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1 Introduction

Skyrmions are topological solitons that model nuclei, with the number of solitons being

identified with the baryon number of the nucleus (for reviews see [1, 2]). The standard

Skyrme model [3] reproduces some physical properties of nuclei with reasonable success,

but a major problem is that it yields classical Skyrmion binding energies [4, 5] of around

15%, and therefore an order of magnitude greater than typical nuclear binding energies

that are more like 1% of the nuclear mass.

The only fields that are included in this simplest version of the theory are pions,

these being the lightest mesons, and indeed they are often assumed to be massless. A

natural approach to reducing the tight binding of Skyrmions is to incorporate the heavier

mesons that are neglected within the effective nonlinear pion theory. In fact there is a long

history of attempts to include the next lightest meson, the rho meson, within the Skyrme

model [6–10] but this introduces a host of extra difficulties. In particular, the inclusion of

rho mesons significantly increases both the number of fields in the model and the number of

terms in the Lagrangian, making numerical computations of Skyrmions considerably more

demanding and at the limit of current capabilities. Furthermore, there are a large number

of unknown coupling constants that make it impractical to simply search within this space

of theories for a parameter set that might reduce Skyrmion binding energies.

A potential solution to the problem of fixing the coupling constants has been pro-

posed [11] by using dimensional deconstruction of pure Yang-Mills theory in one higher

dimension to yield a Skyrme model of pions coupled to any number of vector mesons: this

number being set by the truncation level in a basis expansion. This approach has the

considerable advantage that all coupling constants are automatically determined and is ex-

pected to reduce binding energies, because in the limit in which the truncation level tends

to infinity the theory flows to a BPS limit where binding energies vanish. Furthermore, the

coupling constants are related in such a way that a topological lower bound on the energy

survives the inclusion of any number of vector mesons. The level one truncation provides

a Skyrme model of pions coupled to rho mesons but this theory is sufficiently complex
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that to date only the single Skyrmion has been computed in this model, so multi-Skyrmion

solutions and their binding energies are unknown.

By applying an extension of the Atiyah-Manton [12, 13] instanton holonomy approx-

imation of the pion Skyrme field to include rho mesons too, approximate Skyrmions have

been calculated for baryon numbers up to four [14], and the results support the conjecture

that binding energies are substantially reduced. However, in addition to approximating

both the pion and rho meson fields, this approach also makes the assumption that the sym-

metries of Skyrmions in the extended theory are identical to those in the standard Skyrme

model. Moreover, this method is difficult to apply beyond baryon number four because the

assumed symmetries of the Skyrmion are not enough to uniquely determine the Yang-Mills

instanton that is required in this approximation. Nonetheless, these approximate results

are sufficiently encouraging to warrant a full numerical solution of multi-Skyrmions within

this model of pions and rho mesons. Here, we present the results of parallel numerical com-

putations of Skyrmions for all baryons numbers from one to twelve and find that binding

energies are dramatically reduced from the 15% in the standard Skyrme model to less than

4%. Furthermore, we find that this significant reduction in binding energies is achieved

without inducing any changes to the qualitative features of the Skyrmions, such as their

symmetries, that are responsible for some of the current successes of the Skyrme model.

We also consider some properties of the most general theory of pions and rho mesons

that can be obtained by our dimensional deconstruction approach upon varying the basis

functions. This analysis reveals that the rho mesons in these models can never be written

in the form of a massive Yang-Mills field, but does highlight one particular theory where

the same Faddeev-Bogomolny energy bound of the standard Skyrme model survives the

inclusion of rho mesons. We compute Skyrmions in this model for all baryons numbers

from one to twelve and find similar results to the previous theory, with binding energies

once again reduced to 4%, indicating some rigidity of results in models of this type.

Before discussing our new results, it is worth pointing out that there have been some

recent alternative approaches to modifying the standard Skyrme model to address the issue

that Skyrmions are too tightly bound. There are two different theories that are both based

on the idea of a suppression of the standard leading order term in the Lagrangian in a

derivative expansion of the pion field. The first of these is a BPS Skyrme model [15, 16],

including only a term of sixth order in derivatives and a potential term. As binding energies

vanish in this BPS model then it provides a good starting point to approach small binding

energies [17, 18]. A problem with the BPS model is an embarrassment of riches, in that

there is an infinite symmetry group that allows Skyrmions to take arbitrary shapes. It is

hoped that perturbing away from the BPS model by including a small contribution from

the standard term quadratic in derivatives might resolve this issue and yield the required

small binding energies, but initial numerical computations [19] suggest that this is a rather

singular perturbation.

Moving to an extreme parameter regime in the standard Skyrme model, where the

quartic Skyrme term dominates over the usual leading order quadratic term, allows a poten-

tial term to significantly influence the properties of Skyrmions [20]. This has been exploited

by making a non-standard choice of the potential term to produce a lightly bound Skyrme
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model [19] with binding energies of the correct order of magnitude to model nuclei. Multi-

Skyrmions in this model are very different from those in the standard Skyrme model and

consist of portions of a lattice of well-separated single Skyrmions. Low binding energies are

obtained because it is energetically unfavourable for Skyrmions to merge and indeed they

can be effectively replaced by point particles [21], so some of the nice solitonic features of

Skyrmion models of nuclei become redundant. Whether the substantial suppression of the

standard kinetic term for pions, used in both the lightly bound and BPS models, has serious

implications for the description of pions within these models has yet to be fully investigated.

The theory that is closest in spirit to that in the present paper is the holographic model

of Sakai and Sugimoto [22] and indeed the derivation [11] of the rho meson extension

of the standard Skyrme model may be viewed as a truncation of a flat space analogue

of a holographic construction. Baryons in the low energy effective action of the Sakai-

Sugimoto model correspond to solitons in a bulk five-dimensional curved spacetime and the

complexity of this model means that only the single soliton has been computed so far [23].

However, approximations suggest [24] that there may be regimes in which this model has

multi-Skyrmions composed of well-separated single Skyrmions with similarities to those in

the lightly bound model. It has also been shown [25] that there are parameter regimes where

integrating out fields of the Sakai-Sugimoto model produces a generalized Skyrme model in

which the dominant term is the one of sixth order in derivatives. These results hint at the

possibility that all the apparently disparate recent attempts to modify the Skyrme model

to reduce binding energies may in fact be related to each other in highly non-trivial ways.

2 Including rho mesons in the Skyrme model

The standard Skyrme model is a nonlinear theory of pions in which the pion fields

(π1, π2, π3) are combined into the Skyrme field U ∈ SU(2) as

U =

(
σ + iπ3 iπ1 + π2

iπ1 − π2 σ − iπ3

)
, (2.1)

and the sigma field imposes the constraint σ2 + π21 + π22 + π23 = 1. The static energy is

written in terms of the three su(2)-valued currents Ri = ∂iU U
−1 as

Eπ =

∫ (
− c1

2
Tr(RiRi)−

c2
16

Tr([Ri, Rj ]
2)

)
d3x, (2.2)

where c1 and c2 are positive constants with values related to the choice of energy and length

units. Baryons are described by Skyrmions, which are topological soliton solutions of the

theory, with baryon number identified with the integer-valued topological charge

B = − 1

24π2

∫
εijkTr(RiRjRk) d

3x. (2.3)

The Faddeev-Bogomolny energy bound [26] for the Skyrme model is

Eπ ≥ 12π2
√
c1c2 |B|, (2.4)
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and the energy of the single Skyrmion exceeds this bound by over 20%, thereby providing

plenty of room for large binding energies for Skyrmions with B > 1.

The standard Skyrme model can be extended to a theory of pions and rho mesons

by applying a dimensional deconstruction of pure Yang-Mills theory with an extra spatial

dimension [11]. The starting point is the Yang-Mills energy in R4 given by

EYM = −1

8

∫
Tr(FIJFIJ) d4x, (2.5)

where xI , with I = 1, . . . , 4, denote the spatial coordinates and FIJ = ∂IAJ − ∂JAI +

[AI , AJ ] are the components of the su(2)-valued field strength. The instanton number

N ∈ Z of the gauge field provides the lower bound on the energy

EYM ≥ 2π2 |N |, (2.6)

that is attained by fields that are either self-dual or anti-self dual.

To deconstruct the fourth dimension we generalize the approach in [11] by writing

x4 = z, fixing the gauge Az = 0 and writing the remaining three components in terms of

the Skyrme currents Ri and the su(2)-valued rho meson fields ρi. Explicitly, we assume the

restricted form

Ai = −1

2
(1 + φ)Ri + αφ′ρi, (2.7)

where φ(z) is a real-valued odd function satisfying the boundary condition φ(∞) = 1 and α

is a positive normalization constant. Substituting this restricted form into the Yang-Mills

energy (2.5), and integrating out the fourth dimension, the energy EYM defines a theory of

pions and rho mesons with the energy given by Eπ,ρ = Eπ + Eρ + Eint, where

Eρ =

∫
−Tr

{
1

8
c8(∂iρj − ∂jρi)2 +

1

4
m2ρ2i + c3(∂iρj − ∂jρi)[ρi, ρj ] + c4[ρi, ρj ]

2

}
d3x, (2.8)

and the interaction energy between the pions and rho mesons is

Eint =

∫
−Tr

{
c5([Ri, ρj ]− [Rj , ρi])

2 − c6[Ri, Rj ](∂iρj − ∂jρi)− c7[Ri, Rj ][ρi, ρj ]

+
1

2
c6[Ri, Rj ]([Ri, ρj ]− [Rj , ρi])−

1

8
c8([Ri, ρj ]− [Rj , ρi])(∂iρj − ∂jρi)

−1

2
c3([Ri, ρj ]− [Rj , ρi])[ρi, ρj ]

}
d3x. (2.9)

The constant coefficients in the above energy formulae are given by the integral expressions

c1 =
1

8

∫ ∞
−∞

φ′2 dz, c2 =
1

8

∫ ∞
−∞

(1−φ2)2 dz, c3 =
α3

4

∫ ∞
−∞

φ′3 dz, c4 =
α4

8

∫ ∞
−∞

φ′4 dz,

c5 =
α2

32

∫ ∞
−∞

(1+φ2)φ′2 dz, c6 =
α

16

∫ ∞
−∞

(1−φ2)φ′ dz=
α

12
,

c7 =
α2

16

∫ ∞
−∞

(1−φ2)φ′2 dz, c8 =α2

∫ ∞
−∞

φ′2 dz, m2 =α2

∫ ∞
−∞

φ′′2 dz. (2.10)
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Set I Set II

exact numerical exact numerical

c1
1

4
√
π

0.141 1
6 0.167

c2 - 0.198 1
6 0.167

c3
1

2
√
6π

1
4

0.153
√
3

10 0.173

c4
1
8

√
1
2π 0.050 9

140 0.064

c5 - 0.038 3
80 0.038

c6
π1/4

12
√
2

0.078
√
3

24 0.072

c7 - 0.049 1
20 0.050

c8 1 1.000 1 1.000

m 1√
2

0.707 2√
5

0.894

Table 1. The values of the constants for Set I and Set II, where exact values are given if the

required integrals can be calculated analytically and numerical values correspond to either the

numerical evaluation of the exact result or the numerical computation of the integral if an exact

result is unavailable.

We fix the value of α by requiring the standard normalization c8 = 1 for the term in the

rho meson energy that is quadratic in derivatives.

The instanton number of the gauge field (2.7) is equal to the baryon number of the

Skyrme field, that is N = B, hence the theory with pions and rho mesons inherits the

Yang-Mills energy bound (2.6) to give

Eπ,ρ ≥ 2π2|B|. (2.11)

Motivated by the requirement of obtaining a natural extension to include an arbitrary

number of vector mesons, the choice of function made in previous studies [11, 14] is

φ(z) = erf(z/
√

2), (2.12)

and then c8 = 1 requires that α = π1/4/
√

2. This yields values for the constants that we

denote by Set I and can be found in table 1, where some of these constants can be calcu-

lated analytically whereas others can only be found by computing the integrals in (2.10)

numerically. For Set I the Yang-Mills derived energy bound (2.11) for the theory with

pions and rho mesons is not as strict as the Faddeev-Bogomolny bound (2.4) for the pion

theory alone as 2π2 < 12π2
√
c1c2 = 2.005× π2.

A motivation for a new parameter set is to obtain an extension of the standard Skyrme

model in which the Faddeev-Bogomolny bound survives the inclusion of rho mesons by

virtue of the fact that it coincides exactly with the Yang-Mills derived energy bound. The

following simple application of the Cauchy-Schwarz inequality proves that the Yang-Mills
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derived bound cannot improve upon the Faddeev-Bogomolny bound,

12π2
√
c1c2 =

3π2

2

√(∫ ∞
−∞

φ′2 dz

)(∫ ∞
−∞

(1− φ2)2 dz
)

≥ 3π2

2

∫ ∞
−∞

φ′(1− φ2) dz =
3π2

2

∫ 1

−1
(1− φ2) dφ = 2π2. (2.13)

Saturation of the Cauchy-Schwarz inequality used in the above argument requires that

there exists a positive constant β such that φ′ = β(1− φ2). The Yang-Mills derived bound

therefore agrees with the Faddeev-Bogomolny bound only if this equation is satisfied, which

requires that φ = tanh(βz). The scale β controls the ratio of the coefficients in the Skyrme

model, c1/c2 = β2, which we set to unity to match with traditional Skyrme units. The

new parameter set is therefore obtained from the function

φ(z) = tanh(z), (2.14)

and the normalization constant is α =
√

3/2 to obtain c8 = 1. This yields the constants

denoted by Set II in table 1, where this time all constants can be calculated analytically.

Note that despite the change of function there is still a reasonable agreement between the

values of the constants in Set I and Set II.

In section 3 we present the results of numerical computations to calculate Skyrmions

and their binding energies using both parameter Set I and Set II. Before this, we show that

within our framework it is impossible to obtain a parameter set in which rho mesons can

be represented by a massive Yang-Mills field.

Traditionally, rho mesons are treated as a massive Yang-Mills field using an energy of

the form

Eρ =

∫
−Tr

{
c8
8

(∂iρj − ∂jρi + g[ρi, ρj ])
2 +

m2

4
ρ2i

}
d3x, (2.15)

where g is the gauge coupling constant. A comparison of this expression and (2.8) shows

that a necessary condition for the Yang-Mills generated rho meson energy to have this form

is that c4c8 = 2c23. However,

8

α6
(c4c8 − 2c23) =

(∫ ∞
−∞

φ′4 dz

)(∫ ∞
−∞

φ′2 dz

)
−
(∫ ∞
−∞

φ′3 dz

)2

> 0 (2.16)

by the Cauchy-Schwarz inequality and the fact that φ(z) cannot be a linear function of z

as this is incompatible with the boundary conditions φ(±∞) = ±1. This simple argument

proves that within our framework there is no parameter set for a massive Yang-Mills for-

mulation as 2c23/(c4c8) < 1, but both parameter Set I and II are reasonably close to this

unattainable limit, with 2c23/(c4c8) = 2
√

2/3 = 0.94 for Set I and 2c23/(c4c8) = 14/15 = 0.93

for Set II.

3 Numerical results for Skyrmions

To obtain Skyrmions that minimize the energy Eπ,ρ we perform parallel numerical com-

putations using a simulated annealing code with 1303 lattice points and spatial deriva-

tives evaluated using second order finite difference approximations. The lattice spacing is

– 6 –
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Figure 1. Energy density isosurfaces for Skyrmions with baryon numbers up to 12, in the model

with pions and rho mesons using parameter Set I. The symmetry group of each Skyrmion is also

listed.

dx = 0.08 for parameter Set I and dx = 0.068 for parameter Set II, so that the lattice

spacing in Skyrme units is the same for both parameter sets. At the boundary of the grid

we fix the Skyrme field to be the identity matrix and all the components of the rho meson

fields are set to zero. To reduce computational time we employ a course lattice for the

initial phase of the minimization, with 653 lattice points and a lattice spacing double the

value on the fine lattice. We interpolate the fields from the coarse lattice to provide an

initial field for energy minimization on the fine lattice. Applying a standard finite differ-

ence approximation on such a coarse lattice is inappropriate as the resolution is not fine

enough to preserve the baryon number, but we avoid this problem by using Ward’s log-

arithmic approximation [27] for the sigma model energy of the Skyrme field. In fact, we

find that not only does this method preserve the topology on our coarse lattice, but it also

provides a surprisingly good estimate for the final energy obtained following interpolation

and minimization on the fine lattice.

All initial conditions consist of vanishing rho meson fields, with the Skyrme field con-

structed from a range of methods that include the rational map ansatz [28] and the product

ansatz using both well-separated individual Skyrmions and clusters. For each baryon num-

ber, the Skyrmion we present is the lowest energy solution found using this variety of initial

conditions, although other local energy minima were also obtained. We also apply the same

procedure and algorithm to the standard Skyrme model to recompute the Skyrmions that

minimize the energy Eπ, to provide an accurate comparison between energies in the models

with and without rho mesons.

– 7 –



J
H
E
P
0
5
(
2
0
1
8
)
1
7
4

Set I Set II

B Eπ
2π2B

Eπ,ρ
2π2B

1 1.2461 1.0624 1.0649

2 1.1912 1.0475 1.0485

3 1.1566 1.0372 1.0375

4 1.1300 1.0286 1.0284

5 1.1274 1.0288 1.0284

6 1.1180 1.0260 1.0253

7 1.1043 1.0216 1.0206

8 1.1065 1.0233 1.0222

9 1.1057 1.0234 1.0221

10 1.1029 1.0225 1.0212

11 1.1027 1.0231 1.0217

12 1.0994 1.0225 1.0209

Table 2. The energy per baryon (in units of 2π2) for Skyrmions with 1 ≤ B ≤ 12 in the Skyrme

model (Eπ/(2π
2B)) and the model including rho mesons (Eπ,ρ/(2π

2B)) using parameter Set I and

Set II.

Figure 2. The energy per baryon (in units of 2π2) for Skyrmions with baryon number 1 to 12 in

the standard Skyrme model (red squares) and the model including rho mesons (blue circles) using

parameter Set I.

Figure 1 displays energy density isosurfaces for Skyrmions with 1 ≤ B ≤ 12 using

parameter Set I. The symmetry group of each Skyrmion is also shown and in all cases it

is found to coincide with the symmetry group of the Skyrmion in the standard Skyrme

model. This figure appears to show that the inclusion of rho mesons has had very little

influence on Skyrmions. However, this overlooks the fact that there has been a significant

reduction in the energies of these Skyrmions, as revealed in table 2, where we present the

energy per baryon for these Skyrmions and compare them with the values in the standard

Skyrme model. We also show the same information in graphical form in figure 2.
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Figure 3. The energy per baryon (in units of 2π2) as a function of the separation between a pair

of single Skyrmions in the standard Skyrme model (upper red curve) and the model including rho

mesons (lower blue curve) using parameter Set I.

These results show that the inclusion of rho mesons has shifted Skyrmion energies much

closer to the lower bound and has reduced the binding energies of these Skyrmions from

around 15% to less than 4%.Although the inclusion of rho mesons has not decreased binding

energies to the 1% level seen in experimental data, this reduction is a big step towards more

realistic values and demonstrates that the inclusion of the heavier mesons neglected in the

standard Skyrme model is a feasible mechanism to move Skyrmion theory closer to reality.

Furthermore, unlike other recent attempts to modify the Skyrme model to lower binding

energies, this is achieved without any change in the qualitative features of Skyrmions.

In table 2 we also present Skyrmion energies for parameter Set II, where we see that

the results are very similar. In fact, plots of energy density isosurfaces for Skyrmions with

parameter Set II are indistinguishable from those presented for Set I in figure 1, so they

are not shown here. The reduction of binding energies to around 4% seems to be a rigid

result in theories of this type.

As one might expect, a reduction in binding energies is accompanied by a flattening

of the interaction potential between Skyrmions. This is demonstrated in figure 3 where we

plot the energy as a function of separation between two single Skyrmions for the standard

Skyrme model (upper curve) and the model of pions and rho mesons using parameter

Set I (lower curve). This data is calculated by tracking the positions of two initially

separated single Skyrmions during the energy minimizing evolution. Recent work [29, 30]

has highlighted the importance of vibrational modes in ordering the spin states of quantized

Skyrmions, and the softening of these modes obtained by the addition of rho mesons will

make these considerations even more important.

The flattening of the interaction potential mirrors the results found for the Skyrme

crystal with pions and rho mesons [31], where an approximate description in terms of

Fourier modes reveals only a weak dependence of the energy per baryon on the period of

the crystal. Furthermore, the minimal energy per baryon corresponds to a binding energy

that is consistent with the results presented in the present paper for finite baryon numbers.
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4 Conclusion

We have considered Skyrmions in models of pions and rho mesons obtained by integrating

out the extra dimension of pure Yang-Mills theory. These models have an advantage over

traditional attempts to incorporate rho mesons, in that a topological energy bound survives

the inclusion of vector mesons and it can even be arranged so that the same Faddeev-

Bogomolny bound of the standard Skyrme model survives this extension. By applying

parallel numerical computations we have obtained the first multi-Skyrmions in theories of

this type and shown that binding energies are dramatically reduced. Skyrmion energies are

much closer to the topological lower bound than in the standard Skyrme model, despite very

little change in the qualitative features of Skyrmions. It is expected that including the next

heaviest mesons will further reduce binding energies but it will be a significant numerical

challenge to include these extra fields because of the increase in the number of degrees of

freedom and the number of terms that need to be evaluated in computing the energy.

The studies in this paper have considered massless pions but including a pion mass term

would also be interesting and is expected to change the qualitative features of Skyrmions for

large enough baryon numbers, as in the case of the standard Skyrme model [32]. It might

also be interesting to investigate the pion potential used in the lightly bound model [19], to

see whether it can have such significant consequences on the structure of Skyrmions when

the influence of the term quadratic in pion field derivatives is suppressed not by reducing

the coefficient of this term but by interactions between pions and rho mesons.

Using the expression for the energy Eπ,ρ given in this paper one could ignore its

origin from Yang-Mills theory and simply consider this theory without the requirement

that the parameters are constrained by the integral expressions (2.10). Of course, the

topological lower bound is then lost and it is not even obvious what constraints need to be

imposed on the parameter set so that the energy remains positive. One way to attempt to

simplify the parameter space is to enforce a massive Yang-Mills field formulation for the

rho mesons. We have made some preliminary investigations of this approach by perturbing

away from the parameters given by Set I and Set II to enforce the required relations between

the parameters required for a gauge field formulation but initial results suggest that the

original parameter sets are close to optimal in terms of reducing binding energies. As the

parameter space is large it is not possible to make a systematic study of Skyrmion energies

in theories of this type, so it is possible that an improved parameter set exists, but without

a sophisticated derivation of a parameter set it seems unlikely that one could be found

simply by brute computation.

The results in this paper are presented in a form that is independent of the calibration

of the model, namely the specification of physical energy and length units. In the standard

Skyrme model there are many ways to calibrate the model, with the original calibration

obtained by matching the masses of the nucleon and delta resonance using a rigid rotor

quantization [33, 34]. However, the delta is a broad resonance that strongly radiates pions,

which is related to the fact that the spin of the delta strongly deforms the B = 1 Skyrmion

and this has a rather complicated effect on the calibration of the model [35]. Furthermore,

the calibration using the B = 1 sector does not provide an accurate fit for the properties of

– 10 –
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nuclei with larger values of B, so alternative calibrations have been proposed to provide a

better match for larger nuclei [36]. These same calibration issues remain for the extended

Skyrme model, at a similar level to the standard Skyrme model, hence the reason that we

present our results in a form that is independent of the choice of calibration.
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