
Journal of Computer and System Sciences 89 (2017) 328–348
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

On the combinatorial design of data centre network

topologies ✩,✩✩

Iain A. Stewart

School of Engineering and Computing Sciences, Durham University, Science Labs, South Road, Durham DH1 3LE, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 April 2016
Received in revised form 26 January 2017
Accepted 29 May 2017
Available online 13 June 2017

Keywords:
Data centre networks
Switch-centric data centre networks
Fat-Trees
Combinatorial designs
Bipartite graphs
Path diversity

The theory of combinatorial designs has recently been used in order to build switch-centric
data centre networks incorporating a large number of servers, in comparison with the
popular Fat-Tree data centre network. We clarify and extend these results and prove that
in these data centre networks: there are pairwise link-disjoint paths joining all the servers
adjacent to some switch with all the servers adjacent to any other switch; and there are
pairwise link-disjoint paths from all the servers adjacent to some switch to any identically-
sized collection of target servers where these target servers need not be adjacent to the
same switch. In both cases, we always control the path lengths. Our constructions and
analysis are undertaken on bipartite graphs with the applications to data centre networks
being easily derived. Our results show the potential of the application of results and
methodologies from combinatorics to data centre network design.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. The data centre network context

Data centres are expanding both in terms of their size and their importance as computational platforms for cloud com-
puting, web search, social networking, and so on. There is an increasing demand that data centres incorporate more and
more servers but so that overall computational efficiency is not compromised through excessive traffic. A key factor as to the
eventual performance of a data centre is the data centre network (DCN); that is, the interconnection fabric of the servers and
switches within the data centre. As we strive to incorporate more and more servers, new topologies are being developed so
as to cope with the increase in scale and best utilize the additional computational power. It is with topological aspects of
DCNs that we are concerned in this paper.

The traditional design of a DCN is switch-centric so that the routing intelligence resides amongst the switches, with the
servers behaving only as computational nodes. In switch-centric DCNs, there are no direct server-to-server links; only server-
to-switch and switch-to-switch links. Switch-centric DCNs are traditionally tree-like with servers located at the ‘leaves’ of
the tree-like structure. Examples include ElasticTree [1], VL2 [2], HyperX [3], Portland [4], and Flattened Butterfly [5], al-
though the dominating switch-centric DCN is Fat-Tree [6]. Whilst it is generally acknowledged that tree-like, switch-centric

✩ This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant ‘Interconnection Networks: Practice unites with
Theory (INPUT)’ [grant number EP/K015680/1].
✩✩ A preliminary version of this paper appeared as an extended abstract in the Proceedings of 20th International Symposium on Fundamentals of Computation
Theory (A. Kosowski, I. Walukiewicz, eds.), Gdansk, Poland, August 17–19 2015, Lecture Notes in Computer Science, Volume 9210, Springer, 2015, 283–295.

E-mail address: i.a.stewart@durham.ac.uk.
http://dx.doi.org/10.1016/j.jcss.2017.05.015
0022-0000/© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcss.2017.05.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://creativecommons.org/licenses/by/4.0/
mailto:i.a.stewart@durham.ac.uk
http://dx.doi.org/10.1016/j.jcss.2017.05.015
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2017.05.015&domain=pdf

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 329
DCNs have their limitations when it comes to, for example, scalability, due to the size of routing tables at the switches,
switch-centric DCNs remain popular and can usually be constructed from commodity hardware. A more recent paradigm,
namely the server-centric DCN, has emerged so that deficiencies of the tree-like, switch-centric DCNs might be ameliorated.
Server-centric DCNs reflect that the routing intelligence resides within the servers with switches operating only as dumb
crossbars. In server-centric DCNs there are only server-to-switch and server-to-server links. However, server-centric DCNs
also suffer from deficiencies such as packet relay overheads caused by the need to route packets within the server; more-
over, server-centric DCNs have yet to make it into the commercial mainstream (the reader is referred to [7] for an overview
of the state of the art as regards DCN architectural design). It is with the construction of switch-centric DCNs that we are
concerned here.

It is extremely difficult to design computationally efficient (switch-centric) DCNs so as to incorporate large numbers of
servers as there are many additional considerations to take into account. For example, switches and (especially) servers in
data centres have a limited number of ports with a consequence being that the more servers there are, the greater the
average or worst-case link-count between two distinct servers; hence, there is a packet latency overhead to be borne. Also,
so as to better support routing, fault-tolerance, and load-balancing, we would prefer that there are numerous alternative
paths within the DCN joining any two distinct servers; that is, that there is path diversity. Irrespective of the DCN paradigm
within which one works, there are many other design parameters to bear in mind relating to, for example, (incremental)
scalability, throughput, cost, oversubscription, energy consumption, latency, and security (see, for example, [8,9] for an
overview). The upshot is that the DCN designer has to simultaneously secure a number of performance characteristics, some
of which are competing against each other; this makes the DCN design space complex and difficult to work in.

1.2. Using combinatorial designs to build DCNs

A recent proposal in [10] advocated the use of combinatorial design theory in order to design switch-centric DCNs; these
DCNs have beneficial properties as regards incorporating more servers and possessing path diversity yet it is possible to limit
the worst-case link-length of server-to-server shortest paths (and so, ultimately, achieve better control over packet latency
in a DCN). The use of combinatorial designs within the study of general interconnection networks is not new and originated
in [11] where the targeted networks involved processors communicating via buses (the reader is referred to [12] for a range
of applications of combinatorial design theory within computer science). A hypergraph framework was developed in [11]
where the hypergraph nodes represent the processors and the hyperedges the buses. Likewise, an analogous framework
was developed in [10] but where the hypergraph nodes and edges both represent switches so that the pendant servers
‘hang off’ some of the switches (we present a detailed description of this framework in Section 3.3). In [10], the ubiquitous
switch-centric Fat-Tree DCN from [6] was used as a yardstick against which to compare the new DCN designs developed in
[10] under the normalization that all DCNs are to have the same worst-case link-length of server-to-server shortest paths,
namely 6, as this equals the worst-case link-length of server-to-server shortest paths in the Fat-Tree DCN. It was shown
that more servers can be incorporated within the new DCNs yet, crucially, the resulting DCNs have good path diversity. It is
the algebraic properties (relating to symmetry and balance) possessed by transversal designs that enable the constructions
and analysis as described in [10]. One slight difficulty with the original and novel approach taken in [10] is that some of
the path diversity results derived there are incorrect (as we explain later in Section 4.1). Not only has combinatorial design
theory featured as regards the design of interconnection networks but other aspects of algebra have too; indeed, there has
been recent work on the relevance of Cayley graphs, Hamming graphs, and hyperbolicity to DCN design (see, e.g., [13–15]).

1.3. Our contribution

In this paper we return to the framework of [10] and formulate and prove path diversity results for the switch-centric
DCNs constructed using the methods of that paper. As our concern is entirely with topological properties of DCNs, hence-
forth we abstract our DCNs as undirected graphs where the nodes are to represent servers and switches and the edges
point-to-point links. The crux of the construction in [10] is (essentially) to build a bipartite graph using a systematic method,
called the 3-step method, involving a different ‘base’ bipartite graph and a transversal design, and to convert the resulting
bipartite graph into switch-centric DCNs (in a variety of ways). After explaining how hypergraphs and transversal designs
can all be considered as bipartite graphs in Section 2, in Section 3 we provide a detailed description of the 3-step frame-
work from [10] and explain how the bipartite graphs constructed are converted into switch-centric DCNs. Next, we revisit
the results from [10]. In particular, in Section 4 we correct and extend the analysis in [10] and affirm that using the 3-step
method from [10], we can build switch-centric DCNs: with many more servers than the Fat-Tree DCN yet so that, like the
Fat-Tree, every server-to-server shortest path has length at most 6; and so that (assuming some numeric conditions on the
base bipartite graph and the transversal design) we can find pairwise link-disjoint paths from all of the servers adjacent to
a particular switch to all of the servers adjacent to any other switch. Moreover, we provide an upper bound on the lengths
of the paths constructed in terms of the diameter of the base bipartite graph (see Theorem 4). We also deal with a sce-
nario missing from [10] (see part (b) of Theorem 4). As we explain, the general situation is more subtle than was assumed
in [10].

The DCN path diversity, as we have described it above, comes about from building bipartite graphs (which are subse-
quently converted to DCNs) so that given any two distinct nodes, there are numerous node-disjoint paths joining these two

330 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
nodes; that is, these bipartite graphs have one-to-one path diversity. In Section 5, we go on to show that we can actually
build numerous edge-disjoint paths from a source node to different destination nodes in our bipartite graphs; that is, we
have one-to-many path diversity (one-to-one and one-to-many path diversity are defined in Section 2.1). The DCNs obtained
from these bipartite graphs are such that (assuming some numeric conditions on the base bipartite graph and the transver-
sal design) we can find pairwise link-disjoint paths from all of the servers adjacent to some switch to any identically-sized
collection of servers (irrespective of which switch they are adjacent to). Consequently, we show that our DCNs provide
support for additional communication patterns that are prevalent within data centre networks. It should be noted that one-
to-many and many-to-many communication patterns are commonplace in data centres; for example, in ‘big data’ processing
applications such as MapReduce, Hadoop, Spark, and Storm (see, e.g., the survey [16]).

This paper is unashamedly theoretical. However, we demonstrate that not only is there interesting combinatorics within
the practical world of DCN design but that combinatorial mathematics can potentially contribute to the DCN design space
on a practical level. We feel that the mathematical aspects of DCNs have so far remained almost completely unexamined
and we advocate a closer theoretical scrutiny of DCNs both as a model of computation and in relation to the vast swathes of
research on general interconnection networks. We mention some practical considerations and directions for further research
in the Conclusion.

2. Basic concepts

We begin by briefly reviewing some architectural aspects of switch-centric DCNs that are pertinent to our subse-
quent research. We then move on to the discrete structures featuring in [10,11], namely hypergraphs, bipartite graphs,
and transversal designs. So that we might fully describe and understand the constructions in [10,11], as well as our own
upcoming analysis of switch-centric DCNs, we eventually amalgamate hypergraphs, bipartite graphs, and transversal designs
so that by the end of this section, we will have developed an encompassing bipartite graph framework for the design of
switch-centric DCNs. The reader should be aware that it will not be until Section 3.3 that we transform the bipartite graphs
that we have been constructing up until then into switch-centric DCNs. As a hint as to this transformation (and so that
the reader does not lose sight of our eventual goal), roughly speaking we shall regard the nodes of one of our constructed
bipartite graphs as switch-nodes and attach to some of these switch-nodes additional server-nodes in order to get our
switch-centric DCN. General graph-theoretic concepts can be obtained in [17].

2.1. Switch-centric DCNs

A switch-centric DCN is abstracted as a graph (which we also refer to as a DCN) where the nodes are partitioned into two
sets: there are server-nodes; and there are switch-nodes. Of course, the server-nodes correspond to servers in the DCN and
the switch-nodes to switches; note that immediately there are practical design limitations imposed by the number of ports
in a real switch and the number of NIC ports in a real server (we sometimes refer to the number of ports of a switch-node
rather than its degree). Furthermore, in switch-centric DCNs there are no links joining one server-node directly to another
server-node (because all routing within a switch-centric DCN falls within the purview of the switches). Of concern to us in
this paper will be incorporating a comparatively large number of server-nodes within our DCNs but so that the maximum
length of a shortest path joining any two server-nodes, that is, the diameter of the DCN, is kept within a given bound, where
the length of such a path is the number of distinct links on the path. Essentially, we will be comparing DCNs as to how
many server-nodes they incorporate but when their diameters are normalized.

However, DCNs must also possess other properties to make them usable within a data centre context. For example, they
also need to: be scalable and incrementally scalable (that is, have the capacity to cope with increases in components and
data); have low message latency; provide for high overall throughput (under a range of traffic patterns); be able to tolerate
(a limited number of) faults; be energy efficient; be both economically and physically viable; and support virtualization (that
is, the partitioning of the DCN into virtual networks on a dynamic basis), amongst many other things. Support for some
of these properties can be measured using graph theory; for example, the diameter of the DCN gives guidance as regards
the expected message latency. Of particular interest to us will be path diversity which we define (somewhat informally) as
the capacity to send data without inducing additional congestion or so as to cope with existing congestion or faults. There
are two contexts of interest to us: the one-to-one (or unicast) context, when a source server-node wishes to send data to a
destination server-node by the utilization of independent paths (we will return to what we mean by ‘independent’ soon);
and the one-to-many (or multicast) context, when a source server-node wishes to send data to a number of destination
server-nodes so that the different transmissions do not induce congestion. Path diversity is highly relevant to a number of
the above properties such as latency and scalability, where different paths are used to split and balance loads, and fault
tolerance, where different paths provide alternative means of transit in the case of faults. Path diversity is important in
both the one-to-one and one-to-many contexts, with this importance accentuated in the latter context when a data centre
needs to support data replication and applications like MapReduce [18]. An additional dimension is added with respect to
virtualization when we have virtual machines embedded within a data centre that share the same resources but require
traffic to be routed via different routes. As we shall soon see, just as with latency, the independence of paths can be
considered graph-theoretically.

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 331
2.2. Hypergraphs

Hypergraphs provide the original framework for the 3-step construction (to be defined later) as employed in [11,10]:
in [11], hypergraphs were used to model bus interconnection networks; and in [10], hypergraphs were used to model data
centre networks. For the moment, and in order to appreciate the context of [11,10], we retain this hypergraph framework
before we phrase all content in this introduction within an encompassing bipartite graph framework.

A hypergraph H = (V , E) consists of a finite set V of nodes together with a finite set E of hyperedges where each
hyperedge is a non-empty set of nodes and each node appears in at least one hyperedge. The degree of a node is the
number of hyperedges containing it and the rank of a hyperedge is its size as a subset of V . A hypergraph is regular (resp.
uniform) if every node has the same degree (resp. every hyperedge has the same rank) with this degree (resp. rank) being
the degree (resp. rank) of the hypergraph. Every graph G = (V , E) has a natural representation as a hypergraph: the nodes
of the hypergraph are V ; and the hyperedges are E , where the hyperedge e consists of the pair of nodes incident with the
edge e of G .

2.3. Hypergraphs and bipartite graphs

We can represent any hypergraph H = (V , E) as a bipartite graph: the node set of the bipartite graph is V ∪ E; and there
is an edge (v, e), for v ∈ V and e ∈ E , in the bipartite graph if, and only if, v ∈ e in the hypergraph. It is clear that this yields
a one-to-one correspondence between hypergraphs and bipartite graphs (without isolated nodes) that come complete with
a partition of the elements into a ‘left-hand side’, which will correspond to the nodes of the hypergraph, and a ‘right-hand
side’, which will correspond to the hyperedges of the hypergraph (remember that in a hypergraph, every node is in at least
one hyperedge and every hyperedge contains at least one node, so we cannot have isolated nodes in our bipartite graphs).
We assume (henceforth) that every bipartite graph comes equipped with such a partition and for clarity from now on we
refer to the nodes on the left-hand side as nodes and the nodes on the right-hand side as blocks (this is in keeping with our
upcoming realisation of transversal designs as bipartite graphs). Likewise, we refer to the degree of a node as its degree and
the degree of a block as its rank. A bipartite graph corresponding to a regular, uniform hypergraph of degree d and rank
� is called a (d, �)-bipartite graph. Every bipartite graph (and so every hypergraph) also describes its dual bipartite graph
(or alternatively its dual hypergraph) where the roles of the nodes on the left-hand side and the blocks on the right-hand
side of the partition are reversed in the definition of the bipartite graph; so, for example, the dual bipartite graph of a
(d, �)-bipartite graph is regular of degree � and uniform of rank d.

Note that if G is a bipartite graph then it corresponds to a hypergraph via our representation above and it also corre-
sponds to a hypergraph via the natural representation highlighted in Section 2.2. The two hypergraphs corresponding to the
same bipartite graph are different and we are never interested in the representation of a bipartite graph as a hypergraph
via the natural representation of Section 2.2.

2.4. Paths in hypergraphs

A path in some hypergraph H = (V , E) (or the corresponding bipartite graph) is an alternating sequence of nodes and
hyperedges so that all nodes are distinct, all hyperedges are distinct, and a node v ∈ V follows or precedes a hyperedge
e ∈ E in the sequence only if v ∈ e in the hypergraph (or (v, e) is an edge in the corresponding bipartite graph). The first
element of some path is the source and the final element the destination. The length of any path is its length in the bipartite
graph corresponding to the hypergraph, and the distance between two distinct elements of V ∪ E is the length of a shortest
path joining these two elements in the corresponding bipartite graph. The diameter of H is the maximum of the distances
between every pair of distinct nodes of V , and the line-diameter of H is the maximum of the distances between every pair
of distinct hyperedges of E .

We have two remarks. First, we have traditional notions of diameter and line-diameter in any bipartite graph. Note that
our notion of diameter in a bipartite graph, which is the longest shortest node-to-node path (and so ignores node-to-block
and block-to-block paths), is different from the usual graph-theoretic notion of diameter in a bipartite graph (the same
comment can be made as regards line-diameter). When we talk of the diameter or line-diameter of a bipartite graph, we
mean with respect to our notion of diameter or line-diameter, respectively; if we need to talk of the traditional notion of
graph diameter then we will make this clear. Second, our notion of path length in a hypergraph differs from that in [10]
where the length is the number of nodes (resp. hyperedges) in a hyperedge-to-hyperedge (resp. node-to-node) path. There
is no real consequence to this difference; essentially, our notion of path length is double that in [10]. However, we shall
soon move to an exclusively bipartite graph-theoretic formulation in which our notion of length is the natural one to adopt.

We shall be interested in building sets of paths in some hypergraph H so that the paths might have the same sources
or destinations; moreover, we shall require that these paths do not ‘interfere’ with one another (or are ‘independent’ as we
mentioned earlier). We say that a set P of paths in H is:

• pairwise internally-disjoint if any source or destination of some path of P only appears as a source or destination on any
path of P , and any node or hyperedge that is not a source or destination appears on at most one path of P

332 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
• pairwise edge-disjoint if every pair (v, e) ∈ V × E is such that v follows or precedes e on some path at most once across
all paths from the set P .

2.5. Hypergraphs as switch-centric DCNs

Given some hypergraph H = (V , E), our intention is to ultimately transform this hypergraph into a DCN by consid-
ering both the nodes and the hyperedges as switch-nodes so that the switch-nodes corresponding to the nodes (which
we shall later call the level-1 switch-nodes, with the switch-nodes corresponding to the hyperedges the level 2-switch-
nodes) also have adjacent server-nodes, which we have yet to define (this intention is best appreciated by working with
the corresponding bipartite graph rather than the hypergraph; the upcoming Fig. 5 provides a visualization of what we
mean). Consequently, we can regard a hypergraph H as modelling a switch-centric DCN N where there are two levels of
switch-nodes.

Suppose that we have a set P of pairwise internally-disjoint paths from a node u of H to another node v of H . This
translates to a set P ′ of pairwise internally-disjoint paths in N from the corresponding level-1 switch-node u to the cor-
responding level-1 switch-node v . We can use the paths of P ′ for the simultaneous transfer of data from server-nodes
adjacent to the level-1 switch-node u to server-nodes adjacent to the level-1 switch-node v (see Fig. 5). In order to fa-
cilitate this data transfer we require that level-1 switch-nodes are non-blocking whereas the level-2 switch-nodes can be
blocking; recall that a switch-node is non-blocking when no contention arises when simultaneously sending data through
the switch-node on two distinct input links and out on two distinct output links, and blocking otherwise. This is because
we need to be able to simultaneously move data from all servers adjacent to the level-1 switch-node u in N across the
switch-node and out along different links (the same can be said for v). If our paths in H are only pairwise edge-disjoint
then we require that level-1 and level-2 switch-nodes of N are non-blocking (as we might have switch-nodes appearing on
more than one path of P ′ , even though no link does).

2.6. Transversal designs

The notion of a transversal design is crucial to what follows.

Definition 1. Let k, � ≥ 2. A [�, k]-transversal design T is a triple (X , D, U) where: |X | = �k; D = (D1, D2, . . . , D�) is a
partition of X into � equal-sized groups (each of size k); and U = {U j : j = 1, 2, . . . , k2} is a family of k2 subsets of X , each
of size � and called a block, so that

• |Di ∩ U j| = 1, for i = 1, 2, . . . , �, j = 1, 2, . . . , k2

• each pair of elements {xi, x j}, where xi ∈ Di , x j ∈ D j and i �= j, is contained in exactly 1 block.

We adopt a graph-theoretic perspective on transversal designs as defined in Definition 1: we think of the [�, k]-trans-
versal design T as a bipartite graph where the elements of X (resp. U) lie on the left-hand side (resp. right-hand side) of
the partition, and so are called nodes (resp. blocks) within the bipartite graph, and so that in this bipartite graph there is an
edge (p, Q), for p ∈ X and Q ∈ U , if, and only if, in the transversal design the element p is in the block Q . Note that the
bipartite graph corresponding to the transversal design from Definition 1 is a (k, �)-bipartite graph. Henceforth, we adopt
our bipartite graph framework and regard both hypergraphs and transversal designs as bipartite graphs (unless we state
otherwise).

There is an intimate relationship involving transversal designs, orthogonal arrays and mutually orthogonal latin squares,
although there is no need to give definitions here. However, it is well known: that there are � mutually orthogonal latin
squares of order k if, and only if, there is a [� +2, k]-orthogonal array if, and only if, there is a [� +2, k]-transversal design;
and that there are at most k − 1 mutually orthogonal latin squares of order k (see, for example, [19]). Hence, if we have
a [�, k]-transversal design then � ≤ k + 1. Also, if k is a prime power then a [�, k]-transversal design exists whenever
2 ≤ � ≤ k + 1 (again, see [19]). We shall use these facts later on. The study of the existence of [�, k]-transversal designs,
for various � and k, is a long-standing area of research.

We require one final bit of notation. If T is some transversal design, as in Definition 1, and x and y are nodes in distinct
groups then we refer to the unique block adjacent to both x and y as the block generated by x and y.

3. The 3-step construction and its extensions

We now describe the 3-step construction for building bipartite graphs (or, equivalently, hypergraphs) by using a ‘base’
bipartite graph and a transversal design (which we think of as a bipartite graph). This construction originated in [11] and
was used in [10]. We then explain how this construction was subsequently extended in [10] both by iteration and by
composition so as to yield switch-centric DCNs.

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 333
Fig. 1. A (d,�)-bipartite graph H0.

Fig. 2. A [�,k]-transversal design T .

3.1. The 3-step construction

The 3-step construction proceeds as follows.

Step 1: Let H0 be a connected (d, �)-bipartite graph so that there are n nodes (on the left-hand side of the partition, each
of degree d) and e blocks (on the right-hand side, each of rank �). Such an H0 can be visualized as in Fig. 1 (ordinarily, we
represent nodes as circles and blocks as squares).

Step 2: Let T be a [�, k]-transversal design. In particular, there are � groups of k nodes (on the left-hand side) as well as
k2 blocks (on the right-hand side). Such a T can be visualized as in Fig. 2. Build the bipartite graph H as follows. For every
node p of H0, introduce a group G p of k nodes of H ; we say that the group of nodes G p of H is associated with the node p
of H0. For every block Q of H0, adjacent to the nodes p1, p2, . . . , p� in H0, introduce a copy of T , denoted T Q , rooted on
the � groups of nodes G p1 , G p2 , . . . , G p� ; so, associated with the block Q of H0, we have a set B Q of k2 blocks in H . We
refer to the � groups of nodes G p1 , G p2 , . . . , G p� as the roots of the copy T Q of T in H . Such a bipartite graph H can be
visualized as in Fig. 3 where two of the copies of T are partially shown (note that they might have some roots in common
but their respective sets of blocks are always disjoint as are their sets of edges). The bipartite graph H0 provides a template
as to how we introduce copies of T to form H .

Note that:

• each node of H can be indexed as ap, j , where p ∈ {pi : i = 1, 2, . . . , n} and j ∈ {1, 2, . . . , k}, so that p is the node of H0
to which the group G p in which ap, j sits is associated and j is the index of the node ap, j in this group

• each block of H can be indexed as B Q ,U , where Q ∈ {Q i : i = 1, 2, . . . , e} and U ∈ {1, 2, . . . , k2}, so that Q is the block of
H0 to which the set of blocks B Q in which B Q ,U sits is associated and U is the block of T to which B Q ,U corresponds.

In addition, each node of T can be indexed ui, j , where i ∈ {1, 2, . . . , �} and j ∈ {1, 2, . . . , k}, so that Di is the group of nodes
in which ui, j sits and j is the index of ui, j in that group.

334 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
Fig. 3. Amalgamating H0 and T to get H .

Step 3: Let H∗ be the bipartite graph obtained from the bipartite graph H by reversing the roles of nodes and blocks (so,
H∗ is the dual bipartite graph of H). Note that the bipartite graph H∗ is regular of degree � and uniform of rank dk.

We refer to the (dk, �)-bipartite graph H (resp. the (�, dk)-bipartite graph H∗) constructed above as having been con-
structed by the 2-step (resp. 3-step) method using the (d, �)-bipartite graph H0 and the [�, k]-transversal design T . Note
that H (resp. H∗) has nk nodes (resp. ek2 nodes) and ek2 blocks (resp. nk blocks).

Our intention with our constructions is to ultimately design switch-centric DCNs with beneficial properties (as we out-
lined in Section 2). Whilst there are many properties we would like our DCNs to have, it is important that DCNs can
integrate a large number of server-nodes so that the server-node-to-server-node distances are short and so that there is
redundancy as to which (short) server-node-to-server-node routes we choose to use. In our framework of bipartite graphs,
this translates as building bipartite graphs with a large number of nodes and with redundant (short) node-to-node paths.
As a first step, the following result was proven in [11] (it is actually derivable from the proofs of our upcoming results)
and allows us control over the length of shortest block-to-block paths in 2-step constructions (and so shortest node-to-node
paths in 3-step constructions).

Theorem 2 ([11]). Suppose that the (dk, �)-bipartite graph H has been constructed using the 2-step method using the (d, �)-bipartite
graph H0 and the [�, k]-transversal design T . If H0 has line-diameter λ ≥ 4 then H has line-diameter λ.

Of course, if H∗ is the dual bipartite graph of H in Theorem 2 then it has diameter λ. We reiterate that our notion of
diameter and line-diameter differs from that in [11,10] (where the length of a block-to-block path is the number of nodes
on that path; so, in [11,10] the bound λ ≥ 4 in our Theorem 2 appears as λ ≥ 2).

3.2. Iteration

We can iterate the 3-step construction (as was done in [10]). Note that if H0 is a (d, �)-bipartite graph of line-diameter
λ ≥ 4, with n nodes and e blocks, then the bipartite graph H1 resulting from the 2-step construction (using H0 and some
[�, k]-transversal design T) is a (dk, �)-bipartite graph of line-diameter λ. So, repeating the 2-step construction but with
H1 replacing H0 (we keep the same T , although we do not have to) yields a (dk2, �)-bipartite graph H2 of line-diameter λ.
By iterating this construction, we can clearly obtain a (dki , �)-bipartite graph Hi of line-diameter λ. Converting Hi into H∗

i
results in a bipartite graph with ek2i nodes, with nki blocks, with diameter λ, and that is regular of degree � and uniform
of rank dki .

3.3. Composition

We are now in a position to transform our bipartite graphs into switch-centric DCNs. As well as the constructions, and
their associated proofs, that were presented in [10], new methods of composing bipartite graphs (built according to the

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 335
Fig. 4. Building a switch-centric DCN via Method A when c > 1.

Fig. 5. Building a switch-centric DCN via Method A when c = 1.

Fig. 6. Building a switch-centric DCN via Method B .

3-step construction) so as to obtain switch-centric DCNs were also derived. In [10], 4 such methods were given: Methods
M1, M2 and M3 are different cases of Method A, below; and Method M4 is Method B .

In what follows, let H be a (�, δ)-bipartite graph where � < δ and where there are n nodes and e blocks.

Method A: We take c copies of H where δ − c� > 0 and c ≥ 1. For each node u of H : we remove the corresponding node
in each of the c copies of H and introduce a new switch-node (common to all copies of H); we make all of the c� edges
incident with the c original nodes incident with this new switch-node; and we attach ρ = δ − c� pendant server-nodes
to the new switch-node. All blocks of H are considered as switch-nodes. We follow [10] and call the new switch-nodes
level-1 switch-nodes, and the original switch-nodes level-2 switch-nodes. The construction of the switch-centric DCN N(H)

from H via this method can be visualised as in Fig. 4, where we only show the construction for the c nodes corresponding
to one node of H . Note that every switch-node of N(H) has δ ports. Also, there is some choice as regards the parameter c
(so that choosing different values for c yields different values for ρ). We illustrate the special case when c = 1 in Fig. 5,
where H is a (3, 5)-bipartite graph. The general case when c ≥ 1 corresponds to Method M2 of [10]; the special case when
c = 1 corresponds to Method M1; and the special case when c =

 δ

2 �
�

� corresponds to Method M3. In this latter case, the
aim is to ensure that every level-1 switch-node is adjacent to roughly the same number of level-2 switch-nodes as it is
server-nodes. Note that: the number of server-nodes in N(H) is n(δ − c�); the number of level-1 switch-nodes is n; and
the number of level-2 switch-nodes is ce.

Method B: We now work with a switch-centric DCN as constructed by Method A. Let every level-1 switch-node have ρ ad-
jacent server-nodes. Suppose that there is an even number of level-1 switch-nodes. Partition the set of level-1 switch-nodes
into pairs. For each pair of switch-nodes (S ′, S ′′): remove
ρ

2 � server-nodes that are adjacent to S ′ and remove �ρ
2
 server-

nodes that are adjacent to S ′′; and make every server-node that is adjacent to the switch-node S ′ or the switch-node S ′′
also adjacent to the other switch-node. Note that the number of ports of any switch-node has not changed but that every
server-node is now adjacent to 2 switch-nodes. The philosophy behind this construction is to better tolerate the failure of a
level-1 switch-node. The construction can be visualized as in Fig. 6 where paired level-1 switch-nodes have the same shade
of grey and where ρ = 3.

336 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
Table 1
Comparing switch-centric DCNs built with switch-nodes with 64 ports.

Network # switch ports Diameter # server-nodes # switch-nodes

Fat-Tree 64 6 65,536 5,120
H∗ 64 4 54,720 6,840
N1

A(H∗) 64 6 3,064,320 61,560
N2

A(H∗) 64 6 437,760 102,600
N3

A(H∗) 64 6 1,751,040 82,080
NB (H∗) 64 6 1,532,160 61,560
H̄∗ 64 4 20,480 1,280
N1

A(H̄∗) 64 6 1,228,800 21,760

3.4. Some illustrations of DCNs

In [10], switch-centric DCNs constructed using the 3-step method allied with Methods A and B were favourably com-
pared with the 3-level Fat-Tree DCN from [6] with regard to the number of server-nodes therein when the diameter and the
number of ports of a switch-node are held constant. The reader is referred to [6,10] for full details as regards the topology
of Fat-Tree and to Tables 2–4 in [10] for the complete comparison; however, we include a replicated table here purely for
illustrative purposes. In Table 1 (which is Table 2 from [10]): the number of ports of any switch-node is forced to be 64;
the diameters of the DCNs resulting from using the 3-step method, iteration and composition are forced to be (at most) 6
(like that of Fat-Tree); and the numbers of server-nodes and switch-nodes in the resulting DCNs are as given (note that the
length of a server-node-to-server-node path as defined in [10] is the number of switch-nodes on it, which is one less than
our notion of length which is the number of links on the path).

• The bipartite graph H∗ is obtained using the 3-step method starting with a (8, 8)-bipartite graph H0, that has 855
nodes, 855 blocks, and diameter and line-diameter 4 (such a bipartite graph H0 exists; see [20]), and a [8, 8]-transversal
design T . The DCN H∗ in Table 1 is the DCN obtained by simply regarding every node of the bipartite graph H∗ as a
server-node (note that in this DCN we require that every server-node has 8 NIC ports); the DCN N1

A(H∗) (resp. N2
A(H∗),

N3
A(H∗)) is obtained by employing Method A with c = 1 (resp. c = 7, c = 4); and the DCN NB(H∗) is obtained by

employing Method B with N1
A(H∗) (note that the number of switch-nodes entry in Table 2 in [10] is incorrect).

• The bipartite graph H̄ is obtained using the 3-step method iterated twice, starting with a (4, 4)-bipartite graph H̄0,
that has 80 nodes, 80 blocks, and diameter and line-diameter 4 (such a bipartite graph H̄0 exists; see [20]), and a
[4, 4]-transversal design T̄ (actually, in [10] this transversal design is not mentioned; it does, however, exist). The DCN
H̄∗ in Table 1 is the DCN obtained by simply regarding every node of the bipartite graph H̄∗ as a server-node (note
that the number of server-nodes entry in Table 2 in [10] is incorrect, though the correct number is stated in the text);
and the DCN N1

A(H∗) is obtained by employing Method A with c = 1 (note that the numbers of server-nodes and of
switch-nodes entries in Table 2 in [10] are incorrect).

It is clear from Table 1 (and from [10]) that we can build much bigger server-centric DCNs using the 3-step method and the
subsequent iterations and compositions than Fat-Tree but without increasing the diameter (which is a proxy for latency);
of course, we would wish the new DCNs to have other properties that make them attractive within a data centre context.
Establishing such properties was essentially the whole point of [10] and we continue with this line of research in what
follows. Note that we provide additional illustrations of our constructions of switch-centric DCNs, in tandem with our
upcoming results, in Section 4.3.

Before we move to our main results, let us comment on using the 2-step method as opposed to the 3-step method when
building our switch-centric DCNs (the same comment was made in [10]). Note that when one uses the (iterated) 2-step
method, whilst the rank of the resulting bipartite graph stays the same, the degree grows. Were we to attach server-nodes
to the switch-nodes that replace the nodes of the 2-step bipartite graph H , rather than the 3-step bipartite graph H∗ , the
number of ports of the level-2 switch-nodes (which would be �) would be much less than the number of ports of the
level-1 switch-nodes. Hence, it makes more sense to proceed as we have done above.

4. One-to-one path diversity

So far, we have set the scene from [10] and described a method by which we can build bipartite graphs (the 3-step
method) which can then be transformed into switch-centric DCNs with many more servers than Fat-Tree whilst maintaining
the diameter of Fat-Tree, i.e., 6. However, as we mentioned earlier, there are many more aspects to the design of DCNs with
an important one being path diversity. In what follows, we highlight some problems with the proofs of one-to-one path
diversity in [10] for bipartite graphs built using the 3-step method. We then provide not only correct proofs as regards
one-to-one path diversity but we also extend and improve the analysis in [10] with new results. We end the section by
applying our constructions so as to build DCNs with good one-to-one path diversity properties.

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 337
4.1. Difficulties with proofs

In order to detail the difficulties in [10], we adopt the terminology of [10]. There are slight problems with the proof
of Theorem 2 in [10] (although they are easily surmountable). For example, in Subcases (1.2) and (2.2), {ri, si, ti} ⊆ G E

i and
consequently we cannot generate the blocks R j and S j . Also, in Subcase (2.1), the situation where q ∈ P ∩ Q \ {p} is not
considered; it could be that r j = s j , for some j �= i.

An attempt was also made in [10] to extend Theorem 2 of [10]: see Theorem 3 of [10]. Assumptions concerning the
connectivity of H0 are made and the existence of additional paths in H∗ to those constructed in the proof of Theorem 2
are claimed in the situation when the two blocks B Q ,U and B Q ′,U ′ are such that Q �= Q ′ (recall our method of indexing
in Section 3.1 which we adopt here). However, there are serious flaws in the proof of Theorem 3 of [10], so much so that
the theorem is untrue. In short, Theorem 3 of [10] claims that if there are ω pairwise internally-disjoint paths in H0 from
Q to Q ′ then there are min{�ω, kω} pairwise internally-disjoint paths in H from B Q ,U to B Q ′,U ′ . This does not make
sense: the maximum number of pairwise internally-disjoint paths in H from B Q ,U to B Q ′,U ′ is � (as the bipartite graph
H has rank �) and so we must have that min{�ω, kω} ≤ �. For instance, in Example 1 of [10], the bipartite graph H0
is the cycle of length 10 (H0 is derived from the cycle of length 5 using its natural representation as a hypergraph; see
Section 2.2), so that d = � = 2, n = e = 5, and there are 2 internally-disjoint paths from any block of H0 to any other block
of H0. A [2, 3]-transversal design T is used and the bipartite graph H∗ built by the 3-step method has rank 6 and degree 2.
However, if Theorem 3 of [10] were true then there would be 4 pairwise disjoint paths from B Q ,U to B Q ′,U ′ in H∗ which
clearly cannot be the case.

4.2. The one-to-one scenario

We now resurrect (some of) the proofs of the main results from [10] and extend the results claimed in that paper. The
following lemma proves most useful.

Lemma 3. Let T be some [�, k]-transversal design with groups of nodes {D1, D2, . . . , D�}. Let U be some block of T . For each
i ∈ {1, 2, . . . , �}, let ri ∈ Di be the unique node of Di that is adjacent to U . Set R = {ri : i = 1, 2, . . . , �}. Let P be a set of distinct pairs
of nodes so that: exactly one node of any pair in P is in R and no node of R is in more than one pair of P ; and no pair in P is such that
both nodes lie in the same group. The blocks generated by the pairs in P are all distinct and different from U .

Proof. Suppose that {ri, x} ∈ P , where x ∈ Dl \ R with l �= i and where i ∈ {1, 2, . . . , �}. Let Uri ,x be the block generated by
ri and x. If Uri ,x = U then U is adjacent to the distinct nodes rl and x in Dl which yields a contradiction.

Suppose that {r j, y} ∈ P \ {{ri, x}}, where j ∈ {1, 2, . . . , �}. Let Ur j ,y be the block generated by r j and y. Suppose that
Uri ,x = Ur j ,y ; hence, Uri ,x is adjacent to both ri and r j with i �= j. As any two nodes lying in distinct groups in T are
adjacent to a unique block of T , we must have that Uri ,x = Ur j ,y = U ; but this yields a contradiction as above. Hence, the
blocks generated by the pairs in P are all distinct and all different from U . �

We use this lemma throughout, both explicitly and implicitly.
Our main result in the one-to-one context is concerned with building as many pairwise internally-disjoint paths as we

can from any block to any other block in the bipartite graph built using the 2-step method (or, equivalently, from any node
to any other node in the bipartite graph built using the 3-step method). We explain the impact of the existence of these
paths on the path diversity of subsequently built DCNs presently. One added and significant complication in the proof of
the following result comes about when the transversal design T is a [k + 1, k]-transversal design (so, there is the potential
for � = k + 1 > k paths).

Theorem 4. Let k, �, d ≥ 2. Let H be built by the 2-step method from the (d, �)-bipartite graph H0 using the [�, k]-transversal
design T .

(a) Let Q and Q ′ be distinct blocks of H0 so that there are λ ≥ 1 pairwise internally-disjoint paths in H0 from Q to Q ′ , each of length
at most μ. There are min{�, k} pairwise internally-disjoint paths from any block B Q ,V of H to any other block B Q ′,V ′ of H.
Furthermore, if λ ≥ 2 then there are � pairwise internally-disjoint paths from any block B Q ,V of H to any other block B Q ′,V ′
of H. All paths have length at most μ + 4.

(b) If B Q ,V and B Q ,V ′ are distinct blocks of H then there are � pairwise internally-disjoint paths from B Q ,V to B Q ,V ′ , each of length
at most 6 and lying entirely within T Q .

Proof. Recall that we mentioned in Section 2.6 that necessarily � ≤ k + 1.

Case (a)(i): Suppose that: � = k + 1; λ ≥ 2; and the distinct nodes p1 and p2 are common neighbours in H0 of Q and Q ′ .
We ‘batch’ the groups of nodes of T Q and T Q ′ together so that in each of T Q and T Q ′ , the k + 1 groups of nodes form

1 batch of k groups and 1 batch of 1 group as follows:

338 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
Fig. 7. The basic set-up in Case (a)(i).

• for i ∈ {1, 2}, define Gi
0 = G pi = Hi

0
• the remaining k − 1 groups within T Q are G1

1, G
1
2, . . . , G

1
k−1 and the remaining k − 1 groups within T Q ′ are H1

1,

H1
2, . . . , H1

k−1 so that:

– any group of the form G1
j , where j > 0, is associated with some node p /∈ {p1, p2} of H0 that is adjacent to both Q

and Q ′ if, and only if, the group H1
j is associated with the same node p of H0 (so, if G1

j and H1
j are associated with

the same node p /∈ {p1, p2} of H0 then they are the same group in H).

For each j ∈ {0, 1, . . . , k − 1}, let r1
j ∈ G1

j (resp. s1
j ∈ H1

j) be the unique node of G1
j (resp. H1

j) that is adjacent to B Q ,V

(resp. B Q ′,V ′) in H . Note that the pair r1
j and s1

j lie in the same group of nodes in H if, and only if, both G1
j and H1

j are
associated with the same node p of H0 and this node p is adjacent to both Q and Q ′ in H0. The situation can be visualized
as in Fig. 7 (where in this case Q and Q ′ have a + 2 ≥ 2 common neighbours in H0 and where, for example, r1

1 �= s1
1 but

r1
a = s1

a).
Let G1

0 = {r1
0, t1, . . . , tk−1} and H1

0 = {s1
0, w1, . . . , wk−1} so that:

• if r1
0 = s1

0 then t j = w j , for j = 1, 2, . . . , k − 1

• if r1
0 �= s1

0 then r1
0 = w1, s1

0 = t1 and t j = w j , for j = 2, 3, . . . , k − 1.

We are now ready to generate some blocks within T Q and T Q ′ in H . For each j ∈ {1, 2, . . . , k − 1}:

• let Br1
j ,t j

be the unique block of T Q in H generated by the nodes r1
j ∈ G1

j and t j ∈ G1
0

• let B ′
s1

j ,w j
be the unique block of T Q ′ in H generated by the nodes s1

j ∈ H1
j and w j ∈ H1

0.

So, we have generated k − 1 blocks in T Q and k − 1 blocks in T Q ′ . Note that any block of T Q is necessarily distinct from
any block of T Q ′ . By Lemma 3 applied twice to both T Q and T Q ′ , all blocks of {Br1

j ,t j
: j = 1, 2, . . . , k − 1} are distinct and

different from B Q ,V , and all blocks of {B ′
s1

j ,w j
: j = 1, 2, . . . , k − 1} are distinct and different from B Q ′,V ′ . Call these two sets

of blocks our working sets of blocks.
We are now in a position to build some paths from B Q ,V to B Q ′,V ′ in H . If r1

0 = s1
0 then define the paths:

• π1
0 as B Q ,V , r1

0, B Q ′,V ′
• π1

1 as B Q ,V , r1
1, B Q ′,V ′ , if r1

1 = s1
1, and as B Q ,V , r1

1, Br1
1 ,t1

, t1, B ′
s1

1,w1
, s1

1, B Q ′,V ′ , if r1
1 �= s1

1 (note that t1 = w1).

If r1
0 �= s1

0 then define the paths:

• π1
0 as B Q ,V , r1

0, B ′
s1

1,w1
, s1

1, B Q ′,V ′ (note that w1 = r1
0)

• π1
1 as B Q ,V , r1

1, Br1
1,t1

, s1
0, B Q ′,V ′ (note that t1 = s1

0).

We’ll now build paths from B Q ,V to B Q ′,V ′ using nodes from the groups {G1
0} ∪ {G1

j , H
1
j : j = 2, 3, . . . , k − 1}. For each

j ∈ {2, 3, . . . , k − 1}:

• if r1
j �= s1

j then define the path:

– π1
j as B Q ,V , r1

j , Br1
j ,t j

, t j, B ′
s1

j ,w j
, s1

j , B Q ′,V ′ (note that t j = w j)

• if r1
j = s1

j then define the path:

– π1
j as B Q ,V , r1

j , B Q ′,V ′ .

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 339
Fig. 8. The unique [3,2]-transversal design.

Note that out of all of the k ‘π -paths’ constructed above, the only way that we can have that two of our paths are not
internally-disjoint is when r1

0 �= s1
0 but r1

1 = s1
1 (in which case π1

0 and π1
1 share the common node r1

1 = s1
1). In this case,

choose x1 ∈ G1
1 \ {r1

1}. Let Br1
0,x1

be the block of T Q in H generated by r1
0(= w1) ∈ G1

0 and x1 ∈ G1
1, and let B ′

s1
0,x1

be the

block of T Q ′ in H generated by s1
0(= t1) ∈ G1

0 and x1 ∈ G1
1 (in essence, we have dispensed with the blocks Br1

1 ,t1
and B ′

s1
1,w1

and replaced them with the blocks Br1
0 ,x1

and B ′
s1

0,x1
in our working sets of blocks). The conditions of Lemma 3 still hold

and so the blocks in our working sets of blocks are all distinct and different from B Q ,V and B Q ′,V ′ . Redefine the paths:

• π1
0 as B Q ,V , r1

1, B Q ′,V ′
• π1

1 as B Q ,V , r1
0, Br1

0,x1
, x1, B ′

s1
0,x1

, s1
0, B Q ′,V ′ .

The paths from the resulting set of k π -paths are now pairwise internally-disjoint and each has length at most 6.
Let r2

0 (resp. s2
0) be the unique node of G2

0 (resp. H2
0) that is adjacent to B Q ,V (resp. B Q ′,V ′) in H . Suppose that r2

0 = s2
0.

In this case, we build the path π2
1 defined as B Q ,V , r2

0, B Q ′,V ′ . This path is clearly internally-disjoint from all of the k
π -paths constructed above. Alternatively, suppose that r2

0 �= s2
0. If k ≥ 3 then there is a node x1

1 ∈ G1
1 \ {r1

1, s1
1}. Let Br2

0,x1
1

be
the block of T Q within H generated by r2

0 and x1
1, and let Bs2

0,x1
1

be the block of T Q ′ within H generated by s2
0 and x1

1. By
Lemma 3, these blocks are different from B Q ,V , B Q ′,V ′ and all other blocks used within the k π -paths constructed above
(even when we make the amendments to our working sets of blocks as detailed in the preceding paragraph). Define the
path π2

0 as B Q ,V , r2
0, Br2

0,x1
1
, x1

1, Bs2
0,x1

1
, s2

0, B Q ′,V ′ . This path has length 6 and is clearly internally-disjoint from all of the k

π -paths constructed above.
On the other hand, suppose that k = 2; so, � = 3. In particular, a [3, 2]-transversal design exists. We deal with this case

from scratch.

Lemma 5. There is exactly one [3, 2]-transversal design up to isomorphism and this is the transversal design depicted in Fig. 8.

Proof. In some [3, 2]-transversal design, let the set of blocks be {B1, B2, B3, B4} and let the group of nodes Gi be {ri, si},
for i = 1, 2, 3. W.l.o.g., we must have the set of edges

{(r1, B1), (r1, B2), (s1, B3), (s1, B4), (r2, B1), (r2, B3), (s2, B2), (s2, B4)}.
W.l.o.g., the node B4 is adjacent to r3, and r3 is adjacent to one other block. The only possible block that r3 can be adjacent
to is B1 (as otherwise we would have two nodes in different groups adjacent to 2 distinct blocks). �

Name the blocks and nodes of T Q as in Fig. 8. W.l.o.g. suppose that B Q ,V = B1 (it is easy to see that there is an
automorphism of T Q mapping any block to any other block). There are two cases to consider: when Q and Q ′ have 3
common neighbours in H0; and when they have only 2 common neighbours in H0. However, before we deal with these
cases, choose any 3 distinct nodes in T Q . A tedious case-by-case analysis yields that no matter which 3 nodes are chosen,
there are 3 pairwise internally-disjoint paths from B1 to the 3 nodes within T Q . For example, suppose that the 3 chosen
nodes are r1, s2 and s3. The 3 paths are: B1, r1; B1, r3, B4, s2; and B1, r2, B3, s3. It turns out that if the 3 chosen nodes are
in 3 different groups then the length of any path is at most 5, whereas if the 3 chosen nodes are in 2 different groups then
the length of any path is at most 3.

Suppose that Q and Q ′ have 3 common neighbours in H0. Choose the 3 nodes in T Q as the neighbours of B Q ′,V ′ in T Q ′ .
Consequently, from above, we clearly obtain 3 pairwise internally-disjoint paths from B Q ,V to B Q ′,V ′ as required. Moreover,
each path has length at most 6.

Suppose that Q and Q ′ have only 2 common neighbours in H0 where the groups corresponding to these neighbours are
{ri, si} and {r j, s j}, with i, j ∈ {1, 2, 3}, i �= j. Choose 3 nodes in T Q ′ as the two neighbours of B Q ′,V ′ in {ri, si} and {r j, s j},
call them xi and x j , plus one other node, call it x, say, from one of these groups, with the remaining unchosen node from
these two groups being denoted by y. By above, there are 3 pairwise internally-disjoint paths, π ′

1, π ′
2 and π ′

3, in T Q ′ from
B Q ′,V ′ to xi , x j and x, and we may assume that these paths do not involve y; for if one does then it must be the path to x,
in which case we simply choose y as our third chosen node, above, instead of x (it is not difficult to see that the path to x
has length at most 3). By above, there are also 3 pairwise internally-disjoint paths, π1, π2 and π3, in T Q from B1 to xi , x j

340 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
and x, each of length at most 3; moreover, these paths do not share any nodes with the paths π ′
1, π ′

2 and π ′
3 apart from the

end-nodes. Consequently, we clearly obtain 3 pairwise internally-disjoint paths from B Q ,V to B Q ′,V ′ as required. Moreover,
each path has length at most 6.

Case (a)(ii): Suppose that: � = k + 1; λ ≥ 2; and there is exactly one common neighbour in H0 of Q and Q ′ , namely the
node p1.

As λ ≥ 2, there is a path in H0 of the form Q , q1, Q 1, q2, Q 2, . . . , Q m−1, qm, Q ′ where m ≤ μ
2 and where p1 does not

appear on this path (note that q1 �= qm). We ‘batch’ our groups similarly to as we did before:

• define G1
0 = G p1 = H1

0, G2
0 = Gq1 and H2

0 = Gqm

• the remaining k −1 groups within T Q are G1
1, G

1
2, . . . , G

1
k−1 and the remaining k −1 groups in T Q ′ are H1

1, H1
2, . . . , H1

k−1.

Note that we necessarily have that the groups G1
j and H1

j are distinct, for j ∈ {1, 2, . . . , k − 1} (as are the groups G2
0

and H2
0).

For each j ∈ {0, 1, . . . , k − 1}, let r1
j ∈ G1

j (resp. s1
j ∈ H1

j) be the unique node of G1
j (resp. H1

j) that is adjacent to B Q ,V

(resp. B Q ′,V ′) in H . Also, let r2
0 ∈ G2

0 (resp. s2
0 ∈ H2

0) be the unique node of G2
0 (resp. H2

0) that is adjacent to B Q ,V (resp.
B Q ′,V ′) in H .

We construct the paths π1
j , for j = 0, 1, . . . , k − 1, exactly as we did in Case (a)(i). In addition, define the paths η2

0 as
B Q ,V , r2

0 and ν2
0 as B Q ′,V ′ , s2

0. If we can find a path in H from r2
0 to s2

0 so that no node or block of this path, apart from the
nodes and blocks of η2

0 and ν2
0 , lies in T Q or T Q ′ then we are done. In H : there is a path of length 2 lying entirely within

T Q 1 so that the source is r2
0 and the destination is some node y2 ∈ Gq2 ; there is a path of length 2 lying entirely within T Q 2

so that the source is y2 ∈ Gq2 and the destination is some node y3 ∈ Gq3 ; . . .; there is a path of length 2 lying entirely
within T Q m−1 so that the source is ym−1 ∈ Gqm−1 and the destination is s2

0 ∈ H2
0. We clearly have a required path of length

at most μ. So, we have constructed � = k + 1 pairwise internally-disjoint paths from B Q ,V to B Q ′,V ′ so that k of these
paths have length at most 6 and the remaining path has length at most μ.

Case (a)(iii): Suppose that: � = k + 1; λ ≥ 2; and there are no common neighbours in H0 of Q and Q ′ .
As λ ≥ 2, there are paths in H0 of the form Q , q1, Q 1, q2, Q 2, . . . , Q a−1, qa, Q ′ and Q , p1, P1, p2, P2, . . . , Pb−1, pb, Q ′

where a, b ≤ μ
2 and where these paths are internally-disjoint.

We ‘batch’ our groups similarly to as we did before:

• define G1
0 = Gq1 and H1

0 = Gqa

• choose k − 1 groups within T Q (different from G1
0) as G1

1, G
1
2, . . . , G

1
k−1 and choose k − 1 groups in T Q ′ (different from

H1
0) as H1

1, H1
2, . . . , H1

k−1.

Note that we necessarily have that the groups G1
j and H1

j are distinct, for j ∈ {0, 1, . . . , k − 1}.

For each j ∈ {0, 1, . . . , k − 1}, let r1
j ∈ G1

j (resp. s1
j ∈ H1

j) be the unique node of G1
j (resp. H1

j) that is adjacent to B Q ,V

(resp. B Q ′,V ′) in H . Let G1
0 = {r1

0, t1, . . . , tk−1} and H1
0 = {s1

0, w1, . . . , wk−1}. For each j ∈ {1, 2, . . . , k − 1}, let Br1
j ,t j

be the

block of T Q generated by r1
j ∈ G1

j and t j ∈ G1
0, and let B ′

s1
j ,w j

be the block of T Q ′ generated by s1
j ∈ H1

j and w j ∈ H1
0. By

Lemma 3 applied twice to both T Q and T Q ′ , all blocks of {Br1
j ,t j

: j = 1, 2, . . . , k − 1} are distinct and different from B Q ,V ,
and all blocks of {B ′

s1
j ,w j

: j = 1, 2, . . . , k − 1} are distinct and different from B Q ′,V ′ .

For j ∈ {1, 2, . . . , k − 1}, let η1
j be the path B Q ,V , r1

j , Br1
j ,t j

, t j and let ν1
j be the path B Q ′,V ′ , s1

j , B
′
s1

j ,w j
, w j . Define the

path η1
0 as B Q ,V , r1

0 and the path ν1
0 as B Q ′,V ′ , s1

0. In H : there are k paths of length 2 from the nodes r1
0, t1, . . . , tk−1 of Gq1

to distinct nodes y2
0, y

2
1, . . . , y

2
k−1 of Gq2 , respectively, so that all blocks on these paths lie in T Q 1 and are distinct; there

are k paths of length 2 from the nodes y2
0, y

2
1, . . . , y

2
k−1 of Gq2 to distinct nodes y3

0, y
3
1, . . . , y

3
k−1 of Gq3 , respectively, so

that all blocks on these paths lie in T Q 2 and are distinct; . . .; and there are k paths of length 2 from ya−1
0 , ya−1

1 , . . . , ya−1
k−1

to the nodes s1
0, w2, . . . , wk−1 of Gqa , respectively, so that all blocks on these paths lie in T Q m−1 and are distinct. We can

clearly piece all of the paths together to obtain k pairwise internally-disjoint paths from B Q ,V to B Q ′,V ′ so that each path
has length at most μ + 4.

We can build another path from B Q ,V to B Q ′,V ′ that is internally-disjoint from the k paths just constructed by proceed-
ing exactly as we did above or in Case (a)(ii), corresponding to the alternative path from Q to Q ′ in H0. This path has
length at most μ.

Case (a)(iv): Suppose that λ = 1 or � ≤ k.

By choosing the appropriate construction from the cases above, depending upon whether there is a common neighbour
of Q and Q ′ in H0, we can clearly construct min{�, k} pairwise internally-disjoint paths from B Q ,V to B Q ′,V ′ so that: if

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 341
there is a common neighbour of Q and Q ′ in H0, all paths have length at most 6; and if there is no common neighbour of
Q and Q ′ in H , all paths have length at most μ + 4.

Case (b): Consider the case when our two blocks are B Q ,V and B Q ,V ′ . Suppose that the block Q of H0 is adjacent to the
nodes p1, p2, . . . , p� . For each i ∈ {1, 2, . . . , �}, let ri ∈ G pi be adjacent to B Q ,V in H and let si ∈ G pi be adjacent to B Q ,V ′
in H . W.l.o.g. suppose that ri �= si , for i = 1, 2, . . . , b, and that ri = si , for i = b + 1, b + 2, . . . , �.

Suppose that b ≥ 2. For each i ∈ {1, 2, . . . , b − 1}, let Bri ,si+1 be the block of T Q that is generated by ri and si+1, and let
Brb,s1 be the block of T Q that is generated by rb and s1. By Lemma 3, all blocks Br1,s2 , Br2,s3 , . . . , Brb−1,sb , Brb,s1 are distinct
and different from B Q ,V and B Q ,V ′ . Hence: if πi is the path B Q ,V , ri, Bri ,si+1 , si+1, B Q ,V ′ , for i ∈ {1, 2, . . . , b − 1}; if πb is the
path B Q ,V , rb, Brb,s1 , s1, B Q ,V ′ ; and if πi is the path B Q ,V , ri, B Q ,V ′ , for i ∈ {b + 1, b + 2, . . . , �}, then paths in the resulting
set are pairwise internally-disjoint, with each path having length at most 4.

If b = 0 then the above construction trivially yields � paths of length 2 from B Q ,V to B Q ,V ′ . Suppose that b = 1. Choose
x2 ∈ G p2 \ {r2} and let Br1,x2 (resp. Bs1,x2) be the block of T Q generated by r1 and x2 (resp. s1 and x2). Clearly, Br1,x2 , Bs1,x2 ,
B Q ,V and B Q ,V ′ are all distinct. So, if π1 is the path B Q ,V , r1, Br1,x2 , x2, Bs1,x2 , s1, B Q ,V ′ and πi is the path B Q ,V , ri, B Q ,V ′ ,
for i ∈ {2, 3, . . . , �}, then we obtain � pairwise internally-disjoint paths, with all paths having length 2 except one which
has length 6. �

Theorem 4 is clearly optimal in the sense that the maximal number of pairwise internally-disjoint paths is always
constructed (this follows from a simple application of Menger’s Theorem). Also, irrespective of the erroneous proofs in [10],
Theorem 4(b) extends the claimed results in [10] by deriving � pairwise internally-disjoint paths from any block B Q ,V in
H to any block B Q ,V ′ (this scenario was not dealt with in [10]). Note also that the chance to obtain more than min{�, k}
pairwise internally-disjoint paths comes about when we force � = k + 1 and choose a [k + 1, k]-transversal design (if one
exists).

Of course, Theorem 4 yields path diversity in any DCN constructed using the 3-step method with Methods A and B .
Suppose that Method A has been used to construct a DCN where the number of server-nodes adjacent to some level-1
switch-node is at most the number of level-2 switch-nodes adjacent to the level-1 switch-node. If all level-1 switch-nodes
are non-blocking then we can simultaneously facilitate data transfers from all the server-nodes adjacent to some level-1
switch-node to all the server-nodes adjacent to any other level-1 switch-node (in fact, we need only that the source and
destination level-1 switch-nodes are non-blocking; all other level-1 switch-nodes can be blocking).

4.3. Applying our construction

In this section, we apply Theorem 4 and provide some concrete illustrations of how we can obtain switch-centric DCNs
that have the same diameter as Fat-Tree yet have more server-nodes and significant one-to-one path diversity.

The primary difficulty in the proof of Theorem 4 is in dealing with when the [�, k]-transversal design is such
that � = k + 1 (recall, k, �, d ≥ 2). However, dealing with this difficulty is worth it as having the capability to use
[k + 1, k]-transversal designs when applying the construction means that we obtain more flexibility as to the number of
switch ports necessarily required in the resulting DCNs, as we illustrate now. In what follows, we limit ourselves (on the
grounds of practicality) to switch-nodes with at most 128 ports. If we were only to use [�, k]-transversal designs where
(�, k) ∈ {(3, 3), (4, 4), (5, 5), (7, 7), (8, 8), (9, 9), (11, 11)} (note that each of these [�, k]-transversal designs exists; see Sec-
tion 2.6) in the (one-iteration) 3-step method then (assuming that we use bipartite graphs H0 that have the same number
of nodes as blocks; that is, for which d = �) we need level-2 switch-nodes with (�k =) 9, 16, 25, 36, 49, 64, 81, 100
or 121 ports (cf. the parameter values given immediately after the definition of the 3-step construction in Section 3.1). If
we allow [�, k]-transversal designs where (�, k) ∈ {(3, 2), (4, 3), (5, 4), (6, 5), (8, 7), (9, 8), (10, 9)} (again, note that each of
these [�, k]-transversal designs exists; see Section 2.6) then we have added flexibility in that we can also build DCNs with
level-2 switch-nodes with 6, 12, 20, 30, 56, 72 or 90 ports; of course, to ensure that we obtain full path diversity, we need
that H0 has at least 2 internally-disjoint paths joining any two distinct blocks.

As regards finding large, regular, uniform bipartite graphs of line-diameter 4 and so that there are at least 2 internally-
disjoint paths joining any two distinct blocks, this is not as straightforward as it is if we drop the second stipulation. There
is an extensive literature as regards the construction of regular, uniform bipartite graphs of a given degree and where
the degree is equal to the rank (see, for example, [20]) but in so far as we are aware, the construction of such graphs
with any added stipulations (relating to connectivity, for example) has not been considered. Nevertheless, there are simple
constructions that enable us to apply Theorem 4 to the full, as we now illustrate.

From [20], there is a regular, uniform bipartite graph of degree and rank 7 with 173 nodes and 173 blocks, and which
has graph-theoretic diameter 4. Enumerate the nodes as n1, n2, . . . , n173 and the blocks as b1, b2, . . . , b173. Take two disjoint
copies of this graph and add 346 edges joining ni in one graph to bi in the other graph; moreover, the nodes (resp. blocks) of
the new bipartite graph are exactly the nodes (resp. blocks) of the original disjoint copies. The resulting graph is a regular,
uniform bipartite graph of degree and rank 8 with graph-theoretic diameter at most 5; furthermore, there are clearly at
least 2 internally-disjoint paths joining any pair of distinct blocks or any pair of distinct nodes where these paths have
length at most 6. Take this bipartite graph as H0. The construction of H0 can be visualized as in Fig. 9, where we have also
illustrated, using dotted lines, a pair of internally-disjoint paths between a pair of blocks.

342 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
Fig. 9. Our regular, uniform bipartite graph construction.

Apply the 3-step method to H0 using a [8, 7]-transversal design. In the notation of Section 3.1, we have: the number of
nodes, n, in H0 equal to 346; the number of blocks, e, in H0 equal to 346; � = d = 8; and k = 7. This results in a bipartite
graph H with (ek2 =) 16,954 nodes, (nk =) 2,442 blocks, degree (� =) 8, and rank (dk =) 56. Now we apply Method A
with c = 4 to H ; so, with reference to the parameters of H in the construction of Method A (cf. Section 3.3), we now have
n = 16,954, e = 2,442, � = 8, and δ = 56. Consequently, we obtain a DCN of diameter 6 and with (n(δ − c�) =) 406,896
server-nodes, (n =) 16,954 level-1 switch-nodes, (ce =) 9,768 level-2 switch-nodes, and so that all switch-nodes have
(δ =) 56 ports. By Theorem 4, there are paths from the 24 server-nodes adjacent to the same level-1 switch-node X to the
24 server-nodes adjacent to another level-1 switch-node Y so that the only switch-nodes that lie on more than one of these
paths are X and Y and so that the length of each of these paths is at most 10. In addition, we have spare capacity at the
level-1 switch-nodes X and Y as 8 links to level-2 switch-nodes are not used.

Alternatively (for an increase in the number of server-nodes incorporated and in path diversity but so that more ports
are required on switch-nodes), apply the 3-step method with H0 using a [8, 8]-transversal design. This results in a bipartite
graph H with 22,144 nodes, 2,768 blocks, degree 8, and rank 64. Now apply Method A with c = 4 and we obtain a
DCN of diameter 6 and with 708,608 server-nodes, 22,144 level-1 switch-nodes, 11,072 level-2 switch-nodes, and so that
all switch-nodes have 64 ports. By Theorem 4, there are paths from the 32 server-nodes adjacent to the same level-1
switch-node X to the 32 server-nodes adjacent to another level-1 switch-node Y so that the only switch-nodes that lie
on more than one of these paths are X and Y and so that the length of each of these paths is at most 10. The actual
construction chosen will be dominated by the available hardware; that is, numbers of server-nodes and switch-nodes and
the radix of switch-nodes.

Undertaking more iterations of the 2-step construction before building our DCNs yields that if we use [�, k]-transversal
designs where (�, k) ∈ {(3, 3), (4, 4), (5, 5), (7, 7), (8, 8), (9, 9), (11, 11)} then we need level-2 switch-nodes with (dk2 =) 27,
64, 81 or 125 ports (cf. the parameter values pertaining to the iterated construction as specified in Section 3.2); and
if we use [�, k]-transversal designs where (�, k) ∈ {(3, 2), (4, 3), (5, 4), (6, 5), (8, 7), (9, 8), (10, 9)} then we need level-2
switch-nodes with an alternative range of port numbers. As an illustration, iterating the 2-step method by mixing the use
of [3, 3]- and [3, 2]-transversal designs, we can build DCNs where the level-2 switch-nodes need 6, 9, 12, 18, 24, 27, 36,
48, 54, 72, 81, 96 and 108 ports; for example, by iterating the 2-step construction twice with the [3, 2]-transversal, we
obtain a bipartite graph of degree 3 and rank 12, and a further application of the construction with the [3, 3]-transversal
yields a bipartite graph of degree 3 and rank 36. What is more, note that irrespective of the value of λ in relation to H0
in Theorem 4, one application of the 2-step construction yields a bipartite graph with at least 2 internally-disjoint paths
from any block to any other block; consequently, by Theorem 4, any bipartite graph formed by additional applications of
the 2-step construction will necessarily have maximal path diversity.

It has already been established in [10] that the 2-step and 3-step methodologies are viable when it comes to building
switch-centric DCNs that can host more server-nodes than a Fat-Tree and retain an acceptable level of (one-to-one) path
diversity whilst maintaining a diameter of 6; we further cement this viability in this paper. An important point to note is
that we need not choose our bipartite graph H0 to be as large as we can; as we have shown, smaller bipartite graphs might
yield DCNs with a sufficiently large number of server-nodes and optimal one-to-one path diversity.

5. One-to-many path diversity

We now work towards building � pairwise edge-disjoint paths from any block in some bipartite graph H built using the
2-step method to the blocks of any given multi-set of � blocks (so, there might possibly be repeated blocks; here, H and
� are as in the statement of Theorem 4 but where � ≤ k). Henceforth, when we write ‘set’ we often mean ‘multi-set’. We
begin by working only within some transversal design.

Theorem 6. Let T be any [�, k]-transversal design where k, � ≥ 2 and where � ≤ k. Let U be any block and let t1, t2, . . . , t� be any
� nodes or blocks, called target-nodes or target-blocks, as appropriate, where there may be repetitions. For each i = 1, 2, . . . , �, there
is a path πi from U to ti of length at most 7 so that these paths are pairwise edge-disjoint.

Proof. For each group of nodes D j within T , where j ∈ {1, 2, . . . , �}, let r j be the (unique) node of D j adjacent to the
block U ; we call the nodes r1, r2, . . . , r� root-nodes. Consider some group D j . There may be target-nodes that are identical

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 343
to the root-node r j ; call these target-nodes rooted, with the remaining target-nodes in D j called non-rooted. Call the number
of rooted target-nodes in D j the multiplicity of the root-node r j .

There are two essential cases: (a) we have � target-nodes and no target-blocks; (b) we have at least 1 target-block.

Case (a): Suppose that we have � target-nodes and no target-blocks.

We rank the groups of T as Dn1 , Dn2 , . . . , Dn� in decreasing order of the number of occurrences of non-rooted target
nodes within the group, with ties broken according to decreasing multiplicity of the root-nodes (and then arbitrarily). We
attempt to match the non-rooted target-nodes in Dn1 with the root-nodes rn2 , rn3 , . . . , rn� in this order but only if the
root-node has multiplicity 0 (that is, we skip over root-nodes of non-zero multiplicity; note that any skipped root-node is
identical to at least 1 target-node). If we are successful then we attempt to match the non-rooted target-nodes in Dn2 by
continuing down our list of root-nodes (again, skipping over root-nodes of non-zero multiplicity). If we are successful then
we attempt to match the non-rooted target-nodes in Dn3 , and so on. There are three possibilities.

(i) We successfully match every non-rooted target-node without running out of root-nodes (of multiplicity 0). This happens
when rn1 has non-zero multiplicity or when there is a root-node with multiplicity at least 2.

(ii) We successfully match all but one of the non-rooted target-nodes and the final non-rooted target-node does not lie in
Dn1 , in which case we match this target-node with rn1 . This happens when rn1 has multiplicity 0, every root-node has
multiplicity at most 1, and there is a non-rooted target-node that does not lie in Dn1 .

(iii) We have one non-rooted target-node of Dn1 remaining to be matched and also the root-node rn1 unmatched. This
happens when all of the non-rooted target-nodes lie in Dn1 and rn1 has multiplicity 0.

Consider Sub-case (ii). We extend our matching so that every root-node of multiplicity 1 is matched with the unique
target-node that is identical to it. We have a complete matching of root-nodes to target-nodes so that no target-node is
matched with the root-node in its own group unless the target-node is (the unique target-node) identical to the root-node.
For every pair (r, t) where r is a root-node matched with a target-node t and so that r and t do not lie in the same group,
let Ur,t be the block generated by r and t . Call the resulting set of blocks the U -blocks. By Lemma 3, all of the U -blocks are
distinct and different from U . If Ur,t is a U -block then define the path πr as U , r, Ur,t, t; and if the target-node t is identical
to the root-node r then define the path πr as U , t . The resulting � paths are pairwise internally-disjoint.

Consider Sub-case (iii). We have an almost complete matching of root-nodes to target-nodes so that no target-node
is matched with the root-node in its own group, except that some target-node t′ of Dn1 is not matched and nor is the
root-node rn1 . As we did above, we generate a set of U -blocks, one for each matched-pair. Again, these U -blocks are all
distinct and different from U , and by proceeding as above we obtain � − 1 pairwise internally-disjoint paths from U to
target-nodes.

Consider t′ and rn1 . As � ≥ 2, there is some node x in the group Dn2 that is neither a root-node nor a target-node. Let
U ′

rn1 ,x (resp. U ′
x,t′) be the block generated by rn1 and x (resp. x and t′). By Lemma 3, U ′

rn1 ,x is different from U and every
U -block; also, U ′

x,t′ is different from U and U ′
rn1 ,x . However, it could be that U ′

x,t′ is identical to some U -block (for this to
happen we would need that t′ is identical to some other target-node). If t is the target-node of Dn1 matched with rn2 then
U ′

x,t′ is different from Urn2 ,t . Hence, there are at most � − 2 U -blocks with which U ′
x,t′ might be identical. As we have at

least � − 1 choices for x in Dn2 (recall, � ≤ k), we can always choose x so that U ′
x,t′ is different from every U -block. Define

the path πrn1
as U , rn1 , U ′

rn1 ,x, x, U ′
x,t′ , t

′ . The resulting � paths from U to the target-nodes are pairwise internally-disjoint.

Consider Sub-case (i). We can extend our matching so that every root-node of non-zero multiplicity is matched with one
target-node that is identical to it. Hence, we have a partial matching of root-nodes to target-nodes so that no target-node
is matched with the root-node in its own group unless the target-node is identical to the root-node. As we did above,
we generate a set of U -blocks, one for each matched-pair where the root-node in the pair is different from its matched
target-node. Again, these U -blocks are all distinct and different from U , and we obtain pairwise internally-disjoint paths
from U to all of the target-nodes involved. We also obtain paths of length 1 from U to every target-node that is identical
to a root-node and has been matched with it. If there are no root-nodes of multiplicity greater than 1 then the result-
ing � paths are pairwise internally-disjoint and we are done. So, suppose that we have paths π1, π2, . . . , π�−b that are
pairwise internally-disjoint and that there are a ≥ 1 root-nodes of multiplicity at least 2 with b unmatched root-nodes (so,
b is the number of target-nodes remaining to be dealt with; of course, b ≥ a). Note that any group in which some hitherto
unmatched root-node lies, apart from Dn1 if rn1 is still unmatched (that is, has multiplicity 0), contains no target-nodes (be-
cause of the order in which we initially match target-nodes to root-nodes) and the groups containing unmatched root-nodes
are either Dn�−b+1 , Dn�−b+2 , . . . , Dn� , if rn1 is matched, or Dn1 , Dn�−b+2 , Dn�−b+3 , . . . , Dn� , if rn1 is unmatched.

Suppose that b = 1; hence, there is exactly one root-node rc , where c ≤ � − 1, of multiplicity greater than 1 and this
multiplicity is 2. W.l.o.g. let the solitary target-node remaining to be dealt with be t2 (which is identical to both rc and
some other target-node t1), with the solitary root-node remaining to be dealt with being either rn� or rn1 , as appropriate. If
� = 2 then we must have {rn1 , xn1} ⊆ Dn1 and {rn2 , xn2 } ⊆ Dn2 with xn1 �= rn1 and xn2 �= rn2 so that the two target nodes t1
and t2 are both equal to rn1 (note that in this case we define no U -blocks). Let U ′

xn2 ,rn1
(resp. U ′

rn2 ,xn1
, U ′

xn1 ,xn2
) be the block

generated by xn2 and rn1 (resp. rn2 and xn1 , xn1 and xn2). The blocks U , U ′
x ,r , U ′

r ,x and U ′
x ,x are all distinct. Define
n2 n1 n2 n1 n1 n2

344 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
the path π2 as U , rn2 , U ′
rn2 ,xn1

, xn1 , U ′
xn1 ,xn2

, xn2 , U ′
xn2 ,rn1

, t2 and the path π1 as U , t1; the two paths are internally-disjoint
and we are done.

Alternatively, suppose that b = 1 and � ≥ 3 (and so k ≥ 3). If c = n�−1 then there is a non-rooted target-node in each D j ,
for j ∈ {n1, n2, . . . , n�−2}, with the unmatched root-node being rn1 . Choose x ∈ D� \{rn� }. Otherwise, if c �= n�−1 then Dn�−1

contains at most 1 target-node, which, if it exists, is rooted, with the unmatched root-node being either rn1 or rn� . Choose
x ∈ D�−1 \ {rn�−1}. Whichever is the case, let r be the unmatched root-node (and so r ∈ {rn1 , rn�}). Let U ′

x,t2
(resp. U ′

r,x) be
the block generated by x and t2 (resp. r and x). By Lemma 3, the U -blocks, U , U ′

x,t2
and U ′

r,x are all distinct. Define the
path π� as U , r, U ′

r,x, x, U ′
x,t2

, t2 so as to obtain � pairwise internally-disjoint paths from U to the target-nodes; hence, we
are done.

Now suppose that b ≥ 2 (note that b ≤ � − 1 ≤ k − 1). As stated above, the root-nodes remaining to be dealt with are
either rn�−b+1 , rn�−b+2 , . . . , rn� or rn1 , rn�−b+2 , rn�−b+3 , . . . , rn� . Suppose that the root-nodes remaining to be dealt with
are rn�−b+1 , rn�−b+2 , . . . , rn� and the target-nodes remaining to be dealt with are t1, t2, . . . , tb (of course, every such target-
node is identical to an already matched root-node). For each i ∈ {� − b + 1, � − b + 2, . . . , �}, let Dni = {rni , x

ni
2 , xni

3 , . . . , xni
k }

and choose x′
ni

∈ Dni \{rni } (from our earlier remark, there are no target-nodes in Dni). For each i ∈ {� −b +1, � −b +2, . . . ,
� − 1}, let U ′

rni ,x
′
ni+1

be the block generated by rni and x′
ni+1

, and let U ′
rn�

,x′
n�−b+1

be the block generated by rn� and x′
n�−b+1

;

call these blocks the U ′-blocks. By Lemma 3, the U ′-blocks are distinct and each U ′-block is different from every U -block
and U . For each i ∈ {� − b + 1, � − b + 2, . . . , �}, let Ūx′

ni
,ti

be the block generated by x′
ni

and ti ; call these blocks the
Ū -blocks. By Lemma 3, each Ū -block is different from U , every U -block and from every U ′-block (note that any ti is
a root-node and so not adjacent to any U -block or U ′-block). However, it is possible that Ūx′

ni
,ti

= Ūx′
n j

,t j
, for i �= j (for

this to happen we would need that ti = t j , as otherwise we would have two root-nodes adjacent to both U and another
block). Note that for each i ∈ {� − b + 1, � − b + 2, . . . , �}: we have k − 1 possible choices within Dni for x′

ni
; and for

j1, j2 ∈ {2, 3, . . . , k}, where j1 �= j2, the block Ūx
ni
j1

,ti
, generated by xni

j1
and ti , is different from the block Ūx

ni
j2

,ti
, generated

by xni
j2

and ti .

Choose x′
n�−b+1

= x
n�−b+1
2 and x′

n�−b+2
= x

n�−b+2
2 . Suppose we have that Ūx′

n�−b+2
,t2

= Ūx′
n�−b+1

,t1
; if so then re-

choose x′
n�−b+2

= x
n�−b+2
3 . Necessarily, Ūx′

n�−b+2
,t2

�= Ūx′
n�−b+1

,t1
. Choose x′

n�−b+3
= x

n�−b+3
2 . Suppose that Ūx′

n�−b+3
,t3

=
Ūx′

n�−b+1
,t1

; if so then re-choose x′
n�−b+3

= x
n�−b+3
3 . Suppose that Ūx′

n�−b+3
,t3

= Ūx′
n�−b+2

,t2
; if so then re-choose x′

n�−b+3
=

x
n�−b+3
4 . Necessarily, Ūx′

n�−b+1
,t1

, Ūx′
n�−b+2

,t2
, Ūx′

n�−b+3
,t3

are distinct. Proceed in this way until x′
n�−b+2

, x′
n�−b+3

, . . . , x′
n�

have been chosen. Note that as b ≤ � − 1 ≤ k − 1, the above procedure can always be completed. What results
is the set of distinct blocks {Ūx′

n�−b+i
,ti

: i = 1, 2, . . . , b}. For each i = 1, 2, . . . , b − 1, define the path π�−b+i as

U , rn�−b+i , U
′
rn�−b+i ,x

′
n�−b+i+1

, x′
n�−b+i+1

, Ūx′
�−b+i+1,ti

, ti , and define the path π� as U , rn�, U ′
rn�

,x′
n�−b+1

, x′
n�−b+1

, Ūx′
n�−b+1

,tb
, tb .

The resulting � paths π1, π2, . . . , π� from U to the target-nodes are pairwise internally-disjoint.
Alternatively, suppose that the root-nodes remaining to be dealt with are rn1 , rn�−b+2 , rn�−b+3 , . . . , rn� . We proceed exactly

as above except that we start from a node x′
n1

∈ Dn1 \ {rn1} that is different from any target-node (such a node exists). We
obtain our pairwise internally-disjoint paths as before.

Case (b): Suppose that there is at least 1 target-block.

W.l.o.g. we may assume that the a target-nodes t1, t2, . . . , ta , where 0 ≤ a ≤ � − 1, lie within the groups D1, D2, . . . , Da
and that the target-blocks are U1, U2 . . . , U�−a . Suppose that some target-block Ui is adjacent to some root-node r j of some
group D j , where i ∈ {1, 2, . . . , � − a} and j ∈ {a + 1, a + 2, . . . , �}. Remove the target-block Ui (temporarily) from our set
of targets and include the new target-node r j . Iterate this process. Hence, w.l.o.g. we may assume that: our target-nodes
are the original target-nodes t1, t2, . . . , ta along with the new target-nodes ra+1, ra+2, . . . , ra+b , where each new target-node
ra+i is adjacent to the now removed old target-block Ui ; and our target-blocks are Ub+1, Ub+2, . . . , U�−a with none of
these target-blocks adjacent to any root-node in the groups Da+b+1, Da+b+2 . . . , D� . For each i ∈ {1, 2, . . . , � − a}: let the
node xa+b+i ∈ Da+b+i \ {ra+b+i} be adjacent to Ub+i ; and (temporarily) remove the target-block Ub+i and include the new
target-node xa+b+i .

Apply the construction in Case (a) to our new set of � target-nodes. We obtain � paths, one from U to each of our
target-nodes so that these paths are internally-disjoint. Consider some new target-node ra+i , where i ∈ {1, 2, . . . , b}. By
the construction of our paths, the path corresponding to this new target-node is U , ra+i and ra+i does not appear on any
other path (there is no repetition of ra+i in our set of target-nodes). Extend the path U , ra+i to the path U , ra+i, Ui , for
i = 1, 2, . . . , b. Consider some new target-node xa+b+i , where i ∈ {1, 2, . . . , � − a}. Suppose that the edge (Ub+i, xa+b+i)

appears on some path. By the construction of our paths, the only way that this can happen is if this edge is the last edge on
the path from U to xa+b+i . If this is the case then truncate this path at Ub+i . Alternatively, if the edge (Ub+i, xa+b+i) does
not appear on some path then we extend the path from U to xa+b+i by the addition of the edge to Ub+i . Consequently,
we obtain a set of paths from U to each of our original target-nodes and target-blocks so that these paths are pairwise
edge-disjoint. Note that: target-nodes only appear as destinations and apart from possibly target-nodes, no node appears
on more than one path; and no block appears on more than one path except possibly for some target-blocks (which might
appear as internal nodes on paths). The result follows. �

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 345
Note that the construction in Theorem 6 is weaker than those in the previous section as we obtain only that paths are
pairwise edge-disjoint rather than pairwise internally-disjoint. However, we do obtain the following result as an immediate
corollary of the construction in Theorem 6.

Corollary 7. Let T be any [�, k]-transversal design where k, � ≥ 2 and where � ≤ k. Let U be any block and let t1, t2, . . . , t� be any
� nodes, called target-nodes, where there may be repetitions. For each i = 1, 2, . . . , �, there is a path πi from U to ti of length at
most 7, so that the paths π1, π2, . . . , π� are pairwise internally-disjoint.

We now build some many-to-many edge-disjoint paths within some transversal design.

Theorem 8. Let T be any [�, k]-transversal design where � ≤ k and k, � ≥ 2. Let a + b = �0 ≤ � where a, b ≥ 0. Suppose that
we are given a nodes, the target-nodes, and b blocks, the target-blocks, so that there might be repetitions amongst the target-nodes
and target-blocks. Suppose that D0 is a group of nodes that contains no target-nodes. There exists a set S of �0 distinct nodes of D0
such that there are �0 pairwise internally-disjoint paths, each of length at most 3, the sources of which are the nodes of S and the
destinations of which are all the target-nodes and target-blocks.

Proof. Suppose that b ≥ 1 (we’ll deal with the case when b = 0 later) and suppose that the distinct target-blocks are
U1, U2, . . . , Uc , so that the target-blocks Uc+1, Uc+2, . . . , Ub all lie in {Ui : i = 1, 2, . . . , c}. Furthermore, suppose that for each

i ∈ {1, 2, . . . , c}, the target-block Ui is repeated ni times in the set of target-blocks. So, b =
c∑

i=1
ni . We define that Ui ≡ U j ,

for i, j ∈ {1, 2, . . . , c} if, and only if, Ui and U j are adjacent to the same node of D0. Let U1, U2, . . . , Ud (where d ≥ 1)
be representatives from the resulting equivalence classes (so, d ≤ c) and let xi

1 be the node of D0 adjacent to Ui , for i =
1, 2, . . . , d. Thus, we immediately obtain d paths π1

1 , π2
1 , . . . , πd

1 of length 1 from distinct nodes of D0 to the target-blocks
U1, U2, . . . , Ud .

For ease of notation, we rename some of the groups of nodes of T as {D0} ∪ {Di
j : i = 1, 2, . . . , d; j = 2, 3, . . . , ni} ∪ {Di

j :
i = d + 1, d + 2, . . . , c; j = 1, 2, . . . , ni} so that no target-node lies in any of these groups (note that the number of such

groups is (
c∑

i=1
ni) − d + 1 ≤ b = �0 − a and so this is possible). For each i ∈ {1, 2, . . . , d} and each j ∈ {2, 3, . . . , ni}, choose

xi
j ∈ D0 \ {x1

1, x
2
1, . . . , x

d
1}, and for each i ∈ {d + 1, d + 2, . . . , c} and each j ∈ {1, 2, . . . , ni}, choose xi

j ∈ D0 \ {x1
1, x

2
1, . . . , x

d
1},

so that all chosen nodes are distinct. For each i ∈ {1, 2, . . . , d} and each j ∈ {2, 3, . . . , ni}, let ri
j ∈ Di

j be the unique node
adjacent to Ui , and for each i ∈ {d + 1, d + 2, . . . , c} and each j ∈ {1, 2, . . . , ni}, let ri

j ∈ Di
j be the unique node adjacent to Ui .

For each i ∈ {1, 2, . . . , d} and each j ∈ {2, 3, . . . , ni}, let U i
j be the block generated by xi

j and ri
j , and for each i ∈ {d + 1,

d + 2, . . . , c} and each j ∈ {1, 2, . . . , ni}, let U i
j be the block generated by xi

j and ri
j . Call the resulting blocks generated

the U -blocks. In particular, as every U -block is adjacent to a different node of D0, all U -blocks are distinct. Moreover,
as no target-block is adjacent to the same node of D0 that any U -block is adjacent to, every U -block is different from
every target-block. For each i ∈ {1, 2, . . . , d} and each j ∈ {2, 3, . . . , ni}, define the path π i

j as xi
j, U

i
j, r

i
j, Ui , and for each

i ∈ {d + 1, d + 2, . . . , c} and each j ∈ {1, 2, . . . , ni}, define the path π i
j as xi

j, U
i
j, r

i
j, Ui . The paths from the set {π i

j : i =
1, 2, . . . , c; j = 1, 2, . . . , ni} are clearly internally-disjoint.

Write n0 = a and suppose that the target-nodes are t1, t2, . . . , tn0 . Let x0
1, x

0
2, . . . , x

0
n0

be distinct nodes of D0 \ {xi
j : i =

1, 2, . . . , c; j = 1, 2, . . . , ni}. For each j ∈ {1, 2, . . . , n0}, let U 0
j be the block generated by x0

j and t j . As above, all such blocks
are distinct and different from any block generated so far. For each j ∈ {1, 2, . . . , n0}, define the path π0

j as x0
j , U

0
j , t j . The

resulting set of paths {π i
j : i = 0, 1, . . . , c; j = 1, 2, . . . , ni} is as required.

Alternatively, if b = 0 then we dispense with the above construction of paths to target-blocks and proceed identically as
regards the target-nodes. The result clearly follows. �

We are now in a position to use Theorems 6 and 8 to obtain the main result of this section.

Theorem 9. Let k, �, d ≥ 2 so that � ≤ k. Let H be built by the 2-step method applied to the connected (d, �)-bipartite graph H0
using the [�, k]-transversal design T . Let B be some block of H and let B1, B2, . . . , B� be blocks of H that are not necessarily distinct
but different from B. There exist paths from B to B1, B2, . . . , B� so that no edge of H appears in more than one of these paths.

Proof. Let Q 1, Q 2, . . . , Q q be the exact distinct blocks of H0 such that ∪q
i=1T Q i contains the blocks B1, B2, . . . , B� within H

(in particular, q ≤ �), and let Q 0 be the block of H0 such that T Q 0 contains the block B within H . Let Z be a tree within
H0 that is rooted at Q 0 and is such that: every block of {Q i : i = 1, 2, . . . , q} appears in Z ; and all leaves of Z are blocks
within {Q i : i = 1, 2, . . . , q}. We use the tree Z as a skeleton so as to build our required paths in H .

Call the blocks B1, B2, . . . , B� the H-target-blocks. Label every node p (resp. block Q) in Z with a non-negative integer
μ(p) (resp. μ(Q)) detailing the number of H-target-blocks that are associated with a block of Z that is a descendant of p

346 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
(resp. a descendent of Q or with Q itself). So, for example, the root Q 0 is such that μ(Q 0) = � and any leaf (block) Q of
Z is such that μ(Q) is the number of H-target-blocks within T Q .

Suppose that p is some node of Z whose children are all leaves (and so blocks). Suppose that w.l.o.g. these children are
Q 1, Q 2, . . . , Q r . For each i ∈ {1, 2, . . . , r}, by Theorem 8, there exists a set Si of μ(Q i) nodes of the group of nodes of H
associated with the node p of H0 so that there are μ(Q i) pairwise internally-disjoint paths from the nodes of Si to the
H-target-blocks associated with Q i where each of these paths has length at most 3 (note that the edges of these paths lie
in T Q i ; of course, the edges of T Q i are disjoint from the edges of T Q j , for any i �= j). Consequently, we obtain a multi-set
S p = ∪r

i=1 Si of μ(p) nodes in the group of nodes in H associated with the node p of H0 so that there are μ(p) paths
in ∪r

i=1T Q i from the nodes of S p to the H-target-blocks associated with the blocks Q 1, Q 2, . . . , Q r . These μ(p) paths are
pairwise internally-disjoint but they might have common sources.

Suppose that Q is some non-root block of Z whose children are w.l.o.g. p1, p2, . . . , pr and so that the following holds:

• associated with each child pi is a multi-set Si of μ(pi) nodes in the group of nodes of H associated with the node pi
of H0

• for each child pi , there are μ(pi) paths from the nodes of Si to the H-target-blocks associated with blocks that are
descendants of pi in T so that all of these paths have length at most l

• no edge of H appears in more than one of the
r∑

i=1
μ(pi) paths that are associated with some child of Q .

Let p0 be the node of Z that is the parent of Q . By Theorem 8, there is a set S0 of μ(p0) nodes in the group of nodes of
H associated with p0 together with μ(p0) paths from the nodes of S0 to the nodes of ∪r

i=1 Si in union with the H-target-
blocks associated with Q where the paths are pairwise internally-disjoint and each path has length at most 3. Hence, by
concatenating the paths involved, we have μ(p0) = μ(Q) paths from the nodes of S0 to the H-target-blocks associated
with all descendant blocks of p0 in Z where no edge of H appears in more than one of these paths and the length of any
of these paths is at most l + 3.

Finally, suppose that the children of Q 0 in Z are w.l.o.g. p1, p2, . . . , pr and are such that the following holds:

• associated with each child pi is a multi-set Si of μ(pi) nodes in the group of nodes of H associated with the node pi
of H0

• for each child pi , there are μ(pi) paths from the nodes of Si to the H-target-blocks associated with blocks that are
descendants of pi in T so that all of these paths have length at most l

• no edge of H appears in more than one of the
r∑

i=1
μ(pi) paths that are associated with some child of Q 0.

By Theorem 6, we obtain paths from B to the nodes of ∪r
i=1 Si in union with the multi-set of blocks associated with Q 0

so that no edge of H appears in more than one of these paths and all paths have length at most 7. Consequently, by
concatenating paths, we obtain � paths from B to B1, B2, . . . , B� so that no edge of H appears in more than one of these
paths and the paths have length at most l + 7. The result follows by induction. Moreover, it is easy to see that if the depth
of Z is h then the length of the longest of these paths is at most 3 h

2 + 7. �
We have two remarks as regards Theorem 9: first, note the additional bound of 3 h

2 +7 on the lengths of the paths derived
in the proof of Theorem 9 in terms of the height h of the tree Z ; and, second, this theorem is weaker than Theorem 4 in
that in Theorem 9 the paths constructed are pairwise edge-disjoint rather than pairwise internally-disjoint as they are in
Theorem 4.

Of course, armed with the constructions of switch-centric DCNs from Section 3.3, and analogous to our constructions in
Section 4.3, it should be clear how we can obtain pairwise edge-disjoint paths joining all the server-nodes adjacent to some
level-1 switch-node in some appropriately constructed DCN to any identically-sized set of distinct server-nodes (irrespective
of whether they are adjacent to different level-1 switch-nodes), so long as the number of server-nodes adjacent to some
level-1 switch-node is no more than the number of level-2 switch-nodes adjacent to it. (Note also that whereas when
we applied Theorem 4 in Section 4.3, complications arose because of the need to have λ at least 2, there are no such
complications when it comes to applying the theorems in this section.)

6. Conclusion

In this paper, we have shown how combinatorial design theory can be used to build switch-centric DCNs of diameter
at most 6 and with many more server-nodes than the Fat-Tree DCN but so that there is still considerable one-to-one
and one-to-many path diversity. We regard the more general demonstration that combinatorial mathematics can enhance
the design of modern-day computational infrastructures such as data centres as one of the primary contributions of this
paper. Whilst we have demonstrated that combinatorial mathematics has the potential to add to and improve the design
of DCNs, the DCNs obtained by our constructions need to be studied in much greater detail with regard to the numerous

I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348 347
other properties that a switch-centric DCN (and, indeed, any other type of DCN) has to have in order to make it viable
as a practical DCN (as we hinted earlier, there is no one DCN, or even DCN paradigm, that will satisfy every property
simultaneously). For example: although we bound the diameter of our DCNs, we need to derive (optimal) routing algorithms
(within bipartite graphs built using the 2-step method) so as to meet these bounds; and (as was noted in [10]) it would
be beneficial if the bisection width of the DCNs constructed in this paper could be ascertained (bisection width is often
used as a proxy for throughput in DCNs). However, the list of desirable properties, alluded to in the Introduction, that
we would wish for our DCNs is lengthy and will result in numerous new strands of research, both theoretical and more
practical.

Our results also throw up some immediate directions for further research and we mention four such directions now.
It would be interesting to discover more mechanisms for converting bipartite graphs constructed using the 2-step method

into DCNs than those developed in [10] and detailed in Section 3.3. We envisage that such a study would go hand-in-hand
with research into building DCNs which possess yet more beneficial properties as regards their efficacy as DCNs (as high-
lighted above).

As we mention in Section 4.3, our constructions have drawn attention to a hitherto unstudied problem in combinatorics
namely the construction of regular, uniform bipartite graphs with additional properties such as having at least 2 internally-
disjoint paths joining any two blocks. It would be interesting to study problems such as this in a solely mathematical
context.

Our results have hinted that the study of transversal designs as bipartite graphs and in a graph-theoretic context is
worth pursuing. For example, if one looks at Theorem 4 then there are � pairwise internally-disjoint paths, each of length
at most 6, joining any two distinct blocks in some transversal design T ; and if one looks at Theorem 6 then, if � ≤ k, there
are � pairwise edge-disjoint paths, each of length at most 6, joining any given source block with any given multi-set of �
target blocks in some transversal design T . Such results might be of independent interest within some appropriate network
context. Within a DCN N built using the 2-step method, there are many ‘copies’ of the bipartite graph corresponding to the
chosen transversal design. These copies and the above constructions might be utilized where there is traffic localization,
e.g., in a virtualization context where many guest DCNs are embedded within the DCN N .

Finally, as mentioned above, we need to derive routing algorithms within the DCNs constructed in this paper so as
to make use of the available path diversity. The combinatorial first step to this is the ‘control’ of the 2-step and 3-step
constructions, especially as one iterates the construction and then applies the constructions using Methods A and B . We
need to be able to devise a combinatorial naming scheme, in terms of the constituent base bipartite graph H0 and the
transversal design T , so that we can use the resulting algebraic description as the framework for subsequent routing algo-
rithms.

Acknowledgments

The author would like to thank the anonymous reviewers whose comments helped to improve this paper.

References

[1] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N. McKeown, ElasticTree: saving energy in data center networks, in:
Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10, USENIX Association, Berkeley, CA, USA, 2010,
pp. 17:1–17:16.

[2] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, VL2: a scalable and flexible data center network,
Comput. Commun. Rev. 39 (2009) 51–62.

[3] J.H. Ahn, N. Binkert, A. Davis, M. McLaren, R.S. Schreiber, HyperX: topology, routing, and packaging of efficient large-scale networks, in: Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis, SC’09, ACM, New York, NY, USA, 2009, pp. 41:1–41:11.

[4] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, A. Vahdat, Portland: a scalable fault-tolerant layer
2 data center network fabric, Comput. Commun. Rev. 39 (2009) 39–50.

[5] D. Abts, M.R. Marty, P.M. Wells, P. Klausler, H. Liu, Energy proportional datacenter networks, in: Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture, ISCA’10, ACM, New York, NY, USA, 2010, pp. 338–347.

[6] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture, Comput. Commun. Rev. 38 (2008) 63–74.
[7] Y. Liu, J.K. Muppala, M. Veeraraghavan, D. Lin, M. Hamdi, Data Centre Networks: Topologies, Architectures and Fault-Tolerance Characteristics, Springer

Briefs in Computer Science, Springer, 2013.
[8] K. Wu, J. Xiao, L.M. Ni, Rethinking the architecture design of data center networks, Frontiers of Computer Science 6 (2012) 596–603.
[9] T. Chen, X. Gao, G. Chen, The features, hardware, and architectures of data center networks: a survey, J. Parallel Distrib. Comput. 96 (2016) 45–74.

[10] G. Qu, Z. Fang, J. Zhang, S.-Q. Zheng, Switch-centric data center network structures based on hypergraphs and combinatorial block designs, IEEE Trans.
Parallel Distrib. Syst. 26 (2015) 1154–1164.

[11] J. Bermond, J. Bond, S. Djelloul, Dense bus networks of diameter 2, in: D.F. Hsu, A.L. Rosenberg, D. Sotteau (Eds.), DIMACS Workshop on Interconnection
Networks and Mapping and Scheduling Parallel Computations, in: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 21,
American Mathematical Society, 1995, pp. 9–18.

[12] C. Colbourn, J. Dinitz, D. Stinson, Applications of combinatorial designs to communications, cryptography and networking, in: J. Lamb, D. Preece (Eds.),
Surveys in Combinatorics, 1999, in: London Mathematical Society Lecture Notes Series, vol. 267, Cambridge University Press, 1999, pp. 37–100.

[13] J. Luo, Y. Guo, S. Fu, K. Li, W. He, Virtual resource allocation based on link interference in Cayley wireless data centers, IEEE Trans. Comput. 64 (2015)
3016–3021.

[14] C. Camarero, E. Vallejo, R. Beivide, Topological characterization of hamming and dragonfly networks and its implications on routing, ACM Trans. Archit.
Code Optim. 11 (2014) 39.

http://refhub.elsevier.com/S0022-0000(17)30087-9/bib48534D3036s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib48534D3036s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib48534D3036s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib47484A3039s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib47484A3039s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4142443039s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4142443039s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4D50463039s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4D50463039s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib414D573130s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib414D573130s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib414C563038s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4C4D563133s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4C4D563133s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib57584E3132s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4347433136s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib51465A3135s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib51465A3135s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4242443935s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4242443935s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4242443935s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4344533939s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4344533939s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4C47463135s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4C47463135s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4356423134s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4356423134s1

348 I.A. Stewart / Journal of Computer and System Sciences 89 (2017) 328–348
[15] D. Coudert, G. Ducoffe, Data center interconnection networks are not hyperbolic, Theor. Comput. Sci. 639 (2016) 72–90.
[16] X. Liu, N. Iftikhar, X. Xie, Survey of real-time processing systems for big data, in: Proceedings of the 18th International Database Engineering and

Applications Symposium, IDEAS’14, ACM, New York, NY, USA, 2014, pp. 356–361.
[17] R. Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer, 2010.
[18] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51 (2008) 107–113.
[19] D.R. Stinson, Combinatorial Designs: Constructions and Analysis, Springer, 2004.
[20] M. Miller, J. Sirán, Moore graphs and beyond: a survey of the degree/diameter problem, Electron. J. Comb. 20 (2005), Dynamic Survey DS14.

http://refhub.elsevier.com/S0022-0000(17)30087-9/bib43443136s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4C49583134s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4C49583134s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4469653130s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib44473038s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib5374693034s1
http://refhub.elsevier.com/S0022-0000(17)30087-9/bib4D533133s1

	On the combinatorial design of data centre network topologies
	1 Introduction
	1.1 The data centre network context
	1.2 Using combinatorial designs to build DCNs
	1.3 Our contribution

	2 Basic concepts
	2.1 Switch-centric DCNs
	2.2 Hypergraphs
	2.3 Hypergraphs and bipartite graphs
	2.4 Paths in hypergraphs
	2.5 Hypergraphs as switch-centric DCNs
	2.6 Transversal designs

	3 The 3-step construction and its extensions
	3.1 The 3-step construction
	3.2 Iteration
	3.3 Composition
	3.4 Some illustrations of DCNs

	4 One-to-one path diversity
	4.1 Difﬁculties with proofs
	4.2 The one-to-one scenario
	4.3 Applying our construction

	5 One-to-many path diversity
	6 Conclusion
	Acknowledgments
	References

