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1 Introduction

We study a correspondence between non-local observables both in four dimensional gauge

theories and in two-dimensional conformal field theories. On the four-dimensional side, we

consider supersymmetric loop operators such as Wilson loops, ’t Hooft loops and dyonic

loops in N = 2 supersymmetric gauge theories on a four-sphere or ellipsoid. On the two-

dimensional side, we study a class of topological defect networks in AN−1 Toda conformal

field theory.

The starting point is a rich class of four-dimensional N = 2 superconformal field

theories, obtained by compactifying the superconformal (2, 0) theory in six dimensions of

type AN−1 on a Riemann surface C with punctures [1, 2]. The marginal deformations are

encoded in the complex structure of C, while flavour symmetries and mass deformations

are encoded in the punctures. An example is the N = 2∗ theory, consisting of an su(N)

vectormultiplet and a hypermultiplet in the adjoint representation. This theory corresponds

to a torus with a simple puncture. In particular, the holomorphic gauge coupling is the

complex structure parameter of the torus and S-duality transformations are identified with

the mapping class group. A simple puncture encodes a u(1) flavour symmetry acting on

the hypermultiplet and the hypermultiplet mass.

The expectation values of supersymmetric observables in such N = 2 theories on

a four-sphere are captured by correlation functions in a conformal field theory on the

Riemann surface C. The foundational example is the four-sphere partition function. This

partition function be computed exactly by localisation when there is lagrangian description

of the theory [3] (the full correspondence involves the partition function on an ellipsoid,

which was constructed and computed recently in [4]). For theories of type A1, the partition

function is captured by a certain correlation function of Virasoro primary fields in Liouville

theory [5]. This was subsequently extended to higher rank with correlation functions in

AN−1 Toda theory [6].

The correspondence is enriched by inserting supersymmetric defects on the four-

dimensional side, such as loop operators, surface defects and domain walls. In this pa-

per, we consider supersymmetric loop operators, such as Wilson loops, ’t Hooft loops and

particularly dyonic loop operators. For example, consider the N = 2∗ theory with gauge

algebra su(2). Ignoring conditions of mutual locality, the loop operators in this case are

labelled by a pair of integers (e,m) modulo the identification [7]

(e,m) ∼ (−e,−m) . (1.1)

We can always choose m ≥ 0 and e ≥ 0 whenever m = 0. Then (e,m) are interpreted

respectively as the electric and magnetic charge of the loop operator. Remarkably, this data

is in one-to-one correspondence with homotopy classes of closed curves without intersections

on a torus [8]. This observation can be made precise in the context of Liouville theory:

the expectation value of a supersymmetric loop operator is given by a correlation function

in the presence of topological defects supported on a collection of closed curves without

intersection [9, 10].

– 2 –
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Correlation functions in the presence of topological defects can be conveniently ex-

pressed in terms of Verlinde operators, which are operators acting on the space of Virasoro

conformal blocks. They depend only on the homotopy class of a closed curve γ and an

irreducible representation of the Virasoro algebra, which in the present case is a degenerate

representation with momentum α = −b/2. Roughly speaking, the Verlinde operator mea-

sures the monodromy of the conformal blocks obtained by transporting the chiral primary

with momentum α = −b/2 around the curve γ. It has been shown that, acting inside a

correlation function, each Verlinde operator introduces a topological defect as constructed

in boundary conformal field theory by the unfolding trick [11, 12].

However, for theories of type AN−1 with N > 2, the spectrum of supersymmetric loop

operators is much richer. For example, supersymmetric loop operators in the N = 2∗

theory are labelled more generally by an electric and magnetic weight (λe, λm) modulo

Weyl transformations,

(λe, λm) ∼ (w(λe), w(λm)) w ∈ SN . (1.2)

A subset of loop operators that lie in the S-duality orbit of a Wilson loop in the fundamen-

tal representation have been matched to Verlinde operators/topological defects supported

on closed curves in AN−1 Toda theory [11, 13, 14]. However, closed curves without inter-

sections cannot account for the complete spectrum of loop operators.

The exact matches found in the literature have lead to the suggestion that supersym-

metric loop operators should correspond in general to topological defect networks with

junctions in AN−1 Toda theory on C [11, 13]. The expectation that UV line operators in

theories of class S are labelled by networks has also been explored at a classical level in [15]

by exploiting the expected relationship to certain coordinate systems on the moduli space

of local systems on C.

The aim of this paper is to propose and generate modest evidence for an exact one-

to-one correspondence between supersymmetric loop operators in theories of class S on a

four-sphere and a class of topological defect networks in AN−1 Toda theory. The defect

lines in this class are oriented and labelled by j = 1, . . . , N − 1 such that inverting the

orientation is equivalent to interchanging j → N − j. The topological defect lines can end

on three-valent junctions that are formed whenever i+ j + k = N for incoming lines. The

basic ingredients are thus summarised below:

. (1.3)

For Liouville theory, N = 2, the defect lines are unoriented and there are no vertices, so

we recover closed curves without intersections. In the present paper, we focus on the case

of N = 3. In this case, any line labelled by ‘2’ can be replaced with one labelled by ‘1’ by

reversing the orientation. Thus we can drop the labels and consider oriented lines ending

– 3 –
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Figure 1. An example of a defect network in A2 Toda theory on a torus with simple puncture. It

corresponds to the dyonic loop operator labelled by the weights (−ω2, ω1) in the N = 2∗ theory.

on junctions with three incoming or three outgoing lines. An example of such a topological

defect in the N = 2∗ theory corresponding to a dyonic loop operator is shown in figure 1.

Let us now summarise the contents of each section. In section 2, we construct topo-

logical defect networks by generalising the construction of Verlinde operators. Each defect

line labelled by j corresponds to transporting a chiral primary with degenerate momentum

α = −bωj where ωj is j-th fundamental weight of AN−1. The Verlinde operator corre-

sponding to a given network is formed by transporting chiral primaries along each curve

in the network and fusing them at the junctions.

Via this construction, we find that Verlinde operators can often be simplified by re-

moving certain contractible networks. For example, in Liouville theory a disconnected

contractible loop can be removed by

= q + q−1 (1.4)

where q = eiπb
2

and b is the dimensionless coupling of Liouville/Toda theory. For Verlinde

operators in A2 Toda theory, we find more complicated system of rules for removing con-

tractible networks,

= q2 + 1 + q−2

= −
(
q + q−1

)

.

(1.5)

Let us call Verlinde operators/topological defects where all such contractions have been

performed irreducible. The conjecture is then that supersymmetric loop operators are in

1-1 correspondence with irreducible topological defect networks in Toda conformal field

theory of type AN−1.

An important problem is to understand the algebra generated by the Verlinde operators

under composition and addition. We find that the composition of two Verlinde operators

– 4 –
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can always be decomposed by superimposing the corresponding networks and resolving the

crossings according to a set of generalised skein relations. The result can then be simplified

by the contractions above. For Liouville theory, the skein relations are [10]:

= q1/2 + q−1/2 . (1.6)

At higher rank, the generalised skein relations involve Verlinde operators with junctions.

For N = 3, we will derive the following generalised skein relations

= q−2/3 + q1/3

= q2/3 + q−1/3 .

(1.7)

Once the dictionary between supersymmetric loop operators and networks has been con-

structed, the skein relations allow the operator product expansion of the corresponding

loop operators to be computed.

The removal of contractible loops and the generalised skein relations for Liouville the-

ory and A2 Toda theory are isomorphic respectively to the ‘spider’ relations [16]. These

relations encode the representation theory of the quantum groups Uq(sl(2)) and Uq(sl(3)) re-

spectively with q = eiπb
2

and are important in the construction of quantum group invariants

of knots. Perhaps this connection is not unexpected given the relationship between Liou-

ville/Toda theory and an analytic continuation of Chern-Simons theory [17, 18]. Therefore,

we tentatively conjecture that the algebra of Verlinde operators for irreducible networks in

AN−1 Toda theory is equivalent to the higher rank spiders constructed in [19, 20].

In section 3, we construct the Verlinde operators in a concrete example: A2 Toda

theory on a torus with a simple puncture. By extending the exact field theory compu-

tation [21] of the expectation value ’t Hooft loops in N = 2∗ to the case of dyonic loop

operators, we construct the dictionary between supersymmetric loop operators (in cases

without monopole bubbling) and Verlinde operators for irreducible networks. Furthermore,

we compare the generalised skein relations to the expected operator product expansion of

loop operators. For loop operators supported on Hopf linked circles, we also find a set of

generalised ’t Hooft commutation relations and the conditions for mutual locality.

Finally, in section 4 we discuss what could not be achieved in the present paper and

some directions for further research. We include four appendices containing additional

material and computational details.
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2 Topological defects networks in Toda CFT

2.1 Review of Toda CFT

Let us briefly review some points about Liouville/Toda conformal field theory of type

AN−1. A more thorough introduction and discussion of what is known can be found for

example in [22–25] whose notation we generally follow. Our group theory conventions are

summarised in appendix A.

Toda conformal field theory is constructed from a two-dimensional scalar field ϕ valued

in the Cartan subalgebra of AN−1. The case of N = 2 corresponds to Liouville theory.

Introducing a background metric g with scalar curvature R, the action functional can be

written as

S =

∫
X
d2x
√
g

 1

8π
gab(∂aϕ, ∂bϕ) +

(Q,ϕ)

4π
R+ µ

N−1∑
j=1

eb(ej ,ϕ)

 , (2.1)

where b ∈ R is a dimensionless parameter and µ is a dimensionful scale parameter. The

scalar ϕ is coupled to the curvature with charge

Q = q ρ q ≡ b+ b−1 . (2.2)

The semiclassical limit is defined by rescaling ϕ→ ϕ/b and taking the limit b→ 0 with λ ≡
2πµb2 = 1 fixed. In this limit, the path integral based on the action (2.1) is dominated by

solutions to the classical Toda equations with appropriate boundary conditions. However,

interpreting the semiclassical limit of correlation functions in terms of a path integral is

rather subtle [26]. The interpretation of topological defect networks in the classical theory

is outlined in appendix B and will not be discussed further in the main text.

In practice, correlation functions are constructed by exploiting symmetries of the the-

ory. The chiral algebra of Toda conformal field theory is generated by holomorphic currents

Wj(z) of spin j = 2, . . . , N and is known as the WN -algebra. In particular, the holomorphic

stress tensor

W2(z) = (Q, ∂2ϕ)− 1

2
(∂ϕ, ∂ϕ) (2.3)

generates a Virasoro subalgebra with central charge c = N −1 + 12q2. The irreducible rep-

resentations of the WN -algebra are labelled by a complex vector α in the Cartan subalgebra

of AN−1 and the corresponding primary fields are exponentials

Vα = e(α,ϕ) . (2.4)

The representations are characterised by charges wj(α) under the holomorphic currents.

In particular, the conformal dimension is given by

∆(α) =
(2Q− α, α)

2
. (2.5)

These charges wj(α) are invariant under Weyl transformations

s : α 7→ Q+ s(α−Q) s ∈ SN (2.6)

and an important fact is that correlation functions of the corresponding primary fields are

proportional. An example is that the vertex operator with momentum 2Q − α is propor-

tional to that with momentum α∗, where conjugation is defined by (α∗, ej) = (α, eN−j).

– 6 –
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The complete symmetry algebra of the theory on a cylinder is given by holomorphic

and anti-holomorphic copies of the WN -algebra, and the Hilbert space is defined by the

diagonal pairing of representations ∫
dα Vα ⊗ Vα (2.7)

where α = Q + ia with a ∈ RN−1 are non-degenerate representations corresponding to

delta-function normalisable states. In addition, there exists semi-degenerate and com-

pletely degenerate representations of the WN -algebra that play a role in what follows. The

spectrum of such representations and their characters are discussed, for example, in [11].

Of particular importance here are completely degenerate representations with primary

operators with momentum α = −bλ where λ is a dominant integral weight. They are thus

labelled by irreducible representations of AN−1. The operator product expansions of the

corresponding primary fields are simple

V−bλ · Vα =
∑
j

Vα−bwj

V−bλ1 · V−bλ1 =
∑
λ3

N λ3
λ1λ2

V−bλ3

(2.8)

where wj are weights of the representation with highest weight λ and N λ3
λ1λ2

are the

Littlewood-Richardson coefficients. Thus the operator product expansion mirrors the struc-

ture of the representation theory of AN−1.

2.2 Topological defect networks

Topological defects are important observables in any two-dimensional conformal field the-

ory. Although, we concentrate here in a particular class of topological defects in Liou-

ville/Toda conformal field theory, much of the construction that follows could be framed

more generally, for example, in the context of rational conformal field theories.

Here, we are going to study a class of topological defects in Toda conformal field theory

of type AN−1 supported on closed networks without intersections embedded in a Riemann

surface. The networks are constructed from the components:

• Oriented curves labelled by an irreducible representation of AN−1 with fundamental

highest weight ωj for j = 1, . . . , N−1. Inverting the orientation of a line is equivalent

to conjugation of the representation.

.

• Trivalent vertices whenever there is an invariant tensor on the tensor product of

representations Λi × Λj × Λk, that is whenever i+ j + k = N .

.

– 7 –
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Figure 2. The ingredients for topological defect networks in Toda theory of type A2 are a) oriented

lines and b) incoming and outgoing vertices.

For A1, the curves are labelled by the fundamental representation Λ1 and so are unoriented.

There are no vertices, and the topological defects are constructed from unions of closed non-

self-intersecting curves. For our main example, A2, we have oriented curves labelled by the

fundamental Λ1 and anti-fundamental Λ2 representations. Since reversing the orientation

interchanges the labels Λ1 ↔ Λ2, it is convenient to transform all lines to the fundamental

and then omit the label. There is then only one vertex and its conjugate — see figure 2.

For each network (together with a choice of ‘framing’ that we discuss later), there is

a recipe to construct an operator acting on the space of WN -algebra conformal blocks in

a way that generalises the notion of a Verlinde loop operator [27]. The operator is defined

by exploiting the monodromy properties of conformal blocks under fusion and braiding of

the degenerate primary fields with momenta α = −bωj . The operator constructed in this

fashion is invariant under smooth deformations of the network.

The starting point for this construction is the expansion of a given correlation function

into Liouville/WN -algebra conformal blocks. A correlator of n primary fields Vµ1 , . . . , Vµn
can be computed by picking a pants decomposition σ of the Riemann surface X. Each

pants decomposition can be represented by a trivalent graph Γσ that encodes a sewing of

the Riemann surface from (2g − 2 + n) pairs-of-pants and (3g − 3 + n) tubes. For each

pants decomposition σ there is a set of Virasoro/WN -algebra conformal blocks

F (σ)
α,µ(τ) (2.9)

depending on

1. Representations on external edges: µ = (µ1, . . . , µn).

2. Representations on internal legs: α = (α1, . . . , α3g−3+n).

3. Sewing parameters on each edge: τ = (τ1, . . . , τ3g−2+n).

The conformal blocks also depend on a choice of fusion channel at each vertex, whose

dependence we are suppressing. The correlator can then be expanded

〈Vµ1 . . . Vµn〉 =

∫
α
dν(α) F̄ (σ)

α,µ(τ)F (σ)
α,µ(τ) (2.10)

where the integral is over all internal representations and fusion channels allowed by the

operator product expansion of primary fields. The measure ν(α) contains an appropriate

three-point function for each vertex of the graph Γσ. Associativity of the operator product

expansion ensures that the whole expression is independent of the choice of σ.

– 8 –
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Now, a Verlinde operator supported on an embedded network can be computed by a

sequence of fusion and braiding moves on the WN -algebra conformal blocks:

1. Insert the identity operator 1 at some point on the trivalent graph Γσ.

2. Resolve the identity operator 1 as the fusion of two degenerate chiral primaries Vµ
and Vµ∗ where the momentum µ = −bωi corresponds to the label i on a curve γ of

the network.

3. Transport the primary field Vµ with momentum µ = −bωi around the trivalent graph

Γσ according to the orientation of the curve γ.

4. When the curve γ ends on a vertex with three incoming curves (γ, γ′, γ′′) labelled by

integers (i, j, k) such that i+ j + k = N , resolve the primary Vµ as the fusion of two

chiral primaries Vµ′ and Vµ′′ with momenta µ′ = −bωN−j and µ′′ = −bωN−k .

5. Repeat steps 3 and 4 according to the structure of the network. The endpoint is

again the chiral primaries Vµ and Vµ∗ in the same configuration as in step 2.

6. Fuse the vertex operators Vµ and Vµ∗ back to the identity operator 1 to close the

network.

This construction leads to a sequence of elementary fusion and braiding operations, whose

endpoint is an operator O acting the space of Virasoro/WN -algebra conformal blocks sub-

ordinate to the original pants decomposition σ,

F (σ)
α,µ →

[
O · F (σ)

]
α,µ

=
∑
α′

Oα,α′ F
(σ)
α′,µ

F (σ)
α,µ → F

(σ)
α,µ ,

(2.11)

where Oαα′ are the matrix elements of the operator. Note that due to the operator product

expansion of degenerate primary operators (2.8), the Verlinde operator always takes the

form of a discrete sum of terms. There are natural operations of summation and composi-

tion of Verlinde operators defined in the obvious way. An important goal is to understand

the algebra generated by the above operations, that is, how to decompose a composition

O1◦O2 as a sum of operators
∑

j cjOj . Below, we show that this is found by superimposing

the corresponding networks and resolving each crossing according to a set of generalised

skein relations.

The Verlinde operator itself depends on the choice of pants decomposition σ by defi-

nition. However, acting with a Verlinde operator inside a correlation function produces a

result that is independent of the choice of pants decomposition σ,∫
dν(α)F (σ)

α,µ(τ)
[
O · F (σ)

]
α,µ

(τ) ≡ 〈O 〉 (2.12)

and defines the expectation value of a topological defect operator in Toda conformal field

theory. To see this, let us consider the Verlinde operator corresponding to a closed curve

labelled by momentum µ = −bωj wrapping a tube of the pants decomposition σ with

– 9 –
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Figure 3. A topological defect a) labelled by the representation with momentum µ = −bωj

wrapping the tube of a pants decomposition with momentum α, and the sequence b) of fusion and

braiding operations needed to compute the Verlinde operator.

momentum α. This can be computed by the sequence of operations illustrated in figure 3.

Combining this sequence of operations leads to a multiplicative operator[
O · F (σ)

]
α,...

=
Sµ,α
S1,α

F (σ)
α,... (2.13)

where Sµ,α denotes the modular S-matrix [11]. Inside a correlation function, this agrees

with the expectation value of a topological defect labelled by the representation of the

WN -algebra with momentum µ = −bωj , as defined in boundary conformal field theory

by the unfolding trick. When there are junctions, a classification in terms of boundary

conformal field theory cannot be applied. Nevertheless, we expect that the Verlinde oper-

ators considered here coincide with topological defect networks defined axiomatically, for

example in [28].

There is a canonical normalization of the Verlinde operators as defined by the proce-

dure described in the preceding paragraph. We will use a different normalization illustrated

in a series of examples in the following subsections. This normalization has the advantage

that the generalized skein relations take the simplest possible form and coincide with those

commonly used in the mathematical literature. It also corresponds to a convenient nor-

malization of loop operators in four dimensional gauge theories.

Finally, the precise form of the Verlinde operator O depends on a choice of framing

of the network. This modifies the operator only by fractional powers of the quantum

parameter q = eiπb
2
. This ambiguity disappears in the semi-classical limit b → 0. In

practice, we will make choice for a subset of networks that are sufficient to generate the

algebra, and then impose a choice of quantum skein relations. This choice is designed to be

compatible with the ’t Hooft commutation relations of loop operators in four-dimensional

gauge theories.

2.3 Building blocks

In this section, we compute some of the basic ingredients needed to compute the aforemen-

tioned class of defects in the case of A2 Toda theory. The ingredients that we can com-

pute are all obtained by exploiting monodromy properties of conformal blocks contribut-

– 10 –
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Figure 4. The four-point correlation function of with two non-degenerate momentum α1 and

ᾱ2 = 2Q − α2, one semi-degenerate momentum of the form ν ≡ −κhN where κ ∈ R, and one

completely degenerate momentum µ ≡ −bh1. In what follows we omit the arrows on conformal

block diagrams, with the understanding that they are oriented as shown in this figure.

ing to the four-point correlation function shown in figure. This correlator was computed

in [23, 24] and the monodromy properties of its conformal blocks are reviewed extensively

in appendices C and D.

Introducing the convenient parametrisation

〈V2Q−α2(∞)Vν(1)Vµ(z)Vα1(0)〉 = |z|−2b(µ−Q,h1)|1− z|2b(ν,h1)G(z, z̄) , (2.14)

the function G(z, z̄) is constructed from diagonal combinations of solutions to an n-th

order generalised hypergeometric differential equation and its conjugate with z ↔ z̄. The

hypergeometric equation has regular singularities at points z = 0, 1,∞ corresponding to the

three pants decompositions of a sphere with four-punctures: the s-channel, t-channel and u-

channel respectively. Solutions to the hypergeometric equation with diagonal monodromy

around the singular points provide a basis of conformal blocks for this four point function.

The conformal block for a particular representation in the intermediate channel can

normally be identified by its monodromy, which is dictated by the operator product ex-

pansion. In the s- and u-channels, we have

Vµ(z) · Vα1(0) =

N∑
j=1

C
(s)
j

(
|z|2sjVα1−bhj + . . .

)
Vµ(z) · Vᾱ2(∞) =

N∑
j=1

C
(u)
j

(
|z|−2ujVᾱ2+bhj + . . .

) (2.15)

where

sj = iba1,j +
1

2
bq(N − 1)

uj = −ia2,j −
1

2
bq(N − 1)− b2 (1− 1/N) .

(2.16)

Correspondingly, the monodromy matrices at the regular singular points z = 0 and z =∞
are non-degenerate with eigenvalues e2πisj and e2πiuj respectively. The conformal blocks

in the s-channel and u-channel can therefore be therefore uniquely identified by their mon-

odromy. On the other hand, the operator product expansion in the t-channel predicts the

appearance of just two representations in the intermediate channel

Vµ(z) · Vν(1) = C
(t)
1

(
|1− z|2t1 Vν−bhN + · · ·

)
+ C

(t)
2

(
|1− z|2t2 Vν−bh1 + · · ·

) (2.17)

– 11 –
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where
t1 = bq(N − 1)− bκ(1− 1/N)

t2 = bκ/N .
(2.18)

The monodromy matrix at the regular singular point z = 1 is degenerate, with the eigen-

value e2πit1 appearing once and the eigenvalue e2πit2 appearing (N − 1) times. The reason

for the degeneracy in the monodromy matrix is that some descendants of Vν−bh1 can ap-

pear independently in the conformal block expansion. It is an important feature of Toda

conformal field theory that the correlation functions of primary fields are not sufficient to

construct the correlators of all WN -algebra descendants. Nevertheless, in the examples

studied below, we find that the correct conformal block can always be isolated from the de-

generate subspace by consistency with the operator product expansion in another channel.

2.3.1 Fusion 1

Let us consider the process of creating and annihilating topological defect lines labelled by

the fundamental and anti-fundamental representations. This corresponds to resolving the

trivial representation by 1 ⊂ Vµ×Vµ∗ and then fusing them again. For this subsection, we

can keep N generic.

The required conformal blocks are obtained by restricting the parameter of the semi-

degenerate puncture in the above four-point correlator to κ = −b. The operator product

expansion

Vµ(z) · Vµ∗(1) = C0
µ,µ∗

(
|1− z|−4∆(µ)

1 + · · ·
)

+ · · · (2.19)

where

2∆(µ) = −b2(N − 1/N)− (N − 1) (2.20)

dictates that the t-channel conformal block with the trivial representation in the inter-

mediate channel has monodromy q2(N−1/N) around z = 1. From appendix D, the unique

conformal block with this monodromy can be expressed as a linear combination of s-channel

conformal blocks

=
Γ(Nbq)

Γ(bq)

N∑
k=1


N∏
j 6=k

Γ (ibajk)

Γ(ibajk + bq)

 (2.21)

where Γ(x) is the Euler gamma function. The corresponding annihilation process is ob-

tained by extracting the unique term in the inverse transformation with the monodromy

eigenvalue e2πib2(N−1/N). The result is the projection

−→ Γ(1−Nbq)
Γ(1− bq)

[ ∏
j 6=k

Γ (1− ibajk)
Γ(1− iajk − bq)

]
. (2.22)
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Figure 5. In A2 Toda theory, the four-point correlator with two primary fields of equal degenerate

momentum µ = −bω1 is related to that standard four-point function with the specialisation κ =

3q + b by applying the Weyl transformation w : hj → hj+1. The conformal blocks of the above

four-point correlators are therefore equal.

2.3.2 Fusion 2

In Liouville theory, the fundamental representation of A1 is self-conjugate and so there

are no vertices involving only the fundamental representation Vµ. Let us consider the

next simplest case, A2 Toda theory. There are two vertices connecting defect lines in the

fundamental and anti-fundamental representations, corresponding to the fusions Vµ∗ ⊂
Vµ×Vµ and Vµ ⊂ Vµ∗×Vµ∗ . Therefore, we require the monodromy properties of conformal

blocks for the four-point correlator of two vertex operators with degenerate momentum

µ = −bh1 and two further vertex operators with non-degenerate momenta. In this case,

the required correlator can be obtained from the general four-point correlator of figure 4 by

performing a reflection of the semi-degenerate momentum ν = −κh3 and then specialising

to a particular value of the real parameter κ.

The Weyl group of AN consists of permutations of the weights {h1, . . . , hN} of the

fundamental representation. An element w acts on the momentum of a representation

by α → Q + w(α − Q), leaving invariant the conformal dimension ∆(α) and the higher

spin charges. An important fact is that correlation functions of the corresponding vertex

operators are proportional

Vα = Rw(α)VQ+w(α−Q) (2.23)

where the coefficient Rw(α) is known as the reflection amplitude (see [24] for the ex-

plicit form of the reflection amplitude). Since this is an operator relation, it holds for

the three-point functions of the theory. This means that given a pants decomposition of a

higher point correlator, the reflection amplitude is always absorbed into a three-point func-

tion. Thus, the WN -algebra conformal blocks are invariant under Weyl transformations

of the momenta.

An important example is the transformation w : {h1 ↔ hN}, which sends the momen-

tum ᾱ = 2Q − α to the conjugate momentum α∗ defined by the inner product with the

simple roots (α∗, ej) = (α, eN−j). For our present problem in the case of A2, we note that

the cyclic permutation w : {hj → hj−1} applied to a completely degenerate momentum µ

transforms it to

w : −bh1 → −(3q + b)h3 . (2.24)

Thus, the conformal blocks we need can be obtained by specialising to

κ = 3q + b (2.25)

in the standard four-point function, as illustrated in figure 5.
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To compute the vertex amplitude from the four-point function, we must isolate the

t-channel conformal block corresponding to the fusion Vµ∗ ⊂ Vµ × Vµ in the intermediate

channel. From the relevant operator product expansion

Vµ(z) · Vµ(1) = Cµ
∗

µ,µ

(
|1− z|2(1+4b2/3)Vµ∗ + · · ·

)
+ · · · , (2.26)

the relevant solution has monodromy q8/3 around z = 1. However, specialising to κ = 3q+b,

we find that the monodromy operator around z = 1 has one eigenfunction with monodromy

q−4/3 and two eigenfunctions with degenerate monodromy q8/3.

To isolate the correct conformal block from the degenerate subspace, we check con-

sistency with the expected representations appearing in the s-channel. For the t-channel

conformal block corresponding to Vµ∗ in the intermediate state, the external momenta are

restricted to

α1 = α α2 = α+ bhi i = 1, 2, 3 . (2.27)

Now, transforming to the s-channel, the operator product expansion dictates that the

intermediate channel can have momentum α− bhj for j 6= i. This uniquely determines the

correct linear combination of solutions for a given i, up to an overall scale that is fixed by

demanding the leading term as z → 1 has unit coefficient. They are

=
Γ(2bq)

Γ(bq)

∑
j 6=i

 Γ(ibakj)

Γ(qb+ ibakj)



=
Γ(2bq)

Γ(bq)

∑
j 6=i

 Γ(−ibakj)
Γ(qb− ibakj)


(2.28)

where it is understood that k 6= i, j. In the second line we have included the conjugate pro-

cess for convenience, which is derived from the invariance of the blocks under simultaneous

conjugation of all momenta. The inverse process is obtained by inverting the transforma-

tion and projecting back onto the t-channel block with monodromy q8/3. From the inverse

transformations in appendix D we find

−→ Γ(1− 2bq)

Γ(1− bq)
Γ(1− ibakj)

Γ(1− qb− ibakj)

−→ Γ(1− 2bq)

Γ(1− bq)
Γ(1 + ibakj)

Γ(1− qb+ ibakj)
.

(2.29)

In the second line, we have again included the conjugate operation.
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2.3.3 Braiding and framing

In each of the fusion operations above, there is the freedom to perform a number of t-

channel braiding operations. Each such braiding introduces an additional phase into the

Verlinde operator, determined by the conformal dimensions of the operators involved. For

example, interchanging the conjugate primary fields Vµ and Vµ∗ in the identity fusion

channel introduces the phase

eiπ(∆(µ)+∆(µ∗)) = (−1)N−1eiπb
2(1/N−N) . (2.30)

In pictures,

= (−1)N−1q1/N−N . (2.31)

In the A2 Toda theory we can also interchange identical Vµ and Vµ with µ = −bω1 in the

fusion channel Vµ∗ . In summary, the braiding phases for A2 Toda are

= q−8/3

= −q−4/3

(2.32)

where in the second line the same formula holds with µ↔ µ∗.

Performing different numbers of such braidings at intermediate stages is a choice of

‘framing’ for the Verlinde operator. This ambiguity means that we should be drawing the

curves in the network as ribbons, in order to keep track of the framing. In practice, we

are going to fix the framing in some simple examples and then extend this convention

systematically by using the skein relations. Our choice is motivated by the connection to

loop operators in four-dimensional gauge theories.

2.4 Contractible loops

An important consistency condition on the fusion matrices is that topological defects in-

volving certain contractible loops can be simplified by removing the loop. The simplest

example for AN−1 Toda theory is the creation and immediate annihilation of a pair of ver-

tex operators with conjugate momentum µ and µ∗, which introduces a contractible loop.

Combining the relevant fusion matrices according to figure 6 part a), we find

sinπbq

sinπNbq

N∑
k=1

∏
j 6=k

sinπb(iajk + q)

sinπb(iajk)
= 1 . (2.33)
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Figure 6. Contractible loop a) and bubble b) in A2 Toda theory and the corresponding sequence

of fusion operations.

Here, we find it convenient to normalise the Verlinde operators to eliminate the prefactor in

the above equation. In this normalisation, we associate to each contractible loop the factor

=
sinNπbq

sinπbq
= (−1)N−1[N ]q , (2.34)

where the notation [N ]q = qN−1 + qN−3 + . . . + q1−N is the quantum dimension of the

fundamental representation of AN−1 with parameter q = eiπb
2
.

In Liouville theory, there are no further independent contractible loops because there

are no vertices. However, in A2 Toda theory, starting with momentum µ and creating and

immediately annihilating a pair of vertex operators with identical momentum µ∗, introduces

a contractible bubble. Combining the fusion matrices according to the steps in figure 6

part b), we find

sinπqb

sin 2πqb

[
sinπ(ibakj + qb)

sinπ(ibakj)
+

sinπ(ibajk + qb)

sinπ(ibajk)

]
= 1 . (2.35)

In the same manner as above, we choose our normalisation to eliminate the prefactor in

the above equation and so associate to each contractible bubble a factor

=
sin 2πqb

sinπqb
= −[2]q . (2.36)

Finally, patiently combining the fusion matrices we find that any contractible square graph

can be removed by

. (2.37)

It is expected that the above relations generate all possible simplifications that can be

made by removing contractible subgraphs of A2 networks: contractible 2n-gons cannot be

eliminated for n > 2. A topological defect network where all contractible loops, bubbles

and squares have been removed will be called irreducible.
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Figure 7. Sequence of fusion and braiding operations for topological defect labelled by momentum

µ = −bω1 wrapping the tube of a pants decomposition.

2.5 Skein relations

Now, let us consider the composition O1 ◦ O2 of Verlinde operators corresponding to two

networks and ask how it can be decomposed into a sum
∑

j cjOj . The result is that

one should superimpose the two networks and resolve each crossing according to a set

of generalised skein relations. To derive the skein relations, let us compute some simple

Verlinde operators for networks on a cylinder. We imagine that this configuration is part

of a larger network and the cylinder is identified with a tube of the pants decomposition.

The simplest defect corresponds to a defect line wrapping once around the cylinder.

This is computed by the sequence of operations shown in figure 7. Multiplying the sequence

by the quantum dimension [N ]q we find

eiπbq(N−1)
N∑
j=1

∏
k 6=j

sinπ(ibajk + bq)

sinπ(ibajk)
e−2πbaj =

N∑
j=1

e−2πbaj . (2.38)

Note that had we chosen to braid the primary field with the conjugate momentum µ∗ around

the tube in the opposite direction, we would find the same result up to an additional phase

q2(1/N−N). Thus, we have made a choice of framing here. Let us introduce the notation

aj = e−2πbaj . Then, braiding the primary with momentum µ in the opposite direction

corresponds to reversing the orientation of the defect line and sends aj → a−1
j . We can

summarise the above computation by

=
N∑
j=1

aj

=

N∑
j=1

a−1
j .

(2.39)

Now consider transporting a chiral vertex operator with degenerate momentum

µ = −bh1 along the tube. From the operator product expansion of degenerate pri-

maries (2.8), the Verlinde operator for any network containing this component is a sum

operators shifting the momentum associated to the tube,

=
N∑
j=1

cj∆j (2.40)
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Figure 8. Acting with the modular transformation τ → τ + 1 causes the defect line to wrap once

around the tube. The corresponding braiding operation is shown in the second line.

where
∆j : α→ α− bhj

: ai → q−2(δij−1/N)ai .
(2.41)

The coefficients cj depend on the momentum α in the tube and encode the structure of

the network outside the tube. In particular, cj can be a difference operator shifting other

internal momenta. Note that reversing the orientation of the defect line would shift the

momentum in the opposite direction.

Now consider a modification of this operator as shown in figure 8. Transporting the

chiral vertex operator once around the tube introduces an intermediate phase into the

operator given by the braiding factor

e2πi(∆(α−bhj)−∆(α)−∆(µ)) = (−q)N−1aj . (2.42)

In what follows, we introduce one additional framing factor (−1)N−1q1/N−N for each such

rotation, so that the contribution becomes q1/N−1aj . The inclusion of this framing factor is

suggested by consistency with the monodromy of the conformal blocks under the modular

transformation τ→τ+1, which is given by e2πi∆(α). Conjugating by the monodromy, we find

e−2πi∆(α) ∆j e
2πi∆(α) = q1/N−1aj ∆j (2.43)

in agreement with our convention for the framing. In summary, we have

=
N∑
j=1

[
q1/N−1aj

]
cj∆j

=

N∑
j=1

[
q1−1/Na−1

j

]
cj∆j .

(2.44)

In order to obtain the Verlinde operator for the orientation reversed defect line, one should

replace aj → a−1
j .

Let us now specialise to the case of A2 and consider the sequence of operations shown

in figure 9, which corresponds to a bubble network that surrounds the cylinder. Consider

the term where the momentum on the left is α − bh1, that is the term multiplying the
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Figure 9. Sequence of fusion and braiding operations for a topological defect network in A2 Toda

theory on a cylinder.

shift operator ∆1. The intermediate s-channel momenta are then constrained by the op-

erator product expansion to be α + bhk where k = 2, 3. In this intermediate step there is

a braiding phase

e2πi(∆(α+bhk)−∆(α)−∆(µ∗)) = e−2πbak+2πib2 . (2.45)

Now, combining the relevant fusion matrices and multiplying by the expectation value of

a contractible bubble, we find

e2πib2
[
e−2πba1 sinπ(iba12 + qb)

sinπ(iba12)
+ e−2πba2 sinπ(iba21 + qb)

sinπ(iba21)

]
= −q3(a2 + a3) . (2.46)

Braided instead the chiral primary on the left instead, we the answer −q−7/3(a2 + a3),

which differs from the above by two powers of the framing factor −q8/3 for A2. Here we

are going to choose the intermediate framing, where we have q1/3(a2 + a3). The remaining

cases are obtained by cyclic permutation of {1, 2, 3}. Once again, we note that braiding in

the opposite direction inverts the whole factor, so that in summary

=
3∑
j=1

q1/3
∑
i 6=j

ai

 cj∆j

=
3∑
j=1

q−1/3
∑
i 6=j

a−1
i

 cj∆j ,

(2.47)

and reversing the orientation of the network sends aj → a−1
j .

Given the Verlinde operators computed above for networks on a cylinder, we can now

derive generalised skein relations for computing the composition of two Verlinde operators.

Graphically, we express the composition O1 ·O2 by superimposing the network correspond-

ing to O1 on top of the network corresponding to O2.

Let us first recall what happens in Liouville theory. In this case, we set N = 2 and

identify a1 = a−1
2 = a with ∆ : a → q−1a. Now, composing the Verlinde operators

corresponding to defect lines wrapping around and passing along the cylinder, we find

= q−1/2 + q1/2 (2.48)
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while reversing the order of composition interchanges q→ q−1 in the above equation. The

above equations can be expressed as a rule for resolving a crossing

= q−1/2 + q1/2 (2.49)

found in [10]. The composition of any two Verlinde operators can be expanded super-

imposing the closed loops, resolving each crossing according the skein relation, and then

removing any closed contractible loops according to (2.34).

Now consider A2 Toda theory. Performing the same composition of defect lines around

and along the cylinder, we now find

= q−2/3 + q1/3

= q2/3 + q−1/3 .

(2.50)

This result can again be expressed as a generalised skein relation for resolving the crossing.

This time, resolving the crossing necessarily introduces networks with junctions,

= q−2/3 + q1/3 (2.51)

= q2/3 + q−1/3 . (2.52)

Any composition of topological defects can be computed by superimposing the networks and

resolving each crossing using the above generalised skein relations. The result may contain

contractible networks that can be removed according to the rules derived in subsection (2.4).

The result is an expansion in irreducible defects.

For A2 Toda theory, the rules for removing contractible networks and the generalised

skein relations together generate the ‘spider’ encoding the representation theory of the

quantum group Uq(sl(3)) [16]. Although, the topological nature of the Verlinde loop oper-

ators (see for example figure 10) is guarunteed by the conformal field thoery construction,

this can also be proven as a consequence of the spider relations. The is one way that the

topological nature of quantum link invariants is proven in the mathematical literature.
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Figure 10. Example of topological nature of the defects.

3 Torus with puncture/N = 2∗ theory

In this section, we consider the relationship between topological defect networks and the

expectation value of supersymmetric loop operators inN = 2 gauge theories on an ellipsoid.

We focus on a simple and concrete example: the SU(N) N = 2∗ theory consisting of an

N = 2 vectormultiplet and a massive hypermultiplet in the adjoint representation. The

partition function of this theory on an ellipsoid is captured by a correlation function of a

single semi-degenerate primary field in AN−1-type Toda conformal field theory on a torus

with puncture.

We will show that the partition function of the SU(3) N = 2∗ theory in the presence of

Wilson-‘t Hooft loops of minimal magnetic charge agrees with the A2-type Toda correlation

function on a torus with puncture with the insertion of a Verlinde defect operator. For this

subclass of loop operators, we will complete the dictionary between Wilson-’t Hooft oper-

ators and networks on a torus with puncture. We will also compute the operator product

expansion of these Wilson-’t Hooft operators with a second Wilson using the expressions

from localization and show that it agrees with the skein relations for the Verlinde defect

operators in A2 Toda theory.

3.1 Toda correlator/four-sphere partition function

Consider the correlation function of a semi-degenerate primary field Vν in AN−1 Toda

theory on a torus with complex structure τ . We take the semi-degenerate momentum to be

ν = N
(q

2
+ im

)
ωN−1 (3.1)

where m ∈ R≥0 is a real parameter.

In order to compute this correlator, we pick a pants decomposition with generic non-

degenerate momentum α = Q+ ia in the intermediate channel, as shown in figure 11. The

correlation function is expanded

〈Vν〉τ =

∫
daC(α, ᾱ, ν) F̄α,ν(τ)Fα,ν(τ) (3.2)

where C(α, ᾱ, ν) is the three-point function and Fα,ν(τ) are the WN -algebra conformal

blocks for our choice of pants decomposition. The contour for the integral is the Cartan

subalgebra, a ∈ RN−1. Expanding in powers of e2πiτ , the conformal blocks are normalised

so that the leading term is one.
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Figure 11. The four-sphere partition function of N = 2∗ theory is obtained by a correlation

function in Toda CFT on a torus with insertion of a semi-degenerate vertex operator. The correlator

is computed by choosing the pants decomposition shown on the right.

The generic three-point function in Toda theory is unknown for N > 2. However, the

three-point function involving one semi-degenerate momentum of the form ν = κωN−1 has

been computed in [23, 24] by the bootstrap method. For N = 2 this result reproduces the

generic Liouville three-point function [29, 30]. The three-point function C(α, ᾱ, ν) with the

choice of semi-degenerate momentum (3.1) can be expressed in a factored form

C(α, ᾱ, µ) = µ(a)

∣∣∣∣∣∣∣∣∣
N∏
i<j

Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)

∣∣∣∣∣∣∣∣∣
2

(3.3)

up to a certain prefactor that is independent of the internal momentum α that can be

absorbed in the primary field Vν . In the above expression we have pulled out a new

integration measure

dµ(a) = da
∏
i<j

2 sinh (πbaij) 2 sinh
(
πb−1aij

)
. (3.4)

The notation Γb(x) denotes the double gamma function, some of whose properties are

summarised in appendix E.

Given this factorisation of the three-point function, it is convenient to define new

renormalised WN -algebra conformal blocks

Ga,m(τ) =

N∏
i<j

Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)
Fα,µ(τ) (3.5)

so that the correlator is ∫
daµ(a) Ḡa,m(τ)Ga,m(τ) . (3.6)

This choice of normalisation coincides with a common one made in Liouville theory when

N = 2 (see for example [10]) and is designed to simplify the expressions for Verlinde

operators so that they are constructed only from ratios of trigonometric functions of the

parameters a and m.

This correlator captures the ellipsoid partition function of N = 2∗ theory with gauge

algebra su(N). This was computed independently by supersymmetric localisation in the

case of a round four-sphere in the seminal work [3] (an important observation regard-

ing the hypermultiplet mass in the localisation formula was also made in [31]) and was
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later extended to the ellipsoid in [4]. The correspondence between the parameters are

summarised below:

1. The dimensionless coupling b corresponds to the shape of the ellipsoid, defined by

the embedding

x2
0 +

1

b2
(
x2

1 + x2
2

)
+ b2

(
x2

3 + x2
4

)
= 0 (3.7)

in R5 with euclidean coordinates x0, x1, . . . , x4.

2. The complex structure of the torus corresponds to the UV holomorphic gauge

coupling,

τ =
4πi

g2
+

θ

2π
. (3.8)

3. The parameter m is the mass of the adjoint hypermultiplet.

4. A choice of pants decomposition corresponds to a duality frame in N = 2∗ theory

and the mapping class group SL(2,Z) corresponds to the duality group.

5. The integration over the internal momenta α = Q+ ia becomes an integral over the

Coulomb branch, parametrised by the vacuum expectation value φ = φ̄ = − i
2a of the

vectormultiplet scalar.

We expect that our choice of factorisation used to define the renormalised WN -algebra

conformal block Ga,m(τ) has a simple interpretation: it corresponds to the partition func-

tion on half of the four-sphere {x0 > 0} with Dirichlet boundary conditions for the vector-

multiplet. This boundary condition is specified by the expectation value a of the vector-

multiplet scalar. Similarly, the conjugate renormalised block Ḡa,m(τ) corresponds to the

partition function on {x0 < 0}. The complete partition function is reconstructed by intro-

ducing a three-dimensional N = 2 vectormultiplet on the boundary {x0 = 0}, whose parti-

tion function is exactly the measure µ(a), and integrating over the boundary condition a.

The standard decomposition into components of the Nekrasov partition function is

discussed in appendix E.

3.2 Supersymmetric loop operators

In the first half of the paper, we considered a class of Verlinde operators acting on the space

of WN -algebra conformal blocks by shifting the internal momentum. These operators are

expected to compute the expectation value of supersymmetric loop operators in the four-

dimensional gauge theory supported on the circle

x1 = b cosϕ

x2 = b sinϕ

x0 = x3 = x4 = 0

(3.9)

where 0 < ϕ < 2π.1

1In subsection (3.7) we will also consider supersymmetric loop operators supported on the circle given

by exchanging b ↔ b−1 and the coordinate planes {x1, x2} and {x3, x4}. Thet are computed by Verlinde

operators constructed by transporting chiral vertex operators with momentum of the form −b−1λ where λ

is a fundamental weight.
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Focussing on a torus with simple puncture, we can always conjugate a Verlinde operator

by the proportionality factor in equation (3.5) to obtain a difference operator acting on

the renormalised conformal block Ga,m(τ). The correlation function in the presence of the

topological defect corresponding to a Verlinde operator O then has the generic form∫
dµ(a) Ḡa,m(τ) (O · Ga,m(τ)) (3.10)

where O is a difference operator acting on the internal momentum α = Q + ia. The

operators O are self-adjoint with respect to the measure dµ(a). In all known examples, the

expectation values of supersymmetric loop operators can also be expressed in this form.

For example, Wilson loops correspond to multiplicative operators [3], while ’t Hooft loops

are genuine finite difference operators [13].

The Verlinde operators have natural operations of addition and composition. The

algebra generated by these operations corresponds to the operator product expansion of

supersymmetric loop operators in the four-dimensional gauge theory. Note that the support

of the loop operator can be deformed supersymmetrically away from the boundary,

x0 = cos ρ

x1 = sin ρ cosϕ

x2 = sin ρ sinϕ

x3 = x4 = 0

(3.11)

with 0 < ρ < π varying between the north and sound poles. Taking the limit ρ1, ρ2 → π
2

as two loop operators O1 and O2 coincide at the equator, the expectation depends only on

the order in which they are brought to the equator. This is the ordering of the operators

in the composition O1 ◦ O2. In the previous section, we saw that any such composition

can be expanded as a linear combination of irreducible Verlinde operators
∑

j cj Oj by

resolving crossings according to set of generalised skein relations. Once the dictionary

between topological defects and loop operators is known, this provides a way to compute

the operator product expansion.

Before mapping out the dictionary, let us recall the classification of supersymmetric

loop operators [7]. Setting aside for the moment the global structure of the gauge group

and mutual locality constraints,2 the supersymmetric loop operators are labelled by a pair

of weights (λe, λm) such that pairs related by Weyl transformations are equivalent

(λe, λm) ∼ (w(λe), w(λm)) w ∈ SN . (3.12)

It is sometimes convenient to repackage this information by transforming the magnetic

weight λm to a dominant integral weight by a Weyl transformation. The remaining Weyl

transformations leaving λm invariant are those of the commutant of λm in AN−1, which is

the unbroken gauge algebra on the support of the operator. They can be used to transform

λe to a dominant integral weight of the unbroken gauge algebra. In summary, we can

specify an irreducible representation of AN−1 with highest weight λm and an irreducible

representation of the commutant of λm in AN−1 with highest weight λe.

2The mutual locality constraints arise in the present context when considering supersymmetric loop

operators supported on Hopf linked circles in the equator. This is discussed below in subsection 3.7.
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The expectation value of the supersymmetric loop operator labelled by (λe, λm) is

defined by the path integral with a boundary condition in the vicinity of the loop given by

(introducing local transverse coordinates
{
x1, x2, x3

}
to S1

ϕ)

Fij =
λm
2
εijk

xk

| ~x |3
φ− φ̄ =

λm
2| ~x |

(3.13)

Fϕi =
ig2

8π
λe

xi

| ~x |3
φ+ φ̄ =

ig2

8π
λe

1

| ~x |
, (3.14)

together with an insertion

Trλe P exp i

∮
S1
ϕ

dϕ
(
Aϕ − b

(
φ+ φ̄

))
(3.15)

where the trace is taken in the representation of the unbroken gauge algebra specified

by the highest weight λe. Let us emphasize that the data (λe, λm) are defined only up

to Weyl transformations, which are realised by gauge transformations of the boundary

condition (3.14). This boundary condition is correct when Re(τ) = 0. In the presence of

non-zero theta-angle one should replace λe → λe+(θ/2π)λm according to the Witten effect.

Finally, the supersymmetric loop operator labels (λe, λm) transform in the fundamental

representation of the duality group SL(2,Z) [7]. The duality group is generated by the

transformations S : τ → −1/τ and T : τ → τ + 1 with

S : (λe, λm) 7→ (λm,−λe)
T : (λe, λm) 7→ (λe, λm + λe) .

(3.16)

They obey the relations S2 = C and (ST )3 = C where the conjugation is defined by

C : (λe, λm) → (−λe,−λm). The conjugation can be undone by a Weyl transformation

and therefore acts trivially on the loop operators. To realise these transformations exactly

for supersymmetric loop operators on a four-sphere requires a slightly unconventional choice

of basis in the space of Wilson loops, as explained below.

3.3 Wilson loops

Supersymmetric Wilson loops correspond to vanishing magnetic weight λm = 0. They

are thus classified by irreducible representations of AN−1 with highest weight λe. The

expectation value of a supersymmetric Wilson loop on the ellipsoid has been computed

in [4], generalising the computation on a round four-sphere [3].

The result of the computation [4] is to evaluate the supersymmetric Wilson loop on

the expectation value φ = φ̄ = −1
2a and insert the answer into the matrix integral. This

leads to the factor Trλe
(
e−2πba

)
where the trace is taken in the irreducible representation

with highest weight λe. For example, for the r-th fundamental representation with highest

weight λe = ωr, we insert

Trωr

(
e−2πba

)
=

∑
j1<...<jr

e−2πb(aj1+···+ajr) . (3.17)
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Figure 12. Supersymmetric Wilson loops are in one-to-one correspondence with parallel irreducible

defects wrapping the tube of the pants decomposition. Here and in what follows, we abuse graphical

notation by cutting the torus according to the pants decomposition and drawing it as a cylinder.

In other words, this is simply a multiplicative operator acting on the renormalised conformal

blocks Ga,m(τ).

The Verlinde operators corresponding to supersymmetric Wilson loops in N = 2∗

were studied in Liouville theory in [9, 10] and Toda theory references in [13, 14]. For

constructing the full dictionary with irreducible Verlinde operators, we find it convenient

to work with an alternative basis of supersymmetric Wilson loops: for a generic dominant

integral weight λe =
∑

j njωj we insert nj powers of the supersymmetric Wilson loop in

the j-th fundamental representation,

N−1∏
j=1

 ∑
j1<...<jr

e−2πb(aj1+···+ajr)

nj

. (3.18)

This corresponds to an invertible linear transformation on the algebra of supersymmetric

Wilson loops.

The corresponding Verlinde operator is then constructed from nj parallel defect lines

labelled by j around the tube of the pants decomposition, as shown in figure 12. Supersym-

metric Wilson loops in the standard basis are obtained by fusing all of the parallel defects

and extracting unique copy of the representation with highest weight λe. This would be

obtained by transporting a single primary field with momentum µ = −bλe along the tube

of the pants decomposition.

3.4 ’t Hooft loops

Supersymmetric ’t Hooft loops are characterised by λe = 0 and so are labelled by a dom-

inant integral magnetic weight λm. Since Wilson loops and ’t Hooft loops are related by

S : (λe, λm)→ (λm,−λe), we expect the Verlinde operator for the generic magnetic weight

λm =
∑

j njωj to be constructed from nj parallel defect lines labelled by j passing along

the tube of the pants decomposition.

Let us concentrate on the ’t Hooft loop with minimal magnetic weight, λm = ω1. The

corresponding Verlinde operator was identified in Liouville theory in [9, 10] and extended

to AN−1 Toda theory in [13] and corresponds to a defect line running along the length of

the pants decomposition. It is computed by the sequence of fusion and braiding moves

shown in figure 13.

In particular, the result obtained in [13] is a difference operator acting on the standard

unnormalised WN -algebra conformal blocks Fa,m(τ). To find an operator acting on the
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Figure 13. The sequence of fusion and braiding operations required to compute the Verlinde

operator corresponding to the ’t Hooft loop of minimal charge in the N = 2∗ theory.

normalised conformal blocks Ga,m(τ), we must conjugate by the normalisation factor in

equation (3.5). A summary of this computation is presented in appendix E.3 The result

is that the difference operator labelled by (0, ω1) now involves only ratios of trigonometric

functions,

=

N∑
j=1

∏
k 6=j

sinπb
( q

2 + iakj − im
)

sinπb (iakj)
∆j

=

N∑
j=1

∏
k 6=j

t ak − t−1aj
ak − aj

∆j

(3.19)

where in the second line we have introduced for convenience a parameter t = e−πb(m+iq/2)

encoding the hypermultiplet mass deformation, along with the parameters aj = e−2πbaj .

The anti-fundamental ’t Hooft loop is obtained by transporting the same primary in the

opposite direction and the result is given by replacing aj → a−1
j (this includes ∆i → ∆−1

j )

in the above.

Although the required fusion and braiding matrices have not appeared in the literature,

we expect that transporting the primary with momentum µ = −bωr around the same path

leads to the operator

=
∑

j1<...<jr

∏
j∈{j1,...,jr}
k 6={j1,...,jr}

t ak − t−1aj
ak − aj

∆j1 . . .∆jr (3.20)

and corresponds to the ’t Hooft loop in the r-th anti-symmetric tensor representation,

labelled by (0, ωr). For these representations, there are no monopole bubbling effects in

the localisation computation and it is straightforward to show that this expression agrees

with the localisation computation of [21] in the case of a round four-sphere, b→ 1. This is

demonstrated in appendix E.

For non-fundamental magnetic weight, there are monopole bubbling effects and the

difference operators become more complicated. For example, let us consider the ’t Hooft

loop with magnetic weight 2ω1. Reference [21] found in the case N = 2 that the correct

difference operator is found from the composition O0,ω1 · O0,ω1 of two copies of the funda-

mental ’t Hooft loop operator, corresponding to two parallel defect lines. Extrapolating

3The result of this computation was obtained in the course of another project in collaboration with

Martin Fluder, Lotte Hollands and Paul Richmond.
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this result without proof to the case N > 2, we claim that the difference operator is given by

=

N∑
j=1

 N∏
k 6=j

t ak − t−1aj
ak − aj

q2t ak − t−1aj
q2ak − aj

∆2
j

+

N∑
i<j

 ∏
k 6=i,j

t ak−t−1ai
ak−ai

t ak−t−1aj
ak−aj

[ t ai−t−1aj
ai−aj

t aj−q2t−1ai
aj − q2ai

+i↔ j

]
∆i∆j .

(3.21)

Note that the weights of the symmetric tensor representation decompose into two Weyl

orbits {2hj , j = 1, . . . , N} and {hi + hj , i < j} appearing in the first and second lines

respectively in equation (3.21). Monopole bubbling is seen in the latter by the presence of

a sum of terms multiplying each shift.

Assuming that the correct difference operator for the ’t Hooft loop with magnetic

weight 2ω1 is always given by the composition O0,ω1 · O0,ω1 rather than (O0,ω1 · O0,ω1 − 1),

this operator is related by S-duality to the product of two Wilson loops in the fundamental

representation rather than a Wilson loop defined by a trace in the symmetric tensor repre-

sentation. As explained in [21], the origin lies in the natural resolution of the Bogomolnyi

moduli space used in the localisation computation. This is the basic reason why we think

it is more natural to use the basis of Wilson loops defined in equation (3.18).

3.5 Dyonic loops

Let us now consider dyonic loop operators labelled by non-zero electric and magnetic

weights (λe, λm). For simplicity, we would like to avoid monopole bubbling effects and so

focus on dyonic loops obtained by adding supersymmetric Wilson loops in the background

of ’t Hooft loop with magnetic charge λm = ω1.

In this case, the monopole singularity is proportional to

ω1 = idiag

(
1− 1

N
,− 1

N
, . . . ,− 1

N

)
(3.22)

breaking the gauge algebra

su(N)→ s(u(1)⊕ u(N − 1)) (3.23)

on the support of the loop operator. The remaining Weyl transformations leaving the mag-

netic weight ω1 invariant can be used to transform the electric weight into the following form

λe = m1ω1 −
N−1∑
j=2

mjωj m1 ∈ Z m2, . . . ,mN ∈ Z≥0 . (3.24)

The first integer corresponds to adding an abelian Wilson loop of charge m1 in the u(1)

factor, while the positive integers (m2, . . . ,mN ) are Dynkin labels for an irreducible repre-

sentation of the u(N − 1) factor. In the same manner as for plain Wilson loops, we expect

it is most natural to choose a basis where the label (m2, . . . ,mN ) corresponds to inserting

Wilson loops in the (j − 1)-th anti-symmetric representations of u(N − 1) raised to the

mj-th power.
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3.5.1 Easy dyons

The simplest dyonic operators are those with (m2, . . . ,mN ) = 0 corresponding to Wilson

loops in the unbroken u(1). Such operators are related to the fundamental ’t Hooft loop by

some number of duality transformations, τ → τ + 1. As shown in section 2.5, we can com-

pute these operators by conjugating with the monodromy e2πi∆(α) of the conformal blocks,

e−2πi∆(α) ∆j e
2πi∆(α) = q1/N−1aj . (3.25)

Thus, the dyonic loop operator labelled by (nω1, ω1) is

=

N∑
j=1

N∏
k 6=j

t ak − t−1aj
ak − aj

[
q1/N−1aj

]n
∆j . (3.26)

This result can be compared with an exact localisation calculation in the limit b→ 1.

There is one term in the ’t Hooft loop operator for each weight {hj , j = 1, . . . , N} in the

fundamental representation, which are permuted by Weyl/gauge transformations. Let us

denote the unbroken u(1) in the term corresponding to the weight hj by u(1)j . Then in

the localisation computation, we must add the abelian Wilson loop

TrU(1)je
2πn

(
ia−

hj
2

)
= eiπn(1/N−1)e−2πnaj , (3.27)

in the j-th term. This is in agreement with the prediction of Toda in the limit b→ 1.

3.5.2 Hard dyons

The exhausts the spectrum of dyonic loop operators with minimal magnetic charge in

the case N = 2. However, for N > 2 there exists many more dyonic loop operators

labelled by non-zero (m2, . . . ,mN ). They all correspond to Verlinde operators constructed

from networks with junctions. For the case of N = 3, the gauge algebra is broken to

s(u(1)⊕u(2)). In the frame where λm = ω1, the remaining Weyl transformations consist of

the identity 1 and the reflection ω1−ω2 ↔ ω2. Thus, starting from a generic pair (m1 ω1−
m2 ω2, ω1) we can always ensure m2 ≥ 0 by such a transformation, as claimed above.

Let us first consider the case of the dyonic loop operator labelled by the weights

(−ω2, ω1). We claim that the correct Verlinde operator is given by

=

3∑
j=1

3∏
k 6=j

t ak − t−1aj
ak − aj

q1/3
3∑
k 6=j

ak

∆j . (3.28)

Let us now compare with the corresponding localisation computation. From this perspec-

tive, we have an additional fundamental Wilson loop in the unbroken u(2) factor. Let us

denote the unbroken u(2) in the Weyl frame where the monopole singularity is proportional

to hj by u(2)j . Then in the j-th term of the operator, we must insert an additional factor

TrU(2)je
2π

(
ia−

hj
2

)
= eiπ/3

3∑
k 6=j

e−2πak . (3.29)

This agrees with our proposal in the limit b→ 1.
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It is now straightforward to obtain any dyonic loop operator related to this by T

transformations. For example, the dyonic loop operator (ω2, ω1) ∼ (ω1−ω2, ω1) is obtained

from (−ω2, ω1) by

=

=
3∑
j=1

3∏
k 6=j

t ak − t−1aj
ak − aj

[
q−2/3aj

]q1/3
∑
k 6=j

ak

∆j

=
3∑
j=1

3∏
k 6=j

t ak − t−1aj
ak − aj

q−1/3
∑
k 6=j

a−1
k

∆j

(3.30)

where it is now critical that a1a2a3 = 1.

Extending this argument, it is now straightforward to identify the generic dyonic loop

operator with minimal magnetic weight (m1ω1 −m2ω2, ω1) where m1 ∈ Z and m2 ∈ Z≥0

with the following Verlinde operator

=

3∑
j=1

3∏
k 6=j

t ak − t−1aj
ak − aj

[
q−2/3aj

]m1

q1/3
3∑
k 6=j

ak

m2

∆j .

(3.31)

This expression is in agreement with the appropriate additional factor in the localisation

computation

TrU(1)je
2πm1

(
ia−

hj
2

)[
TrU(2)je

2π
(
ia−

hj
2

)]m2

=
[
e−2iπ/3e−2πaj

]m1

eiπ/3 3∑
k 6=j

e−2πak

m2

(3.32)

in the limit b→ 1.

This exhausts the spectrum of dyonic loop operators with minimal magnetic weight

when N = 3. There is an identical construction for dyonic loops with the conjugate mag-

netic weight ω2 by reversing the orientation of the networks. However, for dyons with

non-miniscule magnetic weight, the four-dimensional physics involves monopole bubbling

contributions and the operators become more complicated. Likewise, the spectrum of net-

works required is much richer. We leave the investigation of such operators for future work.

3.6 Skein relations/operator product expansion

In section (2.5) we have derived a set of generalised skein relations to resolve the composi-

tion O1 ·O2 of two Verlinde operators, and we have argued above that this corresponds to an

operator product expansion of the corresponding loop operators. Let us now substantiate

this claim.
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As above, we focus on the N = 2∗ theory with gauge algebra su(3). Let us compose

the Verlinde operators corresponding to fundamental Wilson loop and the ’t Hooft loop

operator with minimal magnetic weight. From the generalised skein relations (2.51) and

(2.52), or directly from the operators above, we find

=q−2/3 +q1/3

=q2/3 +q−1/3 .

(3.33)

Let us write the Verlinde operator corresponding to the dyonic loop (λe, λm) as Oλe,λm .

Then equation (3.33) becomes

O0,ω1 Oω1,0 = q−2/3Oω1,ω1 + q1/3O−ω2,ω1

Oω1,0O0,ω1 = q2/3Oω1,ω1 + q−1/3O−ω2,ω1

(3.34)

for the difference operators.

From the generalised skein relations, this result can be immediately extended to the

composition of the fundamental Wilson loop operator with any dyonic loop operator of

minimal magnetic weight,

Oλ,ω1 Oω1,0 = q−2/3Oλ+ω1,ω1 + q1/3Oλ−ω2,ω1

Oω1,0Oλ,ω1 = q2/3Oλ+ω1,ω1 + q−1/3Oλ−ω2,ω1 ,
(3.35)

which is readily checked directly from the explicit form of the operators given in

equation (3.31). Similar equations can be obtained from the skein relations for composing

operators with the anti-fundamental Wilson loop.

By taking linear combinations of the above equations we can extract either of the terms

on the righthand side. For example, we could introduce q-commutators[
O1 , O2

]
1

= q1/3O1O2 − q−1/3O2O1[
O1 , O2

]
2

= q−2/3O1O2 − q2/3O2O1

(3.36)

such that [
Oω1,0 , Oλ,ω1

]
1

=
(
q− q−1

)
Oλ+ω1,ω1[

Oω1,0 , Oλ,ω1

]
2

= −
(
q− q−1

)
Oλ−ω2,ω1 .

(3.37)

In this way, the fundamental Wilson loop can be interpreted as a creation operator, raising

the electric weight by ω1 and −ω2 with respect to the q-commutators [ , ]1 and [ , ]2
respectively. Similarly, the anti-fundamental Wilson loop is an annihilation operator with

respect to the same q-commutators.

The simplicity of the above operator product expansions came because there was only

one crossing of the networks. For dyonic loop operators with non-miniscule magnetic

weight, composing with a fundamental Wilson loop necessarily involves resolving multiple

crossings. Thus, the operator product expansion is more complicated. Nevertheless, once

the dictionary has been found, the generalised skein relations should provide a systematic

way to compute the operator product expansion of supersymmetric loop operators. We

hope to return to this question in future work.
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3.7 ’t Hooft commutation relations

So far, the loop operators have been supported on the same circle. Let us now consider the

composition of two supersymmetric loop operators supported on each of the two circles

(i) x1 = b cosϕ (ii) x3 = b−1 cosϕ

x2 = b sinϕ x4 = b−1 sinϕ

x0 = x3 = x4 = 0 x0 = x1 = x2 = 0

which are Hopf linked in the squashed three-sphere at the equator {x0 = 0}. The loop

operators supported on (i) are those studied throughout this paper. They correspond to

Verlinde operators constructed by transporting chiral primaries with momentum of the

form −bλ where λ is a fundamental weight. Those supported on (ii) are obtained by

replacing b → 1/b in the difference operators. They correspond to transporting chiral

primaries with momentum −λ/b around the same networks.

In this subsection, let us denote the operators supported on the circles (i) and (ii)

by O(+) and O(−) respectively. The operator O(−) is obtained from O(+) by replacing

b → b−1. From the results above, it is now straightforward to compute the commutation

properties of operators on Hopf linked circles. For all combinations of the loop operators

constructed above we find

O(+)
λe,λm

O(−)
λe,λm

= e2πi((λ′e,λm)−(λe,λ′m))O(−)
λe,λm

O(+)
λe,λm

. (3.38)

Let us emphasize that these relations hold independent of the parameter b.4 For the expec-

tation value of two supersymmetric loop operators on Hopf linked circles to be well-defined,

the corresponding difference operators should commute. This is the case provided that

(
λ′e, λm

)
−
(
λe, λ

′
m

)
∈ Z . (3.39)

This is how the mutual locality conditions are realised for supersymmetric loop operators

on a four-sphere.

Imposing the conditions (3.39), the set of all loop operators given by pairs of weights

(λe, λe) ∼ (w(λe), w(λm)) with w ∈ SN can be partitioned into maximal sets of operators

that are mutually local. Each maximal mutually local set defines a distinct realisation of

the theory with gauge group of the form SU(N)/H where H ⊂ ZN and these sets form

an intricate web under S-duality transformations [32, 33]. For theories of class S without

punctures, the origin of this structure has been understood from the perspective of the

(2, 0) theory compactified on C in reference [34] (see also the recent work [35]). It would

be interesting to understand it better in the context of Liouville/Toda theory.

4In reference [10] it was demonstrated in the case of g = A1 that the same relations hold for loop operators

supported in the same circle in the limit b = 1. The reason for this is that the difference operators for loop

operators on circles (i) and (ii) coincide in this limit. We emphasize that for a pair of loop operators on

Hopf linked circles, the commutation relations (3.38) hold for any value of the parameter b.
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4 Discussion

The results of this paper have been summarised in the introduction 1. Let us finish by

pointing out what has not been accomplished in the present present paper and some sug-

gestions for further study:

1. For topological defects/Verlinde operators corresponding to networks with junctions,

we have been restricted to A2 Toda theory. Further progress at higher rank re-

quires the fusion and braiding matrices for four-point WN -algebra conformal blocks

involving completely degenerate momenta µ = −bωj for all anti-symmetric tensor

representations j = 1, . . . , N − 1. In particular, one could then derive the rules for

removing contractible networks and the generalised skein relations. We conjecture

that they are given by the AN−1-type spiders for the corresponding quantum group

Uq(sl(N)) in the references [19, 20].

2. We did not find a convenient way to classify the irreducible networks on a given

Riemann surface with punctures, even in the case of A2 and a torus without puncture.

This problem is much more involved than that of closed curves without intersections.

Conjecturally, this classification should be the same as that of UV supersymmetric

loop operators in theories of class S.

3. It would be interesting to study more examples in class S theories with UV lagrangian

descriptions. For example, with the present technology it is possible to study super-

symmetric loop operators in N = 2 linear quiver theories. This will require a better

understanding of the exact computation of dyonic loop operators on a four-sphere in

the cases where there is monopole bubbling.

4. The transformation properties of loop operators under T : τ → τ + 1 are straightfor-

ward to check by conjugating with the monodromy of the blocks e2πi∆(α) ∼ eiπ(a,a),

corresponding to an N = 2 supersymmetric Chern-Simons term at level 1 at the

equator {x0 = 0}. On the other hand, one must check that the partition function of

the T (SU(N)) theory on an S-duality domain wall intertwines the operators related

by the transformation S : τ → −1/τ . It would be interesting to check this property

for the loop operators constructed here.

5. Our supersymmetric loop operators have been defined in the UV. It would be inter-

esting understand how they decompose into IR loop operators under renromalisation

group flow for N > 2. For example, the three-sphere partition function of the renor-

malisation group domain wall for the N = 2∗ theory should intertwine the UV and

IR loop operators, as discussed for N = 2 in references [32, 36, 37]
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A Group theory conventions

We use the standard metric ( , ) on the Cartan subalgebra of AN−1 normalised such that the

length (e, e) = 2 for all roots e. The simple roots are denoted by ej where j = 1, . . . , N − 1

and are dual to the fundamental weights ωj where j = 1, . . . , N − 1 in the sense that

(ei, ωj) = δij . The fundamental weights are the highest weights of the anti-symmetric

tenor representations. The Weyl vector is given by the sum of the fundamental weights

ρ =
N−1∑
j=1

ωj . (A.1)

The weights of the fundamental representation are

hj = ω1 − e1 − . . .− ej−1 j = 1, . . . , N , (A.2)

and are normalised so that (hi, hj) = δij−1/N . The sum of the weights of the fundamental

vanishes
∑N

j=1 hj = 0. The weights of the r-th anti-symmetric tensor representation are

then given by hj1 + . . . + hjr for 1 ≥ j1 < . . . < jr ≥ N . The positive roots are given by

hi − hj for i < j and the simple roots are ej = hj − hj+1. The Weyl group SN acts by

permutations of the weights of the fundamental representation.

When necessary, we choose a realisation of AN−1 using traceless anti-hermitian matri-

ces such that

hj = i diag

(
− 1

N
, . . . , 1− 1

N︸ ︷︷ ︸
j

, . . . ,− 1

N

)
(A.3)

and define the metric by a trace (a, b) = −Tr(ab) in the fundamental representation. For

an element a of the Cartan subalgebra we define its components by aj = (a, hj) so that∑N
j=1 aj = 0 and (a, a) = −Tr(a2) = a1

1 + . . .+ a2
N .

B Classical Toda and spin networks

In this appendix, we review the classical Toda equations on a Riemann surface C, their zero-

curvature representation and the semi-classical analogue of the topological defect networks

considered in the main text.

Let us introduce complex coordinates (z, z̄) in a coordinate patch with flat background

metric g = dz ⊗ dz̄. We consider a classical scalar field ϕ(z, z̄) valued in the Cartan

subalgebra of AN−1 and obeys the Toda equations

∂∂̄ϕ =

N−1∑
j=1

ej exp (ej , ϕ) . (B.1)
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These equations are invariant under the conformal transformation z → w(z) with the scalar

field transforming

ϕ(z, z̄)→ ϕ(z, z̄) + ρ log

∣∣∣∣∂w∂z
∣∣∣∣2 . (B.2)

In the case of A1, there is only one component field ϕ(z, z̄) and we recover the classical

Liouville equation.

The Toda equations imply the existence of a set of holomorphic conserved currents

wj(z) of spins j = 2, . . . , N , which are invariant polynomials in the scalar field and its

holomorphic derivatives ϕ, ∂ϕ, . . . , ∂jϕ. These currents are neatly packaged in the gener-

ating operator

N−1∏
j=0

(∂ + (hN−j , ∂ϕ)) = ∂N + w2(z) ∂N−2 + . . .+ wN (z) (B.3)

where hj are the weights of the fundamental representation. In particular, the holomorphic

current

w2(z) = (ρ, ∂2ϕ)− 1

2
(∂ϕ, ∂ϕ) (B.4)

is the holomorphic component of the stress-tensor and transforms as a projective connec-

tion under conformal transformations with central charge c = N(N − 1)(N + 1). The

remaining holomorphic currents wj(z) transform as tensors of spin j = 3, . . . , N . Finally,

there are also anti-holomorphic currents wj(z̄) defined by an identical construction with

the replacement ∂ → ∂̄.

It is a difficult task to find solutions of the Toda equations. A useful strategy is to

reformulate the problem in terms of a flatness condition for an SL(N) connection. The

starting point is that the exponential e−(ω1,ϕ) obeys both holomorphic and anti-holomorphic

differential equations (
∂N + w2 ∂

N−2 + . . .+ wN

)
e−(ω1,ϕ) = 0 ,(

∂̄N + w̃2 ∂̄
N−2 + . . .+ w̃N

)
e−(ω1,ϕ) = 0 ,

(B.5)

as a consequence of the Toda equations (B.1). Thus, the exponential e−(ω1,ϕ) can be

expressed in terms of linearly independent solutions uj(z) and ũj(z̄) to the differential

equations (B.5),

e−(ω1,ϕ) =

N∑
j=1

uj(z)ũj(z̄) . (B.6)

It can be shown that the remaining exponentials are given by

e−(ωk,ϕ) =
∑

j1<...<jk

∣∣∣∣∣∣∣∣∣∣
uj1 · · · ujk
∂uj1 · · · ∂ujk

...
...

∂k−1uj1 · · · ∂k−1ujk

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
ũj1 · · · ũjk
∂̄ũj1 · · · ∂̄ũjk

...
...

∂̄k−1ũj1 · · · ∂̄k−1ũjk

∣∣∣∣∣∣∣∣∣∣
(B.7)
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together with the consistency condition that the Wronskian determinants obey the condi-

tion W (u1, . . . , uN )W (ũ1, . . . , ũn) = 1. The differential equations have monodromy and it

is imperative that the solutions uj and ũj have conjugate monodromy so that the solution

for ϕ(z, z̄) is well-defined. In fact, this is used to determine the wj(z)’s together with the

boundary condition — see for example [24].

The above construction can be reformulated in terms of a pair of flat connections.

Given a solution ϕ(z, z̄) of the Toda equations with holomorphic currents wj(z) and anti-

holomorphic currents w̄j(z̄), one can define a pair of SL(N) flat connections given by

Az =


0 −1 · · · 0 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 0

0 · · · 0 0 −1

wN · · · w3 w2 0

 Az̄ = 0 , (B.8)

and

Ãz = 0 Ãz̄ =


0 −1 · · · 0 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 0

0 · · · 0 0 −1

w̄N · · · w̄3 w̄2 0

 . (B.9)

Under changes of coordinate patch, the above connections transform by lower triangular

matrices. The sections of the flat connections (B.8) and (B.9) are respectively of the form

s =
(
u, ∂u, . . . , ∂N−1u

)
and s̃ =

(
ũ, ∂̄ũ, . . . , ∂̄N ũ

)
where u(z) and ũ(z̄) are solutions to the

holomorphic differential equations (B.5).

Let us introduce a basis of linearly independent sections sj(z) with j = 1, . . . N . Sim-

ilarly, we introduce a basis of conjugate solutions s̃j(z). The Wronskians are then con-

structed using the invariant tensor of SL(N,R)

W (u1, . . . , uN ) = (s1, . . . sN ) = εa1...aN s
a1
1 (z) . . . saNN (z) . (B.10)

It is now clear that the solution (B.7) is expressed in terms of the sections sj1 ∧ . . . ∧ sjr
and s̃j1 ∧ . . . s̃jr with j1 < . . . < jr of the pair of flat connections in the r-th anti-symmetric

tensor representations.

The solution can be characterised by the monodromies of the pair of flat connections.

Again, it is important that they have conjugate monodromy so that the solution for ϕ(z, z̄)

is well-defined. In particular, the boundary condition at a puncture of C is specified by

fixing the trace of the holonomy in all of the anti-symmetric tensor representations,

TrΛr P exp

∮
C
A =

∑
j1<...<jr

e−2π(mj1
+···+mjr) (B.11)

for r = 1, . . . , N − 1. This is a gauge invariant way to specify the holonomy eigenvalues

{m1, . . . ,mN} obeying
∑

jmj = 0 at each puncture.
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Given a set of boundary conditions, the trace of the holonomy in the representations

Λr around all remaining homotopy classes of simple closed curves in C is not sufficient to

characterise the solution completely. One option is to consider closed curves with inter-

sections. Another, that is perhaps more natural, is to specify the value of ‘spin network’

functionals constructed from the flat connection. Let us denote by

UΛj (z1, z2) = P exp

∫ z2

z1

A (B.12)

the parallel transport of a section in the fundamental representation Λj from z1 to z2. One

way to form a gauge invariant quantity is to let z2 → z1 around a non-contractible closed

curve C. Another is to contract three parallel propagators at a point using an invariant

tensor on Λi × Λj × Λk. Such an invariant tensor exists if i+ j + k = N . For example, in

A2 we can contract three in the fundamental at a point z by

εa1a2a3 ε
b1b2b3 U(w1, z)

a1
b1

U(w2, z)
a2
b2

U(w3, z)
a3
b3
. (B.13)

Then, allowing all line to end on such vertices we obtain a spin network functional. Since

the exponentials e−(ωj ,ϕ) are the classical analogues of degenerate vertex operators labelled

by the j-th anti-symmetric tensor representations, the spin network functionals can be see

as the classical analogue of the Verlinde operators constructed in the main text.

The spin network functionals obey some basic properties that follow from the fact that

they are constructed from matrices in SL(N). Firstly UΛj (z2, z1) = UΛj (z1, z2)−1 is linearly

related to UΛN−j
(z1, z2) using the invariant tensor εa1...aN . Thus reversing the orientation

of a curve is equivalent to exchanging j ↔ N − j. Secondly, there are local relations due

to properties of εa1...aN and δab . For example, for A1 we have

= 2 = + (B.14)

as a consequence of the SL(2) relations δaa = 2 and εabεcd + εbcεad + εcaεbd = 0 respectively.

Similarly, for A2 we have

= 3 = −2

= +

(B.15)
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from identities involving εabc and δab . Note that the ordering of the intersections is irrelevant

and that any closed curves with intersections can be decomposed into networks. These

relations are the classical analogues of the quantum skein relations found for the Verlinde

operators in the main text.

C Generalised hypergeometric equation

The hypergeometric equation of order Nz N∏
j=1

(
z
d

dz
+ σj

)
−

N∏
j=1

(
z
d

dz
− τj

) y = 0 (C.1)

depends on 2N parameters {σj , τj} has regular singularities at points z = 0, 1,∞. There

are N linearly independent solutions defined by hypergeometric series around z = 0

yi = zτi N−1FN

(
τi + σ1, . . . , τi + σN

τi − τ1 + 1, . . . , τi − τN + 1
|z

)

= zτi
∞∑
ν=0

N∏
j=1

(τi − σj)ν
(τi − τj + 1)ν

zν
(C.2)

where (α)ν = Γ(α + ν)/Γ(α) is the Pochhammer symbol. The hypergeometric series are

convergent for |z| < 1 with generic parameters {σj , τj}. Notice that the solutions are

uniquely distinguished by their monodromy M
(0)
j = e2πiτj around the regular singular

point z = 0.

Since the hypergeometric equation is invariant under the interchange of z ↔ 1/z and

σj ↔ τj there is another basis of linearly independent solutions defined by hypergeometric

series around z =∞

ȳi = z−σi N−1FN

(
σi + τ1, . . . , σi + τN

σi − σ1 + 1, . . . , σi − σN + 1
|1
z

)

= z−σi
∞∑
ν=0

N∏
j=1

(σi − τj)ν
(σi − σj + 1)ν

z−ν
(C.3)

which are generically convergent for |z| > 1. The solutions are now uniquely characterised

by their monodromy M
(∞)
j = e2πiσj around z =∞.

The solutions (C.2) and (C.3) have an analytic continuation using the Mellin-Barnes

integral representation of the hypergeometric function to z ∈ C− [1,∞) and z ∈ C− (0, 1]

respectively. In order to relate the solutions on the overlap z /∈ R+, it is convenient to

introduce the normalised solutions

Yi =

N∏
k=1

Γ(τi + σk)

Γ(τi − τk + 1)
yi Ȳi =

N∏
k=1

Γ(σi + τk)

Γ(σi − σk + 1)
ȳi . (C.4)
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The transformation between them is

Yi =
N∑
j=1

eiπε(τi+σj)

sinπ(τi + σj)

N∏
k=1

sinπ(σj + τk)

N∏
k 6=j

sinπ(σk − σj)
Ȳj

Ȳi =

N∑
j=1

e−iπε(σi+τj)

sinπ(σi + τj)

N∏
k=1

sinπ(τj + σk)

N∏
k 6=j

sinπ(τk − τj)
Yj

(C.5)

where ε = Sgn Im(z). Note that the inverse transformation is obtained by interchanging

z ↔ 1/z and σj ↔ τj .

The solutions with definite monodromy around z = 1, however, do not have represen-

tations as hypergeometric series in the variable (1− z), except in the case N = 2. In any

case, the monodromy matrix around z = 1 has determinant

detM(1) = e−2πiΣ , (C.6)

where Σ =
∑n

j=1(σj + τj). There is one solution with monodromy e−2πiΣ and an (n − 1)

dimensional subspace with degenerate monodromy 1. The eigenfunctions most simply

expressed as linear combinations of the normalised solutions (C.4). The solution with

monodromy e−2πiΣ around z = 1 is given by the combination

X1 =

N∑
j=1

N∏
k=1

sinπ(σk + τj)

N∏
k 6=j

sinπ(τk − τj)
Yj (C.7)

and the degenerate subspace with monodromy 1 around z = 1 is spanned by the

combinations

Xi = Y1 − Yi i = 2, . . . , N . (C.8)

The determinant of the transformation matrix is sin(πΣ) and the inverse transforma-

tions are

Y1 =
1

sinπ(N − Σ)

X1 +

N∑
j=2

N∏
k=1

sinπ(σk + τj)

N∏
k 6=j

sinπ(τk − τj)
Xj



Yi =
1

sinπ(N − Σ)

X1 +

N∑
j 6=1,i

N∏
k=1

sinπ(σk + τj)

N∏
k 6=j

sinπ(τk − τj)
Xj −

N∑
j 6=i

N∏
k=1

sinπ(σk + τj)

N∏
k 6=j

sinπ(τk − τj)
Xi


(C.9)

where we have absorbed a sign by writing (−1)N−1 sinπΣ = sinπ(N − Σ).
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D Fusion and braiding

The fusion and braiding matrices needed in this paper can be derived from a four-point

correlation function involving one completely degenerate vertex operator Vµ with momen-

tum µ = −bω1, one semi-degenerate operator Vν with momentum ν = κωN−1, and two

non-degenerate vertex operators with momentum α1 and 2Q− α2.

The authors [13] of have shown that such a correlation function must take the form

〈Vᾱ2(∞)Vν(1)Vµ(z)Vα1(0)〉 = |z|−2b(µ−Q,h1)|1− z|2b(ν,h1)G(z, z̄) (D.1)

where the function G(z, z̄) is constructed from diagonal combinations of solutions to the

generalised hypergeometric differential equationz N∏
j=1

(
z
d

dz
+ σj

)
−

N∏
j=1

(
z
d

dz
− τj

)G(z, z̄) = 0 (D.2)

and its conjugate with z ↔ z̄ but the same parameters {σj , τj}. The parameters of the

hypergeometric equation are related to the Toda momenta by

σj = b(ᾱ2 −Q, hj) + b(ν, h1)

= −ib a2,j +
b κ

N

(D.3)

and
τj = b(α1 −Q, hj) + b(µ, h1)

= ib a1,j − b2
(

1− 1

N

)
(D.4)

where for non-degenerate momenta α = Q + ia and aj = (a, hj). The hypergeometric

equation has regular singularities at points z = 0, 1,∞ corresponding to the three op-

erator product expansion channels. The corresponding WN -algebra conformal blocks in

each channel can be constructed from the solutions in appendix C. The linear transfor-

mations between the bases provide the fusion and braiding matrices for the corresponding

WN -algebra conformal blocks.

The solutions to the hypergeometric equation with diagonal monodromy around z = 0

and z = ∞ are hypergeometric functions with argument z and 1/z respectively. The

corresponding conformal blocks

= zsj (1− z)bκ/N N−1FN

(
τj + σ1, . . . , τj + σN

τj − τ1 + 1, . . . , τj − τN + 1
| z

)

= z−uj
(
z − 1

z

)bκ/N
N−1FN

(
σj + τ1, . . . , σj + τN

σj − σ1 + 1, . . . , σj − σN + 1
| 1
z

) (D.5)
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appear in the expansion of the 4-point correlation function (D.1) using the operator product

expansions

Vµ(z) · Vα1(0) =

n∑
j=1

C
α1−bhj
µ,α1

(
Vα1−bhj |z|

2sj + . . .
)

Vµ(z) · Vᾱ2(∞) =

n∑
j=1

C
ᾱ2−bhj
µ,ᾱ2

(
Vᾱ2+bhj |z|

−2uj + . . .
) (D.6)

where the leading powers are

sj = ∆(α1 − bhj)−∆(α1)−∆(µ)

= iba1,j +
1

2
bq(N − 1)

uj = ∆(α2 + bhj)−∆(α2) + ∆(µ)

= −ia2,j −
1

2
bq(N − 1)− b2

(
1− 1

N

)
.

(D.7)

The s- and u-channel conformal blocks are uniquely identified by their monodromies M
(0)
j =

e2πisj and M
(∞)
j = e2πiuj around the regular singular points z = 0 and z =∞ respectively.

The above conformal blocks can have analytic continuations via the Mellin-Barnes

integral representation and in the region z /∈ R+ there is a linear transformation between

the two bases of solutions. From appendix C we find

=

n∑
j=1

B
(ε)
ij

=

n∑
j=1

B
(ε)−1
ij

(D.8)

where

B
(ε)
ij = e−iπεbκ/N

N∏
k=1

Γ(τi − τk + 1)

Γ(τi + σk)
· πeiπε(τi+σj)

sinπ(σi + τj)
·
N∏
k=1

Γ(σk − σj)
Γ(1− τk − σj)

= eiπε(τi+σj−bκ/N)
N∏
k 6=i

Γ(1− τk + τi)

Γ(1− τk − σj)

N∏
k 6=j

Γ(σk − σj)
Γ(σk + τi)

(D.9)

and

B
(ε)−1
ij = eiπεbκ/n

N∏
k=1

Γ(σi − σk + 1)

Γ(σi + τk)
· πe

−iπε(σi+τj)

sinπ(τi + σj)
·
N∏
k=1

Γ(τk − τj)
Γ(1− σk − τj)

= e−iπε(τi+σj−bκ/N)
N∏
k 6=i

Γ(1− σk + σi)

Γ(1− σk − τj)

N∏
k 6=j

Γ(τk − τj)
Γ(τk + σi)

(D.10)
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and ε is the sign of the imaginary part of z. Note that the inverse transformation matrix

B
(ε)−1
ij is obtained by exchanging σj ↔ τj and z ↔ 1/z.

The t-channel conformal blocks cannot be expressed as generalised hypergeometric

functions with argument (1 − z), except in the special case n = 2. However, they can

be constructed by forming linear combinations of the s-channel conformal blocks that are

eigenfunctions of the monodromy operator around z = 1. The monodromy matrix around

z = 1 has determinant

det M (1) = e2πi(bκ−Σ) (D.11)

where

Σ =
∑
j

(σj + τj) = −b2(n− 1) + bκ . (D.12)

It has one non-degenerate eigenvalue e2πib(κ/N−Σ) and (N − 1) degenerate eigenvalues

e2πibκ/N . On the other hand, the operator product expansion predicts the appearance

of two primary operators

Vµ · Vν = Cν−bh1µ,ν

(
|1− z|2t1 Vν−bh1 + · · ·

)
+ Cν−bhNµ,ν

(
|1− z|2tN Vν−bhN + · · ·

) (D.13)

where
t1 = bκ/N

t2 = qb(N − 1)− bκ(1− 1/N) .
(D.14)

Therefore the monodromies predicted by the operator product expansion, e2πit1 = e2πibκ/N

and e2πit2 = e2πib(κ/N−Σ) are in agreement with the eigenvalues of the monodromy operator.

We now introduce a basis of conformal blocks that are eigenfunctions of the monodromy

operator around z = 1. The unique eigenfunction with monodromy e2πi(bκ/N−Σ) is

= Γ(n− Σ)

N∑
j=1

N∏
k=1

Γ(τk − τj)
Γ(1− σk − τj)

(D.15)

where the normalisation has been chosen such that the leading coefficient in a series ex-

pansion in (1− z) is 1. It corresponds to the propagation of the primary operator Vν−bhN
in the intermediate channel. A basis of solutions with monodromy e2πibκ/N is given by the

following combinations of s-channel blocks

Γ(n−Σ)

 N∏
k=1

Γ(τ1+σk)

Γ(τ1−τk+1)
−

N∏
k=1

Γ(τj+σk)

Γ(τj−τk + 1)


(D.16)

for j = 2, . . . , N . The inverse transformations for this particular basis can be determined

from equation (C.9) in appendix C. The required combination of t-conformal blocks in the

subspace of monodromy e2πibκ/N depends on κ and the external momenta α1 and α2. In

the example studied in the main text, the required t-channel block is uniquely determined

by the allowed momenta in the s-channel.
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E Factorizations of the Toda 3-pt function

The results summarised in this appendix were obtained in collaboration with Martin Fluder,

Lotte Hollands and Paul Richmond in the course of a forthcoming paper on surface defects

and the superconformal index [38] where further explanations and derivations can be found.

Let us briefly review some properties of special functions. We fix b ∈ R>0 and define

q ≡ b + b−1 as in the main text. The double gamma function Γb(x) is a meromorphic

function of x characterised by the functional equation

Γb(x+ b) =
√

2π bbx−
1
2 Γb(x)/Γ(bx) (E.1)

where Γ(x) is the Euler gamma function and its value Γb(q/2) = 1. The double sine

function is then a meromorphic function defined by the formula Sb(x) ≡ Γb(x)/Γb(q − x)

and is characterised by the functional equation

Sb(x+ b) = 2 sin(πbx)Sb(x) . (E.2)

We will also need the function Υb(x)−1 = Γb(x)Γb(q − x) which is entire analytic.

Consider the three-point function C(α, 2Q − α, ν) in AN−1 Toda theory where two

legs have opposite momentum forming an internal channel. The momentum in the internal

channel α = Q + ia with a ∈ R describes non-degenerate and delta-function normalis-

able states and the momentum ν = N(q/2 + im)ωN−1 with m ∈ R is semi-degenerate.

Substituting these momenta into the more general result of [23, 24] we find that

C(α, 2Q− α, ν) = f(m)

N∏
i<j

Υb (iaij) Υb (−iaij)

N∏
i,j=1

Υb

( q
2 + iaij + im

) (E.3)

where aij = ai − aj and the proportionality factor f(m) is independent of the internal

parameter a. Since we are concerned with difference operators acting on a this factor is

not important here.

We now consider two different ways to factorise the three-point function and absorb it

into the WN -algebra conformal blocks. The first maximally simplifies the Verlinde opera-

tors and coincides with a common normalisation of Virasoro conformal blocks in Liouville

theory in the case N = 2. It is expected that this corresponds to a half-sphere partition

function of N = 2∗ theory with Dirichlet boundary conditions for the vectormultiplet at

the equator. The second normalisation corresponds to computing the Nekrasov partition

function of the N = 2∗ theory with deformation parameters ε1 = b and ε2 = b−1.

Renormalised conformal blocks. Let us now express the Toda three-point function in

terms of double gamma functions and manipulate the answer into a convenient form using

the functional equation. We find that it can be expressed as

µ(a)

∣∣∣∣∣∣∣∣∣
N∏

i,j=1
Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)

∣∣∣∣∣∣∣∣∣
2

, (E.4)
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where

µ(a) =
∏
i<j

2 sinh (πbaij) 2 sinh
(
πb−1aij

)
(E.5)

is the partition function of an N = 2 vectormultiplet on a squashed three-sphere [39], which

is identified here with the equator {x0 = 0}.
As described in the main text, we can now absorb the three-point function into the

WN -algebra conformal blocks, by defining new renormalised blocks

Ga,m(τ) =

N∏
i,j=1

Γb
( q

2 + iaij + im
)

N∏
i<j

Γb (q + iaij) Γb(q − iaij)
Fα,ν(τ) , (E.6)

so that the full correlation function is∫
daµ(a)| Ga,m(τ) |2 . (E.7)

Thus, we believe that the renormalised conformal block corresponds to the partition func-

tion on {x0 > 0} with Dirichlet boundary conditions for the vectormultiplet at the equator.

Thus, in order to transform between Verlinde operators acting on Fα,ν(τ) and those acting

on Ga,m(τ) we have to conjugate by the factor in equation (E.6).

Let us concentrate on the Verlinde operator corresponding to the fundamental ’t Hooft

loop. Acting on the unnormalised conformal blocks Fα,ν(τ), this Verlinde operator has been

computed in [13] and the result is given by

N∑
j=1

 N∏
k 6=j

Γ (ibakj)

Γ
(
bq
2 + ibakj − ibm

) Γ (bq + ibakj)

Γ
(
bq
2 + ibakj + ibm

)
∆j (E.8)

where

∆j : aj → ai + ib(δij − 1/N) . (E.9)

We now conjugate this operator by the one-loop factor normalisation factor in equa-

tion (E.6). By repeated application of the functional equation for the double gamma

function, we find the result

N∑
j=1

 N∏
k 6=j

Γ (ibakj) Γ (1− ibakj)

Γ
(
bq
2 + ibakj − ibm

)
Γ
(

1− qb
2 − ibakj + ibm

)
∆j

=
N∑
j=1

 N∏
k 6=j

sinπb
( q

2 + iakj − im
)

sinπb (iakj)

∆j (E.10)

as claimed in the main text. With patient bookkeeping, the same computation can be

performed for the difference operators in completely anti-symmetric tensor representations.
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Nekrasov partition function. For comparison with the exact computation of ’t Hooft

loop on the four-sphere in [21], it is necessary to consider another factorisation of the

Toda three-point function, such that the difference operators act on the Nekrasov partition

function with ε1 = b and ε2 = b−1, which we denote by Za,m(τ).

Thus we now express the three-point function

C(α, 2Q− α, ν) = f(m) | Z1−loop
a,m (τ) |2 (E.11)

where

Z1−loop
a,m (τ) =


N∏
i<j

Υb (iaij) Υb (−iaij)

N∏
i,j=1

Υb

( q
2 + iaij + im

)


1/2

(E.12)

are the one-loop contributions to the Nekrasov partition function. The classical and in-

stanton contributions to the Nekrasov partition function are encoded in the WN -algebra

conformal blocks. Thus, modulo the factor f(m), the complete Toda correlator can be

expressed ∫
da| Za,m(τ) |2 (E.13)

in agreement with the exact computation of the partition function of the N = 2∗ theory

on an ellipsoid in [4].

To obtain difference operators acting on the Nekrasov partition function, it is easier at

this stage to start from the relationship to the renormalised WN -algebra conformal blocks.

In fact, from the relationship between the double gamma double sine functions and upsilon

functions, we find

Za,m(τ) =


N∏
i<j

Sb(q + iaij)Sb(q − iaij)

N∏
i,j=1

Sb(
q
2 + iaij + im)


1/2

Ga,m(τ) . (E.14)

Again, the difference operator that acts on the Nekrasov partition function is obtained by

conjugation by this factor. By repeated use of the functional equation for the double sine

function, we now find the operator

k∑
j=1

 N∏
k 6=j

sinπb
( q

2 + iakj + im
)

sinπb
( q

2 + iakj − im
)

sinπb (iakj) sinπb(q + iakj)

1/2

∆j , (E.15)

which agrees with the exact computation of the fundamental ’t Hooft loop operator in the

case of a round four-sphere [21]. With patient bookkeeping, a similar result can be reached

for the Verlinde operators corresponding to ’t Hooft loops labelled by any anti-symmetric

tensor representation.
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