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Abstract: The action of inverse soft factors on scattering amplitudes in N = 4 SYM

is shown to take a remarkably simple form in momentum twistor space. This is used

to identify individual residues of the grassmannian with primitive leading singularities at

NMHV and N2MHV and to derive explicit expressions in terms of momentum twistors.
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1. Introduction

A remarkable formula has been found for scattering amplitudes in N = 4 SYM [1]. For

scattering amplitudes of n-particles and degree Nk−2MHV the formula is a contour inte-

gral in the grassmannian G(k, n) whose residues are conjectured to compute all leading

singularities of scattering amplitudes in N = 4 SYM. The formula may be written

A(Z1, . . . , Zn) =
1

VolGL(2)

∫
dk×nC

(1) . . . (n)

k∏
r=1

δ4|4(CriZi) , (1.1)

where external states are described by twistors ZAi = (µ̃αi , λ̃iα̇, η
A
i ) and Cri are homogeneous

coordinates on the grassmannian. Individual residues describe primitive leading singular-

ities of loop amplitudes and residue theorems provide all of the important relationships

between them [1].

Contours that compute tree-level amplitudes may be constructed in a physical way

with a particle interpretation in the grassmannian [2]. There are many ways to evaluate

the tree-level contours that are related by residue theorems. For example, many choices

correspond a BCFW expansion of the tree amplitude, where each residue is a primitive

leading singularity of a p-loop amplitude at NpMHV [3]. Another residue theorem leads to

CSW rules for the tree-level NMHV amplitude and more generally to the Risager expansion

for tree amplitudes of higher degree [4].

In [5], an alternative grassmannian integral has been proposed that manifests dual su-

perconformal invariance, and where external states are described by momentum twistors [6].

This has been derived from equation (1.1) in [7]. It has also been shown [8] that the grass-

mannian formula transforms to a total derivative under the Yangian generators [9],

jAB =
n∑
i=1

ZAi
∂

∂ZBi
(1.2)

j(1)AB =
∑
i<j

(−1)C

[
ZAi

∂

∂ZCi
ZCj

∂

∂ZBj
− (i↔ j)

]
(1.3)

and that this property uniquely determines the form of the integrand [10, 11]. The indi-

vidual residues of the grassmannian integral are therefore Yangian invariants.

The identification of residues of the grassmannian integral with leading singularities is

an important problem that is the focus of this paper. We show that inverse soft factors [1],

which create new leading singularities by adding additional particles, have a very simple

action on momentum twistors. We also explain how an inverse soft factor acts on grass-

mannian residues and use this to identify large classes of residues with primitive leading

singularities at NMHV and N2MHV. The simple action on momentum twistors then allows

explicit expressions for the corresponding Yangian invariants to be written down.

– 1 –



2. Inverse Soft Factors

In this section we introduce the operation of an inverse soft factor [1] and show that it

has a very simple action on scattering amplitudes when written in terms of momentum

twistors [6].

2.1 Momentum Space

We consider scattering amplitudes in N = 4 SYM with external states labelled in on-

shell superspace by i = {λαi , λ̃α̇i , ηAi }. The null four-momenta of external particles are

then pαα̇i = λαi λ̃
α̇
i and fermionic parts of the supermomenta are qαAi = λαi η

A
i . Here we

will consider mainly leading singularities which are rational functions of the kinematic

variables. Since tree amplitudes may be expressed as sums of leading singularities then

all statements may equally be applied to tree amplitudes [12, 13]. Let us denote a generic

leading singularity with n particles by

On(1, . . . , n). (2.1)

An inverse soft factor takes an n-particle leading singularity and forms a new leading

singularity of the same MHV degree with (n+1) particles. Consider any leading singularity

On(a, b, . . .) where particles a and b are adjacent, then following [1] we define the inverse

soft limit that adds particle c in between a and b by the following formula,

On+1(a, c, b, . . .) ≡
〈ab〉
〈ac〉〈cb〉On(a′, b′, . . .) (2.2)

The primed labels in equation (2.2) denote shifted external variables i′ = {λi, λ̃′i, η′i} where

the right-handed spinors and grassmann parameters have been shifted

λ̃′a = λ̃a +
〈cb〉
〈ab〉 λ̃c λ̃′b = λ̃b +

〈ca〉
〈ba〉 λ̃c

η′a = ηa +
〈cb〉
〈ab〉ηc η′b = ηb +

〈ca〉
〈ba〉ηc . (2.3)

A straightforward application of the Schouten identity confirms that momentum and su-

permomentum are conserved in the inverse soft factor.

The inverse soft factor is designed so that

O(a, c, b, . . .) −→ 〈ab〉
〈ac〉〈cb〉O(a, b, . . .) as λc −→ 0 . (2.4)

In words, the inverse soft factor creates a leading singularity whose limit as the additional

particle becomes soft reproduces the original. The soft behaviour in equation (2.4) comes

entirely from the tree-level MHV superamplitude

AMHV(1, . . . , n) =
1

〈12〉 . . . 〈n1〉δ
4(

n∑
i=1

λiλ̃i)δ
8(

n∑
i=1

λiηi) , (2.5)
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which appears as a pre-factor in all superamplitudes in N = 4 SYM. Therefore the inverse

soft factor should add another particle to this superamplitude, changing AMHV(1, . . . , n)

into AMHV(1, . . . , n+1). This follows simply from the conservation of momentum and from

the prefactor in the definition (2.2). In the following we solve momentum and supermo-

mentum conservation and remove the tree-level MHV superamplitude prefactor. Therefore

we consider only the shift (2.3) of the kinematic variables.

2.2 Region Momenta

We now implement the inverse soft limit in terms of region momenta [14]. The region

momenta {xi, θi} are introduced by solving supermomentum conservation

λiλ̃i = xi+1 − xi λiηi = θi+1 − θi , (2.6)

where xn+1 ≡ x1 and θn+1 ≡ θ1. The region momenta are then null separated

(xi+1 − xi)2 = 0 (θi+1 − θi)2 = 0 (2.7)

and form a null polygon in region momentum space (see figure 1). The primary coordinates

are now {λi, xi, θi} and the right-handed spinors {λ̃i} become secondary derived variables.

xn−1

xn x1

x2

pn−1

pn

p1

Figure 1: The null polygon formed by the region momenta coordinates.

Since the region momenta solve supermomentum conservation we remove the MHV

prefactor and focus on the remainder, which we denote by R(λi, xi, θi). Now consider

adding the particle (n+ 1) with an inverse soft factor - see figure 2. The only variables to

be shifted are those associated to particles n and 1. Therefore, to maintain supermomentum

conservation, only the region momentum (x1, θ1) may be shifted. Suppressing the unshifted

variables we have

Rn(x1, θ1) −→ Rn+1(xn+1, θn+1;x1, θ1) ≡ Rn(x′1, θ
′
1) (2.8)

where the shifted region momenta {x′n, θ′n} are to be determined. Now referring to figure 2,

momentum conservation requires that

p′1 = x2 − x′1 p′n = x′1 − xn (2.9)
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whereas the region momenta of the resulting (n+ 1)-particle leading singularity satisfy

p1 = x2 − x1 pn = x1 − xn (2.10)

with similar expressions for the fermionic components. Subtracting equations (2.9) and

(2.10) we find two expressions for the shifted region momentum

x′1
αα̇

= xαα̇1 −
〈n+ 1n〉
〈1n〉 λα1 λ̃

α̇
n+1

= xαα̇n+1 +
〈n+ 1 1〉
〈n 1〉 λαnλ̃

α̇
n+1. (2.11)

whose equality is guaranteed by momentum conservation and is found directly with an

application of the Schouten identity. To express the inverse soft factor in correctly in

region momenta we should rewrite λ̃n+1 in terms of the primary variables, but we will now

find more convenient variables for the inverse soft factor.

x′
1

xn

x2

p′n

p′1

xn+1

x1

x2

xn−1

pn

pn+1

p1

Figure 2: The action of an inverse soft factor on the null polygon in region momentum space.

2.3 Momentum Twistors

We now explain how an inverse soft factor acts on leading singularities when expressed as

functions of momentum twistors [6, 5] which are designed to manifest the dual supercon-

formal symmetry of scattering amplitudes in N = 4 SYM [14].

The cusps xi of the null polygon formed by the region momenta define lines Xi in

momentum twistor space through the standard twistor correspondence - see figure 3. Since

the cusps are null separated (xi − xi−1)2 = 0, then adjacent lines Xi−1 and Xi intersect

and define momentum twistors Wi. The spinor components of the momentum twistor

Wi = (λiα, µ
α̇
i , χ

A
i ) are then defined by the incidence relations that simply state the the

momentum twistor Wi is incident on the point xi in region momentum space,

µα̇i = −ixαα̇i λαi χAi = −iθAαi λαi (2.12)

The components of the momentum twistors are also directly related to the original mo-

mentum superspace variables by the following
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iλ̃i =
〈i− 1, i〉µi+1 + 〈i+ 1, i− 1〉µi + 〈i, i+ 1〉µi−1

〈i− 1, i〉〈i, i+ 1〉

iηi =
〈i− 1, i〉χi+1 + 〈i+ 1, i− 1〉χi + 〈i, i+ 1〉χi−1

〈i− 1, i〉〈i, i+ 1〉 . (2.13)

p1

pn

p2

x2

x1

xn

x3

W1

X1

X2

Wn

W2

Xn

X3

Figure 3: The momentum twistor correspondence with dual momentum space.

Now consider adding particle n + 1 with an inverse soft factor. Since only the dual

coordinates (x1, θ1) are shifted then only the line X1 is changed in momentum twistor space.

However, from equation (2.11) we find that the momentum twistor W1 is unchanged

µ′1
α̇

= −ix′1
αα̇
λ1α = −ixαα̇1 λ1α = µα̇1 (2.14)

and so none of the momentum twistors are shifted in the inverse soft factor. The inverse

soft factor simply shifts the line X1 and adds an additional line Xn+1 together with the

momentum twistor Wn+1 formed from their intersection - see figure 4.

Leading singularities are rational functions of the momentum twistors and once the

MHV superamplitude has been removed they have weight zero in each momentum super-

twistor. Consider then adding particle (n + 1) to a leading singularity Rn(W1, . . . ,Wn)

that depends on some subset of the momentum twistors {W1, . . . ,Wn}. Then the result-

ing leading singularity Rn+1(W1, . . . ,Wn) is the same function of the original momentum

twistors,

Rn+1(W1, . . . ,Wn) ≡ Rn(W1, . . . ,Wn). (2.15)

The new leading singularity does not depend on the new momentum twistor Wn+1. How-

ever, the relationship between the momentum twistors and the external momenta has been

changed non-trivially. In the opposite direction, soft limits are equally as simple in mo-

mentum twistor space. A leading singularity has non-zero soft limit λi → 0 when it does
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X ′
1

Xn

X2

Wn

W1

Xn

Wn

Wn+1

Xn+1

X1

X2

W1

Figure 4: Adding particle {n+ 1} with an inverse soft factor in momentum twistor space.

not depend on the momentum twistor Wi. For example, when particle n becomes soft we

have

R(W1, . . . ,Wn−1) −→ R(W1, . . . ,Wn−1) as λn −→ 0 , (2.16)

so that the result of the soft limit is the same function of original momentum twistors.

Dual superconformal transformations act linearly on superamplitudes written in terms

of momentum twistors. The standard superconformal generators are then the level-one

generators of the Yangian algebra. Once the tree-level MHV superamplitude has been

removed, the Yangian generators written in terms of momentum twistors are [8]

jA
B =

n∑
i=1

WiA
∂

∂WiB
(2.17)

j(1)A
B

=
∑
i<j

(−1)C
[
WiA

∂

∂WiC
WjC

∂

∂WjB
− (i↔ j)

]
(2.18)

It has been shown that the grassmannian formula written in momentum twistor variables

transforms as a total derivative under the generators, and therefore all residues of the

grassmannian formula are Yangian invariant [8]. Since it is conjectured that all leading

singularities are residues of the grassmannian formula then we would expect the inverse

soft factor to be a Yangian invariant operation. It is straightforward to check by acting

with the level-one generators directly that this is indeed the case.

3. Leading Singularities

A leading singularity of an l-loop amplitude is specified by 4l propagators going on-shell and

a solution to the resulting cut conditions. Leading singularities are then associated with

channel diagrams, having 4l lines denoting cut propagators and (3l+ 1) vertices indicating

tree amplitudes in the resulting factorisation [15, 16, 17]. Primitive leading singularities are

those containing only MHV and MHV3 vertices and correspond to individual grassmannian
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residues [3]. Any leading singularity may then be expressed as a sum of primitive leading

singularities by repeated BCFW expansion of the vertices. Therefore in the following we

focus exclusively on primitive channel diagrams.

3.1 Generalised Unitarity in Twistor Space

Consider computing the residue of a loop amplitude when one of its internal propagators

goes on-shell. Only Feynman diagrams containing this propagator contribute to the residue

and standard LSZ arguments ensure that the residue is the product of two subamplitudes

on either side of the cut, summed over all possible internal states - see figure 5. This

calculation is building block for all generalised unitarity calculations.

A1 A2

p, η

Figure 5: The resulting factorisation when an internal propagator goes on-shell.

In N = 4 SYM the sum over particles and helicities may be replaced by a grassmann

integral and the tree amplitudes by superamplitudes with external states labelled in on-shell

superspace [18, 19]. The unitarity cut then becomes (see figure 5)

∮
d4p

p2
d4η A1(. . . , {p, η})A2({−p, η}, . . .) , (3.1)

where the contour |p2| = ε constrains the integral to the null cone. In split signature, this

may be transformed directly into twistor space (not to be confused with momentum twistor

space) via a half Fourier Transform [20] leading to the standard twistor inner product [3]∫
D3|4W A1(. . . ,W )A2(W, . . .) . (3.2)

This simple form of the unitarity cut in twistor space allows an imediate translation between

the channel diagram and the twistor space support of leading singularities [3, 21]. This

dictionary is summarised below in figure 6.

3.2 Inverse Soft Factors and Channel Diagrams

The inverse soft factor may be understood as a simple application of generalised unitarity.

Adding the particle c to the leading singularity On(a, b, . . . ) then the result On+1(a, c, b, . . .)

corresponds simply to the channel diagram shown in figure 7.

This result may be demonstrated with generalised unitarity in on-shell superspace [18].

The solution of the cut conditions for the on-shell loop momenta in On(l1, l2, . . .) have been

written down explicitly when at least one corner is massless in [22]. In the spinor notation
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a

a

a

a

Figure 6: The dictionary between the twistor space support of primitive leading singularities and

their channel diagrams.

On+1 On

a

b

a

c

b

l1

l2

c ≡

Figure 7: The action of an inverse soft factor on the channel diagrams of a leading singularity

the relevant solution becomes (see notation in figure 7)

l1 = λa

(
λ̃a +

〈bc〉
〈ba〉 λ̃c

)
l2 = λb

(
λ̃b +

〈ac〉
〈ab〉 λ̃c

)
. (3.3)
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Performing the grassmann integrations and evaluating on the above solution to the cut

conditions, the corresponding grassmann parameters ηla and ηla are determined to be

ηl1 = ηa +
〈bc〉
〈ba〉ηc

ηl2 = ηb +
〈ac〉
〈ab〉ηc . (3.4)

Finally the three-particle superamplitudes in figure 7 turn into the correct MHV factor in

equation (2.2) so that we recover the required result

〈ab〉
〈ac〉〈cb〉O(l1, ηl1 ; l2, ηl2) (3.5)

where the loop momenta and grassmann parameters are given in equations (3.3) and (3.4).

We will use this interpretation of the inverse soft limit extensively in the following to

identify grassmannian residues with leading singularities and find expressions for them in

terms of momentum twistors.

a

b

a

b

c

Figure 8: The action of an inverse soft factor on the twistor space support.

Translating the statements about channel diagrams to those about twistor support,

we find that the result of an inverse soft factor is supported where the additional twistor c

is collinear with a and b. Figure 8 indicates the twistor support when particle c is added

between particles a and b on adjacent MHV vertices. In general, whenever three points

{a−1, a, a+1} are collinear in twistor space, then the leading singularity is independent of

the momentum twistor Wa in momentum space in agreement with the action of an inverse

soft limit.

In many cases an inverse soft factor simply adds another particle to an existing MHV

vertex without changing the sturcture of the channel diagram. We have already seen that

adding particle c between two legs a and b of the same MHV vertex adds an additional

particle to that vertex. Similarly, adding c between particle a on an MHV vertex and

particle b on an adjacent MHV3 vertex again adds an additional particle to the MHV

vertex - see figure 9.
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=

a

c

b

a

c

b

a

c

b

=

a

c

b

Figure 9: The channel diagrams corresponding to inverse soft factors that simply add more particles

to an existing MHV vertex.

4. Grassmannian Residues

Having discussed the action inverse soft limits on leading singularities, we now turn to the

application of identifying primitive leading singularities with residues of the grassmannian

integral [1]. For Nk−2MHV superamplitudes with n particles, the formula is a contour

integral in the grassmannian G(k, n). When external states are transformed to dual twistor

space (where MHV amplitudes are supported on a line in our conventions) we have

A(W1, . . . ,Wn) =
1

volGL(2)

∫
dk×nC

(1) . . . (n)

k∏
r=1

d4|4Yr

n∏
i=1

δ4|4(Wi − CriYr) , (4.1)

where (i) = (i, . . . , i+ k) are minors of the (k× n)-matrix Cri of homogeneous coordinates

on G(k, n). Local residues are defined by (k − 2)(n− k − 2) conditions on the minors and

as we will discuss correspond to projective configurations of n points in CPk−1 with certain

localisation properties.

4.1 Projective Geometry in the Grassmannian

Projective geometry in the grassmannian plays an important role in understanding the

individual residues of the grassmannian integral [2]. Here we would like to understand how

the geometry of projective configurations arises.

Since superamplitudes in N = 4 are invariant under little group transformations which

rescale the twistors [19] then the grassmannian formula (4.1) is invariant provided the
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homogeneous coordinates transform in addition

Wi −→ tiWi Cri −→ tiCri. (4.2)

Therefore the little group transformations form a subgroup of the global GL(n) symmetry

of the grassmannian formula

Wi −→ Li
jWj Cri −→ Li

jCrj . (4.3)

Since multiples of the identity act trivially, there is a free action of H = (C∗)n/C∗ and we

may pass to the quotient G(k, n) /H. On the other hand, since columns can be rescaled

separately, the homogeneous coordinates Cri define a configuration of n points in the

projective space CPk−1. However, there is in addition a local GL(k) symmetry

Cri −→ Λr
sCsi (4.4)

which acts projectively on the configurations of points. Therefore the equivalence classes

of projective configurations under GL(k) match up with the grassmannian G(k, n) modulo

little group transformations. This is called the Gelfand-MacPherson correspondence [23],

G(k, n) /H = (Pk−1)n /GL(k). (4.5)

The characteristic properties of grassmannian residues are therefore properties of pro-

jective configurations of n-points in CPk−1 that are invariant under local GL(k) transfor-

mations. Such properties are exactly localisation properties.

4.2 Grassmannian Localisation and Twistor Support

The grassmannian localisation on curves of degree (k − 1) in CPk−1 has been important

in understanding tree amplitudes and the connection to twistor string theory [2, 24, 25].

However, here we focus on individual residues and localisation on planes of various codi-

mension.

The grassmannian localisation of n points in projective space CPk−1 is related to

support in twistor space CP3 through the delta-functions in the grassmannian integral [3, 4]

∫ k∏
r=1

d4|4Yr

n∏
i=1

δ4|4(Wi − CriYr). (4.6)

Immediately there are constraints on the twistor space support arising purely from the

dimension of the space CPk−1. In particular MHV amplitudes are supported on a line and

NMHV amplitudes on a plane in twistor space.

Further grassmannian localisation in CPk−1 is tested by the vanishing of the minors of

G(k, n); when the minor (i1, . . . , ik) vanishes then the points {i1, . . . , ik} lie in a codimen-

sion one subspace in CPk−1. For NMHV and N2MHV amplitudes this translates directly

into statements about the twistor space support:
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− NMHV: (i1 i2, ı3) = 0 implies that the points {i1, i2, i3} are collinear in twistor space.

− N2MHV: (i1 i2 i3 i4) = 0 implies that the points {i1, i2, i3, i4} are coplanar in twistor

space.

However, for N3MHV amplitudes and higher the relation between grassmannian localisa-

tion and twistor support is less immediate and here we almost exclusively on NMHV and

N2MHV amplitudes.

4.3 The Momentum Twistor Grassmannian

In [5] an equivalent grassmannian integral in G(k− 2, n) has been found where the natural

variables are momentum twistors. Once the overall MHV superamplitude has been cleared

the integral becomes (denoting p = k − 2)

R(W1, . . . ,Wn) =
1

volGL(p)

∫
dn×pD

(D1 . . . Dp) . . . (Dn . . . Dp−1)

p∏
r=1

δ4|4(DriWi) . (4.7)

where (Di . . . Di+p) are minors of the matrix Dri of homogeneous coordinates on G(k−2, n).

Individual residues are again defined by (k − 2)(n− k − 2) conditions on the minors. The

minors (Di . . . Di+p) are directly proportional to the minors (i) of the original G(k, n)

grassmannian upt to kinematic factors [7] so there is a clear correspondence between the

residues of the two grassmannian integrals.

The original G(k, n) grassmannian integral is naturally written with external states

transformed to twistor space and therefore manifests the standard superconformal symme-

try. It is also more suited for the geometric interpretation and identification of residues.

On the other hand, the G(k−2, n) grassmannian is written in terms of momentum twistors

and manifests dual superconformal invariance. The smaller minors means that it is also

simpler to calculated individual residues. In fact individuals residues are invariant under

the Yangian of the superconformal (or dual superconformal) algebra [8, 9] and the Yangian

symmetry determines uniquely the correct integrand of the grassmannian integral [10].

5. NMHV Amplitudes

For NMHV amplitudes the momentum twistor grassmannian is G(1, n) = CPn and the

integral formula (4.7) becomes

R(W1, . . . ,Wn) =
1

vol(C∗)

∫
dnD

D1 . . . Dn
δ4|4(DiWi) . (5.1)

The homogeneous coordinates Di on projective space CPn correspond directly to the minors

(i) of the G(3, n) grassmannian. Residues are then defined by the vanishing of (n − 5)

coordinates Di and are labelled by the corresponding minors or more conveniently here by

the five corresponding minors (i1) . . . (i5) that do not vanish.
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All residues are automatically supported on a plane in twistor space. When the (i) = 0

there is grassmannian localisation with {i−1, i, i+1} collinear in CP2. The residue then has

support when twistors {i−1, i, i+1} are collinear. From the delta functions in equation (5.1)

it is clear the residue is then independent of momentum twistor Wi.

5.1 Inverse Soft Factors

When particle i is added in between i − 1 and i + 1 by an inverse soft factor then the

resulting residue is supported where the twistors {i − 1, i, i + 1} are collinear. Therefore

the minor (i) vanishes on this residue and it is independent of momentum twistor Wi in

agreement with the general arguments made in section 2. The inverse soft factor then has

a simple action on residues; adding the particle j to the residue (i1) . . . (in−5) then we have

(i1) . . . (in−5) −→ (i1) . . . (in−5)(j) (5.2)

or equivalently labelling residues by the minors that do not vanish then (l1) . . . (l5) −→
(l1) . . . (l5) where the set {l1, . . . , l5} is the complement of {i1, . . . , in−5} in {1, . . . , n}.

5.2 Residues

The individual residues of the NMHV grassmannian integral may all be evaluated from the

momentum twistor integral with the result [5]

(i)(j)(k)(l)(m) = R(i, j, k, l,m) . (5.3)

The quantity R(i, j, k, l,m) is the basic dual superconformal invariant which is a homoge-

neous function of five momentum twistors [5]. It is antisymmetric under interchange of any

two of its arguments and being a residue of the grassmannian formula is Yangian invariant.

This Yangian invariant forms the basic building block for superamplitudes of any degree

in N = 4 SYM.

n

1

b

R(n, a− 1, a, b− 1, b) =

a

n

a

b

1

Figure 10: The channel diagram and twistor support of the basic R-invariant R(n, a−1, a, b−1, b).

The simplest case is when two pairs of minors are adjacent. In this case the grassman-

nian residue becomes the standard dual superconformal invariant R(n, i − 1, i, j − 1, j) ≡
Rn;ij appearing in BCFW expansions of the NMHV tree superamplitude [26, 12], for ex-

ample,
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ANMHV(1, . . . , n) = AMHV
n ×

∑
1<i,j<n

Rn;ij . (5.4)

where in such sums i and j must be separated by at least two. Individually, the residues

are one-loop leading singularities (see figure 5.2) reflecting the original derivation of the

BCFW recursion relations from the IR consistency of one-loop amplitudes [13].

In the more generic cases R(i, j, k, l − 1, l) and R(i, j, k, l,m) the residues correspond

to two-loop and three-loop leading singularities respectively [3]. The channel diagrams are

constructed from the twistor support which is turn immediate from the vanishing minors

- see figures 11 and 12. It is clear from the dependence on momentum twistors that the

generic residues may all be constructed by inverse soft factors. The action on the channel

diagrams then agrees with the general arguments in section 3.

k

l
i

j

k

l

i

j

l − 1

Figure 11: A channel diagram corresponding to the Yangian invariant R(i, j, k, l − i, l).

n

c

d

a b

n

a

b

c

d

Figure 12: A channel diagram corresponding to the Yangian invariant R(i, j, k, l,m).

This exhausts all residues of the grassmannian integral and therefore we expect that there

are no further Yangian invariants relevant for NMHV amplitudes. In general it is conjec-

tured that there are no new Yangian invariants corresponding to primitive leading singu-

larities past 3p-loops for NpMHV amplitudes [3].
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6. N2MHV Amplitudes

For N2MHV amplitudes the momentum twistor grassmannian is G(2, n) and after the MHV

superamplitude has been cleared the grassmannian integral formula becomes

R(1, . . . , n) =
1

vol(GL(2))

∫
d2nD

(D1D2) . . . (DnD1)

2∏
r=1

δ4|4(DriWi) . (6.1)

The 2× 2 minors (DiDi+1) are proportional to the minors (i) = (i− 1, i, i+ 1, i+ 2) of the

G(4, n) grassmannian which are labelled by their second column. Individual residues may

now be standard and composite [1, 2]. Standard residues are defined by (2n− 12) minors

vanishing to first order, while composite residues by fewer than (2n−12) minors with some

vanishing to second order.

Individual residues are determined by their grassmannian localisation in CP3 which

translates directly into statements about twistor space support of the corresponding leading

singularity. The residues are specified by the vanishing minors (a1) · · · (am) with m ≤
(2n−12) and by their collinear localisation [2]. In addition it is useful to label the coplanar

localisation so that following [2] we have the subscript and superscript notation:

− (· · · )m ⇒ {m− 1,m,m+ 1} are collinear in CP3

− (· · · )m ⇒ the complement of particles {m− 1,m,m+ 1} are coplanar in CP3.

A useful tool to understand the structure of vanishing minors is the factorisation

of minors [2]. In order to see this consider the two adjacent minors (2) ≡ (1234) and

(3) ≡ (2345) whose simultaneous vanishing require the coplanarity of the two sets points

{1234} and {2345}. This may happen in two ways; firstly the points {12345} are all

coplanar, or secondly the points {234} are collinear. For eight particles, this factorisation

is denoted by

(2)(3)⇒
{

(2)(3)7

(2)(3)3
(6.2)

although for more particles, we cannot include the coplanarity label (. . .)7 in the case that

the points {12345} are collinear.

The generic N2MHV residue is highly composite with many minors vanishing to second

order. For example, we will examine the eight-particle residues of the form (1)(2)2(3)72
where the notation (2)2 means that this minor vanishes to second order. However, for

large numbers of particles this notation becomes cumbersome and the information may be

recovered from the collinear labels. Therefore we will omit such labels, denoting the above

simply by (1)(2)(3)72.
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6.1 Inverse Soft Limits

Consider adding the particle i is added in between i − 1 and i + 1 with an inverse soft

factor. Then we have shown that the result has support where the points {i−1, i, i+1} are

collinear in twistor space. For N2MHV amplitudes, this requires one further condition on

each of the minors (i− 1) and (i) in order to produce the required factorisation (i− 1)(i)i
in which {i − 1, i, i + 1} are collinear. Therefore adding particle j to a generic residue

(i1) . . . (ik)
l1,...,ln
j1,...,jm

with an inverse soft factor produces the following residue

(i1) . . . (ik)
l1,...,ln
j1,...,jm

−→ (i1) . . . (ik)(j − 1)(j)li,...,lnj1,...jmj
(6.3)

Following the earlier convention, if the minor (j − 1) already vanishes to first order before

the inverse soft factor then the label will not be repeated in the resulting residue.

6.2 Residues

We will not attempt to identify all N2MHV residues with leading singularities, but instead

examine classes of residues built from inverse soft limits,which illustrate important features

and patterns. Hopefully this will then allow the reader to construct many further examples.

However, we will identify the leading singularities appearing in BCFW expansions of the

tree superamplitude, for example [26]

AN2MHV
n = AMHV

n

∑
1<i<j<n

Rn;ij

 ∑
i<k<l≤j

Rijn;ji;kl +
∑

j≤k<l<n
Rijn;kl

 (6.4)

in which each term is a two-loop primitive leading singularity [3]. The notation used in

equation (6.4) is explained in [26] and also further in the following text. Note that in the

boundary cases l = j and k = j the superscripts in equation (6.4) denote how the dual

superconformal invariants are modified in these cases. We will see that when written in

momentum twistors the required modification for the boundary terms becomes much more

transparent.

6.2.1 The Standard BCFW Terms

First we consider generic residues appearing in solutions of the BCFW expansion of the

N2MHV tree superamplitude written down in [26]. From their twistor space support [27]

it is straightforward to show that these terms correspond to pentabox channel diagrams

with generic numbers of legs [3].

Consider eight-particle residues where the three adjacent minors (6),(7) and (8) vanish

and the two pairs of adjacent minors factorise:

(6)(7)⇒
{

(6)(7)3

(6)(7)7

(7)(8)⇒
{

(7)(8)4

(7)(8)8
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Figure 13: The twistor support and channel diagrams of two standard BCFW terms.

One possible residue is (6)(7)(8)3478 where the four points {6781} are collinear and the minor

(7) vanishes to second order, however we will study this residue in the following section.

We can define standard residues of the form (6)(7)(8)47 and (6)(7)(8)38 together with one

more minor. In these cases the coplanar label follows automatically with the vanishing of

the third minor. Here we consider the two residues (3)(6)(7)(8)38 and (3)(6)(7)(8)47. The

twistor support is determined from the localisation and translated into channel diagrams

- see figure 13. Expressions in terms of momentum twistors may be found by computing

the residues explicitly [5] or more easily by generalised unitarity with the result:

(3)(6)(7)(8)38 = R(5, 6, 7, 1, 2)R(V, 2, 3, 4, 5) V = 〈5, 6, 7, [1〉2]

(3)(6)(7)(8)47 = R(8, 1, 2, 5, 6)R(U, 2, 3, 4, 5) U = 〈8, 1, 2, [5〉6] . (6.5)

Now consider adding particle 9 to the residue (3)(6)(7)(8)47 with an inverse soft factor in

order to form the composite nine-particle residue (3)(6)(7)(8)(9)479. Following the results of

section 3 this adds an additional particle to an existing MHV vertex in the channel diagram

- see figure 14. Adding particles {10, . . . , n} in the same way leads to the composite residue

(3)(6) . . . (n)479...n which is the same function of momentum twistors as in equation (6.5)

and whose channel diagram simply has more external legs on an MHV vertex. The residue

is then independent of the momentum twistors {W7,W9,W10, . . . ,Wn} in agreement with

the collinear localisation.
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Figure 14: BCFW residues with eight and nine particles related by an inverse soft factor.

Let us now consider a second example of BCFW terms arising from a composite eight-

particle residue. When minors (1) and (2) vanish we have the factorisation

(1)(2)⇒
{

(1)(2) 6

(1)(2) 2

and may impose the conditions that both {81234} are coplanar and that {123} are collinear.

This is three conditions on two minors and therefore composite residues of the form

(1)(2)(i)62 may be defined. Here we consider the residue (1)(2)(5)62 where the minor (5)

vanishes so that in addition {4567} are coplanar - see figure 15. Then we have the following

expression in momentum twistors:

(1)(2)(5)62 = R(1, 3, 4, 7, 8)R(U, 4, 5, 6, 7) U = 〈1, 3, 4, [7〉8] . (6.6)

Adding particle 9 with inverse soft factors again adds an additional particle to one of the

MHV vertices in the channel diagram and corresponds to the residue (8)(9)(1)(2)(5)629
which is the same function of momentum twistors - see figure 15. Again further particles

{10, . . . , n} may be added in the same way.

The two above examples illustrate the construction of BCFW type residues with inverse

soft factors. Starting with different eight-particle residues, all such BCFW terms can be

found in this way and we can write down general expressions for the residues. The generic

BCFW channel diagrams are those shown in figure 16 and their images under the reversal

of particle labels i −→ n− i. Following [26] we have the notation

Rn;ab;cd ≡ R(U, c− 1, c, d− 1, d)

Rn;ba;cd ≡ R(V, c− 1, c, d− 1, d) (6.7)

for particular dual superconformal invariants where we have defined the momentum twistors

U ≡ 〈n, a− 1, a, [b− 1〉Wb] and V ≡ 〈n, b− 1, b, [a− 1〉Wa] , (6.8)
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(8)(9)(1)(2)(5)629

8

1

2 3
4 5

6

7

8

2 3
4 5

6

7

1

(1)(2)(5)62

9

Figure 15: Adding the particle 9 to the residue (1)(2)(5)62 with an inverse soft factor.

which are naturally associated with on-shell loop momenta in the corresponding channel

diagrams. Then the leading singularities in figure 16 correspond to the following residues

(i) Rn;abRn;cd = (a− 1)(b− 1)(c− 1)(d− 1){n,a−1,a,b−1,b,c−1,c,d−1,d}

(ii) Rn;abRn;ab;cd = (a− 1)(c− 1)(d− 1)(b− 1){n,a−1,a,c−1,c,d−1,d,a−1,a}

(iii) Rn;abRn;ba;cd = (c− 1)(d− 1)(a− 1)(b− 1){n,c−1,c,d−1,d,a−1,a,b−1,b} (6.9)

where again overlines denote the complement of the enclosed set in {1, . . . , n}.

n

n

n

a
a

a

b

b

b

c c

c

d

dd

i) ii)

iii)

Figure 16: The generic primitive pentabox channel diagrams appearing in BCFW expressions.
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6.2.2 The Boundary BCFW Terms

We now consider so called boundary terms in BCFW solutions for the N2MHV tree super-

amplitude [26]. These correspond to primitive leading singularities whose channel diagrams

are pentaboxes where the shared MHV vertex has no external legs[3].

Let us now consider again eight-particle residues where the three adjacent minors (6),

(7) and (8) vanish and we have the factorisation of the two adjacent pairs,

(6)(7)⇒
{

(6)(7)3

(6)(7)7

(7)(8)⇒
{

(7)(8)4

(7)(8)8
.

Now consider the composite residue (6)(7)(8)3478 where the two collinear subscript labels

imply that the minor (7) is vanishing to second order (see figure 14). Note that the points

{6781} being collinear automatically implies that {56781} and {67812} are coplanar. In

momentum twistors we have

(6)(7)(8)3478 = R(1, 2, 3, 5, 6)R(U, V, 3, 4, 5) (6.10)

where have defined momentum twistors U = 〈1, 2, 3, [5〉6] and V = 〈1, 5, 6, [2〉3] again

associated with fixed on-shell loop momenta. Note that even for such boundary terms

the result may be written simply as a product of two basic R-invariants; a result that is

made transparent by performing the generalised unitarity calculation directly in momentum

twistor space [28]. It is then immediate to add particles {9, . . . , n} to an MHV vertex in the

channel diagram corresponding to the residue (6)(7) . . . (n)3478...n which is the same function

of momentum twistors.

(6)(7) . . . (n)3478...n

1

2
3

4

5

(6)(7)(8)3478

1

2

6

3

4

5

678 n

Figure 17: An example of inverse soft factors applied to a BCFW boundary term.

We now consider a second example of BCFW boundary terms that are standard

residues of the eight-particle grassmannian formula of the form (7)(8)(1)(2). The three

pairs of adjacent minors factorise as follows
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(7)(8)⇒
{

(7)(8) 4

(7)(8) 8

(8)(1)⇒
{

(8)(1) 5

(8)(1) 1

(1)(2)⇒
{

(1)(2) 6

(1)(2) 2

and there are two solutions not imposing singular kinematics, which are the residues

(7)(8)(1)(2)582 and (7)(8)(1)(2)461 (see figure 18). The momentum twistor expressions are,

for example,

(7)(8)(1)(2)461 = R(2, 3, 4, 5, 6)R(U, V, 6, 7, 8) (6.11)

where we have defined U = 〈4, 5, 6, [2〉3] and V = 〈2, 3, 4, [5〉6]. Again adding further

particles {9, . . . , n} to an MHV vertex leaves the dual superconformal invariant unchanged

as a function of momentum twistors.

(7)(8)(1)(2)461

1

2 3
4

5

6

(7)(8)(1)(2)528

78

4

5

3

6

7

8

2
1

Figure 18: Further examples of BCFW boundary terms and the corresponding residues.

Starting from the eight-particle residue (7)(8)(1)(2)461 we can construct the generic

BCFW boundary term with the same channel diagram by inverse soft factors - see figure 19.

The momentum twistor expression is always a product of two basic R-invariants with shifted

arguments and in this case we have

(j − 1){i,j−1,j,k−1,k,l−1,l} = R(i, j − 1, j, l − 1, l)R(U, V, j, k − 1, k) (6.12)

where we have defined the following momentum twistors

U = 〈i, j − 1, j, [l − 1〉Wl] and V = 〈i, l − 1, l, [j − 1〉Wj ]. (6.13)

that are associated to cut propagators in the channel diagram. Similarly one can construct

by inverse soft factors all such boundary terms corresponding to degenerate cases of the

pentaboxes (i),(ii) and (iii) in figure 16 from the previous subsection.
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Figure 19: The generic BCFW boundary term found from the residue (7)(8)(1)(2)461 by applying

multiple inverse soft factors.

6.2.3 Kissing Boxes

Here we will consider residues corresponding to kissing box channel diagrams that appear

as leading singularities of two-loop amplitudes. Consider standard eight-particle residues

of the form (2)(3)(5)(6), then each pair of minors factorises as follows,

(2)(3)⇒
{

(2)(3) 7

(2)(3) 3

(5)(6)⇒
{

(5)(6) 2

(5)(6) 6

and there are here two solutions (2)(3)(5)(6)27 and (2)(3)(5)(6)36 not imposing singular

kinematics. The first residue has localisation where the points {45678} and {12345} are

collinear and corresponds to a kissing box channel diagram shown in figure 20. Here the

residue may easily be calculated from generalised unitarity with the result,

(2)(3)(6)(7)27 = R(5, 6, 7, 8, 1)R(8, 1, 2, 3, 4). (6.14)

First we take the opportunity to study a residue that cannot be constructed by inverse

soft factors. Consider then the nine-particle residue (2)(3)(5)(6)(7)2 whose channel diagram

is shown in figure 20. It is clear from the channel diagram that any attempt to construct

this residue from (2)(3)(6)(7)27 by adding particle 9 will result in a three-loop leading

singularity. The same conclusion is also clear from the absence of a collinearity subscript.

Such new channel diagrams, not constructible by inverse soft factors, appear with each

additional particle.

The generic kissing box channel diagrams may all be constructed by inverse soft factors,

but generically the process must be start from a residue with more than eight particles. The

most generic kissing boxes constructed from the residues (2)(3)(6)(7)27 and (2)(3)(5)(6)(7)2

by inverse soft factors are shown in figure 21.
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Figure 20: Examples of residues with kissing box channel diagrams that may not be constructed by

inverse soft factors from lower point leading singularities.

(i− 1)(k − 2)(k − 1){i−1,i,j−1,j,k−1,k,l−1,l} (i− 1){i−1,i,j−1,j,k−1,k,l−1,l,m−1,m}

i i− 1

j k

l

i i− 1

j

k

l

m

Figure 21: Examples of generic kissing box channel diagrams and their residues.

6.2.4 Four-mass Box Coefficients

Finally we consider residues corresponding to four-mass box coefficients - see figure 22. We

start from the eight-particle residues (1)(3)(5)(7)1,2 where the subscript indicates one of

two solutions to the cut conditions for the four mass box configuration [1]. These residues

have the following expressions in terms of momentum twistors [5],

R(X(i), 3, 4, 7, 8)R(Y(i), 1, 2, 5, 6). (6.15)

The momentum twistors X(i) and Y(i) with i = 1, 2 are determined by the two solutions

to the cut conditions of the four-mass box configuration and may be found in [5]. Note

however that there are many such representations of the four-mass box coefficients.

Since each MHV vertex in the channel diagram has two external states, particles may

be added to all them forming generic four-mass box coefficients - see figure 22. From the

general rule for inverse soft limits, the momentum twistor expressions are then

R(X(i), j, j + 1, l, l + 1)R(Y(i), i, i+ 1, k, k + 1) , (6.16)
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Figure 22: The generic four-mass box coefficients and the corresponding grassmannian residues.

where again the momentum twistors X(i) and Y(i) are determined by the two solutions to

the cut conditions. They may be obtained from the solutions for eight particles by replacing

momentum twistors {1, . . . , 8} with {i, i+1, j, j+1, k, k+1, l, l+1} in accordance with the

general rule for inverse soft factors. Adding particles in between legs on separated MHV

vertices will of course lead to higher loop leading singularities.

6.3 Higher Loops

So far we have considered inverse soft factors that do not change the number of loops in

the channel diagram. Here we will consider an example studied above and find the most

generic residues that can be constructed by inverse soft factors. Hopefully this will serve

as representative of a similar procedure for all residues.

We consider the residue (3)(6)(7)(8)47 studied in section 6.2.1 which corresponds to a

standard BCFW type channel diagram. We first perform an inverse soft factor in between

particles 4 and 5 which lie on separate MHV vertices in the channel diagram. After

relabelling the external particles we find the following residue,

(3)(4)(5)(7)(8)(9)58 = R(9, 1, 2, 6, 7)R(U, 2, 3, 4, 5) U = 〈9, 1, 2, [6〉7] , (6.17)

which corresponds to a three-loop primitive channel diagram (see figure 23).

Adding further particles to MHV vertices by inverse soft factors we find the following

residue (see figure 23)

(j − i)(j)(l){i,j−1,j,j+1,k,l,l+1} = R(i, j − 1, j, l, l + 1)R(U, j, j + 1, k, l) (6.18)

where we have defined the momentum twistor U = 〈i, j − 1, j, l〉l + 1]. Finally we can add

further particles with inverse soft factors in between the remaining adjacent MHV vertices

to form the most generic residue constructed by inverse soft factors (see figure 24)

{0}{i,j−1,j,k,l,m,n,p} = R(i, j, k,m, p)R(U, k, l,m, n) (6.19)
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Figure 23: An inverse soft factor that increases the number of loops in the channel diagram.

where we now define U = 〈i, j, k, [n〉p] and the notation {0} means that all minors vanish

on this residue. All further inverse soft factors will simply add particles to existing MHV

vertices without increasing the number of loops in the channel diagram.

i

j

k

l

m

np

i

j

k

l

m

n
p

Figure 24: The most generic channel diagram constructed from the residue (3)(6)(7)(8)47 by inverse

soft factors and it twistor space support.

For large numbers of particles, it is the generic situation that all of the minors are

vanishing. The twistor support then consists of a series of i ≤ 9 lines containing generic

numbers of particles, that intersect only with their neighbours in the chain. In such cases

the channel diagram is highly non-unique and the residues may be reached in many ways

by inverse soft limits. Any attempt to add further loops with inverse soft factors will now

just add further particles to existing vertices and therefore channel diagrams with more

than six loops do not lead to new Yangian invariants at N2MHV. More generally, similar

arguments for NpMHV amplitudes indicate that no new Yangian invariants appear for

channel diagrams with more than 3p loops [3].
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7. Comments on Higher MHV Degree

For Nk−2MHV amplitudes with k ≥ 5 the passage from grassmannian localisation in CPk−1

to twistor support is not as immediate. However, the vanishing of minors to various orders

always leads directly to conditions on the grassmannian localisation in CPk−1. Therefore

grassmannian localisation seems to be more fundamental in the description of residues.

Consider N3MHV scattering amplitudes where the vanishing of the minor (2) = (12345)

implies that the the points {12345} lie in a 3-plane in CP4. Consider now that both minors

(2) and (3) vanish so that both sets of points {12345} and {23456} lie in 3-planes in CP4.

Then we have the following factorisation of minors corresponding to two ways this can

happen:

1. The points {123456} all lie in the same 3-plane in P4

2. The points {2345} lie in a 2-plane in P4.

When the next adjacent minor (4) vanishes, for example, we can place four conditions

on three minors with the points {23456} coplanar in CP4 and the minor (3) vanishing to

second order. However, for N3MHV amplitudes the minors may vanish to third order. For

example the minor (1) can vanish to third order when points {234} become collinear in

CP4. Therefore to define residues at N3MHV requires the specification of the vanishing

minors that denote the sets of points lying in 3-planes, the sets of points lying in 2-planes,

and the sets of collinear points in CP4. Such information should specify the grassmannian

localisation and uniquely determine the residue at N3MHV.

More generally for Nk−2MHV amplitudes we expect that individual residues are com-

pletely determined by specifying the following grassmannian localisation properties in

CPk−1:

− A list vanishing minors specifying sets of k points that lie in (k − 2)-planes

− The sets of (k − 1) points that lie in (k − 3) planes

− . . .

− The sets of four points that are coplanar

− The sets of three points that are collinear.

Following results presented here at N2MHV further examples at N3MHV, it is natural

to conjecture that all Nk−2HMV residues may be written as a product of (k − 2) basic

dual superconformal invariants R(U, V,X, Y, Z) for some choice of arguments that are as-

sociated with cut propagators in the corresponding channel diagrams. We leave for further

investigation the action of inverse soft limits on residues of higher MHV degree.
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