ai − 1

)
F + L′N .



14 TONG ZHANG

Let P0 = σ∗P . It follows that

P 3 = P 3
0 ≥ P 2

0L0 ≥

(
N∑
i=0

ai − 1

)
P 2

0F =

(
N∑
i=0

ai − 1

)
P 2F.

Thus the proof is completed. �

We would like to point out that similar calculations in this section as well
as in §5 also appeared in [Xia87] and [Kon96].

5. Linear system on 2-towers of curve fibrations

Within this section, we assume that X is a smooth 3-fold defined over k
which satisfies the following commutative diagram:

X
f //

π   

Y

h
��
B

Here π : X → B is a fibration from X to a smooth curve B with a general
fiber F integral, f : X → Y is a fibration from X to a smooth surface Y such
that the general fiber C is a smooth curve of genus g ≥ 2, and h : Y → B is
a surface fibration from Y to B with smooth general fibers. In other words,
π : X → B is a 2-tower of curve fibrations.

Notice that f |F induces a fibered structure on F and f(F ) is in fact a
general fiber of h. Therefore, we may assume that C is also a general fiber
of f |F on F and f(F ) is smooth.

5.1. Set up. Suppose that L ≥ 0 is a nef divisor on X. In the following, we
construct a double filtration of L with respect to the fibrations π and f |F .
All notation here will be used throughout this section.

5.1.1. The double filtration. By Theorem 4.1, there is a birational morphism
σX : XL → X such that we have a sequence of triples

{(Li, Zi, ai), i = 0, 1, · · · , N}

on XL which satisfies the conditions therein. Let fL : XL
σX→ X

f→ Y and

πL : XL
σX→ X

π→ B be the induced fibrations. By abuse of the notation, we
still denote by C a general fiber of fL and by F a general fiber of πL. Write

L′i = Li − (ai − 1)F.

By (2.1), L′i is nef. Moreover, we know that

(5.1) L′i = ai+1F + Zi+1 + L′i+1.

Let σF : F̃ → F be a resolution of singularities on F whose existence is

ensured by [Lip78]. Then f̃ : F̃
σF→ F → f(F ) is a fibration of F̃ . Denote by

C̃ a general fiber of f̃ . Then C̃ is also smooth and g(C̃) = g.
For each 0 ≤ i ≤ N , write Li,0 = σ∗F (Li|F ). By Theorem 3.1, for any i,

we have a sequences of triples

{(Li,j , Zi,j , ai,j), j = 0, 1, · · · , Ni}
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on F̃ satisfying the conditions therein. Write

L′i,j = Li,j − (ai,j − 1)C̃.

Similarly, L′i,j is nef and

(5.2) L′i,j = ai,j+1C̃ + Zi,j+1 + L′i,j+1.

5.1.2. Horizontal base loci. For any 1 ≤ i ≤ N , we can decompose Zi as

Zi = ZHi + ZVi ,

where ZHi and ZVi are respectively the horizontal and vertical part of Zi
with respect to fL : XL → Y . Let λ1 < λ2 < · · · < λl be all indices in
{1, · · · , N} such that

ZHλq > 0

for 1 ≤ q ≤ l and denote

δq = deg(Zλq |C).

For our convenience, we denote λ0 = 0 and λl+1 = N + 1.

5.2. Numerical inequalities. In this subsection, we prove some numerical
results related to the horizontal base loci.

Lemma 5.1. Let D ≥ 0 be a horizontal divisor on XL with respect to fL
and δ = deg(D|C). Then for any 0 ≤ i ≤ N , we have

LiDF ≥ δ(ai,0 − 1).

Proof. Let D̃ = σ∗F (D|F ). Then

D̃C̃ = deg(D|C) = δ.

Therefore, it follows from (5.2) that

LiDF = Li,0D̃ = L′i,0D̃ + (ai,0 − 1)C̃D̃ ≥ δ(ai,0 − 1).

The proof is completed. �

Lemma 5.2. Let D ≥ 0 be a horizontal divisor on XL with respect to fL
and δ = deg(D|C). For any 0 ≤ q ≤ l, if λq+1 − λq > 1, then

L′2λqD ≥ 2

λq+1−1∑
i=λq+1

aiLiDF ≥ 2δ

λq+1−1∑
i=λq+1

ai(ai,0 − 1).

Proof. The key point here is that Zi is vertical with respect to fL for any
λq + 1 ≤ i ≤ λq+1 − 1. It means that Zi and D intersect with each other
properly. In particular, for any nef divisorM onXL, the intersection number

MDZi ≥ 0.

Combine this observation with (5.1). Then we get

L′2i−1D = L′i−1(aiF + Zi + L′i)D

≥ L′i−1(aiF + L′i)D

= (aiF + Zi + L′i)(aiF + L′i)D

≥ 2aiL
′
iDF + L′2i D.
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Summing over all above i, we obtain

L′2λqD ≥ 2

λq+1−1∑
i=λq+1

aiLiDF + L′2λq+1−1D ≥ 2

λq+1−1∑
i=λq+1

aiLiDF.

Hence the first inequality is proved. The second one is straightforward by
applying Lemma 5.1 to each LiDF . �

Lemma 5.3. For any 1 ≤ q ≤ l, we have

(L2
λq−1 + Lλq−1Lλq + L2

λq)F ≥ 3L2
λqF + 2δq(aλq ,0 − 1).

Proof. By the decomposition in Theorem 4.1, we know that

Lλq−1LλqF =
(
Lλq + Zλq + aλqF

)
LλqF = L2

λqF + LλqZλqF.

Together with Proposition 2.3, the above equality also gives

L2
λq−1F ≥ Lλq−1LλqF = L2

λqF + LλqZλqF.

On the other hand, by Lemma 5.1,

LλqZλqF ≥ LλqZHλqF ≥ δq(aλq ,0 − 1).

The proof is completed by combining the three (in)equalities together. �

Proposition 5.4. For any 1 ≤ q ≤ l, we have

λq+1−1∑
i=λq

ai(L
2
i−1 +Li−1Li+L2

i )F +L′2λqZλq ≥
λq+1−1∑
i=λq

ai
(
3L2

iF + 2δq(ai,0 − 1)
)
.

Proof. If λq+1 − 1 = λq, this result is implied by Lemma 5.3 as L′2λqZλq ≥ 0.

Thus in the following, we assume that λq+1 − 1 > λq. By Proposition 2.3,
we have

λq+1−1∑
i=λq+1

ai(L
2
i−1 + Li−1Li + L2

i )F ≥ 3

λq+1−1∑
i=λq+1

aiL
2
iF.

Also, Lemma 5.2 implies that

L′2λqZλq ≥ L
′2
λqZ

H
λq ≥ 2δq

λq+1−1∑
i=λq+1

ai(ai,0 − 1).

Combine the above two inequalities with Lemma 5.3, and the proof is com-
pleted. �

5.3. Generalization of Proposition 3.5. In this subsection, we generalize
Proposition 3.5 to 2-towers of curve fibrations.

Proposition 5.5. Suppose that P is a nef Q-divisor on X such that P ≥ L
and P |C ≥ KC . Then

PL2 ≥ (4g − 4)

N∑
i=0

ai

 Ni∑
j=0

ai,j − 1

− 2PLF.
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Moreover, if L|C = KC , then

PL2 ≥ L3 ≥ 3

λ1−1∑
i=0

aiL
2
i,0 + (4g − 4)

N∑
i=λ1

ai

 Ni∑
j=0

ai,j − 1

− 3PLF.

Proof. Write P0 = σ∗XP , and P̃ = σ∗F (P0|F ). By Proposition 4.4 and Propo-
sition 2.3, we have

PL2 ≥ 2(a0 − 1)P0L0F + 2

N∑
i=1

aiP0(Li−1 + Li)F

≥ 2
N∑
i=0

aiP̃Li,0 − 2PLF.

For any 0 ≤ i ≤ N , by the decomposition in Theorem 3.1, we have

Li,0 ≥

 Ni∑
j=0

ai,j − 1

 C̃ + L′i,Ni

on F̃ , from which we obtain

P̃Li,0 ≥

 Ni∑
j=0

ai,j − 1

 P̃ C̃ ≥ (2g − 2)

 Ni∑
j=0

ai,j − 1

 .

Combine the above results together, and the proof of the first inequality is
completed.

Now let us prove the second inequality. Suppose that L|C = KC . Since
Zi is vertical with respect to fL for any 0 ≤ i ≤ λ1 − 1, we know that

L′λ1−1|C = KC .

Write L̃λ1−1 = σ∗F (L′λ1−1|F ). Notice that intfL(L′λ1−1) = 1. Apply the proof
of the first inequality verbatim, and it follows that

L′3λ1−1 ≥ 2(intfL(L′λ1−1)− 1)L′2λ1−1F + 2

N∑
i=λ1

aiL
′
λ1−1(Li−1 + Li)F

≥ 2

N∑
i=λ1

ai

 Ni∑
j=0

ai,j − 1

 L̃λ1−1C̃

≥ (4g − 4)
N∑
i=λ1

ai

 Ni∑
j=0

ai,j − 1

 .

On the other hand, by Proposition 4.3, we have

L3 − L′3λ1−1 ≥ 3

λ1−1∑
i=0

aiL
2
i,0 − 3L2F.

Combine the above two inequalities together, and the result follows as L2F ≤
PLF and L3 ≤ PL2. �



18 TONG ZHANG

5.4. Main result. Our main result in this section is the following.

Theorem 5.6. Suppose that |L| is base point free and 0 < L|C ≤ KC . Let
P be a nef Q-divisor on X such that P ≥ L, P |C ≥ KC and P 2F > 0. Then

h0(L) ≤
(

1

12
+

1

6g − 6

)
PL2 +

(
P 3

P 2F
+ 1

)
g + P 2F.

Proof. By Proposition 4.2, we know that

(5.3) h0(L) ≤
N∑
i=0

aih
0(Li|F ) ≤

N∑
i=0

aih
0(Li,0).

In the following, we divide our proof into two cases.
Case 1: L|C < KC . Apply Proposition 4.3, and we obtain

L3 ≥ 3

λ1−1∑
i=0

aiL
2
i,0 − 3L2F +(5.4)

l+1∑
q=1

λq+1−1∑
i=λq

ai(L
2
i−1 + Li−1Li + L2

i )F + L′2λqZλq

 .

By Proposition 5.4, for any 1 ≤ q ≤ l, we have

λq+1−1∑
i=λq

ai(L
2
i−1 + Li−1Li + L2

i )F + L′2λqZλq(5.5)

≥
λq+1−1∑
i=λq

3ai

(
L2
i,0 +

2

3
δq(ai,0 − 1)

)
In the following, we will focus on the difference between PL2 and L3.

Since P |C ≥ KC > L|C , we know that (P − L)|C > 0. In particular, the
horizontal part of P − L with respect to f is non-empty, which we denote
by D. Write

δ0 = deg(D|C).

Let D0 be the proper transform of D by σX . Then D0 is still horizontal
with respect to fL and deg(D0|C) = δ0. By Lemma 5.2, if λ1 > 1, then

(5.6) L′20 D0 ≥ 2δ0

λ1−1∑
i=1

ai(ai,0 − 1).

Furthermore, by Lemma 5.1, we know that

(L2
0 − L′20 )D0 = (a0 − 1)(L0 + L′0)D0F(5.7)

= 2a0L0D0F − 2L0D0F

≥ 2δ0a0(a0,0 − 1)− 2(P − L)LF.

Combine (5.6) and (5.7), and we obtain

(5.8) L2D = L2
0D0 ≥ 2δ0

λ1−1∑
i=0

ai(ai,0 − 1)− 2PLF + 2L2F
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when λ1 > 1. On the other hand, if λ1 = 1, it can be easily checked that
(5.8) follows from (5.7) directly as L′20 D0 ≥ 0.

Now by (5.4), (5.5) and (5.8), it follows that

PL2 ≥ L3 + L2D(5.9)

≥
l∑

q=0

λq+1−1∑
i=λq

3ai

(
L2
i,0 +

2

3
δq(ai,0 − 1)

)
− 3PLF.

Combine (5.3) and (5.9), and apply Proposition 4.5 and Proposition 5.7
(which we will prove later) together with the first inequality in Proposition
5.5. It follows that

h0(L)− 1

12
PL2 ≤

l∑
q=0

λq+1−1∑
i=λq

ai

(
h0(Li,0)− 1

4
L2
i,0 −

1

6
δq(ai,0 − 1)

)
+

1

4
PLF

≤ 2

3

N∑
i=0

ai

 N∑
j=0

ai,j − 1

+ g
N∑
i=0

ai +
1

4
PLF

≤ 1

6g − 6
(PL2 + 2PLF ) + g

N∑
i=0

ai +
1

4
PLF

≤ 1

6g − 6
PL2 +

(
P 3

P 2F
+ 1

)
g + PLF.

Since PLF ≤ P 2F , we finish the proof in this case.
Case 2: L|C = KC . It is easy to check that (5.4) and (5.5) still hold

in this case. Together with the fact that PL2 ≥ L3 and PLF ≥ L2F , we
obtain

(5.10) PL2 ≥ 3

λ1−1∑
i=0

aiL
2
i,0 +

l∑
q=1

λq+1−1∑
i=λq

3ai

(
L2
i,0 +

2

3
δq(ai,0 − 1)

)
− 3PLF.

By Proposition 5.7, for any 1 ≤ q ≤ l and λq ≤ i ≤ λq+1 − 1,

(5.11) h0(Li,0) ≤ 1

4
L2
i,0 +

1

6
δq(ai,0 − 1) +

2

3

 Ni∑
j=0

ai,j − 1

+ g.

Furthermore, notice that Li = K|C for 0 ≤ i ≤ λ1 − 1. For any such i, by
[YZ14, Theorem 1.2], we have

(5.12) h0(Li,0) ≤ 1

4
L2
i,0 +

1

4g − 4
L2
i,0 + g.
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Combine (5.10)–(5.12) and the second inequality in Proposition 5.5. Similar
to Case 1, it follows that

h0(L)− 1

12
PL2 ≤

λ1−1∑
i=0

ai

(
h0(Li,0)− 1

4
L2
i,0

)
+

1

4
PLF +

l∑
q=1

λq+1−1∑
i=λq

ai

(
h0(Li,0)− 1

4
L2
i,0 −

1

6
δq(ai,0 − 1)

)

≤
λ1−1∑
i=0

1

4g − 4
aiL

2
i,0 +

2

3

N∑
i=λ1

ai

 N∑
j=0

ai,j − 1

+ g

N∑
i=0

ai +
1

4
PLF

≤ 1

6g − 6
(PL2 + 3PLF ) + g

N∑
i=0

ai +
1

4
PLF

≤ 1

6g − 6
PL2 +

(
P 3

P 2F
+ 1

)
g + PLF.

Again, we have PLF ≤ P 2F . Thus the whole proof is completed once we
verify the following proposition. �

Proposition 5.7. For any 1 ≤ q ≤ l and any λq ≤ i ≤ λq+1 − 1, we have

h0(Li,0) ≤ 1

4
L2
i,0 +

1

6
δq(ai,0 − 1) +

2

3

 Ni∑
j=0

ai,j − 1

+ g.

Moreover, if we are in Case 1 of the proof of Theorem 5.6, then the above
inequality still holds for any 0 ≤ i ≤ λ1 − 1 if replacing δq by δ0 therein.

Proof. Let us first assume that C is hyperelliptic. By Theorem 3.4 (1) and
(3), we know that for any 0 ≤ i ≤ N ,

h0(Li,0) ≤ 1

4
L2
i,0 + ai,0 +

1

2

Ni∑
j=1

ai,j + (g − 1)

≤ 1

4
L2
i,0 +

1

3
(ai,0 − 1) +

2

3

 Ni∑
j=0

ai,j − 1

+ g.

On the other hand, since |Li|C | is base point free, deg(Li|C) < 2g − 2 must
be even for any i ≥ λ1. In particular, it implies that

δq ≥ 2

for any q ≥ 1. Moreover, if we are in Case 1 of the proof of Theorem 5.6,
then deg(L|C) < 2g − 2 is also even, and we still have

δ0 = deg(P |C)− deg(L|C) ≥ (2g − 2)− (2g − 4) ≥ 2.

Thus the proof is completed in the hyperelliptic case.
Now assume that C is non-hyperelliptic. Recall that Li|C < KC for any

i ≥ λ1. If deg(Li|C) > 0, then by Theorem 3.4 (4),

h0(Li,0) ≤ 1

4
L2
i,0 +

(
1

2
ai,0 +

1

4
ai,Ni − 1

)
+ g,
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which is stronger than the desired inequality. Moreover, if we are in Case
1 of the proof of Theorem 5.6, then for any 0 ≤ i ≤ λ1 − 1, we have
0 < Li|C < KC . Thus the above inequality also holds for 0 ≤ i ≤ λ1 − 1, so
does the proposition.

If deg(Li|C) = 0, then we deduce that

2g − 2 ≥ δq ≥ 3.

Otherwise |Lλq−1|C | is base point free and deg(Lλq−1|C) ≤ 2, which would
imply that C is hyperelliptic. Therefore, by Theorem 3.4 (1), we obtain

h0(Li,0) ≤ ai,0 ≤
1

6
δq(ai,0 − 1) +

1

2
(ai,0 − 1) + g.

Hence the whole proof is completed. �

Remark 5.8. From the above proof, it is easy to see that the inequality in
Proposition 5.7 can be improved if C is non-hyperelliptic. This improvement
will result in a better inequality than that in Theorem 5.6, which we will
treat in a subsequential paper.

6. Linear system on fibered 3-folds over surfaces

Let f : X → Y be a fibration from a normal 3-fold X to a smooth surface
Y defined over k with general fiber C a smooth curve of genus g ≥ 2. Fix
a smooth and very ample divisor H ≥ 0 on Y with genus g(H) ≥ 2 (H is
indeed a smooth curve on Y ). Write G = f∗H.

The main theorem in this section is the following:

Theorem 6.1. Suppose that L is a nef Q-divisor on X such that L|C ≥
KC ≥ bL|Cc.

(1) If L2G > 0, then

h0(OX(bLc)) ≤
(

1

12
+

1

6g − 6

)
L3 + g

(
L3

L2G
+ 1

)
+ L2G.

(2) If L2G = 0, then

h0(OX(bLc)) ≤ g.

Proof. Without loss of the generality, we may assume that L ≥ 0. Replacing
X by an appropriate resolution, we may further assume that there is a
decomposition

L = M + Z

on X such that

• |M | is base point free;
• Z ≥ 0 is Q-divisor;
• h0(M) = h0(OX(bLc)).

In fact, we may even assume that X is smooth as the resolution of singu-
larities in dimension three is also known in positive characteristics [CP08,
CP09, Cut09]. In particular, we have

M |C ≤ bLc|C ≤ bL|Cc ≤ KC .

In order to prove (1), we first assume that deg(M |C) > 0. Now choose
a general pencil in |H| and denote by σY : Y ′ → Y the blowing up of the
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indeterminacies of this pencil. Then Y ′ is a fibered surface over P1. Let
X ′ = X ×Y Y ′. Then we have the following diagram:

X ′
σX //

f ′

��
π

��

X

f
��

Y ′
σY //

h
��

Y

P1

In particular, π : X ′ → P1 is a 2-tower of curve fibrations. Let F be a general
fiber of π. Then F = σ∗XG−EX where EX is the exceptional divisor of σX .
For simplicity, we still denote by C a general fiber of f ′.

Write L′ = σ∗XL and M ′ = σ∗XM . By our assumption, |M ′| is base point
free and deg(M ′|C) > 0. More importantly, L′2F = L2G > 0. Therefore, by
Theorem 5.6, we have

h0(M ′) ≤
(

1

12
+

1

6g − 6

)
L′M ′2 + g

(
L′3

L′2F
+ 1

)
+ L′2F,

which implies that

h0(OX(bLc)) ≤
(

1

12
+

1

6g − 6

)
L3 + g

(
L3

L2G
+ 1

)
+ L2G.

Second, we assume that deg(M |C) = 0. Since |M | is base point free, there
is a divisor D ≥ 0 on Y such that |D| is base point free and M = f∗D. In
particular, as f has connected fibers, we deduce that

h0(M) = h0(D).

If D = 0, then

h0(M) = h0(D) = 1,

and the inequality in (1) still holds. If D 6= 0, we have DH > 0 as H is very
ample. In this case, we use the fibration h to estimate h0(D). Denote by H ′ a
general fiber of h. Then H ′ = σ∗YH−EY where EY is the exceptional divisor
of σY . Denote D′ = σ∗YD. Then D′H ′ = DH > 0. Since g(H ′) = g(H) ≥ 2,
by Theorem 3.4 (2),

h0(D′) ≤ 1

2
D′2 +D′H ′,

which implies that

h0(M) ≤ 1

2
D2 +DH ≤ 1

4g − 4

(
LM2 + 2LMG

)
≤ 1

4g − 4

(
L3 + 2L2G

)
.

Since we always have

1

4g − 4
≤ 1

12
+

1

6g − 6
≤ 1

4

when g ≥ 2, the inequality in (1) still holds in this case.
Now let us prove (2). In this case, we deduce that M − G can not be

effective. Otherwise, by Proposition 2.3, we would have

L2G ≥ LMG ≥ LG2 = deg(L|C)H2 ≥ (2g − 2)H2 > 0.
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This is a contradiction. Therefore, from the long exact sequence

0→ H0(M −G)→ H0(M)→ H0(M |G),

we know that

h0(M) ≤ h0(M |G).

Notice that G is fibered over H with a general fiber C. We further deduce
that M |G − C can not be effective. Otherwise, we would have

L2G ≥ LMG = (L|G)(M |G) ≥ (L|G)C ≥ 2g − 2 > 0,

which is again a contradiction. In a similar way, we can get

h0(M |G) ≤ h0(M |C) ≤ g.

Hence the whole proof is completed. �

7. F -stable dimension and the Chern character of vector
bundles

Our main goal in this section is to set up the relation between h0
F (E) and

ch2(E) for certain vector bundle E over surfaces in positive characteristics.
Throughout this section, we assume that char k = p > 0.

7.1. F -stable dimension of global sections. Let V be a variety defined
over k. Let F e be the eth absolute Frobenius morphism of V . In Definition
1.4, for any coherent sheaf E on V , the F -stable dimension of global sections
h0
F (E) of E is defined as

h0
F (E) := lim inf

e→∞

h0(F e∗E)

pe dimV
.

In fact, under certain circumstances, the invariant h0
F is closely related to

some well-understood invariants.

Proposition 7.1. Let V be a variety of dimension n over k. Let L be an
ample line bundle on V . Then

h0
F (L) = lim

e→∞

h0(F e∗L)

pne
=

1

n!
cn1 (L) = chn(L).

Proof. The result is essentially from the Riemann-Roch theorem and the
Serre vanishing theorem. Notice that F e∗L = L⊗pe . When e is sufficiently
large, the Serre vanishing theorem asserts that

hi(F e∗L) = 0, ∀i > 0.

Therefore, by the Riemann-Roch theorem,

h0(F e∗L) =
pne

n!
cn1 (L) + o(pne).

The result follows by letting e→∞. �

In certain sense, Proposition 7.1 suggests that there may be certain rela-
tion between h0

F (E) and chn(E) when E is “positive”. In the following, we
mainly focus on this relation when dimV = 2.
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7.2. Semi-positive vector bundles over curves. Let C is a smooth
curve of genus g over k. We have the following lemma which is definitely
known to the experts.

Lemma 7.2. For any semi-positive vector bundle E of rank r over C,

h1(E) ≤ 2rg.

Proof. By Serre duality, it is equivalent to show that

h0(OC(KC)⊗ E∨) ≤ 2rg.

Notice that if C is isomorphic to P1, then OC(−KC)⊗ E is positive. Hence

h0(OC(KC)⊗ E∨) = 0,

and the result holds in this case.
Now suppose that g > 0. Take a divisor Σ = q0 + q1 + . . . + q2g−2 on C

consisting of 2g− 1 (distinct) points. Consider the following exact sequence

0→ H0(OC(KC −Σ)⊗ E∨)→ H0(OC(KC)⊗ E∨)→ H0(OΣ(KC)⊗ E∨|Σ).

Since OC(Σ−KC)⊗ E is positive, we know that

h0(OC(KC − Σ)⊗ E∨) = 0.

Therefore, we deduce that

h0(OC(KC)⊗ E∨) ≤ h0(OΣ(KC)⊗ E∨|Σ) ≤ r(2g − 1).

The proof is completed. �

7.3. Semi-positive vector bundles over surfaces. Let Y be a smooth
surface over k. In the following, we generalize Lemma 7.2 to semi-positive
vector bundles over Y .

Lemma 7.3. There exists a smooth curve C on Y such that

h2(E) ≤ 2rg(C)

for any semi-positive vector bundle E of rank r over Y .

Proof. Let E be any semi-positive vector bundle E of rank r over Y . By
Serre duality again, it suffices to show that

h0(OY (KY )⊗ E∨) ≤ 2rg(C)

for certain C on Y which is independent of E .
Fix an ample divisor A on Y such that A+KY ≥ 0 is ample. Replacing

A by its tensor power if necessary, we can find a smooth curve C ∈ |A+KY |
on Y by Bertini’s theorem. Now we have the exact sequence

0→ OY (−A)⊗ E∨ → OY (KY )⊗ E∨ → OC(KY )⊗ (E|C)∨ → 0.

Notice that the bundle OY (A)⊗ E is positive. In particular,

h0(OY (−A)⊗ E∨) = 0.

Therefore, we deduce that

h0(OY (KY )⊗ E∨) ≤ h0(OC(KY )⊗ (E|C)∨) ≤ h0(OC(KY + C)⊗ (E|C)∨).

Moreover, by the adjunction and Serre duality, we have

h0(OC(KY + C)⊗ (E|C)∨) = h0(OC(KC)⊗ (E|C)∨) = h1(E|C).
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Since E|C is semi-positive of rank r over C, by Lemma 7.2,

h1(E|C) ≤ 2rg(C).

Hence the proof is completed. �

The main result here is the following proposition.

Proposition 7.4. Let E be a semi-positive vector bundle over Y . Then

h0
F (E) ≥ ch2(E).

Proof. By the Riemann-Roch theorem for E , when e is sufficiently large, we
have

h0(F e∗E) + h2(F e∗E) ≥ χ(F e∗E) = p2ech2(E) + o(p2e).

Notice that F e∗E is also semi-positive over Y . By Lemma 7.3, we know that
h2(F e∗E) is uniformly bounded above by a constant depending only on Y .
Hence the result follows by letting e→∞. �

Remark 7.5. Let E be any vector bundle of rank r, not necessarily semi-
positive, over a smooth curve C. Observe that

h0(F e∗E) ≥ deg(F e∗E) + rχ(OC) = pe deg(E) + rχ(OC).

We immediately obtain that

h0
F (E) ≥ deg(E) = ch1(E).

7.4. Almost semi-positive vector bundles over surfaces. In this sub-
section, we generalize Proposition 7.4 to vector bundles over Y which are
very close to be semi-positive. Here Y still denotes a smooth surface over k.

For the convenience of the reader, we recall some notation that have been
introduced in Section 2. For a vector bundle E over Y , there is the projection
map πE : P(E) → Y . Let HE be a divisor associated to OP(E)(1). In the
following, A ≥ 0 denotes a very ample divisor on Y and m is a positive
integer.

Lemma 7.6. Let E be a vector bundle of rank r over Y such that HE+ 1
mπ
∗
EA

is nef. Then for any e > 0, we have

h2(F e∗E) ≤
(
pe

m
+ 1

)2

rA2 +

(
pe

m
+ 1

)
rKYA+ c,

where c is a constant only depending on r and Y .

Proof. For any e > 0, we denote F e∗E by E(e) for simplicity. Then we have
the following commutative diagram:

P(E(e))
F e
P //

πE(e)

��

P(E)

πE
��

Y
F e

// Y

In particular, we have F e∗P (π∗EA) = peπ∗E(e)A as F e∗A = peA.

By our assumption, HE + 1
mπ
∗
EA is nef. By pulling back via F eP , we know

that HE(e) + pe

mπ
∗
E(e)A is nef. Let αe = bp

e

m c + 1. Then HE(e) + αeπ
∗
E(e)A is

ample, which implies that E(e) ⊗OY (αeA) is positive.
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Choose a smooth curve C ∈ |αeA|. Then we have the exact sequence

0→ E(e) → E(e) ⊗OY (αeA)→ E(e)|C ⊗OC(αeA)→ 0.

Taking the cohomology, we obtain

H1(E(e)|C ⊗OC(αeA))→ H2(E(e))→ H2(E(e) ⊗OY (αeA))→ 0.

By Lemma 7.3, we can find a number c′ > 0 independent on E and e such
that

h2(E(e) ⊗OY (αeA)) ≤ c′.
Furthermore, by Lemma 7.2 and the adjunction formula, we know that

h1(E(e)|C ⊗OC(αeA)) ≤ 2rg(C) = r(α2
eA

2 + αeKYA+ 2).

Combine the above two results and set c = c′ + 2r. Then the proof is
completed. �

Remark 7.7. The author was informed by Professor Adrian Langer that
in [Lan06, Theorem 4.1], a result similar to Lemma 7.6 was proved.

Finally, we get the following proposition.

Proposition 7.8. Let E be a vector bundle of rank r on Y such that HE +
1
mπ
∗
EA is nef. Then

h0
F (E) ≥ ch2(E)− r

m2
A2.

Proof. The proof is very similar to that of Proposition 7.4. In fact, for e
sufficiently large, the Riemann-Roch theorem for F e∗E tells us that

h0(F e∗E) + h2(F e∗E) ≥ p2ech2(E) + o(p2e).

By Lemma 7.6, we know that

h2(F e∗E) ≤ r

m2
A2p2e + o(p2e).

Take the limit as e→∞, and the proof is completed. �

8. Proof of Theorem 1.3

Now we are ready to prove Theorem 1.3. We will prove the characteristic
p part first and then prove Theorem 1.3 in characteristic zero by the mod p
reduction.

In this section, f : X → Y is a fibration from a normal 3-fold X to a
smooth surface Y defined over k with general fiber C a smooth curve of
genus g ≥ 2.

8.1. Theorem 1.3 in positive characteristics. Within this subsection,
we assume that char k = p > 0. We first state one more general result.

Theorem 8.1. Let L be a nef Q-divisor on X such that L|C ≥ KC ≥ bL|Cc.
Then for any Q-Cartier Weil divisor M ≤ bLc, we have(

1

12
+

1

6g − 6

)
L3 ≥ h0

F (f∗OX(M)).

Moreover, if f∗OX(M) is locally free and semi-positive, then(
1

12
+

1

6g − 6

)
L3 ≥ ch2(f∗OX(M)).
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Proof. Notice that by Proposition 7.4, the second result is a direct conse-
quence of the first one. Therefore, we only need to prove the first inequality.

Let F e : Y → Y be the eth absolute Frobenius morphism of Y . Then we
have the following diagram:

X ′e
σ //

f ′e !!

Xe

F e
X/Y //

fe
��

X

f
��

Y
F e
// Y

Here Xe = X×F e Y , F eX/Y is the eth relative Frobenius morphism of X over

Y and σ : X ′e → Xe denotes the normalization of Xe. For simplicity, we still
denote by C a general fiber of f ′e.

In the following, we denote

Le = F e∗X/Y L, L′e = σ∗Le and Me = F e∗X/YM.

Fix a smooth and very ample divisor H ≥ 0 on Y with g(H) ≥ 2. Write

G = f∗H, Ge = f∗eH and G′e = f ′∗e H.

Notice that we always have

(8.1) F e∗H = peH.

All the above yield

(8.2) L′3e = L3
e = p2eL3 and L′2e G

′
e = L2

eGe = peL2G.

On the other hand, by our assumption, L′e|C = L|C for any e > 0. It implies
that L′e|C ≥ KC ≥ bL′e|Cc. Another important fact is that since OXe is a
subsheaf of σ∗OX′e , by the projection formula, we deduce that

(8.3) h0(OXe(Me)) ≤ h0(OXe(bLec)) ≤ h0(OX′e(bL
′
ec)).

Now we divide the proof into two cases. First, assume that L2G > 0. By
(8.2), this implies that L′2e G

′
e > 0 for any e > 0. Therefore, by Theorem 6.1

(1) for L′e, it follows that

h0(OX′e(bL
′
ec)) ≤

(
1

12
+

1

6g − 6

)
L′3e + g

(
L′3e
L′2e G

′
e

+ 1

)
+ L′2e G

′
e,

which implies that

h0(fe∗OXe(Me))

p2e
=
h0(OXe(Me))

p2e
≤ h0(OXe(bLec))

p2e
≤
(

1

12
+

1

6g − 6

)
L3+o(1)

due to (8.2) and (8.3). Second, if L2G = 0, similarly, we know that L′2e G
′
e = 0

for any e > 0. By Theorem 6.1 (2),

h0(OX′e(bL
′
ec)) ≤ g,

which implies that

h0(fe∗OXe(Me)) = h0(OXe(Me)) ≤ g
again by (8.3).

Finally, letting e→∞, we obtain that(
1

12
+

1

6g − 6

)
L3 ≥ lim inf

e→∞

h0(fe∗OXe(Me))

p2e
= lim inf

e→∞

h0(F e∗f∗OX(M))

p2e
.
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Thus the proof is completed. �

Now, we can prove Theorem 1.3 in positive characteristics.

Theorem 8.2 (Theorem 1.3 in positive characteristics). Suppose that f is a
relatively minimal fibration of curves of genus g ≥ 2 over k as in Definition
1.1. Then (

1

12
+

1

6g − 6

)
K3
X/Y ≥ h

0
F (f∗ωX/Y ).

Moreover, if f∗ωX/Y is semi-positive, then(
1

12
+

1

6g − 6

)
K3
X/Y ≥ ch2(f∗ωX/Y ).

Proof. We only need to replace both L and M in Theorem 8.1 by KX/Y to
get these two inequalities here. �

8.2. Theorem 1.3 in characteristic zero. In this subsection, let f be
a relatively minimal fibration of curves of genus g ≥ 2 defined over k of
characteristic zero as in Definition 1.1.

We first prove a weaker theorem.

Theorem 8.3. Let A ≥ 0 be an ample Q-divisor on X such that deg(A|C) <
1. Then (

1

12
+

1

6g − 6

)
(KX/Y +A)3 ≥ ch2(f∗ωX/Y ).

Proof. By Lefschetz principle, we can assume that k is a finite extension over
Q. Let Z be a scheme of finite type over Z with the function field k. Let
X → Y → Z be a projective and flat morphism extending X → Y → Spec k.
Replacing Z by its Zariski open set and taking a finite and étale cover, we
may assume that the generic fiber X → Y → Spec k has an integral model
X → Y → Z such that

(i) Y → Z is a proper and smooth morphism;
(ii) f : X → Y is a proper, flat and Cohen-Macaulay morphism of pure

relative dimension one;
(iii) The divisor A extends to a Q-Cartier divisor A on X .

By [Con00, Theorem 3.5.1, 3.6.1] again, the relative dualizing sheaf ωX/Y
is well-defined under this setting. It is Y-flat and compatible with base
changes. Therefore, we may assume that f∗ωX/Y is also locally free. In
particular, for any closed point z ∈ Z, we have

ch2(fz∗ωXz/Yz) = ch2(f∗ωX/Y ).

On the other hand, since both A and KX/Y + A are ample, according to
[Gro61, Chap. III, Theorem 4.7.1], by further shrinking Z if necessary, we
may assume that

(iv) both Az and KXz/Yz +Az are ample Q-divisors on Xz for any closed
point z ∈ Z.

Moreover, if Cz denotes a general fiber of fz : Xz → Yz, then deg(Az|Cz) < 1.
In particular, bAz|Czc = 0. Hence

KXz/Yz |Cz +Az|Cz ≥ KCz = bKXz/Yz |Cz +Az|Czc.
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Recall that there is the projection map π := πf∗ωX/Y
: P(f∗ωX/Y ) → Y

and a Cartier divisor H := Hf∗ωX/Y
associated to Of∗ωX/Y

(1). Then both

π and H extend to a universal projection π : P(f∗ωX/Y)→ Y over Y and a
Cartier divisor H associated to OP(f∗ωX/Y )(1).

Pick a very ample divisor A′ ≥ 0 on Y . Since f∗ωX/Y is semi-positive
[Vie83], we know that H is nef. In particular, for any m > 0, the Q-divisor
H + 1

mπ
∗A′ on P(f∗ωX/Y ) is ample. Fix an m > 0, by [Gro61, Chap. III,

Theorem 4.7.1] again, we may shrink Z once more such that

(v) A′ extends to a Cartier divisor A′ on Y;
(vi) for any closed point z ∈ Z, A′z is very ample on Yz and Hz + 1

mπ
∗
zA′z

is an ample Q-divisor on P(fz∗ωXz/Yz).

From now on, we assume that (i)–(vi) hold. Take any closed point z ∈ Z.
Then we get a fibration fz : Xz → Yz of curves of genus g ≥ 2 over the
residue field of z of positive characteristic as in Definition 1.1, not necessarily
relatively minimal. Let F : Yz → Yz be the absolute Frobenius morphism
of Yz. By Theorem 8.1, we know that(

1

12
+

1

6g − 6

)
(KXz/Yz +Az)3 ≥ h0

F (fz∗ωXz/Yz).

On the other hand, as the rank of fz∗ωXz/Yz is g, by Proposition 7.8,

h0
F (fz∗ωXz/Yz) ≥ ch2(fz∗ωXz/Yz)− g

m2
A′2z .

It follows that(
1

12
+

1

6g − 6

)
(KXz/Yz +Az)3 ≥ ch2(fz∗ωXz/Yz)− g

m2
A′2z ,

which implies that for f : X → Y , we have(
1

12
+

1

6g − 6

)
(KX/Y +A)3 ≥ ch2(f∗ωX/Y )− g

m2
A′2.

Notice that m is arbitrary. Thus the proof is completed. �

Now we can finish the whole proof of Theorem 1.3.

Proof of Theorem 1.3 in characteristic zero. Choose an ample divisor A ≥ 0
on X. Then for any integer n > deg(A|C), we have deg

((
1
nA
)∣∣
C

)
< 1.

Therefore, for any such n, by Theorem 8.3, we have(
1

12
+

1

6g − 6

)(
KX/Y +

1

n
A

)3

≥ ch2(f∗ωX/Y ).

Thus the proof is completed by letting n→∞. �

8.3. An example. In this subsection, we construct a 3-fold fibration of
curves of genus g ≥ 2 which indicates that the inequality in Theorem 1.3 is
very close to be optimal.

Let π : X → P1 × P2 be a double cover defined over k branched along a
smooth and even divisor B ≡ 2L, where OX(L) = p∗1OP1(g+ 1)⊗ p∗2OP2(1).
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Here p1 and p2 are the canonical projections. That is, we have the following
diagram:

X
π //

f
''

P1 × P2

p2
��

p1 // P1

P2

It is easy to see that X is smooth and f : X → P2 is a fibration of curves of
genus g as the general fiber of f is a double cover over P1 ramified at 2g+ 2
distinct points.

By the Riemann-Hurwitz formula,

ωX = π∗ (ωP1×P2 ⊗OP1×P2(L)) = π∗ (p∗1OP1(g − 1)⊗ p∗2OP2(−2)) .

Therefore, we deduce that

ωX/P2 = ωX ⊗ f∗OP2(3) = π∗ (p∗1OP1(g − 1)⊗ p∗2OP2(1)) .

In particular, KX/P2 is ample, which implies that f is relatively minimal.

Proposition 8.4. Let f : X → P2 be the above fibration. Then

K3
X/P2 =

12g − 12

g
ch2(f∗ωX/P2) = 6g − 6.

Proof. This is a direct computation. It is easy to see that

c3
1 (p∗1OP1(g − 1)⊗ p∗2OP2(1)) = 3g − 3.

By the above formula of ωX/P2 , we obtain that

K3
X/P2 = (deg π)c3

1 (p∗1OP1(g − 1)) = 6g − 6.

On the other hand, by the above commutative diagram and the projection
formula, we have

f∗ωX/P2 = f∗ (π∗ (p∗1OP1(g − 1)⊗ p∗2OP2(1)))

= f∗ (π∗p∗1OP1(g − 1)⊗ f∗OP2(1))

= p2∗p
∗
1OP1(g − 1)⊗OP2(1)

=

(
g⊕
i=1

OP2

)
⊗OP2(1)

=

g⊕
i=1

OP2(1).

From this, we deduce that

c2
1(f∗ωX/P2) = g2 and c2(f∗ωX/P2) =

g(g − 1)

2
.

Therefore, we have

ch2(f∗ωX/P2) =
1

2
c2

1(f∗ωX/P2)− c2(f∗ωX/P2) =
g

2
.

Hence the proof is completed. �

Furthermore, if char k = p > 0, we can compute the invariant h0
F (f∗ωX/P2)

in this case.
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Proposition 8.5. Let f : X → P2 be the above fibration defined over k of
characteristic p > 0. Then

h0
F (f∗ωX/P2) = ch2(f∗ωX/P2) =

g

2
.

Proof. From the proof of Proposition 8.4, we know that

f∗ωX/P2 =

g⊕
i=1

OP2(1).

Let F e be the eth absolute Frobenius morphism of P2 over k. Then

h0(F e∗f∗ωX/P2) = h0

(
g⊕
i=1

OP2(pe)

)
=

(pe + 2)(pe + 1)g

2
.

Thus by Definition 1.4, we obtain

h0
F (F e∗f∗ωX/P2) = lim inf

e→∞

h0
F (F e∗f∗ωX/P2)

p2e
=
g

2
.

Therefore, the proof is completed by the result in Proposition 8.4 about
ch2(f∗ωX/P2). �

In fact, this proposition also indicates that the inequality in Proposition
7.4 is sharp.

9. Slope inequality (1.1) revisited

In the last section, we illustrate how the method (in fact, a simpler ver-
sion) introduced in this paper gives a new proof of the slope inequality (1.1)
of Cornalba-Harris and Xiao in arbitrary characteristic.3

Let f : X → Y be a fibration from a smooth surface X to a smooth
curve Y defined over k with general fiber C a smooth curve of genus g ≥ 2.
We observe that it suffices to prove the following result which is a surface
version of Theorem 8.1:

Theorem 9.1. Let L be a nef Q-divisor on X defined over k of characteristic
p > 0 such that L|C ≥ KC ≥ bL|Cc. Then for any divisor M ≤ bLc, we
have (

1

4
+

1

4g − 4

)
L2 ≥ h0

F (f∗OX(M)).

With this result, to prove (1.1) in characteristic p > 0, we only need to
replace both L and M by KX/Y and apply Remark 7.5. When char k = 0,
using the same argument as in the proof of Theorem 8.3, we can prove that(

1

4
+

1

4g − 4

)
(KX/Y +A)2 ≥ ch1(f∗ωX/Y ) = deg f∗ωX/Y

for any ample Q-divisor A on X with deg(A|C) < 1, provided that f is
relatively minimal. Notice that the corresponding argument is much simpler
in the current case. In particular, we do not need to perturb f∗ωX/Y by
ample Q-divisors, because Remark 7.5 is a positivity-free result. Then (1.1)

3The author was asked by Professor Xiaotao Sun about a proof of (1.1) using charac-
teristic p > 0 method in 2013, and benefited a lot from the communications with him.



32 TONG ZHANG

in this case follows from a limiting argument on A similar to the proof of
Theorem 1.3. We leave the proof to the interested reader.

In the following, we prove Theorem 9.1.

Proof of Theorem 9.1. In fact, it is enough to prove that

(9.1) h0(M) ≤
(

1

4
+

1

4g − 4

)
L2 +

LC + 2

2
.

Once this is verified, we will obtain Theorem 9.1 using the Frobenius limiting
trick presented in the proof of Theorem 8.1. Again, the argument in the
surface case is dramatically simpler as the error terms remain the same
when applying the Frobenius limiting trick and we do not need to choose
the very ample divisor H on Y .

Since LC ≥ 2g−2, we may assume that h0(M) ≥ 2 in (9.1). Replacing X
by an appropriate blowing up, we may further assume that |M | is base point
free and M |C ≤ KC . If M |C = 0, then M ∼num rC for some r ≥ h0(M)−1.
Thus

h0(M) ≤ r + 1 ≤ LM

LC
+ 1 ≤ 1

2g − 2
L2 + 1.

Therefore, (9.1) is verified in this case as

1

2g − 2
≤ 1

4
+

1

4g − 4

when g ≥ 2. On the other hand, if M |C = KC , by [YZ14, Theorem 1.2], we
have

h0(M) ≤
(

1

4
+

1

4g − 4

)
M2 + g ≤

(
1

4
+

1

4g − 4

)
L2 +

LC + 2

2
.

In the following, we assume that 0 6= M |C < KC . By Theorem 3.1, we
obtain triples

{(Mi, Zi, ai)|i = 0, . . . , N}
on X which satisfy the conditions therein. If C is hyperelliptic, by Theorem
3.4 (3),

h0(M)− 1

4
M2 ≤ a0 +

1

2

N∑
i=1

ai +
MC

2
.

On the other hand, notice that deg(M |C) is even, which gives (L−M)C ≥ 2.
Since M ′ := M − (a0 − 1)C is also nef, we obtain that

(L−M)M = (a0 − 1)(L−M)C + (L−M)M ′ ≥ 2a0 − (L−M)C.

Combine the above two inequalities and apply Proposition 3.5. It follows
that

h0(M)− 1

4
LM = h0(M)− 1

4
M2 − 1

4
(L−M)M

≤ 1

2

N∑
i=0

ai +
MC

2
+

(L−M)C

4

≤ 1

4g − 4
LM +

LC + 2

2
.
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If C is non-hyperelliptic, just by Theorem 3.4 (4) and Proposition 3.5, we
deduce that

h0(M)− 1

4
M2 ≤ 1

2

N∑
i=0

ai +
MC

2
≤ 1

4g − 4
LM +

LC + 2

2
.

As a result, (9.1) is proved in this case as M2 ≤ LM ≤ L2. �
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École Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR 974412 (89j:14019)
[CLZ16] Ke Chen, Xin Lu, and Kang Zuo, On the Oort conjecture for Shimura

varieties of unitary and orthogonal types, Compos. Math. 152 (2016), no. 5,
889–917. MR 3505642

[Con00] Brian Conrad, Grothendieck duality and base change, Lecture Notes in
Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902
(2002d:14025)

[CP08] Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds
in positive characteristic. I. Reduction to local uniformization on Artin-
Schreier and purely inseparable coverings, J. Algebra 320 (2008), no. 3,
1051–1082. MR 2427629 (2009f:14024)

[CP09] , Resolution of singularities of threefolds in positive characteristic.
II, J. Algebra 321 (2009), no. 7, 1836–1976. MR 2494751 (2010c:14009)

[Cut09] Steven Dale Cutkosky, Resolution of singularities for 3-folds in positive
characteristic, Amer. J. Math. 131 (2009), no. 1, 59–127. MR 2488485
(2010e:14010)

[Fuj78] Takao Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30
(1978), no. 4, 779–794. MR 513085 (82h:32024)
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