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1 Introduction and summary of results

The AdS/CFT correspondence [1–3] relates correlation functions of the boundary CFT

to on-shell AdS amplitudes of bulk fields. While there has been much study of tree-

level bulk processes [4–12], until recently there had not been much work on loop cor-

rections (see [13, 14] for some recent work in this direction). Essentially this is because

such loop computations are extremely challenging from the bulk approach. Recently how-

ever, another approach based on the OPE structure of the boundary CFT has been ini-

tiated [15–17]. In [17] we used the OPE structure of N = 4 super Yang-Mills theory to
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bootstrap the one-loop correction to the AdS5 scattering of four-graviton multiplets, or

equivalently the 1/N4 correction to the four-point correlator of four energy-momentum

multiplets in the large N limit.

A crucial ingredient in the analysis is the resolution of a large degeneracy among

the spectrum of double-trace operators which occurs in the strict large N limit. The

relevant explicit formulas for the anomalous dimensions and three-point functions of double-

trace operators were obtained by considering multiple correlators which exhibit the same

exchanged operators in their OPE decompositions [18]. Such data is available due to a

remarkably compact formula [12] for all four-point tree-level scattering processes of graviton

multiplets or their associated Kaluza-Klein modes which are present in the five-dimensional

bulk due to the reduction from ten dimensions on S5.

Here we will summarise the results obtained in [17, 18] which allowed for the boot-

strapping of the one-loop four-graviton amplitude. Firstly we may consider the following

set of double-trace operators Kt,l,n,i, labelled by i which runs from 1 to (t− n− 1),

{On+2�
t−n−2∂lOn+2,On+3�

t−n−3∂lOn+3, . . . ,Ot�0∂lOt}
∣∣∣
[n,0,n]

. (1.1)

At large N the above operators are degenerate; they all have large N dimensions ∆ = 2t+l,

spin l and SU(4) labels [n, 0, n]. However, by considering the correlation functions of the

form 〈OpOpOqOq〉, we can extract the order 1/N2 anomalous dimensions and resolve the

degeneracy. The large N expansion of the dimensions takes the form

∆ = 2t+ l +
2

N2
η

(1)
n,t,l,i +O(1/N4) , (1.2)

with the anomalous dimensions given by

η
(1)
t,l,n,i = −2(t− n− 1)(t)2(t+ n+ 2)(t+ l − n)(t+ l + 1)2(t+ l + n+ 3)

(l + 2i+ n− 1)6
, (1.3)

where we used the notation (x)n = x(x+ 1) . . . (x+ n− 1) for the Pochhammer symbol.

To bootstrap the one-loop graviton amplitude the dimensions in the singlet channel

(i.e. the case n = 0 above) were needed together with the results for the leading order three-

point functions 〈O2O2Kt,l,0,i〉, for which we also gave a closed form expression in [17, 18],

〈O2O2Kt,l,0,i〉2 =
8(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!
Rt,l,i at,i (1.4)

where

Rt,l,i =
21−t(2l + 3 + 4i)(l + i+ 1)t−i−1(t+ l + 4)i−1

(5
2 + l + i)t−1

,

at,i =
2(1−t)(2 + 2i)!(t− 2)!(2t− 2i+ 2)!

3(i− 1)!(i+ 1)!(t+ 2)!(t− i− 1)!(t− i+ 1)!
. (1.5)

These results allowed us to predict the double discontinuity of the the correlator at

order 1/N4. We were then able to construct a crossing symmetric function with the correct
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double discontinuities. Remarkably the function we obtained was expressed in terms of the

four-dimensional one-loop and two-loop ladder integrals. Having obtained such a result we

were then able to extract from it a closed form for all spins for the next correction to the

anomalous dimensions for the twist-four singlet operators (expanding in a = 1/(N2 − 1)),

∆ = 4 + l + 2aη
(1)
l + 2a2η

(2)
l +O(a3) , (1.6)

where

η
(2)
l =

1344(l − 7)(l + 14)

(l − 1)(l + 1)2(l + 6)2(l + 8)
− 2304(2l + 7)

(l + 1)3(l + 6)3
. (1.7)

The cases of the above formula for l = 2, 4 were also quoted in [16].

In the present work we would like to generalise our analysis to include scattering of

multiplets of Kaluza Klein states. The simplest case of such an amplitude is the one for

the scattering of two graviton multiplets and two Kaluza Klein states of the next level.

This corresponds to the CFT correlator 〈O2O2O3O3〉. This generalisation introduces a

number of new challenges. Firstly we must deal with a correlator which has less cross-

ing symmetry. This necessitates an OPE analysis in more than one crossing channel, or

equivalently we must consider the crossed correlator 〈O2O3O2O3〉. Secondly, in pursuing

such an OPE analysis, we must obtain information about operators with non-trivial SU(4)

representation labels, unlike the case of 〈O2O2O2O2〉 where all exchanged long operators

are singlets. We are then led to consider a new mixing problem involving correlators of the

form 〈OpOp+1OqOq+1〉. Finally such correlators have both even and odd spin sectors in

their OPE decomposition and we need to deal with both in order to construct the leading

discontinuities for the one-loop amplitude.

Once these technical obstacles are overcome we are able to proceed very similarly to

the case of the 〈O2O2O2O2〉 correlator and resolve the associated mixing problem. In

particular we obtain an explicit result for the anomalous dimensions of the double trace

operators Kt,l,i in the [0, 1, 0] representation given by (for i = 1 to (t− 1))

{Kt,l,1,Kt,l,2, . . .Kt,l,t−1} ∼ {O2∂
l�t−2O3,O3∂

l�t−3O4, . . . ,Ot∂lOt+1}|[0,1,0] . (1.8)

We find

∆ = 2t+ l + 1 + 2aη
(1)
t,l,i +O(a2) , (1.9)

with

η
(1)
t,l,i =

−
2(t−1)2(t+2)2(l+t)2(l+t+3)2

(l+2i−1)6
l = 0, 2, . . .

−2(t−1)2(t+2)2(l+t)2(l+t+3)2
(l+2i)6

l = 1, 3, . . .
(1.10)

With the solution to the mixing problem to hand we are able to explicitly construct

the leading discontinuities in both channels. We may then construct a function which

reproduces the leading discontinuities in all channels. From this we can then extract new

information about the dimensions of the twist-five operators in the [0, 1, 0] representation
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analogously to (1.7)

∆ = 5 + l + 2aη
(1)
l + 2a2η

(2)
l +O(a3) , (1.11)

η
(2)
2,l =


320(9l4+68l3−1151l2−5738l−3688)

(l−1)(l+1)3(l+4)3(l+8)
l = 2, 4, . . .

320(9l4+140l3−487l2−11262l−29400)
l(l+4)3(l+7)3(l+9)

l = 3, 5, . . .
(1.12)

The layout of the paper is as follows. In section 2 we review the general structure

of four-point correlators of half-BPS multiplets, focussing on the cases relevant here,

〈O2O2O3O3〉 and 〈O2O3O2O3〉. Then in section 3 we review the OPE and superblock

expansion of these correlators, relevant for our purposes, highlighting the need to solve a

mixing problem. In section 4 we go on to solve the mixing problem by analysing the corre-

lators 〈OpOpOqOq〉 and 〈OpOp+1OqOq+1〉 at leading and next to leading order in large N .

In section 5 we collect together this unmixed data to first derive the double discontinuity of

the 1/N4 〈O2O2O3O3〉 correlator in all channels, before uplifting the double discontinuity

to the full result. In section 6 we use this uplifted function to derive new O(1/N4) anoma-

lous dimensions for operators in the [0, 1, 0] representation of SU(4). In section 7 we point

out a symmetry displayed by all the results derived here and previously at strong coupling.

In two appendices we give details of the superblocks and the tree-level correlators used in

the main body of the paper.

Note added. During the preparation of this paper, [19] appeared which also introduces

the Casimir operator (5.20) for the singlet channel in resumming the double discontinuity

in the 〈O2O2O2O2〉 case.

2 Four-point correlators of half-BPS operators

The basic objects we wish to consider are the single-trace half-BPS operators given by

Op(x, y) = yi1 . . . yipTr
(
φi1(x) . . . φip(x)

)
, y · y = 0 , (2.1)

where yi is a complex null vector parametrizing the coset space SU(4)/S(U(2)×U(2)). For

p = 2 the above operator is the superconformal primary of the energy-momentum multiplet

which is dual to the graviton multiplet in the AdS5 supergravity theory. For higher p the

operator is dual to Kaluza-Klein modes associated to the S5 factor of the ten-dimensional

background.

To discuss four-point functions is it helpful to introduce the propagator

gij =
y2
ij

x2
ij

, y2
ij = yi · yj , (2.2)

and conformal cross ratios for both the x and y variables

u = xx̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− x)(1− x̄) =
x2

14x
2
23

x2
13x

2
24

, (2.3)

1

σ
= yȳ =

y2
12y

2
34

y2
13y

2
24

,
τ

σ
= (1− y)(1− ȳ) =

y2
14y

2
23

y2
13y

2
24

. (2.4)
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Let us now consider the correlators 〈O2O2O3O3〉 and 〈O2O3O2O3〉, corresponding to

AdS amplitudes of two graviton multiplets and two Kaluza-Klein modes. We write each

correlation function as sum of its free theory contribution and an interacting term,

〈O2O3O2O3〉 = 〈O2O3O2O3〉free + 〈O2O3O2O3〉int ,

〈O2O2O3O3〉 = 〈O2O2O3O3〉free + 〈O2O2O3O3〉int . (2.5)

Due to the property of partial non-renormalisation [20] the interacting parts have the

following structure

〈O2O3O2O3〉int = g2
12g

2
34g24 I(u, v;σ, τ)u2G(u, v) , (2.6)

〈O2O2O3O3〉int = g2
12g

3
34 I(u, v;σ, τ)u2F (u, v) , (2.7)

where I is given by

I(u, v;σ, τ) =

(
x

y
− 1

)(
x

ȳ
− 1

)(
x̄

y
− 1

)(
x̄

ȳ
− 1

)
=
s(x, x̄; y, ȳ)

(yȳ)2
. (2.8)

The dependence of the correlators on the gauge coupling is entirely through the functions

F (u, v) and G(u, v).

Crossing transformations relate the two correlators and hence the two functions F (u, v),

F (u, v) =
1

u4
G

(
1

u
,
v

u

)
. (2.9)

Since we have pairs of identical operators in the correlator we have the symmetry

G(v, u) = G(u, v) , F

(
u

v
,

1

v

)
= v4F (u, v) . (2.10)

The perturbative expansion in string theory or supergravity corresponds to an expan-

sion of the correlators for large N . As in [17], we choose for convenience the expansion

parameter

a =
1

N2 − 1
. (2.11)

With the above choice, the free theory correlation function then has exactly two terms

which we express as follows,

〈O2O2O3O3〉free = A
(
〈O2O2O3O3〉(0)

free + a〈O2O2O3O3〉(1)
free

)
,

〈O2O3O2O3〉free = A
(
〈O2O3O2O3〉(0)

free + a〈O2O3O2O3〉(1)
free

)
, (2.12)

where the N -dependent factor

A =
(N2 − 1)2(N2 − 4)

N
(2.13)
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has been extracted so that the remaining factor is finite in the large N limit. Explicitly

we have

〈O2O2O3O3〉free = 6A
(
g2

12g
3
34 + 6a

(
g12g

2
34g13g24 + g12g

2
34g14g23 + 2g34g13g24g14g23

))
(2.14)

with 〈O2O3O2O3〉free obtained by crossing. The interacting parts, or equivalently the

functions F (u, v) and G(u, v), have expansions of the form

〈O2O2O3O3〉int = A
∞∑
n=1

an〈O2O2O3O3〉(n)
int , F (u, v) = A

∞∑
n=1

anF (n)(u, v) ,

〈O2O3O2O3〉int = A
∞∑
n=1

an〈O2O3O2O3〉(n)
int , G(u, v) = A

∞∑
n=1

anG(n)(u, v) . (2.15)

In terms of the string loop expansion the order a0 terms constitute the disconnected con-

tributions to the amplitudes, the order a terms correspond to tree-level connected contri-

butions while order a2 terms correspond to one-loop corrections and so on. In terms of the

decomposition (2.5) the order a terms are special, in that they receive contributions from

both free theory and from the interacting part of the correlator.

Finally at each perturbative order in a we may expand F (n) and G(n) in powers of

log u multiplied by coefficients analytic at u = 0,

F (n)(u, v) =

n∑
r=0

logr uF (n)
r (u, v) , G(n)(u, v) =

n∑
r=0

logr uG(n)
r (u, v) . (2.16)

This then makes the branch cut structure around u = 0 manifest. In particular from OPE

considerations we expect that the leading discontinuity at order an is of the form logn u.

3 Overview of the OPE and double-trace spectrum

Let us consider the contribution of a conformal primary operator K∆,l of dimension ∆ and

spin l to the OPE of two half BPS operators Op1 and Op2 . It is given as

Op1(x1)Op2(x2) ∼ Cp1p2;K∆,l
(a)(x2

12)
∆(a)−l

2
−p1−p2 xl12K∆,l + . . . , (3.1)

where the dots denote contributions from descendant operators. In the above we have

suppressed the representations of the SU(4) global symmetry but we have made explicit

the fact that the dimension ∆ and OPE coefficients Cp1p2;K∆,l
depend on our expansion

parameter, in this case a. The quantities ∆ and C therefore admit perturbative expansions,

∆(a) = ∆(0) + 2aη(1) + 2a2η(2) + . . .

Cp1p2;K∆,l
(a) = C

(0)
p1p2;K∆,l

+ aC
(1)
p1p2;K∆,l

+ . . . . (3.2)

The OPE (3.1) is a fully non-perturbative relation, but when expanded perturbatively in

a it implies that at O(a) the operator contributes to the discontinuity in x2
12 as follows,

Op1(x1)Op2(x2) ∼ aC
(0)
p1p2;K∆,l

η(1) log x2
12 (x2

12)
∆(0)−l

2
−p1−p2 xl12K∆,l + . . . . (3.3)
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while at O(a2) it contributes to the double discontinuity as,

Op1(x1)Op2(x2) ∼ a2C
(0)
p1p2;K∆,l

1
2(η(1))2 log2 x2

12 (x2
12)

∆(0)−l
2
−p1−p2 xl12K∆,l + . . . . (3.4)

In the context of four point correlation functions we see that at order a2 the double discon-

tinuity in x2
12 (and hence in the conformal cross-ratio u) comes entirely from zeroth order

OPE coefficients and first order anomalous dimensions η(1) of K∆,l. These same quantities

are already present in the single discontinuity at order a.

In the supergravity regime of N = 4 SYM, we wish to bootstrap the correlator

〈O2O2O3O3〉 at one-loop level, from known lower order results. To achieve this we use

the fact described above that the double discontinuity in u at order a2 depends entirely

on the zeroth order OPE coefficients and first order anomalous dimensions. We take into

account the contributions of all superconformal descendants by making use of the super-

conformal partial wave (SCPW) expansion of the correlation function. Doing so we find

the double discontinuity of the correlator at order a2 is given by

〈O2O2O3O3〉(2)
∣∣∣
log2 u

= g2
12g

3
34 I(u, v;σ, τ)u2F

(2)
2 (u, v)

= g2
12g

3
34

1

2

∑
t,l,i

(
η

(1)
t,l,i

)2(
C

(0)
22;Kt,l,i

C
(0)
33;Kt,l,i

)
L2233

[0,0,0](t, l) . (3.5)

Here L[0,0,0](t, l) are long superconformal blocks (for the precise definition see eq. (A.7))

corresponding to the exchange of long double trace multiplets with SU(4)-singlet super-

conformal primary operators Kt,l,i,

{Kt,l,1,Kt,l,2, . . .Kt,l,t−1} ∼ {O2∂
l�t−2O2,O3∂

l�t−3O3, . . . ,Ot∂lOt}|[0,0,0] . (3.6)

These operators are degenerate in the large N limit with dimension ∆(0) = 2t + l but

acquire non trivial anomalous dimensions η
(1)
t,l,i at subleading order in a.

In principle more operators could contribute to the OPE, but in the supergravity limit

the space of operators is significantly simplified.1 The double discontinuity in x2
12 then

comes entirely from zeroth order three-point functions and the anomalous dimensions. In

order to determine this data, we have to take into account an important subtlety: we can

not determine C
(0)
22;Kt,l,i

, C
(0)
33;Kt,l,i

, and η
(1)
t,l,i individually from a superconformal partial wave

expansion of 〈O2O2O3O3〉(0) and 〈O2O2O3O3〉(1), but only∑
i

C
(0)
22;Kt,l,i

C
(0)
33;Kt,l,i

(3.7)

and ∑
i

η
(1)
t,l,iC

(0)
22;Kt,l,i

C
(0)
33;Kt,l,i

. (3.8)

However, this problem can be overcome and in fact it has been explicitly solved in [18]

by considering the more general family of correlators 〈OpOpOqOq〉. For more details, we

1A key assumption we make is that triple (or higher) trace operators do not contribute to the leading

order (in a) OPE coefficients.
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refer the reader to that paper. We will recall the formulas obtained from that analysis

in section 4.3 as we will need them to explicitly construct the double discontinuity of

〈O2O3O2O3〉.
In the case of 〈O2O2O3O3〉, the double discontinuity in the channel x2

12 → 0 is not

enough to attempt to determine the full correlator. For illustration, let us consider the one

loop result for the correlator 〈O2O2O2O2〉, which has been obtained in [17]. In that case,

we found that the part of the correlator of transcendental weight four is determined by the

sum of the double box function in three different orientations. One of these orientations

contains no double discontinuity in the limit x12 → 0. When the external operators have

equal charges, like 〈O2O2O2O2〉, crossing symmetry relates the three orientations, but for

〈O2O2O3O3〉 we would never detect its coefficient. Therefore, we need to consider double

discontinuities in all possible channels, in particular we need to consider an inequivalent

OPE limit x2
13 → 0. This is the same as considering the correlator 〈O2O3O2O3〉 in the limit

x2
12 → 0. The study of the OPE in this channel will be slightly more involved compared to

〈O2O2O3O3〉. The long double trace operators which we need to consider are given by

{Kt,l,1,Kt,l,2, . . .Kt,l,t−1} ∼ {O2∂
l�t−2O3,O3∂

l�t−3O4, . . . ,Ot∂lOt+1}|[0,1,0] (3.9)

where the basis of operators on the l.h.s. is characterized by having odd twist and both

even and odd spins. Expanding their dimensions and three point function coefficients

〈O2O3Kt,l,i〉 as follows,

∆t,l,j = 2t+ 1 + l + 2aη
(1)
t,l,j + 2a2η

(2)
t,l,j + . . . (3.10)

C23;Kt,l,j = C
(0)
23;Kt,l,j + aC

(1)
23;Kt,l,j + . . . (3.11)

we readily obtain the result for double discontinuity at order 1/N4, i.e.

〈O2O3O2O3〉(2)
∣∣∣
log2 u

= g2
12g

2
34g24 I(u, v;σ, τ)u2G

(2)
2 (u, v)

= g2
12g

2
34g24

1

2

∑
t,l,j

(
η

(1)
t,l,j

)2(
C

(0)
23;Kt,l,j

)2L2323
[0,1,0]

(
t+ 1

2 |l
)

(3.12)

where the long superblocks now correspond to the operators in (3.9). These operators are

again degenerate in the large N limit, thus in order to bootstrap the double discontinuity

in (3.12), we have to solve a new mixing problem.

4 Unmixing in [0, 1, 0]

The problem of operator mixing in the [0, 1, 0] representation is similar but not completely

analogous to that of the [0, 0, 0] representation. The correlators we have to consider are of

the form 〈OpOp+1OqOq+1〉. The relevant terms in the SCPW expansion, restricted to the

exchange of long multiplets, are

〈OpOp+1OqOq+1〉long = NΣ gp12g
q
34g24

( ∑
t, l,R

A{p,q}R (t|l) L{p,q}R

(
t+ 1

2 |l
)

+
1

N2
log(u)

∑
t, l,R

M
{p,q}
R (t|l) L{p,q}R

(
t+ 1

2 |l
)

+ . . .

)
(4.1)
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where Σ = p+ q+ 1 and the dots refer to terms analytic at u = 0 as well as terms of higher

order in 1/N2. The coefficients A{p,q}R (t|l) and M
{p,q}
R (t|l) are obtained from disconnected

free theory and tree level supergravity, respectively. The corresponding long superblocks

L{p,q} will be given explicitly in the next section. From the OPE and the knowledge of the

spectrum of double trace operators Kt,l,i described in (3.9), we deduce the two equations,

A{p,q}[0,1,0](t|l) =

t−1∑
i=1

C
(0)
p p+1;Kt,l,i C

(0)
q q+1;Kt,l,i (4.2)

M
{p,q}
[0,1,0](t|l) =

t−1∑
i=1

η
(1)
i C

(0)
p p+1;Kt,l,iC

(0)
q q+1;Kt,l,i . (4.3)

In the following we will drop the superscript (0) and (1) since there is no ambiguity at

this order. We now prove that the set of OPE coefficients Cp p+1;Kt,l,i and anomalous

dimensions ηi is uniquely specified by the solution of these two equations. In fact, for given

twist and spin, Cp p+1;Kt,l,i is non-zero only when 2 ≤ p ≤ t, and by taking into account the

p↔ q symmetry, we conclude that the l.h.s. of (4.2)–(4.3) determines t(t− 1) independent

pieces of data. The number of unknowns, on the other hand, is given by t− 1 anomalous

dimensions ηi together with (t− 1)2 OPE coefficients Cp p+1;Kt,l,i (because i runs from 1 to

t− 1 and p from 2 to t). Thus there are a total of t(t− 1) unknowns, exactly the same as

the number of independent CPW coefficients.

As we mentioned, the SCPW expansion (4.1) contains both even and odd spins,

and furthermore the sum over twist runs over odd integers. Compared to the study of

〈OpOpOqOq〉 we then expect some differences, and we will show that the unmixing is

modified in an interesting way.

4.1 Disconnected free theory

In the first instance we are interested in the leading large N contribution in the corre-

lators 〈OpOp+1OqOq+1〉. The leading large N contribution comes from the disconnected

diagrams, i.e. the contribution to the four-point function which factorises into a product

of two-point functions. Since the operators are protected, the two-point functions are

independent of the ’t Hooft coupling and take their large N free-field forms.

We can therefore consider the various free-field propagator structures in

〈OpOp+1OqOq+1〉 and isolate the disconnected one. Such terms are only present for p = q

while the case p 6= q is subleading at large N ,

〈OpOp+1OqOq+1〉 = N2p+1
(
δpqp(p+ 1)gp13g

p+1
24 +O(1/N2)

)
. (4.4)

The general expression for the superconformal partial wave expansion at leading order for

large N is then given by

〈OpOp+1OpOp+1〉 = P OPE
∑
γ, λ

Aγ,λ Sαβγ;λ , (4.5)

where P OPE = gp12g
p
34g24 and Sαβγ;λ are superconformal blocks [8, 21–24]. We follow the

notation introduced in [24], where the superblocks are specified by three integers α, β, γ
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and a Young tableau λ. For the specific case under consideration, α = γ+1
2 , β = γ−1

2 , and

the superconfomal block is given by the following determinantal formula

Sαβγ;λ =

(
xx̄

yȳ

) 1
2

(γ−1)

Fαβγλ γ = 1, 3, . . . , 2p+ 1

Fαβγλ = (−1)p+1 s(x, x̄, y, ȳ)

(x− x̄)(y − ȳ)
det

(
FXλ R

Kλ F Y

)
,

s(x, x̄, y, ȳ) = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ) , (4.6)

Precise definition of the determinantal formula can be found in appendix A. Here we are

interested in the coeffiecients A2p+1,λ corresponding to long multiplets with twist 2t + 1,

spin l and SU(4) representation [0, 1, 0].

This translates to a Young tableau with row lengths λ = [t−p+l+2, t−p+2, 2p−2], as

can be read off using the table in the appendix, eq. (A.4). Inputting the correlator (4.4)

and the superblocks (4.6), with the relevant value γ = 2p+1, the equation (4.5) reduces to

N2p+1p(1+p) =
∑
λ

A2p+1,λF
p,p+1,2p+1;λ . (4.7)

Here, the left hand side is a constant, where as the right hand side is a function of x, x̄, y, ȳ.

There is a unique solution, yielding the values of the coefficients A2p+1,λ.

In fact, there is a conceptually simpler way to solve this equation. As outlined in [18]

the entire superblock formalism can be bosonised. Since the Young tableau has height p

we can use bosonised GL(p, p) blocks described in [18, 24] for which2

Fαβγλ(x) =
det
(
x
λj+p−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤p

det
(
xp−ji

)
1≤i,j≤p

. (4.8)

The advantage here, is that on does not have to deal with the different cases needed for

short superblocks, but can use one formula to deal with all the blocks.

With either method (superblocks or bosonised blocks) the resulting block coefficients

are consistent with the formula

A{p p+1 p p+1}
[0,1,0] =

72((t+1)!)2(t+4)p−2(t−p+1)p−2((l+t+2)!)2(l+1)(l+2t+3)(l+t+5)p−2(l−p+t+2)p−2

(p−2)!((p−1)!)2(p+2)!(2t+1)!(2l+2t+3)!
. (4.9)

For given twist 2t+ 1 and spin `, we can finally assemble the data into the diagonal matrix

Â(t|l) = diag
(
A{2,3,2,3}[0,1,0] , . . . ,A{t,t+1,t,t+1}

[0,1,0]

)
. (4.10)

2In this formula (only) we use xi where i = 1 . . . p to represent generalised cross-ratios in the GL(p, p)

theory. These should be thought of as generalisations of the two independent cross-ratios x, x̄ of a conformal

theory in 4d, corresponding to p = 2. They should not be confused with space-time coordinates.
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4.2 Tree level supergravity from Mellin space

The supergravity amplitude for correlators of the form 〈OpOp+1OqOq+1〉 can be obtained

from the general result of Rastelli and Zhou [12]. Their formula extends in a consis-

tent way the very few explicit computations of Witten diagrams known in the litera-

ture [10, 11, 25, 26], and gives access to correlators with arbitrary configuration of charges.

These are precisely the correlators we need in order to obtain M{p,p+1,q,q+1} and solve the

mixing problem. As an example, in appendix B.2 we compute the Mellin amplitude cor-

responding to q = 2, 3, 4, 5 with p ≥ q generic, and we rewrite it in a standard basis of

Dδ1δ2δ3δ4 functions. The simplest case is,3

〈OpOp+1O2O3〉sugra = gp12g
2
34g24

s(x, x̄; y, ȳ)

(yȳ)2
Np,p+1,2,3Hint

p,p+1,2,3 (4.11)

Hint
p,p+1,2,3 =

up

v
Dp+3,p,3,2 . (4.12)

In general, Hp,p+1,q,q+1 is a polynomial of degree p− 2 in the SU(4) variables.

At order 1/N2 the full 〈OpOp+1OqOq+1〉 correlator contains two contributions: super-

gravity and connected free theory. The knowledge of the Mellin amplitude does not fix the

supergravity correlator completely, and we will have to determine the relative normalisa-

tion Np,p+1,q,q+1 by an independent argument. For correlators of the form 〈OpOpOqOq〉 we

obtained the corresponding normalisation by considering the absence of twist 2 long oper-

ators in the spectrum of supergravity [18]. For equal charges, these results can be used to

predict the normalisation of 〈OpOp+1OpOp+1〉 and show that twist 3 long conformal partial

waves cancel between free theory and supergravity. Then, we can obtain the normalisation

Np,p+1,q,q+1 by imposing the absence of twist 3 long operators at order 1/N2.

The absence of twist 3 long operators is not immediately transparent, since the twist

3 short (half-BPS) operator remains, and so its conformal block is present. A very simple

way to avoid this technicality is to project onto the large spin limit of the twist 3 operators.

The twist 3 operators correspond to the u→ 0 limit of the correlator. Further taking v → 0

then projects onto the large spin limit. The advantage of this is that then one doesn’t have

to deal with the twist 3 short operator but can simply insist on the vanishing of the two

contributions in the limit u, v → 0. Note that this limit corresponds to taking the light-like

polygonal limit relevant for the duality with Wilson loops and amplitudes in N = 4 SYM.

The free theory propagator structure at subleading order in N contains

〈OpOp+1Oq Oq+1〉(1)
free = NΣ−2

(
2p(p+ 1)q(q + 1)gp−1

12 gq−1
34 g24g14g23 + . . .

)
(4.13)

where Σ = p + q + 1, and we omitted propagators structures contributing to higher twist

3We recall the identity

s(x, x̄; y, ȳ)/(yȳ)2 = v + σ2uv + τ2u+ σv(v − 1 − u) + τ(1 − u− v) + στu(u− 1 − v) .
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CPW, i.e not leading in the u→ 0 expansion.4 The limit v → 0 with u/v fixed gives

lim
u,v→0

〈OpOp+1Oq Oq+1〉(1)

gp12g
q
34g24

∣∣∣
free

=
2p(p+ 1)q(q + 1)

N2

g14g23

g12g34
=

2p(p+ 1)q(q + 1)

N2

τu

v
.

(4.14)

Notice that we factorized POPE in the denominator on the l.h.s. Given the generic form of

the supergravity correlator with p ≥ q,

〈OpOp+1OqOq+1〉sugra = gp12g
q
34g24

s(x, x̄; y, ȳ)

(yȳ)2
Np,p+1,q,q+1Hint

p,p+1,q,q+1 (4.15)

we would like to take the limit u, v → 0 as we did in the corresponding free theory.

The dynamical function Hint
p,p+1,q,q+1 has in general non trivial dependence on the SU(4)

variables, however we find that limu,v→0 s(x, x̄, y, ȳ)/(yȳ)2 = τ , therefore in order to match

the r.h.s. of eq. (4.14), it is sufficient to consider the leading term in u/v of Hp,p+1,q,q+1

restricted to σ = τ = 0. It can be inferred from the expression of its Mellin amplitude, and

explicitly checked in the examples (B.8)–(B.10) and (B.11), that

Hp,p+1,q,q+1

∣∣∣
σ=τ=0

=
(q − 2)!(p− q)!

(p− 2)!

p−2∑
k=0

1

k!

1

v
upDp+3,p,3+k,2+k(u, v) . (4.16)

The representation of Dp1,p2,p3,p4 contains three different analytic contributions,

Dδ1δ2δ3δ4 = u−σD
sing
δ1δ2δ3δ4 +D

analytic
δ1δ2δ3δ4 + log(u)D

log
δ1δ2δ3δ4 , (4.17)

and it is useful to consider them separately. The precise form of these functions is given

in appendix B.1. Here it is enough to recall that for the relevant values of δi=1,2,3,4 the

functions D
analytic
δ1δ2δ3δ4 , D

log
δ1δ2δ3δ4 and D

sing
δ1δ2δ3δ4 are analytic in u and therefore

lim
u→0

upD
analytic
δ1δ2δ3δ4 = lim

u→0
up log uD

log
δ1δ2δ3δ4 = 0. (4.18)

Since σ = (δ1 + δ2 − δ3 − δ4)/2, the limit of u−σD
sing
p+3,p,3+k,2+k is more interesting. In our

specific case, σ = p− k − 1, and when k = 0 we obtain the following non trivial result,5

up

v
D

sing
p+3,p,3,2 =

u

v

Γ[p− 1]

2
2F1[1, 3, 5; 1] +O(u). (4.19)

By requiring twist 3 long cancellation at large spin, we obtain from (4.14) and (4.15), the

relation
2p(p+ 1)q(q + 1)

N2
+

2(q − 2)!(p− q)!
(p− 2)!

Γ[p− 1]Np,p+1,q,q+1 = 0 (4.20)

4Note that one might expect a term proportional to gp12g
q
34g24 which would contribute to lower twist,

but its coefficient vanishes due to properties of SU(N) vertices.
5We repeat for quick reference the expression given in appendix B.1 (B.2)

D
sing
δ1δ2δ3δ4 =

σ−1∑
n=0

(−u)n

n!
Γ[σ − n] Λδ3δ4δ1−σδ2−σ(n) F

δ2−σ+n|δ3+n
δ3+δ4+2n (1 − v) ,

where we defined, F
a|b
c (x) ≡ 2F1[a, b; c](x), and Λδ1δ2δ3δ4

(n) ≡ Γ[δ1+n]Γ[δ2+n]Γ[δ3+n]Γ[δ4+n]/Γ[δ1+δ2+2n].
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which fixes the value of the normalisation to

Np p+1 q q+1 = −p(p+ 1)q(q + 1)

(q − 2)!(p− q)!
Np+q−1 . (4.21)

We can now proceed, and compute the superconformal partial wave expansion of the long

sector of 〈OpOp+1Oq Oq+1〉sugra.
The factorized form of the supergravity correlator implies that only long multiplets

contribute. Thus, the corresponding Young tableau have two or more rows and two or more

columns. For an expansion in purely long operators there is no great advantage in using

bosonised blocks and we will use directly the determinantal formula for the superblocks

given in appendix A. As mentioned before, if p ≥ q the function Hq,q+1,p,p+1 is a polynomial

of degree p − 2 in the SU(4) variables. Therefore, when p > 2 we will project onto the

[0, 1, 0] representation. Results for [n, 1, n] will be presented elsewhere. For given twist

2t+ 1 and spin ` we construct the matrix

M̂(t|l)
∣∣∣
[0,1,0]

=


M{2,3,2,3} M{3,4,2,3} . . . M{t,t+1,2,3}

M{3,4,3,4} . . . M{t,t+1,3,4}

. . . M{t,t+1,t,t+1}

 , (4.22)

where we have just given the independent entries in the upper triangular part explicitly.

The coefficients, M{p,p+1,q,q+1} have different behaviour for even and odd spins. For exam-

ple, the t and l dependence in the first three cases is,

M{2,3,2,3} =

−
6(t−1)2(t+2)2((t+1)!)2(l+t+1)!(l+t+2)!(l+2t+3)

(2t+1)!(2l+2t+3)! l even

−6(t−1)2(t+2)2((t+1)!)2(l+t+1)!(l+t+2)!(l+1)
(2t+1)!(2l+2t+3)! l odd

(4.23)

M{3,4,2,3} =

−
3(t−2)3(t+2)3((t+1)!)2(l+t+1)!(l+t+2)!(l+2t+3)

(2t+1)!(2l+2t+3)! l even

−3(t−2)3(t+2)3((t+1)!)2(l+t+1)!(l+t+2)!(l+1)
(2t+1)!(2l+2t+3)! l odd

(4.24)

and

M{3,4,3,4} =

−
3(t−2)3(t+2)3((t+1)!)2(l+t+1)!(l+t+2)!(l+2t+3)(2l2+l(3t+7)+10t2+23t−75)

20(2t+1)!(2l+2t+3)! l even

−3(t−2)3(t+2)3((t+1)!)2(l+t+1)!(l+t+2)!(l+1)(2l2+l(5t+9)+12t2+29t−71)
20(2t+1)!(2l+2t+3)! l odd

(4.25)

Therefore we will study M̂(t|l) for even and odd spins separately.

4.3 Anomalous dimensions and OPE coefficients

Once the matrices Â(t|l) and M̂(t|l) have been found, we can solve for the OPE coefficients

and the anomalous dimensions. As in [18], it is convenient to introduce the matrix of

normalized three-point coefficients,

c̃(t|l) ≡ Â−
1
2


C23Kt,l,1 C23Kt,l,2 . . . C23Kt,l,t−1

C34Kt,l,1 C34Kt,l,2 . . .

. . .

Ct,t+1,Kt,l,1

 (4.26)
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and rewrite equations (4.2) and (4.3) in matrix form. The first set of equations becomes the

orthonormality condition c̃ c̃T = Idt−1, the second one reduces to the eigenvalue problem,

c̃ · diag (η1, . . . , ηt−1) · c̃ T = Â−
1
2 · M̂ · Â−

1
2 . (4.27)

Then, anomalous dimensions are eigenvalues and the corresponding eigenvectors columns

of c̃(t|l). We look at the first few cases explicitly.

4.3.1 Twist 5

This case is straightforward as there is only one long operator for each spin, and only one

correlator to be considered, namely 〈2323〉. The result for the anomalous dimensions is

η1 =

−
80

(1+l)(4+l) l even

− 80
(4+l)(7+l) l odd

(4.28)

and c̃(2|l) is trivial. The only three-point function coefficient is given by plugging p = t = 2

into equation (4.9), giving

C2
23K2,l,1

=
9(l + 1)(l + 7)((l + 4)!)2

10(2l + 7)!
. (4.29)

4.3.2 Twist 7

In this case we have a two-dimensional space of long operators. The relevant correlators

are 〈2323〉, 〈2334〉, 〈3434〉. Considering even spins, we find

ηeven
i=1,2 =

{
− 360(l+7)

(l+1)(l+2)(l+5) ,−
360

(l+5)(l+8)

}
, c̃ (3|l even) =


√

7(l+2)
6(2l+9)

√
5(l+8)
6(2l+9)

−
√

5(l+8)
6(2l+9)

√
7(l+2)
6(2l+9)

 , (4.30)

whereas for odd spins we obtain

ηodd
i=1,2 =

{
− 360

(l+2)(l+5) ,−
360(l+3)

(l+5)(l+8)(l+9)

}
, c̃ (3|l odd) =


√

5(l+2)
6(2l+11)

√
7(l+8)

6(2l+11)

−
√

7(l+8)
6(2l+11)

√
5(l+2)

6(2l+11)

 .

(4.31)

It is interesting to consider how the transformation l → −l − 10 acts on the anoma-

lous dimensions. Given the set {ηeven
1 , ηeven

2 , ηodd
1 , ηodd

2 } the transformation exchanges

ηeven
1 ↔ ηodd

2 and ηeven
2 ↔ ηodd

1 . As a consequence, the square root structure in the

columns of c̃(l even) is related to that of the columns of c̃(l odd) in the same way. (The

signs ±1 are fixed by orthogonality independently of the symmetry). Compared to the

singlet channel [18], where a similar transformation acted separately within each spin sec-

tor, even and odd, the exchange property here is novel, and the generalization of c̃(t|`) is

actually less trivial than what we could have naively guessed. We discuss this symmetry

in more detail in section 7.
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4.3.3 Twists 9 and 11

Before presenting general results for the anomalous dimensions ηi and c̃(t|l), we give two

more examples, twist 9 and 11. In the first case, the space of long operators is three

dimensional. For even spins we have

ηeven
i =

{
− 1008(l+7)(l+8)

(l+1)(l+2)(l+3)(l+6) ,−
1008

(l+3)(l+6) ,−
1008(l+4)

(l+6)(l+9)(l+10)

}
,

c̃(4|l even) =



√
3(l+2)(l+3)

2(2l+9)(2l+11)

√
5(l+3)(l+9)

3(2l+9)(2l+13)

√
5(l+10)(l+9)

6(2l+11)(2l+13)

−
√

15(l+2)(l+9)
8(2l+9)(2l+11) −

(18−l)√
12(2l+9)(2l+13)

√
49(l+3)(l+10)

24(2l+11)(2l+13)√
5(l+9)(l+10)

8(2l+9)(2l+11) −
√

9(l+2)(l+10)
4(2l+9)(2l+13)

√
9(l+2)(l+3)

8(2l+11)(2l+13)

 ,

(4.32)

and for odd spins, ηodd
i is consistent with ηeven

i and the exchange symmetry l → −l − 12,

and correspondingly

c̃(4|l odd) =



√
5(l+2)(l+3)

6(11+2l)(13+2l)

√
5(l+3)(l+9)

3(11+2l)(15+2l)

√
3(l+10)(l+9)

2(13+2l)(15+2l)

−
√

49(l+2)(l+9)
24(11+2l)(13+2l) −

(l+30)√
12(11+2l)(15+2l)

√
15(l+3)(l+10)

8(13+2l)(15+2l)√
9(l+9)(l+10)

8(11+2l)(13+2l) −
√

9(l+2)(l+10)
4(11+2l)(15+2l)

√
5(l+2)(l+3)

8(13+2l)(15+2l)

 . (4.33)

At twist 11, we have found

ηeven
i =

{
− 2240(l+8)(l+9)

(l+1)(l+2)(l+3)(l+4) ,−
2240(l+9)

(l+3)(l+4)(l+7) ,−
2240

(l+7)(l+10) ,−
2240(l+5)(l+6)

(l+7)(l+10)(l+11)(l+12)

}
.

(4.34)

For higher twists the solution of c̃(t|l) becomes quite lengthy and it is helpful to introduce

a more compact notation. We define

(n) =
√
l + n , [n] =

√
2l + n . (4.35)

Then,

c̃(5|l even) =



√
33
16

(2)(3)(4)
[9][11][13]

√
45
16

(3)(4)(10)
[9][13][15]

√
35
16

(4)(10)(11)
[11][13][17]

√
15
16

(10)(11)(12)
[13][15][17]

−
√

55
16

(2)(3)(10)
[9][11][13] −

√
3
16

(l+32)(3)
[9][13][15] −

√
21
16

(2−l)(11)
[11][13][17]

√
7
16

(4)(10)(12)
[13][15][17]√

33
16

(2)(9)(11)
[9][11][13]

√
1
80

(24−13l)(11)
[9][13][15] −

√
63
80

(22+l)(3)
[11][13][17]

√
297
80

(3)(4)(12)
[13][15][17]

−
√

7
16

(10)(11)(12)
[9][11][13]

√
231
80

(2)(11)(12)
[9][13][15] −

√
297
80

(2)(3)(12)
[11][13][17]

√
77
80

(2)(3)(4)
[13][15][17]


.

The solution in the odd sector is given in the obvious way by the exchange symmetry

l→ −l − 14.
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4.3.4 General results

The anomalous dimensions follow a simple pattern as we vary t,

ηeven
i (t)

∣∣∣t−1

i=1
= −

2 (t− 1)2 (t+ 2)2 (l + t)2 (l + t+ 3)2

(l + 2i− 1)6

(4.36)

ηodd
i (t)

∣∣∣t−1

i=1
= −

2 (t− 1)2 (t+ 2)2 (l + t)2 (l + t+ 3)2

(l + 2i)6

(4.37)

which has been explicitly confirmed up to t = 12. Formulas (4.36) and (4.36) can be

immediately compared with the anomalous dimensions of Kt,l,i in the [0, 0, 0] channel,

which we rewrite in the form,

ηt,l,i = −2(t− 1)2(t+ 1)2(l + t)2(l + t+ 2)2

(l + 2i− 1)6
, l even (4.38)

Experimentally, we see that going from [0, 0, 0] to the [0, 1, 0] representation can be ac-

counted by introducing a gap in the Pochhammer structure. Looking instead at the struc-

ture of c̃(t|l) we obtain the following generalizations. For even spins,

c̃(t|l even)i=1...t−1
p=2,...t =

√
21−t(2l + 3 + 4i) ((i+ l + 1)−i−p+t+1) σ1 ((l + p+ t+ 3)i−p+1) σ2(

i+ l + 5
2

)
t−1

×
min(i−1,p−2,−i+t−1,t−p)∑

k=0

lkaeven(p− 1, i, k) . (4.39)

For odd spins,

c̃(t|l odd)i=1...t−1
p=2,...t =

√
21−t(2l + 5 + 4i) ((i+ l + 1)−i−p+t+1) σ1 ((l + p+ t+ 3)i−p+1) σ2(

i+ l + 7
2

)
t−1

×
min(i−1,p−2,−i+t−1,t−p)∑

k=0

lkaodd(p− 1, i, k). (4.40)

The sign functions σ1 and σ2 in both case are given by,

σ1 = sgn(−i− p+ t+ 1), σ2 = sgn(i− p+ 1) . (4.41)

Imposing orthonormality remarkably fix the unknown constants aeven(p − 1, i, k) and

aodd(p − 1, i, k) uniquely. Let us remark that the difference in the two cases only comes

from the form of the denominators. For p = 2, which is relevant to C23;i, we have been

able to find the following general formula,

a(1, i, 0)2 =


21−t(2i+2)!(t−2)!(2t−2i+3)!

3(i−1)!(i+1)!(t+3)!(t−i−1)!(t−i+1)! l even

21−t(2i+3)!(t−2)!(2t−2i+2)!
3(i−1)!(i+1)!(t+3)!(t−i−1)!(t−i+1)! l odd

. (4.42)

We thus have all the data we need in order to bootstrap the double discontinuity of

〈O2O3O2O3〉 at one loop.
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5 One loop

We would now like to use the data we have obtained from the solution to the mixing

problem considered in the previous section to bootstrap the order a2 contributions to the

correlators 〈O2O2O3O3〉 and 〈O2O3O2O3〉. We must first perform the summations which

describe the double discontinuities and then try to construct the full function F (2)(u, v)

(or equivalently G(2)(u, v)) which has those discontinuities.

5.1 Constructing the double discontinuities

Let us first consider the double discontinuity of 〈O2O2O3O3〉, or equivalently the function

F
(2)
2 (u, v) from the expansion (2.16). Let us also recall that the OPE predicts,

F
(2)
2 (u, v) =

1

2
(log u)2

∑
t,l,j

(
η

(1)
t,l,i

)2(
C

(0)
22;Kt,l,i

C
(0)
33;Kt,l,i

)
L2233

[0,0,0](t|l) (5.1)

where the anomalous dimensions η
(1)
t,l,i, given in (1.3), refer to the double trace operators

{Kt,l,i}t−1
i=1. In this case, the sum over l runs only on even spins, namely l = 0, 2, . . . ,∞.

The result for the OPE coefficients C
(0)
22;Kt,l,i

and C
(0)
33;Kt,l,i

can be obtained from [18] and

we repeat it here for convenience:

C
(0)
22;Kt,l,i

=

√
8(t+l+1)!2t!2(l+1)(2t+l+2)

(2t)!(2t+2l+2)! R22
t,l,i × a22

t,i (5.2)

C
(0)
33;Kt,l,i

=

√
9(t+l+1)!2t!2(l+1)(2t+l+2)(t−2)(t+3)(l+t−1)(l+t+4)

12(2t)!(2t+2l+2)! R33
t,l,i × a33

t,i (5.3)

where6

R22
t,l,i = 21−t(2l+3+4i)(l+i+1)t−i−1(t+l+4)i−1

( 5
2

+l+i)
t−1

, a22
t,i =

√
2(1−t)(2+2i)!(t−2)!(2t−2i+2)!

3(i−1)!(i+1)!(t+2)!(t−i−1)!(t−i+1)! , (5.4)

R33
t,l,i =

21−t(2l+3+4i)(l+i+1)t−i−2(t+l+5)i−2

( 5
2

+l+i)
t−1

, a33
t,i =

√
6

(t−2)(t+3) ((3+3i+2i2−2t−t2)+(2i−t)l) a22
t,i .

(5.5)

By using the explicit form of the long superblocks (A.5) we can rewrite (3.5) as

F
(2)
2 (u, v) =

1

2

∞∑
t=2

∑
l even

t−1∑
i=1

(
η

(1)
t,l,i

)2(
C

(0)
22;Kt,l,i

C
(0)
33;Kt,l,i

) 1

u4
B 2+t|l , (5.6)

where

B t|l = (−1)l (xx̄)t
xl+1 Ft+l(x)Ft−1(x̄)− x̄l+1 Ft−1(x)Ft+l(x̄)

x− x̄
(5.7)

and Ft(x) = 2F1 (t, t, 2t;x) for the case at hand.

6In parametrizing C
(0)
33;Kt,l,i

we used slightly different conventions for R33
t,l,i and a33

t,i compared to [18].
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Similarly we may consider the double discontinuity of 〈O2O3O2O3〉. From the OPE

analysis in (3.12), we recall

G
(2)
2 (u, v) =

1

2

∞∑
l=0

∞∑
t=2

t−1∑
i=1

(
η

(1)
t,l,j

)2(
C

(0)
23;Kt,l,j

)2 1

u
9
2

B2+t+ 1
2
|l (5.8)

where now the anomalous dimensions η
(1)
t,l,j , given in (4.36)–(4.37), refer to the operators in

the [0, 1, 0] channel, Kt,l,j , with both even and odd spins, (i.e not to be confused with Kt,l,i

in the singlet channel.) The explicit expression for the three-point functions is

(C
(0)
23;Kt,l,j

)2
=

(l + t+ 2)!2(t+ 1)!2(l + 1)(l + 2t+ 3)

2(2t)!(2t+ 2l + 3)!
R23
t,l,ia

23
t,i (5.9)

where for even spins

R23
t,l,i = 21−t(2l+3+4i)(l+1+i)t−i−1(l+t+5)i−1(

5
2 +l+i

)
t−1

, a23
t,l,i = 21−t(2i+2)!(t−2)!(2t−2i+3)!

3(i−1)!(i+1)!(t+3)!(t−i−1)!(t−i+1)! (5.10)

whereas for odd spins the values of R23
t,l,i and a23

t,l,i can be obtained upon using the symmetry,

i→ t−i and l→ −l−2t−4. The conformal block B t|l is again given by (5.7) but now Ft(x)

has non trivial dependence on the external charges, i.e. Ft(x) = 2F1

(
t+ 1

2 , t−
1
2 , 2t;x

)
.

In order to perform the sums in (5.6) and (5.8) it is very useful to consider the action

of certain Casimir operators, related to those considered in [27] which simplify the sums

considerably. First we introduce the second order operators,

D = x2∂x(1− x)∂x − abx− (a+ b)x2∂x, (5.11)

D̄ = x̄2∂x̄(1− x̄)∂x̄ − abx̄− (a+ b)x̄2∂x̄, (5.12)

where a = −1
2∆12 and b = 1

2∆34. From these operators we construct the Casimirs,

D2 = D + D̄ + 2
xx̄

x− x̄
(
(1− x)∂x − (1− x̄)∂x̄

)
, (5.13)

D4 =

(
xx̄

x− x̄

)2

(D − D̄)

(
xx̄

x− x̄

)−2

(D − D̄) . (5.14)

On the conformal blocks Bt+2|l these operators have the following eigenvalues,

λ2 =
1

2

(
l(l + 2) + (τ + l)(τ + l − 4)

)
,

λ4 = l(l + 2)(τ + l − 1)(τ + l − 3) , (5.15)

where τ is even (τ = 2t + 4) in the [0, 0, 0] channel and odd (τ = 2t + 5) in the [0, 1, 0]

channel. Finally we construct the Casimir combinations

∆
(4)
+ = D4 −D2

2 + cD2 + d , (5.16)

∆
(4)
− = D4 −D2

2 + eD2 + f , (5.17)
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where the constants c, d, e, f depend on the OPE channel we are considering. For the

cases at hand we need the [0, 0, 0] channel for the 〈O2O2O3O3〉 correlator (and also for the

〈O2O2O2O2〉 correlator considered in [17]) and the [0, 1, 0] channel for the 〈O2O3O2O3〉
correlator. In these cases we have

[0, 0, 0] : c = 6 , d = 0 , e = −2 , f = 0 , (5.18)

[0, 1, 0] : c = 13 , d = −105

4
, e = 1 , f =

15

4
. (5.19)

If we now consider the product

∆(8) = ∆
(4)
+ ∆

(4)
− (5.20)

we find that it factorises into holomorphic and antiholomorphic parts,

∆(8) = (x− x̄)−1D(2)
+ D

(2)
− D̄

(2)
+ D̄

(2)
− (x− x̄) , (5.21)

where in the two channels under consideration here we have

[0, 0, 0] : D(2)
− = −2x3∂x(1− x)∂xx

−1 , D(2)
+ = D(2)

− + 4 ,

[0, 1, 0] : D(2)
− =

1

2
(5− 2x∂x)(1− x)(1− 2x∂x) , D(2)

+ = D(2)
− − 6 . (5.22)

Moreover we find that ∆(8) has the following eigenvalue in each channel

[0, 0, 0] : λ8 = 16(t− 1)2(t+ 1)2(l + t)2(l + t+ 2)2 (5.23)

[0, 1, 0] : λ8 = 16(t− 1)2(t+ 2)2(l + t)2(l + t+ 3)2 . (5.24)

Up to a factor of (−8) these reproduce exactly the numerators of the anomalous dimensions

given in (4.38) for the [0, 0, 0] channel and (4.36), (4.37) for the [0, 1, 0] channel. This

suggests that the sum may simplify if one pulls out factors made from the operator ∆(8).

Indeed we find this is the case. More precisely, for the leading discontinuities F
(2)
2 and

G
(2)
2 , one should pull out the operator

− 1

8
∆̃(8) = u−q∆(8)uq (5.25)

where q = 4 for the [0, 0, 0] channel and q = 9
2 for the [0, 1, 0] channel. This leads us to

simple explicit results for the leading discontinuities.

For the first correlator of relevance here, 〈O2O2O3O3〉, we find the result for F
(2)
2 takes

the form

F
(2)
2 (u, v) = −1

8
∆̃

(8)
[0,0,0]

[
p̂(u, v)

Li1(x)2−Li1(x̄)2

(x− x̄)9
+ 2

[
p̂(u, v) + v5p̂

(
u

v
,

1

v

)]
Li2(x)−Li2(x̄)

(x− x̄)9

+ q̂(u, v)
Li1(x) + Li1(x̄)

(x− x̄)8
+ r̂(u, v)

Li1(x)− Li1(x̄)

(x− x̄)9
+

ŝ(u, v)

(x− x̄)8

]
. (5.26)
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The coefficients above are given by the following expressions,

p̂(u, v) =
3

2
uv2
[
3u2 + uv − 6u− 4v2 + v + 3

]
,

q̂(u, v) =
v − 1

8u

[
5u4 + 62u3(1 + v)− 6u2(9 + 22v + 9v2)− 14u(1− v)2(1 + v) + (1− v)4

]
,

r̂(u, v) =
1

8u

[
4u6 − 21u5(1 + v)− 3u4(11− 42v + 11v2) + 4u3(1 + v)(25− 49v + 25v2)

− 12u2(1− v)2(3 + v)(1 + 3v)− 15u(1− v)4(1 + v) + (1− v)6
]
,

ŝ(u, v) =
1

4

[
9u4 − 43u3(1 + v)− 4u2(6− 41v + 6v2) + 57u(1− v)2(1 + v) + (1− v)4

]
.

(5.27)

We remark that the double discontinuity of the correlator 〈O2O2O2O2〉 computed in [17]

can similarly be simplified by using the same singlet channel ∆(8) operator.

For the other correlator, 〈O2O3O2O3〉, the double discontinuity is given by

G
(2)
2 (u, v) = −1

8
∆̃

(8)
[0,1,0]

[
p(u, v)

Li1(x)2 − Li1(x̄)2

(x− x̄)9
+ p̃(u, v)

Li2(x)− Li2(x̄)

(x− x̄)9

+ q(u, v)
Li1(x) + Li1(x̄)

(x− x̄)8
+ r(u, v)

Li1(x)− Li1(x̄)

(x− x̄)9
+

s(u, v)

(x− x̄)8

]
. (5.28)

The coefficients above are given by

p(u, v) =− 3v2

2

[
3− 6u+ 3u2 − 6v + 8uv + 3v2

]
,

p̃(u, v) =− 3
[
u3 + 3u2(1− v + v2)− u(1− v)(2 + 5v + 8v2)− (1− v)3(2 + 3v)

]
,

q(u, v) =
1

8u

[
u4 + 2u3(15− 4v) + 2u2(9− 24v − 37v2)− 2u(1−v)2(23 + 42v)− 3(1−v)4

]
,

r(u, v) =− 3

8u

[
u5 − u4(15− v) + 2u3(6 + 19v − 19v2) + 2u2(1− v)(8− 23v − 7v2)

− u(1− v)3(13 + 21v)− (1− v)5
]
,

s(u, v) =− 1

8

[
u4 + 2u3(3− 2v)− 6u2(21− 2v − v2)

+ 2u(1− v)(31 + 149v + 2v2) + (57− v)(1− v)3
]
. (5.29)

Given the explicit forms of the ∆(8) operators in each case we may simply compute

the full result for F
(2)
2 and G

(2)
2 . They take the form,

F
(2)
2 (u, v) = P̂ (u, v)

Li1(x)2 − Li1(x̄)2

x− x̄
+ 2

[
1

v3
P̂

(
u

v
,

1

v

)
+ P̂ (u, v)

]
Li2(x)− Li2(x̄)

x− x̄

+ Q̂(u, v)
(
Li1(x) + Li1(x̄)

)
+ R̂(u, v)

Li1(x)− Li1(x̄)

x− x̄
+ Ŝ(u, v) . (5.30)

and

G
(2)
2 (u, v) = P (u, v)

Li1(x)2 − Li1(x̄)2

x− x̄
+ 2

[
1

v3
P̂

(
1

v
,
u

v

)
+ P (u, v)

]
Li2(x)− Li2(x̄)

x− x̄

+Q(u, v)
(
Li1(x) + Li1(x̄)

)
+R(u, v)

Li1(x)− Li1(x̄)

x− x̄
+ S(u, v) . (5.31)
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The coefficient functions P,Q,R, S and similarly the hatted quantities are rational

functions of x and x̄ with denominators of the form (x − x̄)16, and are symmetric under

x↔ x̄. Note that the symmetry of the full correlation function, G(2)(u, v) = G(2)(v, u), is

visible in the double discontinuity G
(2)
2 for the term proportional to log2 u log2 v. Indeed we

can verify that P (v, u) = P (u, v). On the other hand, we are able to express the coefficient

function of Li2 in terms of P̂ (u, v) and P (1/v, u/v). This non trivial fact will be important

when we will uplift the double discontinuity to a full correlation function.

5.2 Uplifting to the full function

The structure of the double discontinuities (5.30) and (5.31) is very similar to the dou-

ble discontinuity found in [17] for the correlator 〈O2O2O2O2〉. This suggests that the

transcendental functions appearing in the full one-loop contributions of 〈O2O2O3O3〉 and

〈O2O3O2O3〉 will also be given by the same one-loop and two-loop ladder functions which

arise in the case of 〈O2O2O2O2〉. We recall that they take the form [30],

Φ(l)(u, v) = − 1

x− x̄
φ(l)

(
x

x− 1
,

x̄

x̄− 1

)
, (5.32)

where the pure transcendental part is given by

φ(l)(x, x̄) =

l∑
r=0

(−1)r
(2l − r)!
r!(l − r)!l!

logr(xx̄)(Li2l−r(x)− Li2l−r(x̄)) . (5.33)

We recall also the crossing symmetry of the ladder functions,

φ(l)

(
1

x
,

1

x̄

)
= −φ(l)(x, x̄) . (5.34)

The one-loop function also obeys

φ(1)(1− x, 1− x̄) = −φ(1)(x, x̄) . (5.35)

We proceed very much as in the case of the correlator 〈O2O2O2O2〉 investigated in [17].

We make an ansatz for F (2)(u, v) (or equivalently G(2)(u, v)) in terms of single-valued har-

monic polylogarithms with coefficients wich are rational functions of x and x̄ with denom-

inators of the form (x − x̄)17, to match the double discontinuities (5.30) and (5.31). We

demand that our ansatz reproduces correctly both double discontinuities and furthermore

that the resulting function does not have any poles at x = x̄. This set of constraints pro-

duces a particular solution with four free parameters. To express the dependence we first

quote the particular solutions, G
(2)
p and F

(2)
p , and then describe the four remaining degrees

of freedom. For convenience we quote first the form of G
(2)
p (u, v),

G(2)
p (u, v) =A1(x, x̄)φ(2)(x′, x̄′) +A2(x, x̄)φ(2)(x, x̄) +A2(1− x, 1− x̄)φ(2)(1− x, 1− x̄)

+
[
A3(x, x̄)x(1− x)∂xφ

(2)(x′, x̄′) + (x↔ x̄)
]

+
[
A4(x, x̄)x∂xφ

(2)(x, x̄) + (x↔ x̄)
]

(5.36)

−
[
A4(1− x, 1− x̄)(1− x)∂xφ

(2)(1− x, 1− x̄) + (x↔ x̄)
]

+A5(x, x̄) log2(u/v) +A6(x, x̄) log2 u+A6(1− x, 1− x̄) log2 v

+A7(x, x̄)φ(1)(x, x̄) +A8(x, x̄) log u+A8(1− x, 1− x̄) log v +A9(x, x̄) ,
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where we have used the notation x′ = x
x−1 . The explicit expressions for the coefficient func-

tions A1, . . . , A9 are rather cumbersome but we provide them in a Mathematica notebook

attached to the arXiv submission of this article. These functions obey,

A1(x̄, x) = −A1(x, x̄) , A1(1− x, 1− x̄) = −A1(x, x̄) ,

A2(x̄, x) = −A2(x, x̄) ,

A3(x̄, x) = +A3(x, x̄) , A3(1− x, 1− x̄) = +A3(x, x̄) ,

A5(x̄, x) = +A5(x, x̄) , A5(1− x, 1− x̄) = +A5(x, x̄) ,

A6(x̄, x) = +A6(x, x̄) ,

A7(x̄, x) = −A7(x, x̄) , A7(1− x, 1− x̄) = −A7(x, x̄) ,

A8(x̄, x) = +A8(x, x̄) ,

A9(x̄, x) = +A9(x, x̄) , A9(1− x, 1− x̄) = +A9(x, x̄) .

The properties above are necessary for G
(2)
p (u, v) to be symmetric under x↔ x̄ and for the

crossing property G
(2)
p (v, u) = G

(2)
p (u, v) to hold. Part of the weight four function in the

first line of (5.36) can be immediately related to G
(2)
2 . In particular, we recognize

P (u, v)

x− x̄
= −A1(x, x̄)

4
,

1

v3
P̂

(
1

v
,
u

v

)
+ P (u, v) = −A1(x, x̄)

4
+
A2(x, x̄)

4
(5.37)

whereas the remaining coefficient functions q(u, v) r(u, v) and s(u, v) enter non trivially

into the set of Ai(x, x̄).

The particular solution F
(2)
p (u, v) is given by applying the crossing transforma-

tion (2.9), F (u, v) = 1/u4G (1/u, v/u), to the function (5.36),

F (2)
p (u, v) =

1

u4

[
−Â2(x′, x̄′)φ(2)(x′, x̄′)− Â2(x, x̄)φ(2)(x, x̄)− Â1(x, x̄)φ(2)(1− x, 1− x̄)

+
[
Â4(x′, x̄′)x(1− x)∂xφ

(2)(x′, x̄′) + (x↔ x̄)
]

+
[
Â4(x, x̄)x∂xφ

(2)(x, x̄) + (x↔ x̄)
]

−
[
Â3(x, x̄)(1− x)∂xφ

(2)(1− x, 1− x̄) + (x↔ x̄)
]

+ Â6(x′, x̄′) log2(u/v) + Â6(x, x̄) log2 u+ Â5(x, x̄) log2 v

− Â7(x, x̄)φ(1)(x, x̄)−
[
Â8(x, x̄) + Â8(x′, x̄′)

]
log u

+ Â8(x′, x̄′) log v + Â9(x, x̄)
]
, (5.38)

where the functions Â1, . . . , Â9 are related to A1, . . . , A9 via Âi(x, x̄) = Ai(1/x, 1/x̄).

Now let us describe the four ambiguities. We find that they can be described in terms

of the following four D̄-functions,

G(2)(u, v) = G(2)
p (u, v)+αD4444(u, v)+βD4545(u, v)+γD4646(u, v)+δvD4565(u, v) . (5.39)

5.3 Twist 4 sector of 〈2233〉

Within our ansatz we have obtained a one loop solution for 〈O2O2O3O3〉 with 4 free

coefficients. Can we further constrain these coefficients? The answer is affirmative, and in
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fact there are further consistency conditions that our one-loop result must satisfy: consider

the expansion of the correlator up to second order in a,

〈O2O2O3O3〉 = A
[
〈O2O2O3O3〉(0)

free + a〈O2O2O3O3〉(1)
free

+ a〈O2O2O3O3〉(1)
int + a2〈O2O2O3O3〉(2)

int + . . .
]
. (5.40)

Above we have highlighted the fact that some contributions are the same as in free theory.

In the long sector there exists a single twist 4 double trace operator K2,l ∼ O2∂
lO2. The

3-point function 〈O3O3K2,l〉 vanishes at leading order, and therefore

C22;K2,l
C33;K2,l

= A2233(2|l) + aB2233(2|l) +O(a2), (5.41)

starts at subleading order, i.e. A2233(2|l) = 0. Then, it follows from the OPE that,[
〈O2O2O3O3〉(1)

free + 〈O2O2O3O3〉(1)
int

]
twist 4 long

=
∑
l

B2233(2|l)L2|l
[0,0,0] (5.42)

〈O2O2O3O3〉(2)
int

∣∣∣
twist 4 long

= log u
∑
l

ηK2,l
B2233(2|l)L2|l

[0,0,0] + . . .

(5.43)

where ηK2,l
= −48/(l + 1)(l + 6) has been computed in [18] and the dots stand for terms

analytic at u = 0 which are not relevant here. The coefficients B2233(2|l) can be obtained

from u3D
sing
3522 of the corresponding supergravity amplitude, and are given by

B2233(2|l) = 240N3 ((l + 3)!)2

(2l + 6)!
. (5.44)

Thus the twist 4 sector of the log u part of the one-loop correlator is fully determined by the

knowledge of (5.44) and the anomalous dimension, ηK2,l
. It is interesting to notice in (5.44)

that the contributions from free theory and supergravity have the same l dependence but

differ in the overall coefficient, 24N3 and 216N3, respectively. Very nicely we find that this

OPE constraint is consistent with our one-loop result and fixes two of the four remaining

constants, namely

α = 0, δ = 0 . (5.45)

We thus have a solution with 2 remaining free parameters.

6 Twist 5 anomalous dimensions at one-loop

We now extract twist 5 anomalous dimensions from our one loop correlator 〈O2O3O2O3〉.
We focus on K2,l because this is the only case in which there is a single operator for each

spin, and we thus have enough information to determine its anomalous dimension. For

higher twist there is a higher order mixing problem to undo, and we expect further mixing
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with triple-trace operators to spoil predictability. The expansion of the correlator up to

order a2 takes the form

〈O2O3O2O3〉 = A
[
〈O2O3O2O3〉(0)

free + a〈O2O3O2O3〉(1)
free

+ a〈O2O3O2O3〉(1)
int + a2〈O2O3O2O3〉(2)

int + . . .
]
, (6.1)

where

〈O2O3O2O3〉(0)
free = + 6 g2

13g
3
24 (6.2)

〈O2O3O2O3〉(1)
free = + 36

(
g13g

2
24g12g34 + g13g

2
24g14g23 + 2g24g12g34g14g23

)
(6.3)

〈O2O3O2O3〉(1)
int =− 36 g2

12g
2
34g24

s(x, x̄, y, ȳ)

(yȳ)2

u2

v
D5,2,3,2 (6.4)

and our new result, given in (5.36), is

〈O2O3O2O3〉(2)
int = g2

12g
2
34g24 I(u, v;σ, τ)u2G(2)(u, v) . (6.5)

In order to extract twist 5 anomalous dimensions it is enough to restrict ourselves to the

superconformal partial wave expansion in the long sector. The OPE at twist 5 implies the

identity,

〈O2O3O2O3〉
Ag2

12g
2
34g24

∣∣∣
twist 5

=
∑
l

A2,l L2323
[0,1,0]

(
5
2 |l
)

+

a
∑
l

[(
A2,l η

(1)
2,l log u+Bl

)
L2323

[0,1,0](
5
2 |l) +A2,l η

(1)
2,l ∂tL

2323
[0,1,0]

(
5
2 |l
)]

+

a2
∑
l

[
1
2A2,l

(
η

(1)
2,l

)2 L2323
[0,1,0]

(
5
2 |l
)

log2 u

((
A2,l η

(2)
2,l +Blη

(1)
l

)
L2323

[0,1,0]

(
5
2 |l
)

+ 2A2,l

(
η

(1)
2,l

)2
∂tL2323

[0,1,0]

(
5
2 |l
) )

log u+ . . .
]

(6.6)

where η
(i=1,2)
2,l ≡ η(i=1,2)

K2,l
and we defined,

C23;K2,l
C23;K2,l

= A2,l + aB2,l +O(a2). (6.7)

Therefore, we also have A2,l = A{2323}(2|l), and A2,lη
(1)
2,l = M{2323}(2|l), which are known

from (4.9) and (4.23), respectively. We repeat them for convenience:

A2,l =
9(l + 1)(l + 7)((l + 4)!)2

10(2l + 7)!
, η

(1)
2,l =

−
80

(l+1)(l+4) l even

− 80
(l+4)(l+7) l odd

(6.8)

We will now equate the expansion (6.6) with a superconformal block expansion of the

correlator in the long sector, and determine the one loop correction to the anomalous

dimension, η
(2)
l , from the last line.
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We proceed by first computing the coefficients B2,l. It is convenient to separate the

contribution to B2,l in free theory and tree level supergravity. The conformal partial wave

analysis of the free theory gives

B2,l; free =
36((l + 4)!)2

5(2l + 8)!

{
(l + 7) l even

(l + 1) l odd
. (6.9)

Next, we can expand both ∂tL2323
[0,1,0](

5
2 |l) and D

analytic
5332 in superblocks, and keep only the

coefficients at twist 5. We then obtain values for the correction to the normalisation due

to supergravity, Bint,l, which together with the free theory yields the result

B2,l = B2,l; free +B2,l;int =


((l+3)!)2(144(l+4)(l+7)(Hl+3−H2l+7)+ 54

5 (7l2+97l+296))
(2l+7)! l even

((l+3)!)2(144(l+1)(l+4)(Hl+3−H2l+7)+ 18
5

(l+1)(21l+104))
(2l+7)! l odd

consistent with the relation [28, 29]

B2,l =
∂

∂t
M{2323}(t|l)

∣∣∣
t=2

. (6.10)

Note that in interpreting (6.10) we used the full t dependence of M{2323} and treated the

even and odd spin formulae as completely independent formulae. We can finally consider

the one loop result at order a2. The coefficient multypling ∂tL2323
[0,1,0](

5
2 |l) is

A2,l

(
η

(1)
l

)2
=

5760((l + 3)!)2

(2l + 7)!

{
l+7
l+1 l even

l+1
l+7 l odd

(6.11)

Rearranging, we obtain η
(2)
` directly

η
(2)
2,l =



320(9l4+68l3−1151l2−5738l−3688)
(l−1)(l+1)3(l+4)3(l+8)

l = 2, 4, . . .

320(9l4+140l3−487l2−11262l−29400)
l(l+4)3(l+7)3(l+9)

l = 3, 5, . . .

2305− 30
7 β −

250
21 γ l = 0

−41
2 + 8

3γ l = 1

(6.12)

As in the twist-four case studied in [17] we note that it is possible to make the anomalous

dimensions analytic functions of spin, including for l = 0, 1, by imposing

β = 0 , γ = 0 , (6.13)

although we do not have an independent argument for the values of these parameters.
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7 A symmetry of the CFT data

In recent months a wealth of new strong coupling data for double trace operators in N = 4

SYM has been computed (see [16–18] as well as above) both at tree level and one loop in

supergravity. We here make the observation that all this new data possesses a nontrivial

Z2 symmetry. Define T (l; a) ≡ ∆(l; a) − l as the full anomalous twist for an operator, as

function of l. The double trace operators in question form natural families. A single family

consists of all such operators which at leading order in a have fixed twist, T (l; 0), fixed SU(4)

quantum numbers, and fixed label i distinguishing operators with identical twist T (l; 0)

and SU(4) quantum numbers. The spin l is allowed to vary within the family, although it

is also useful to separate even and odd spin cases into different families. The anomalous

dimensions and appropriately normalised OPE coefficients for a family of operators, are

then given as an analytic function of the spin l. The statement of the Z2 symmetry is then

that under the map

symmetry: l → −l − T (l; a)− 3 (7.1)

the data for one family of operators maps onto the data for another (possibly the same)

family of operators. Note that T (l; a) here refers to the latter.

We illustrate this with a number of examples. The anomalous dimensions of the

operators in the [n, 0, n] rep with twist T (l; 0) = 2t and additional label i = 1 . . . t− n− 1

were computed in [17] and reproduced in (1.3). The Z2 symmetry (7.1) at leading order

in a becomes l → −l − 2t − 3. One can check that the anomalous dimension in (1.3)

transforms as

η
(1)
t,l,n,i → η

(1)
t,−l−2t−3,n,i = η

(1)
t,l,n,i′ i′ = t− i− n . (7.2)

Under the symmetry the family of operators with labels t, n, i maps to the family with

labels t, n, i′ = t − i − n: the symmetry reverses the list of operators with the same value

of T (l; 0).

For the anomalous dimensions of [0, 1, 0] operators given in (1.10) there are two analytic

formulae, one for odd spin operators and one for even spin. The Z2 symmetry (7.1) swaps

the formula for even spin into that of odd spin and vice versa as well as reversing the label

i (note that in this case T (l; 0) = 2t+ 1 so the symmetry is l→ −l − 2t− 4)

η
(1),even spin
t,l,i → η

(1),even spin
t,−l−2t−4,i = η

(1),odd spin
t,l,i′ i′ = t− i

η
(1),odd spin
t,l,i → η

(1),odd spin
t,−l−2t−4,i = η

(1),even spin
t,l,i′ i′ = t− i . (7.3)

The symmetry also acts on three point functions (after a universal factor is taken out).

For example, consider the 3-point functions of the long singlet operators in (1.5)

c̃t,l,i := 〈O2O2Kt,l,0,i〉2
/ (t+l+1)!2

(2t+2l+2)!
. (7.4)

These transform under the symmetry as:

c̃t,l,i → c̃t,−l−2t−3,i = c̃t,l,i′ i′ = t− i . (7.5)
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Thus far the examples involved data (anomalous dimensions or OPE coefficients) which

were all leading in the coupling a, and thus the symmetry (7.1) only involved T (l; 0). But

the symmetry should really be thought of in terms of an expansion in a. Remarkably, we

find the symmetry remains intact even at one loop where the dimension or twist becomes

anomalous. For example consider the one-loop twist 4 singlet anomalous dimensions (1.7)

computed in [16, 17]. The full anomalous twist of these operators is given by

T (l; a) = 4 + 2aη
(1)
l + 2a2η

(2)
l +O(a3)

η
(1)
l = η

(1)
t=2,l,n=0,i=1 = − 48

(l + 1)(l + 6)

η
(2)
l =

1344(l − 7)(l + 14)

(l − 1)(l + 1)2(l + 6)2(l + 8)
− 2304(2l + 7)

(l + 1)3(l + 6)3
(7.6)

and the symmetry (7.1), to the relevant order in a, becomes l→ −l−7−2aη
(1)
l . Under this

transformation, the twist itself should be invariant. One can check that this is indeed true.

T (l; a)→ T (−l − 7− 2aη
(1)
l ; a) = 4 + 2aη

(1)

−l−7−2aη
(1)
l

+ 2a2η
(2)
−l−7 +O(a3)

= 4 + 2aη
(1)
−l−7 + 4a2η

(1)
l

∂

∂l
η

(1)
−l−7 + 2a2η

(2)
−l−7 +O(a3)

= T (l; a) +O(a3) . (7.7)

The latter equality arises from the identities

η
(1)
−l−7 = η

(1)
l η

(2)
−l−7 = η

(2)
l −

∂

∂l
(η

(1)
l )2 . (7.8)

Indeed the first term in the expression for η
(2)
l (7.6c) is symmetric under the lowest order

symmetry l → −l − 7. The second term in (7.6c) is antisymmetric under the lowest order

symmetry. However it is completely determined from the 1 loop anomalous dimension

by the full symmetry, given by 2 ∂
∂l (η

(1)
l )2. The full symmetry allows us to predict this

antisymmetric part.

As our final example we consider the one loop anomalous dimensions, computed in

this paper, for operators in the [010] rep with twist T (l, 0) = 5. At tree-level the formulae

split into two pieces for even and odd spin, respectively (1.10) and (1.12). Nevertheless

one can check that the symmetry in the form (7.3) extends to the one loop case, swapping

the even and odd family. Namely we have

T even(l; a)→ T even(−l − T odd(l; a); a) = T odd(l; a)

T odd(l; a)→ T odd(−l − T even(l; a); a) = T even(l; a) (7.9)

These arise from the following order by order relations which can be readily checked

η
(1)even
−l−7 = η

(1)odd
l η

(2)even
−l−7 = η

(2)odd
l − ∂

∂l
(η

(1)odd
l )2

η
(1)odd
−l−7 = η

(1)even
l η

(2)odd
−l−7 = η

(2)even
l − ∂

∂l
(η

(1)even
l )2 . (7.10)
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As we have seen in the above examples the symmetry often transforms quantities for

one family of operators to other families. In the special cases where the symmetry leaves

the family invariant, this has already been seen in the context of large spin CFT analysis

in which it has been observed that anomalous dimensions can be expressed in terms of a

certain Casimir J2 [31, 32]. To see the equivalence with the above symmetry, first note

that if we re-express quantities in terms of a shifted spin, J instead of l, where

J = l +
T + 3

2
, (7.11)

then the symmetry (7.1) becomes simply

symmetry: J → −J . (7.12)

Thus any quantity which is invariant under this symmetry will clearly be a function of J2.

This is essentially the statement made in previous studies [31, 32] except that the closely

related quantity J ′2 rather than J2 was used, where

J ′2 = J2 − 1/4 =

(
l +

T + 3

2

)2

− 1

4
=

(
l +

T

2
+ 1

)(
l +

T

2
+ 2

)
. (7.13)

Finally, we stress once again, that the symmetry transforms many objects non-trivially.
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A SCPW

We briefly review the basics of a superblock expansion in N = 4 following [24].

The OPE implies the following decomposition of a four point function,

〈Op1Op2Op3Op4〉 = P(OPE)
{pi}

∑
{t, l,R}

A
{pi}
R (t|l) S{pi}R (t|l) (A.1)

where t is half twist of the exchanged operator, t = (∆− l)/2,

P(OPE)
{pi} = gd12g

p1−d
14 gp2−d

24 gp3
34 with p2 ≥ p1, p4 ≥ p3, p2−p1 ≤ p4−p3 , (A.2)

and S{pi}R (t|l) are given by the GL(2|2) determinantal formula,

S{pi}R =

(
xx̄

yȳ

) 1
2

(γ−p4+p4)

Fαβγλ γ = p4 − p3, p4 − p2 + 2, . . . ,min(p1 + p2, p3 + p4)

Fαβγλ = (−1)p+1 s(x, x̄, y, ȳ)

(x− x̄)(y − ȳ)
det

(
FXλ R

Kλ F Y

)
,
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where p = min(α, β), with (using the notation x1 = x and x2 = x̄ and similarly for y)

α = 1
2(γ − p1 + p2) β = 1

2(γ + p3 − p4)

(FXλ )ij =
(

[x
λj−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤2
1≤j≤p

(F Y )ij =
(

(yj)
i−1

2F1(i− α, i− β; 2i− γ; yj)
)

1≤i≤p
1≤j≤2

(Kλ)ij =
(
− δi; j−λj

)
1≤i≤p
1≤j≤p

R =

(
1

x−y
1

x−ȳ
1

x̄−y
1

x̄−ȳ

)

s(x, x̄, y, ȳ) = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ) (A.3)

The notation [. . .] in FX indicates that only the regular part should be taken, i.e. if λj < j

one has to subtract off the first few terms in the Taylor expansion of the hypergeometrics.

As written above, the determinantal formula for S{pi}R deals with all cases in the table,

GL(2|2) rep λ (∆−l)/2 l R multiplet type

[0] γ/2 0 [0, γ, 0] half BPS

[1µ] γ/2 0 [µ, γ−2µ, µ] quarter BPS

[λ, 1µ] (λ ≥ 2) γ/2 λ−2 [µ, γ−2µ−2, µ] semi-short

[λ1, λ2, 2
µ2 , 1µ1 ] (λ2 ≥ 2) γ/2+λ2−2 λ1−λ2 [µ1, γ−2µ1−2µ2−4, µ1] long

(A.4)

Long multiplets are particularly simple, since the determinantal formula factorize. The

associated Young tableaux contains a 2×2 block, and it is convenient to define λ′2 = µ2 +2

and λ′1 = µ1 + λ′2, i.e. the first and second columns have height λ′1, λ
′
2 respectively, with

λ′1, λ
′
2 ≥ 2. The explicit expression of the superblock is

F
αβγλ
long = (−1)λ

′
1+λ′2s(x, x̄, y, ȳ)×

Fαβγλ1
(x)Fαβγλ2−1 (x̄)− (x↔ x̄)

x− x̄

×
Gαβγ
λ′1

(y)Gαβγ
λ′2−1

(ȳ)− (y ↔ ȳ)

y − ȳ
(A.5)

Fαβγλ (x) := xλ−1
2F1(λ+ α, λ+ β; 2λ+ γ;x)

Gαβγλ′ (y) := yλ
′−1

2F1(λ′ − α, λ′ − β; 2λ′ − γ; y) . (A.6)

Alternatively we can rewrite S{pi}R; long → L in terms of conformal blocks B t|l and SU(4)

harmonics Ynm commonly introduced in the literature,

L{pi}nm (t|l) =
s(x, x̄, y, ȳ)

(yȳ)2

B 2+t|l

u2+
p43
2

(n+ 1)!m!

(n+ 2 + p43)n+1(m+ 1 + p43)m
Ynm . (A.7)
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where

B t|l = (−1)l
xt+l+1 x̄t Ft+l(x)Ft−1(x̄)− x̄t+l+1 xt Ft−1(x)Ft+l(x̄)

x− x̄
(A.8)

Ynm = −Pn+1(y)Pm(ȳ)−Pm(y)Pn+1(ȳ)

y − ȳ
(A.9)

Ft(x) = 2F1

(
t− p12

2 , t+ p34

2 , 2t;x
)
, (A.10)

Pn(y) = y JP(p1−d12|p2−d12)
n

(
2

y
− 1

)
. (A.11)

The corresponding SU(4) representation translates to [n−m, 2m+ p43, n−m], with m =

p34/2 + γ/2− λ′1, and n = p34/2 + γ/2− λ′2.

B On supergravity correlators

B.1 Anatomy of D functions

Any Dδ1δ2δ3δ4 with integer σ ≡ (δ1 + δ2 − δ3 − δ4)/2 ≥ 0 can be written very explicitly as

Dδ1δ2δ3δ4 = u−σD
sing
δ1δ2δ3δ4 +D

analytic
δ1δ2δ3δ4 + log(u)D

log
δ1δ2δ3δ4 , (B.1)

The first two functions are,

D
sing
δ1δ2δ3δ4 =

σ−1∑
n=0

(−u)n

n!
Γ[σ − n] Λδ3δ4δ1−σδ2−σ(n) F

δ2−σ+n|δ3+n
δ3+δ4+2n (1− v) , (B.2)

D
log
δ1δ2δ3δ4 = (−)σ+1

∞∑
n=0

un

n!(σ + n)!
Λδ1δ2δ3+σδ4+σ(n) F

δ2+n|δ3+σ+n
δ1+δ2+2n (1− v) , (B.3)

where we defined7

F a|bc (x) ≡ 2F1[a, b; c](x), Λδ1δ2δ3δ4
(n) ≡ Γ[δ1 + n]Γ[δ2 + n]Γ[δ3 + n]Γ[δ4 + n]

Γ[δ1 + δ2 + 2n]
. (B.4)

The expression for D
analytic
δ1δ2δ3δ4 is given by

D
analytic
δ1δ2δ3δ4 =(−)σ

∑
n,m≥0

un

n!(σ + n)!
Λδ1δ2δ3+σδ4+σ(n)

(δ2 + n)m(δ3 + σ + n)m
(δ1 + δ2 + 2n)m

fnm
(1−v)m

m!
(B.5)

where

fnm =
[

+ ψ(n+ 1) + ψ(σ + 1 + n) + 2ψ(δ1 + δ2 + 2n+m)

−ψ(δ4 + σ + n)− ψ(δ1 + n)− ψ(δ3 + σ + n+m)− ψ(δ2 + n+m)
]

7D
sing
δ1δ2δ3δ4 = 0 when σ = 0.
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The representation (B.1) is very useful in an OPE expansion. On the other hand, any

Dδ1δ2δ3δ4 can be obtained as operators acting on D1111. The set of operators is

Dδ1+1,δ2+1,δ3,δ4 = −∂uDδ1δ2δ3δ4 ,

Dδ1,δ2,δ3+1,δ4+1 = (δ3 + δ4 − Σ− u∂u)Dδ1δ2δ3δ4 ,

Dδ1,δ2+1,δ3+1,δ4 = −∂vDδ1δ2δ3δ4 ,

Dδ1+1,δ2,δ3,δ4+1 = (δ1 + δ4 − Σ− v∂v)Dδ1δ2δ3δ4 ,

Dδ1,δ2+1,δ3,δ4+1 = (δ2 + u∂u + v∂v)Dδ1δ2δ3δ4 ,

Dδ1+1,δ2,δ3+1,δ4 = (Σ− δ4 + u∂u + v∂v)Dδ1δ2δ3δ4 . (B.6)

Defining Dδ1δ2δ3δ4 in this way provides a resummation of the series expansions in (B.1). In

fact, D1111 admits the following representation in term of polylogarithms [30]

D1111 = − log(u)
Li1(x)− Li1(x̄)

x− x̄
+ 2

Li2(x)− Li2(x̄)

x− x̄
, (B.7)

where u = xx̄ and v = (1− x)(1− x̄).

B.2 Examples of supergravity correlators

In [18] section 2.2, an algorithm was given to provide a Dδ1δ2δ3δ4 representation of the

supergravity amplitude of Rastelli and Zhou [12]. Following the same implementation it is

simple to get results for the family of correlators 〈OpOp+1OqOq+1〉. We list the first few

cases here below:

Hp,p+1,2,3 = upDp,p+3,2,3 (B.8)

Hp,p+1,3,4 = up
[

1

2
σDp−1,p+3,2,4 + τDp−1,p+3,3,3 +

1

p− 2
Dp,p+3,2,3 +

(
1

p− 2
+

1

2
σ + τ

)
Dp,p+3,3,4

]
(B.9)

Hp,p+1,4,5 = up
[
στ
(
Dp−2,q+3,3,4 +Dp−1,q+3,3,5 +Dp−1,p+3,4,4 +Dp,p+3,4,5

)
+

1

6
σ2
(
2Dp−2,p+3,2,5 + 2Dp−1,p+3,3,5 +Dp,p+3,4,5

)
+

1

2
τ2
(
2Dp−2,p+3,4,3 + 2Dp−1,p+3,4,4 +Dp,p+3,4,5

)
+

1

p− 3
σ
(
Dp−1,p+3,2,4 +Dp−1,p+3,3,5 +Dp,p+3,3,4 +Dp,p+3,4,5

)
+

2

p− 3
τ
(
Dp−1,p+3,3,3 +Dp−1,p+3,4,4 +Dp,p+3,3,4 +Dp,p+3,4,5

)
+

1

(p− 2)(p− 3)

(
2Dp,p+3,2,3 + 2Dp,p+3,3,4 +Dp,p+3,4,5

) ]
(B.10)
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and finally

Hp,p+1,5,6 = up
[ 3∑
k=0

σ3

4k!
Dp−3+k,p+3,2+k,6 +

τ3

k!
Dp−3+k,p+3,5,3+k +

2∑
k=0

1∑
m=0

3τ2σ

2k!
Dq−3+k+m,q+3,4+m,4+k +

σ2τ

k!
Dq−3+k+m,q+3,3+k,5+m +

2∑
k=0

1∑
m=0

σ2

(p− 4)k!
Dp−2+k,p+3,2+k+m,5+m +

3τ2

(p− 4)k!
Dp−2+k,p+3,4+m,3+k+m +

3στ

q − 4

1∑
k=0

1∑
m=0

(Dp−2+k,p+3,3+m,4+m+k +Dp−1+k,p+3,4+m,4+m+k) +

3σ

(p− 4)(p− 3)

1∑
k=0

2∑
m=0

1

m!
Dp−1+k,p+3,2+m+k,4+m +

6τ

(p− 4)(p− 3)

1∑
k=0

2∑
m=0

1

m!
Dp−1+k,p+3,3+m,3+k+m +

6

(p− 4)(p− 3)(p− 2)

3∑
k=0

1

k!
Dp,p+3,2+k,3+k

]
. (B.11)

The expression of the supergravity amplitude in Mellin space assumes an ordering of

the charges. Thus in the last step of the algorithm we obtained the correlators of in-

terest by acting with symmetries. We also used the reflection property Dδ1,δ2,δ3,δ4 =

DΣ−δ1,Σ−δ2,Σ−δ3,Σ−δ4 where Σ = δ1+δ2+δ3+δ4
2 . Other identities among Dδ1δ2δ3δ4 can be

used to represent the final result in equivalent ways. For example, in the proof of (4.19)

we considered the identity, Dδ1δ2δ3δ4(u, v) = vδ1+δ4−ΣDδ2δ1δ4δ3(u, v).
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