This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

BotDet: A System for Real Time Botnet
Command and Control Traffic Detection

IBRAHIM GHAFIR"2, VACLAV PRENOSIL', MOHAMMAD HAMMOUDEH?, THAR BAKER*,

SOHAIL JABBAR®, SHEHZAD KHALID®, SARDAR JAF?

"Faculty of Informatics, Masaryk University, Brno, Czech Republic

2Department of Computer Science, Durham University, Durham, UK

3Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
4Deparlment of Computer Science, Liverpool John Moores University, Liverpool, UK
3Department of Computer Science, National Textile University, Faisalabad, Pakistan
6DE:parlmE:nt of Computer Engineering, Bahria University, Islamabad, Pakistan

Corresponding author: Ibrahim Ghafir (e-mail: ibrahim.ghafir @durham.ac.uk).

ABSTRACT Over the past decade, the digitization of services transformed the healthcare sector leading
to a sharp rise in cybersecurity threats. Poor cybersecurity in the healthcare sector, coupled with high
value of patient records attracted the attention of hackers. Sophisticated advanced persistent threats and
malware have significantly contributed to increasing risks to the health sector. Many recent attacks are
attributed to the spread of malicious software, e.g., ransomware or bot malware. Machines infected with
bot malware can be used as tools for remote attack or even cryptomining. This paper presents a novel
approach, called BotDet, for botnet Command and Control (C&C) traffic detection to defend against
malware attacks in critical ultrastructure systems. There are two stages in the development of the proposed
sytsem: (i) we have developed four detection modules to detect different possible techniques used in botnet
C&C communications; (ii) we have designed a correlation framework to reduce the rate of false alarms
raised by individual detection modules. Evaluation results show that BotDet balances the true positive rate
and the false positive rate with 82.3% and 13.6% respectively. Furthermore, it proves BotDet capability of
real time detection.

INDEX TERMS Critical infrastructure security, healthcare cyber attacks, malware, botnet, command and
control server, intrusion detection system, alert correlation.

. INTRODUCTION

OUNTRY'’S national security, economic vitality and

daily life rely on a safe, stable, and resilient cy-
berspace. We depend on this vast array of networks to provide
healthcare services, transport and communication, power our
homes and run our economy [1]. Over the last decade, cyber
attacks and intrusions have increased substantially, disrupt-
ing critical operations, resulting in business downtime and
exposing sensitive personal and business information.

Statistics draw a grim picture about the cybersecurity
challenges and digital risks in the healthcare industry. A
report by the US Department of Health and Human Ser-
vices [2] reveals that the healthcare sector has suffered from
approximately four data breaches a week in 2016. To put
this into perspective, one in every three American citizens
was a victim of a breach in the healthcare sector. One of the
primary reasons behind targeting healthcare organizations is
that these organizations do not set protecting patient data as a

VOLUME 4, 2016

priority, hence they under invest in qualified IT security per-
sonnel. The lack of solid information security infrastructure
makes healthcare organizations an easy target. For instance,
the recent attack on the National Health Service (NHS)
in the UK showed that some hospitals and care providers
systems were obsolete or have not been patched against well-
known vulnerabilities. Additionally, patient records contain a
wealth of information that can be used for identifying theft,
financial/insurance fraud and even blackmailing. In 2017,
15,000 medical records have been stolen from Beverly Hills
plastic surgery clinic to bully several high-profile celebrities.

Today, intelligence agencies and governments military are
actively preparing for cyber warfare. Global activities against
software, hardware, or data are referred to as cyber attack in
the field of computer networks or systems. These activities
lead to degrading, disrupting, destroying or denying access
to network/system services or resources. Activities that target
gathering intelligent are referred to as cyber exploitation [3].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2018.2846740, IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

The main objective of these activities is to gain unauthorised
access to information and data.

Over the last decade, malicious software or malware has
increased, particularly in the healthcare industry. They have
become one of the main reasons for the majority of the
(distributed) denial-of-service (Dos) activities [4], direct and
scanning attacks [1], [5], [6]. Noticeably, the motivation from
fame seeking and curiosity has been shifted to unlawful
financial attainment, which resulted in the sophistication of
malicious software [7]. Moreover, the availability of easy-
to-use toolkits to build malware will probably keep these
malwares a threat to individuals, business and governments
in the foreseeable future.

Generally, there are two classes of malware: (a) mal-
ware that targets the general population and (b) customised
information-stealing malware that targets particular organi-
zations [7] such as healthcare providers. Zombies, which
refers to those machines infected with bot malware, can be
used as tools for remote attack or can be part of a botnet,
which is completely controlled by the botnetmaster [7]. Bots
are “enslaved” host computers in botnets (networks formed
by bots). One or more botmasters control bots in botnets and
the intention is to perform malicious activities [8], [9]. The
essential goal of botnets is to control organized crime syn-
dicate, criminal, or group of criminals to use compromised
machines for performing illegal activities. Experts mention
that about 16 —25% of the machines connected to the Internet
are parts of botnets [10], [11]. Bots are different from the
other malware. They are capable to create Command and
Control (C&C) channels. Bots recognize themselves by their
C&C channels through which they can be controlled, updated
and instructed. The C&C servers are usually machines that
have been exploited and sorted in a distributed form to limit
traceability.

The detection of botnet C&C traffic is challenging for cur-
rent Intrusion Detection Systems (IDS) for several reasons:
(1) it is a benign traffic and follows normal protocol usage;
(2) their volume of traffic is small; (3) the number of bots
may be very small in the monitored network; and (4) Bots’
communications may be encrypted [12].

This paper aims to contribute to IDS research, particularly
to botnet C&C traffic detection. The proposed approach,
called BotDet, undergoes two main phases. The first phase
runs various modules to detect different possible techniques
used in botnet C&C communications. The second phase uses
a framework for alert correlation to reduce the number of
false positives. The main contributions of this work are:

1) The development of four methods for the detection of
various attack techniques used in botnet C&C commu-
nications. Although methodologies exist in the litera-
ture for blacklist-based detection modules, their imple-
mentation and validation in real traffic are significant
contributions to the field.

2) The development of a framework to correlate results
from individual detection methods to reduce the false
alarms.

3) The automation of blacklists, used in some of the
detection modules, based on different intelligent feeds.
This allows BotDet to offer real time attack detection.

4) The evaluation results show that BotDet balances the
true positive rate and the false positive rate with 82.3%
and 13.6% respectively.

The remainder of this paper is structured as follows.
Section II presents the related work to botnet C&C traffic
detection. The proposed approach, including the detection
modules and correlation framework, is presented in Sec-
tion III. Section IV shows the evaluation results and Sec-
tion V concludes the paper.

Il. RELATED WORK

There are two main approaches for botnet C&C traffic de-
tection in the literature. The first one is based on setting
up honeynets in the network [13]. This approach is often
used to understand and analyse a botnet technology and
characteristics. However, honeynets are not always capable
of detecting bot infection. The second approach is based
on passive traffic monitoring [14]. These approaches can be
classified into signature-based and anomaly-based methods,
respectively. Signature-based detection methods make use of
known signatures and behaviour of existing botnets, there-
fore it can be used for detecting only known botnets [15].
Anomaly-based detection methods are able to detect un-
known botnets as they try to detect botnets based on network
traffic anomalies like traffic on unusual ports, high volumes
of traffic, unusual system behaviour and high network la-
tency [16]. Detection methods can be further classified into
host-based and network-based methods. Host-based method
detects botnets by monitoring and analysing the internals of
a computer system [17]. Whereas the network-based method
monitors the network traffic to detect botnets [18].

Snort is a signature-based IDS [19] capable of monitor-
ing and analysing network traffic to match signatures of
known botnets. Snort consists of many components working
together in order to detect malicious patterns in the traffic.
Packets from network interfaces are captured by the packet
decoder and they are prepared to be preprocessed or sent
to the detection engine. Then, packets are checked against
specific plugins by a processor, and if anomalies are found,
the processor raises an alert.

In [20], Balram and Wilscy propose a host-based approach
for botnet C&C communication detection. This approach
analyses suspicious flows produced by filtering out benign
traffic from the traffic created by a host. A normal profile
of the host traffic is used for the filtering. The behavioural
pattern of flows to all destinations is examined in a bid to
generate the host profile. This approach achieved a detection
rate of 100% and false positives of 8%.

In [21], Fedynyshyn et al. present a host-based detection
method able to detect the existence of botnet C&C traffic on
the observed machine, and also categorize the type of C&C
communication used by the bot, e.g., peer-to-peer (P2P)
based, HTTP-based or IRC-based. As it does not examine the

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access

IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

packets payloads, their detection method is independent of
the content of the C&C messages. Their method for detecting
and categorising botnet C&C connections is based on three
hypotheses: (1) it is possible to distinguish between botnet
C&C communication and botnet non-C&C communication,
(2) it is possible to distinguish between botnet C&C commu-
nication and valid communication and (3) there are shared
characteristics between different styles of C&C and different
botnet families.

An approach for bot-infected machines detection was pre-
sented by Wurzinger et al. [22], which requires no previous
knowledge of the way a bot spreads. It depends on the
characteristic behaviour of a bot, particularly: (a) receiving
commands from the botmaster, and (b) responding to these
commands by carrying out some activities. Both commands
and responses can be monitored in the network traffic and
detection models can be built. The authors ran a bot in a
controlled network to record its traffic and then they examine
the received commands and responses activities. For this
purpose, they proposed techniques to determine points in the
network that were involved in the response activity. After-
wards, the traffic had been observed before this response
is analysed to find the corresponding command. By these
detection models the network traffic is scanned for similar
actions aiming to detect bot-infected machines.

Giroire et al. [23] presented another host-based detection
method for botnet C&C traffic detection. This method is
based on the fact that the infected machines should stay
in contact with C&C severs to be instructed and controlled
by the botmaster. It is assumed that those connections are
persistent and established regularly. A white-list of benign
destinations that the user regularly contacts is built and all
the user outbound traffic is monitored. When a connection
is persistent enough and the destination is not white-listed,
an alert is generated and the user is informed and asked to
decide. If the destination is legitimate, the user can easily
add it to the white-list, otherwise the connection is deemed
as C&C communication and blocked.

A network-based botnet detection system, BotSniffer, was
proposed in [12]. This system is based on anomaly-based de-
tection algorithms to detect both HTTP and IRC based C&C's
with no previous knowledge of C&C server addresses or
signatures. The main goal in BotSniffer is to identify spatial-
temporal similarity patterns and correlation in network traffic
that are generated between the infected hosts and botnet C&C
servers. They study two common styles usually used for
botnet control, “push” and “pull”. An example for the push
style is IRC-based C&C is where the commands are sent or
pushed to the infected hosts. In the pull style, the commands
are downloaded (or pulled) by the infected hosts, as in HTTP-
based C&C. When a set of hosts is found to carry out the
same actions in response to similar messages from the same
server, it is considered to be part of a botnet.

Several works have attempted to detect Botnet C&C traf-
fic. However, they have limitations in achieving real time
detection, and they cannot balance between false positive and

VOLUME 4, 2016

false negative rates. Therefore, the significance of this work
is we propose methods that achieve real time detection and
produce a balance between false positive and false negative
rates.

lll. BOTDET DESIGN AND SPECIFICATIONS

BotDet runs through two main phases. The first phase hosts
four modules to detect different techniques used in botnet
C&C communications. The second phase requires using a
framework for alert correlation, based on voting among in-
dividual detection modules. Figure 1 shows the architecture
of the proposed BotDet.

Alert on C&C traffic detection

t Output

[Correlation framework }

t Events

[[Method 1)(Method 2} (Method 3)(Method 4]}

t Packets

[Network traffic J

FIGURE 1. Architecture of the proposed approach for C&C traffic detection.

Initially, sniffed data traffic is scanned to detect techniques
used in botnet C&C communications. To this end, four detec-
tion modules have been developed which are: malicious IP
address detection module (MIPD), malicious SSL certificate
detection module (MSSLD), domain-flux detection module
(DFD) and Tor connection detection module (TorD). The
output of this phase is alerts, also known as events, triggered
by individual modules. Alerts raised by individual detection
modules are then fed into the correlation framework (CF),
which aims to find links between alerts to increase the
confidence of botnet traffic detection and decrease the rate
of false alarms.

The four detection modules operate in real time, as BotDet
can process the sniffed network traffic live and does not have
to store it. Some of the detection modules are blacklist-based,
where some of these blacklists are publicly published or pri-
vately maintained. Information on different intelligence feeds
at once is used to automatically update all used blacklists
within BotDet. All detection modules are implemented on
top of Bro [24], [25], which is a passive and open-source
network traffic analyser.

A corresponding event is generated as an output for each
detection module. This event is to be used in the correlation
framework as explained later in Section III-F. In addition to
this, an alert email is sent to the Request Tracker (RT) [26].
The network security team then conduct further forensics
and reply to the alert—a reply from the team is assumed to
be within 24 hours from the alert generation. This method
allows the detection module to suppress all the alerts with
the same infected host and the same malicious item into one

3

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2018.2846740, IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

alert per day. Also, this method reduces the number of email
alerts sent to the network security team and computational
cost on the correlation framework. After generating an alert,
the triggered alert is added to a specific corresponding table
by the module and stored for 24 hours. This way, generating
the same alert within the same 24 hours by the module is
avoided. During the detection of an APT technique but prior
to generating an alert, the module queries the corresponding
table in order to check if the same alert exists in the table. If
the same alert is found then it is ignored. Otherwise, informa-
tion about the new alert and the malicious connection (such
as alert_type, timestamp, src_ip, src_port, dest_ip, dest_port,
infected_host, malicious_item) is recorded in a specific log
file (individual log for each technique detection), which is
used for keeping historical record of the monitored network.

The following subsections present the four detection mod-
ules MIPD, MSSLD, DFD and TorD. The automatic update
details of the utilised blacklists are provided as well. Then,
the correlation framework methodology is given.

A. MALICIOUS IP ADDRESS DETECTION (MIPD)

The MIPD module detects any connection between the in-
fected host and a C&C server. The detection is based on
a blacklist of malicious IPs of C&C servers [27]-[30]. As
depicted in Figure 2, MIPD processes the network traffic to
search for a match in the source and destination IP addresses
for each connection with the IP blacklist [31].

Alert on
malicious IP detection
t Output
Match .
[source and destination IPs}- IP blacklist

t Events t - Y ,\\

[Connections

- A Intelligence 4
Automatic update | ump)
} ~feeds 1)
t Packets

\7\’*’\7//& -
[Network traffic J

FIGURE 2. Methodology of the malicious IP detection.

Algorithm 1 shows the implementation pseudo-code of the
MIPD module.

Algorithm 1 Implementation pseudo-code of MIPD

1: Input: blacklist of malicious IP addresses (t_ip_blacklist
table)
: Input: new_connection event
: Check if the connection is to a malicious IP:
. if the connection destination IP is in t_ip_blacklist then
‘ if the connection is established by one of the net-
work’s hosts then
6: ‘ ‘ if MIPD didn’t raise the same alert during the
past 24 hours then
7: goto Check if the connection is from a mali-
cious IP:

s W

8: \ \ else

9: Raise an alert (ip_alert)

10: Record the generated alert

11: Notify the network security team via email

12: Deny repeating the same alert during the next
24 hours

13: ‘ end if

14: else

15: goto Check if the connection is from a malicious
IP:

16: ‘ end if

17: else

18: goto Check if the connection is from a malicious IP:

19: end if

20: Check if the connection is from a malicious IP:
21: if the connection source IP is in t_ip_blacklist then

22: ‘ if the connection is oriented to one of the network’s
hosts then

23: ‘ ‘ if MIPD didn’t raise the same alert during the
past 24 hours then

24: goto End

250 | | else

26: Raise an alert (ssl_alert)

27: Record the generated alert

28: Notify the network security team via email

29: Deny repeating the same alert during the next
24 hours

30: ‘ end if

31: else

32: goto End

33 | endif

34: else

35: goto End

36: end if

37: End

The network traffic is monitored to identify any
new_connection type event generated by Bro. This event is
generated for every new connection and raised with the first
packet of a previously unknown connection [32]. Through
the new_connection event, MIPD checks both connection
sides IP addresses to detect if the connection is to or from
a malicious IP. If the connection destination IP exists in
the t_ip_blacklist table, this means, the connection is to
a malicious IP. MIPD then checks the connection source
IP through the is_local_addr function to determine if the
connection is established by a host from the monitored
network. On detecting a malicious connection, but prior to
raising an alert, MIPD checks the t_suppress_ip_alert table
to determine if the same ip_alert has been generated in the
last 24 hours. If the same ip_alert has not been generated,
MIPD does the following: (i) an ip_alert event is generated
and information about the malicious connection is written
to a blacklist_detection_ip.log file, (ii) an email alert about
the malicious IP detection is sent to RT and, (iii) the current
detected set (host, ip) is added to the t_suppress_ip_alert

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access

IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

table.

When the connection is from a malicious IP, the same
procedure as in when the connection is to a malicious IP
followed by paying attention to the source and destination
IP addresses as shown in Algorithm 1.

B. MALICIOUS SSL CERTIFICATE DETECTION (MSSLD)

Secure Sockets Layer (SSL) encryption is used for protect-
ing C&C communications because it makes it difficult to
identify it as malicious traffic. A blacklist of malicious SSL
certificates for detecting C&C communications is used by
MSSLD [33], [34]. There are two forms of the certificate in
the blacklist: (a) SHAI fingerprints and (b) serial & subject.
Malware and malicious activities are associated with both. As
depicted in Figure 3, the main processes are: (1) processing
the network traffic, (2) filtering the secure connections and
(3) of each secure connection the SSL certificate is matched
with the SSL certificate blacklist [35].

SSL certificate detection

t Output

[Match SSL certificate | 4= SSL blacklist |

t Events t ,
/" Intelligence A

[Automatic updatej{—).\rr foods

— v
AT

E Alert on malicious J

—Y Y
< LN

[Secure connections J

t Packets

[Network traffic J

FIGURE 3. Methodology of the malicious SSL certificate detection.

Two methods are implemented for malicious SSL certifi-
cate detection because the blacklist comprises two types of
malicious SSL certificates (which are SHAI fingerprints and
serial & subject): (1) intelligence-based MSSLD which is
shown in Algorithm 2 and, (2) event-based MSSLD, as in
Algorithm 3.

The Intelligence-based MSSLD uses the Bro Intelligence
Framework [36] and it is configured to monitor the hashes
of all secure connections SSL certificates, where data from
different data sources can be consumed by MSSLD for hash
matching. The framework is connected to blacklist.intel file,
which contains the SSL certificate blacklist. The intelligence
framework receives the SSL certificates after extracting the
secure connections traffic. The framework checks the SSL
certificates against the intelligence data set blacklist.intel.
If a match is found with any of the indicator_type of the
intelligence data, an Intel::match event is generated. The
Intel::match event is examined to check if the indicator_type
is CERT _HASH. If that is the case then this indicates the con-
nection has a malicious SSL certificate. Next, is_local_addr
function is used for checking the source and IP addresses of
the connection sides to determine whether the connection to
or from the monitored network is established. In order the
avoid generating identical alerts within any 24-hour period,

VOLUME 4, 2016

Algorithm 2 Implementation pseudo-code of intelligence-
based MSSLD
1: Input: blacklist of certificates’ hashes
2: for each SSL encrypted connection do
3 Compute the certificate hash
4: if the certificate hash matches with the blacklist then
5 ‘ if the connection is established by one of the
network’s hosts then
6: | | | if MSSLD didn’t raise the same alert during
the past 24 hours then
Raise an alert (ssl_alert)
Record the generated alert
Notify the network security team via

email

10: Deny repeating the same alert during the
next 24 hours

‘ end if

else if the connection is oriented to one of the
network’s hosts then

13: ‘ ‘ ‘ if MSSLD didn’t raise the same alert during
the past 24 hours then

14: Raise an alert (ssl_alert)

15: Record the generated alert

16: Notify the network security team via
email

17: Deny repeating the same alert during the
next 24 hours

‘ end if

11:
12:

else
20: goto End
21: | endif
else
23: goto End
24: ‘ end if
25: end for
26: End

t1_suppress_ssl_alert table is checked. No alert will be gen-
erated if the table contains the same detected [host IP address,
SSL certificate hash] set.

The processes of the MSSLD module are: (1) generating
an ssl_alert event, (2) logging the malicious connection in-
formation to the blacklist_detection_ssl.log log file, (3) com-
posing and sending an email alert about the malicious SSL
certificate detection to the RT, and (4) updating the table
t1_suppress_ssl_alert with the current detected set [host IP
address, SSL certificate hash].

The process in the event-based MSSLD involves process-
ing and filtering the network traffic into secure connections
traffic. Then, for the encountered X509 certificates [37],
the x509_certificate event is generated, where the serial and
subject of the X509 certificate are checked for the exis-
tence of the certificate in the bad_ssl group. This group
contains serials and subjects of malicious X509 certificates.
MSSLD determines if there is a connection to or from one

5

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2018.2846740, IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

Algorithm 3 Implementation pseudo-code of event-based
MSSLD
: Input: blacklist of certificates’ hashes
: Input x509_certificate event
: Obtain the serial and subject of the certificate
. if serial and subject match with the blacklist then
‘ if the connection is established by one of the net-
work’s hosts then
6: | | if MSSLD didn’t raise the same alert during the
past 24 hours then
7: Raise an alert (ssl_alert)
Record the generated alert
9: Notify the network security team via email
10: Deny repeating the same alert during the next
24 hours
11: ‘ end if
12: else if the connection is oriented to one of the net-
work’s hosts then

.L{I-kal\)_t

13: | | if MSSLD didn’t raise the same alert during the
past 24 hours then

14: Raise an alert (ssl_alert)

15: Record the generated alert

16: Notify the network security team via email

17: Deny repeating the same alert during the next
24 hours

18: ‘ end if

19: else

20: goto End

21: | endif

22: else

23: goto End

24: end if

25: End

of the monitored network hosts if a match is found. The
source and destination IP addresses are checked through the
is_local_addr function. The 2_suppress_ssl_alert table is
checked before generating the ssl_alert. This is to avoid gen-
erating an alert that may have been generated in the past 24-
hour period. As in the previous intelligence-based method,
the process involves: (1) MSSLD generating an ss/_alert
event; (2) recording the malicious connection information in
the blacklist_detection_ssl.log file; (3) sending an alert to the
RT; and (4) updating the t2_suppress_ssl_alert table with the
current detected set [host IP address, SSL certificate hash].

C. DOMAIN FLUX DETECTION (DFD)

One common technique used for C&C communications is
the domain flux technique, where each infected machine
separately uses a Domain Generation Algorithm (DGA) to
generate a list of domain names [38]. By using the domain
flux technique, the infected host attempts to query and con-
nect to a large number of generated domain names, which are
expected to link the host to the C&C servers. This technique
makes it difficult for law enforcement to successfully shut

6

down a large number of domains. To prevent infected hosts
from connecting to the C&C servers, law enforcement needs
to pre-register all the domains that an infected host queries
every day before the attacker registers them [39].

The DFD module detects algorithmically generated do-
main flux, where the infected host queries for the existence of
a large number of domains, whilst the owner has to register
only one. This leads to the failure of many DNS queries.
DFD utilizes DNS query failure to detect domain flux attacks.
Figure 4 depicts the way the network traffic is processed,
particularly DNS traffic. All DNS query failures are analysed
and, for detecting domain flux attacks and identifying in-
fected hosts, the same IP address is constrained by a threshold
for DNS query failures [40].

L Alert on domain flux detection J
t Threshold

L DNS query failure]
1 Events

L DNS traffic]
t Packets

L Network traffic J

FIGURE 4. Methodology of the domain flux detection.

Algorithm 4 shows the implementation pseudo-code of the
DFD module. DNS traffic is extracted and processed; DFD
waits for the dns_message event to be generated by Bro.
This event is generated for any DNS message and provides
information regarding the connection to the DNS server [41].

Through the dns_massage event, DFD checks for two
conditions: (1) if this connection is established by a host
from the monitored network using the is_local_addr func-
tion; (2) if the dns_message is due to DNS error of NX-
DOMAIN, which indicates the non-existence of the do-
main name where it is either invalid or not registered.
This information can be extracted from the dns_message
event (cdnsrcode_name=="NXDOMAIN"). If these two
conditions are met, the source IP address that searches for
unregistered domain names is saved in the ¢_dns_failure
table. This table counts the number of DNS query failures of
the same IP address. The counter is increased by one (++
t_dns_failure[cidorig_h]) if the t_dns_failure table con-
tains the current IP address. When the number of DNS query
failures exceeds a specified threshold, dns_failure_threshold,
the current IP address is deleted from the ¢_dns_failure table
to reset the counter of this IP address to zero. Because recent
malware can generate 50, 000 domain names every day [42],
the threshold is set to 50 DNS query failures per 5 minutes.
Then, if the IP address of the potentially infected host does
not exist in the ¢_suppress_domain_flux_alert table, DFD
generates a domain_flux_alert event.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access

IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

Algorithm 4 Implementation pseudo-code of DFD

1: Input: dns_failure_threshold
2: Extract DNS traffic
3: Input: dns_message event
4: if the connection is established by one of the network’s
hosts then
5: if dns_message event is due to DNS error of NXDO-
MAIN then
6: | | ifthe host IP is not in t_dns_failure table then
7: write host IP into t_dns_failure
8 host IP counter < 1
9o | | else
10 Increase host IP counter by 1
11: ‘ ‘ ‘ if host IP counter > dns_failure_threshold
then
12 Delete host IP from t_dns_failure
13: Reset host IP counter to zero
14 | | | | if DFD raised the same alert during the
past 24 hours then
15: goto End
16: ‘ ‘ ‘ ‘ else
17: Raise an alert (domain_flux_alert)
18: Record the generated alert
19: Notify the network security team via
email
20: Deny repeating the same alert during
the next 24 hours
21: | endif
22: else
23: goto End
24: ‘ end if
25: end if
26: else
27: goto End
28: ‘ end if
29: else
30: goto End
31: end if
32: End

DFD also sends a domain flux detection email alert to the
RT, and updates the ¢_suppress_domain_flux_alert table by
adding the current detected host IP address.

D. TOR CONNECTION DETECTION (TORCD)
Tor [43] [44] is an anonymous communication network that
provides user privacy by encrypting the connection through
an overlay network. Tor uses onion routing to direct client’s
traffic over a circuit of different relays, denying any single
relay to know the complete path of the traffic [45]. Tor is
often misused by criminals and hackers to remotely direct
and instruct infected machines [46].

The TorCD module detects any connection to a Tor net-
work. It is based on a list of Tor servers which is publicly
published [47]. As shown in Figure 5, the network traffic

VOLUME 4, 2016

is processed and the source and destination IP addresses for
each connection are matched with Tor servers list [48].

Alert on
Tor connection detection

t Output
Match .
[source and destination IPs}‘_

Y YT
1 Events t ‘/l telli \W
- /" Intelligence A
[Connections J Automatic update r~ feeds ./
C)
\7}\-—/,_

t Packets

[Network traffic]

FIGURE 5. Methodology of the Tor connection detection.

Algorithm 5 shows the implementation pseudo-code of
the TorCD module. The network traffic is processed, when
a SYN-ACK packet is seen in response to a SYN packet
during a TCP handshake [49] a connection_established event
is generated by Bro.

Algorithm S Implementation pseudo-code of TorCD

: Input: Tor servers list (z_tor_server table)
. Input: connection_established event
: Check if the connection is to a Tor network:
. if the connection destination IP is in t_tor_server then
‘ if the connection is established by one of the net-
work’s hosts then
6: ‘ ‘ if TorCD raised the same alert during the past 24
hours then
7: goto Check if the connection is from a Tor
network:
8: ‘ ‘ else
9: Raise an alert (for_alert)
10: Record the generated alert
11: Notify the network security team via email
12: Deny repeating the same alert during the next
24 hours
13: ‘ end if
14: else
15: goto Check if the connection is from a Tor net-
work:
16: ‘ end if
17: else
18: goto Check if the connection is from a Tor network:
19: end if
20: Check if the connection is from a Tor network:
21: if the connection source IP is in t_tor_server then
22: ‘ if the connection is oriented to one of the network’s
hosts then
23: | | if TorCD raised the same alert during the past 24
hours then
24: goto End
25: ‘ ‘ else
26: Raise an alert (for_alert)

I T N

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2018.2846740, IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

27: Record the generated alert

28: Notify the network security team via email

29: Deny repeating the same alert during the next
24 hours

30: | end if

31: else

32: goto End

33: ‘ end if

34: else

35: goto End

36: end if

37: End

Through the connection_established event, TorCD checks
both sides of the connection to detect if the connection is to
or from a Tor network. The process proceeds in the same way
as in the MIPD module (see Section III-A), i.e., a tor_alert
event is generated, and an alert email is sent to the RT.

E. AUTOMATIC UPDATES

Based on different intelligence feeds, the blacklists of
blacklist-based detection modules are automatically updated
at once. The automatic update and detection processing run
in parallel and it is not required to halt or restart BotDet. This
way, it is possible to monitor the live network and support
real-time detection.

There are two automatic update mechanisms. Figure 6
shows the automatic update of the blacklists used by the
MIPD, MSSLD and TorCD modules. The user crontab file
is configured to run the blacklist_update.sh each day at
3:00am, where the shell script connects to the intelligence
feeds via the Internet and downloads updated blacklist of
malicious IPs, malicious SSL certificates and Tor servers into
the ip_blacklist.txt, ssi_blacklist.txt and Tor_servers_list.txt
files respectively. The Input Framework [50], built in
Bro, enables the four modules to use those text files
as an input to BotDet. The Input Framework reads the
ip_blacklist.txt, ssl_blacklist.txt and Tor_servers_list.txt files
into the 7 _ip_blacklist table, the bad_ssl group and the
t_tor_server table, respectively.

crontab file

Y YN\
13 - N
- (Intelligence 4
blacklist_update.sh | = ' fooqs |/
N J
S

- - . . used by
ip_blacklist.txt |m=p =) | t_ip_blacklist |\ 3 MIPD

| e MssLD
ssl_blacklist.txt Jemp| o C 0 |= badssl |y o0

- used by
tor_servers_list.txt |mp =) | t_tor_server |\ 3 TorCD

FIGURE 6. Automatic update of the blacklists used by the MIPD, MSSLD and
TorCD modules.

Figure 7 shows the automatic update of the blacklist used
by the MSSLD module. The crontab file user is configured
to run blacklist_update.sh daily at 3:00am. This shell script,

8

which utilises the Internet to connect to the data source
servers, downloads updated blacklist of malicious SSL cer-
tificate hashes into a new blacklist.intel file. The Intelligence
Framework consumes the text file, described in Section I1I-B.

~Y N

crontab file
anl N] used by
(Intelligence A“ blacklist_update.sh MSSLD module
7: feeds |/ - g ’ f\r

~_ s / 1

(blacklist.intel]—D(Intelligence Framework]

FIGURE 7. Automatic update of the blacklist used by the MSSLD module.

F. BOTDET CORRELATION FRAMEWORK (CF)

CF alert correlation time is configured to one day. Based on
the number of the linked alerts, CF can generate four types of
alerts, which are C&C-1 alert, C&C-2 alert, C&C-3 alert and
C&C-4 alert. For example, the C&C-3 alert is raised when
CF finds three different alerts about the same infected host
during the previous day. For the C&C-1 alert, CF does not
raise a for_alert because Tor is a legitimate service that can
be used legally by some users on the network.

IV. EVALUATION RESULTS

Three scenarios were implemented to evaluate BotDet. In the
first one, third-party pcap files were analysed. In the second
scenario, a virtual network was used. In the third scenario,
the university campus live traffic was monitored.

In the first scenario, BotDet was run on pcap files that
contained captured malware traffic. Four groups of pcap files
were used, PCAP1, PCAP2, PCAP3 and PCAP4. PCAPI1
files contain Trojan-Spy.Win32.Zbot.oowo traffic that spans
27 days in two files with total size of 11.7 GB and con-
nections to 6339 IP addresses. The studied malware uses
domain flux for C&C communication [28]. PCAP2 files
contain Trojan-Spy.Win32.Zbot.rfnx/.sbfp/.sbcq traffic in 3
files, each spanning 10 hours and having total size of 28 MB.
This malware connects to a blacklisted IP address and uses
domain flux [29]. PCAP3 files contain recorded traffic, in 11
files, of multiple types of malware that all use the domain
flux technique [30]. PCAP4 files contain recorded traffic of
the Trojan.Tbot (Skynet Tor Botnet) malware in 6 files with
a total size of 31.6 MB. Trojan.Tbot uses Tor network to
communicate with its C&C centre [51]. None of the analysed
pcap files contained known bad SSL certificates, this module
was tested in the second scenario. All pcap files had been
analysed by the providers, so the ground truth was known.

The detection modules were configured to consume the
pcap files and produce log files. Then CF was used to
correlate the individual modules’ alerts to detect C&C com-
munications. Results from individual modules and CF were
comparable to the ground truth, and the values of True
Positive Rate (TPR) and False Positive Rate (FPR) were
calculated. Table 1 shows the results.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access .
IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

No

r
| Yes | Yes

; l [l
l C&C 2 alert &C 2 alert C&C 2 alert

Domain
ux alert

IP alert SSL alert
C&C-1 alert
Domain
flux ale
|Yes
1

&C 2 alert &C 2 alert l

Domain
ux alert

Domain
flux alert

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
C&C 3 alert C&C 3 alert C&C 3 alert C&C 3 alert C&C 3 alert C&C-3 alert
NO /Domain No No Domain IP
l ux alert l flux alert l flux alet alert
Yes I I Yes YesI I Yes Yesl I Yes Yes I I Yes Yesl Yes Yes I I Yes
L !
C&C-4 alert
1
Yes I I Yes Yes I I Yes Yes I I Yes Yes I I Yes Yes I I Yes Yes I I Yes
Domain
flux ale
C&C-3 alert C&C-3 alert C&C-3 alert C&C-3 alert C&C 3 alert C&C 3 alert
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Domain Domam
ux alert lux ale alert
C&C 2 alert ‘I C&C-2 alert I C&C 2 alert] C&C-2 alert l l C&C-2 alert I C&C 2 alert
1 1 1
Yesl Yesl Yesl Yesl Yesl Yesl
Domain J
No No No {lux ale No No No
1
I C&C 1 alert |
Domain flux alert
FIGURE 8. The architecture of the correlation framework.
TABLE 1. The TPR and FPR of the individual detection modules. of 249% The results of IP and Tor detection modules are
affected by the quality of IP blacklist and Tor server list
Detection module TPR ~ FPR respectively. We argue that IP and Tor detection modules can
. nl rk hand in hand with infrastr re that intelligentl
EV po— 29.2% only work hand ha d wit ast u.ctu. e that : tellige .t y
Malicious SSL _ _ updates the blacklist and Tor server list in real time, which
Domain flux 86.4% 24.9% is not the case in this scenario. Figure 9 shows part of a log

Tor connection 05% 338% produced by Tor connection detection module.By correlating

the detection modules alerts, CF increases the TPR and
decreases the FPR. Table 2 shows the TPR and FPR of CF
based on one and multiple modules.

Among the individual modules, the domain flux detection
module has the best results, with TPR of 86.4% and FPR Although the correlation based on one detection module

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2846740, IEEE Access

IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

#fields timestamp alert_type infected_host tor_server
#types time string addr addr
1349621090.423721 tor_alert 172.16.253.130 208.83.223.34
1349621090.945925 tor_alert 172.16.253.130 86.59.21.38
1349621102.634850 tor_alert 172.16.253.130 74.120.13.132
1349621102.628802 tor_alert 172.16.253.130 96.47.226.20
1349621102.670488 tor_alert 172.16.253.130 96.44.189.102
#close 2015-03-24-18-06-02

FIGURE 9. Part of a log produced by Tor connection detection module.

TABLE 2. The TPR and FPR of the correlation framework

Correlation framework TPR FPR
Based on one detection module 93% 47.9%
Based on two detection modules 82.3% 13.6
Based on three detection modules 41.4% 9%

Based on four detection modules - -

has the highest TPR, it also has the highest FPR. The best re-
sults are for the correlation based on two detection modules,
with TPR of 82.3% and FPR of 13.6%. While the correlation
based on three detection modules has the best FPR value,
TPR is the lowest. We argue that the acceptable TPR and FPR
values are specific to the environment and purpose in which
the modules are used. The correlation framework allows for
a selection between different TPR/FPR trade-offs. The best
selection is the one that yields the best balance between TPR
and FPR among the available choices. In comparison to the
best results of individual modules (86.4% for TPR and 24.9%
for FPR), the correlation based on two detection modules has
increased the detection rate and decreased the false alarms.
Despite the fact that TPR is slightly less, FPR has been
considerably reduced. Figure 10 shows part of a log produced
by the correlation framework.

#fields timestamp
alert_1

CandC_detection

malicious_addr_1 time_1

infected_host
orig_h_1 orig_p_1

resp_h_1 resp_p_1

alert_2 time_2 orig_h_2 orig_p_2 resp_h_2 resp_p_2
#types time string addr

string addr time addr port addr port
string time addr port addr port
1425360376.712895 CandC_two_alerts 10.0.2.15

ip_alert 54.83.43.69 1425325993.160545 10.0.2.15 49171 54.83.43.69 80
domain_flux_alert ~ 1425360376.712895 10.0.2.15 60544 8.8.8.8 53
#close 2015-03-21-20-55-08

FIGURE 10. Part of a log produced by the correlation framework.

In the second scenario, a virtual network connected to the
Internet was built, the network was injected with malware
samples, and the network traffic was recorded into pcap
files. As in the first scenario, those pcap files were used to
evaluate the detection modules and CF performance. The
analysed malware samples were Trojan.Win32.Inject.sbqz,
Trojan.Win32.Staser.bazr, HEUR:Trojan.Win32.Generic and
Trojan-Spy.Win32.Zbot.qvcn.

10

As shown in Figure 11, two Windows XP SP3 virtual
machines were connected to a router. The virtual machines,
which provided internet connection, mimicked physical com-
puters in a home network where they can communicate with
each other.

The nictrace VirtualBox functionality [52] was used for
recording the virtual machines traffic to two pcap files, one
pcap file per virtual machine. Because the virtual machines
has no applications installed and the operating system up-
dates was disabled, the majority of the virtual machine’s traf-
fic was initiated by the installed malware to easily establish
the ground truth.

PCAP

A4
. Internet
Home router
PCAP
Clean PC
FIGURE 11. Topology of the implemented virtual network.
The HEUR:Trojan.Win32.Generic malware (MDS5,

fbb354f6773fb81927a59008cd9fd3a6) was run on the
virtual machine A for 48 hours. Through manual traffic
analysis, we found that the virtual machine A connected
to the C&C centre and the virtual machine B did not
become infected. The malware downloaded its payload from
dstkom.com/mandoc/lit23.pdf. The infected computer then
proceeded to use the domain flux technique to connect to the
C&C servers over ports 1778, 3363, 3478 and 3479.

The Trojan-Spy.Win32.Zbot.qvcn malware (MDS5 hash,
52d3b26a03495d02414¢621ee4d0c04e) was run on the same
virtual network for 10 hours. The malware communicated
solely through the Tor network and did not exhibit other
activities. In the first two minutes, the malware initiated 67
connections to 67 addresses belonging to the Tor network and
transferred 3698 kB of data. The flow of data dropped for the
remaining time but new connections were still made. These
findings were used to establish the ground truth and test the
Tor detection module.

The Trojan.Win32.Inject.sbqz, also
known as TorrentLocker, (with MD5 hash
aabe2844ee61e1f2969d7a96¢e1355a99) and Tro-
jan.Win32.Staser.bazr malware (with MDS5 hash

el61a4d2716eb83552d3bd22ce5d603c) were run on
the same virtual network independently for 5 minutes each.
The C&C servers for these two malware use SSL certificates
for communication over https.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access

IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

Table 3 and Table 4 show the results of individual detection
modules and the correlation framework respectively. Similar
to the first scenario, the correlation based on two detection
modules has the best results with TPR of 79% and FPR
of 16.8%.

TABLE 3. The TPR and FPR of the individual detection modules.

Detection module TPR FPR

Malicious IP 61% 34.7%
Malicious SSL 42.6% 0%
Domain flux 83% 27.3%
Tor connection 63.3% 29%

TABLE 4. The TPR and FPR of the correlation framework

Correlation framework TPR FPR

Based on one detection module 91.8% 45%
Based on two detection modules 79% 16.8
Based on three detection modules 52.6% 7%
Based on four detection modules 31.1% 0%

In the third scenario, part of the campus live traffic (200
Mbps, 200 users, 550 nodes) was monitored for one month.
The four detection modules and CF were hosted on a server
(2x 4-core Intel Xeon CPU E5530 @ 2.40GHz, 12 GB
RAM) with passive access to the campus live traffic via an
optical TAP (Test Access Port). Figure 12 shows part of a log
produced by the developed system BotDet, hosted on a server
with passive access to the campus live traffic.

Greetings,

the security team CSIRT-MU detected involvement of the IP address
I into the following incident:

Incident type: CandC_Traffic_Two_Alerts

Time of detection: 2015-03-12 15:27:31 +0100
IP address I

Domain name: ---

Details of this incident can be found at this address:
https://reports.csirt.muni.cz/A4FE72DC-65A8-1C74-8627-5664BE43D472

Best regards,
CSIRT-MU, the security team of Masaryk University
http://www.muni.cz/csirt

Date: Thu, 12 Mar 2015 15:27:39 +0100

#fields timestamp CandC_detection infected_host

alert_1 malicious_addr_1 time_1 orig_h_1 orig_p_1 resp_h_1 resp_p_1
alert_2 malicious_addr_2 time_2 orig_h_2 orig_p_2 resp_h_2 resp_p_2
#types time string addr

string addr time addr port addr port
string addr time addr port addr port

1427273858.680063 CandC_two_alerts INEEG_————
tor_alert 5.39.80.135 1427191426.664526 NN 56946 5.39.80.135 9001
domain_flux_alert - 1427273858.680063 NN 47565 8.8.8.8 53

1427273995.014264 CandC_two_alerts INEEE————

domain_flux_alert - 1427201796.739411 NN 50119 147.251.4.33 53
ip_alert 77.247.181.162 1427273995.014264 77.247.181.162 51753 N 30
#close 2015-03-25-10-00-00

FIGURE 12. Part of a log produced by BotDet for live traffic.

Figure 13 shows an example of the
CandC_Traffic_Two_Alerts ticket sent by BotDet via
email to RT, where the network security team can perform
additional forensics and respond to it.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach called BotDet for botnet
C&C traffic detection. The developed system (BotDet) runs
through two main phases, the first one includes developed
modules to detect possible techniques used in botnet C&C
communications. The second phase uses a framework for

VOLUME 4, 2016

FIGURE 13. CandC_Traffic_Two_Alerts ticket.

alert correlation, based on voting between the detection mod-
ules. BotDet achieves detection rate and false alarm of 82.3%
and 13.6% respectively. Additionally, the blacklists used in
some of the detection modules are automatically updated
based on different intelligent feeds, which gives BotDet the
capability of real time detection.

As future work, more detection modules will be added to
detect other techniques used in botnet C&C communications.
Besides, alerts from external IDSs deployed on the network
can be received and fed into BotDet, which can ultimately
reduce the false positive rate of the system.

REFERENCES

[1] S. Belguith, N. Kaaniche, A. Jemai, M. Laurent, and R. Attia, “Pabac: A
privacy preserving attribute based framework for fine grained access con-
trol in clouds,” in Proceedings of the 13th International Joint Conference
on e-Business and Telecommunications, 2016, pp. 133-146.

[2] “US Department of Health and Human Services report,” https://ocrportal.
hhs.gov/ocr/breach/breach_report.jsf, accessed: 07-01-2018.

[3] P.J. Denning and D. E. Denning, “Discussing cyber attack,” Communica-
tions of the ACM, vol. 53, no. 9, pp. 29-31, 2010.

[4] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Infer-
ring internet denial-of-service activity,” ACM Transactions on Computer
Systems (TOCS), vol. 24, no. 2, pp. 115-139, 2006.

[S] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. P. Markatos,
and A. D. Keromytis, “Detecting targeted attacks using shadow honey-
pots.” in Usenix Security, 2005.

[6] S. Staniford, J. A. Hoagland, and J. M. McAlerney, ‘“Practical automated
detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1, pp. 105-136, 2002.

[7] K.-K. R. Choo et al., “Cyber threat landscape faced by financial and
insurance industry,” 2011.

[8] P. Bacher, T. Holz, M. Kotter, and G. Wicherski, “Know your enemy:
Tracking botnets,” 2005.

[9] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia, “Phoabe:
Securely outsourcing multi-authority attribute based encryption with pol-
icy hidden for cloud assisted iot,” Computer Networks, vol. 133, pp. 141 —
156, 2018.

[10] W. Sturgeon, “Net pioneer predicts overwhelming botnet surge,” ZDNet
News, January, vol. 29, 2007.

[11] B. AsSadhan, J. M. Moura, D. Lapsley, C. Jones, and W. T. Strayer,
“Detecting botnets using command and control traffic,” in Network Com-
puting and Applications, 2009. NCA 2009. Eighth IEEE International
Symposium on. IEEE, 2009, pp. 156-162.

[12] G. Gu,J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and
control channels in network traffic,” 2008.

[13] S. Kumar, R. Sehgal, P. Singh, and A. Chaudhary, “Nepenthes honeypots
based botnet detection,” arXiv preprint arXiv:1303.3071, 2013.

11

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

IEEE Access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2846740, IEEE Access

Ibrahim Ghafir et al.: BotDet: A System for Real Time Botnet Command and Control Traffic Detection

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Garcia, A. Zunino, and M. Campo, “Survey on network-based botnet
detection methods,” Security and Communication Networks, vol. 7, no. 5,
pp. 878-903, 2014.

S. Behal, A. S. Brar, and K. Kumar,
“Signature-based botnet detection and prevention,”
http://www.rimtengg.com/iscet/proceedings/pdfs/advcomp/148.pdf,

2010.

S. Arshad, M. Abbaspour, M. Kharrazi, and H. Sanatkar, “An anomaly-
based botnet detection approach for identifying stealthy botnets,” in
Computer Applications and Industrial Electronics (ICCAIE), 2011 IEEE
International Conference on. IEEE, 2011, pp. 564-569.

C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A
survey of intrusion detection techniques in cloud,” Journal of Network and
Computer Applications, vol. 36, no. 1, pp. 42-57, 2013.

H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16-24, 2013.

P. Agarwal and S. Satapathy, “Implementation of signature-based detec-
tion system using snort in windows,” 2014.

S. Balram and M. Wilscy, “User traffic profile for traffic reduction and
effective bot c&c detection.” IJ Network Security, vol. 16, no. 1, pp. 46—
52,2014.

G. Fedynyshyn, M. C. Chuah, and G. Tan, “Detection and classification
of different botnet c&c channels,” in Autonomic and Trusted Computing.
Springer, 2011, pp. 228-242.

P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda,
“Automatically generating models for botnet detection,” in Computer
Security-ESORICS 2009. Springer, 2009, pp. 232-249.

F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki,
“Exploiting temporal persistence to detect covert botnet channels,” in
Recent Advances in Intrusion Detection. ~ Springer, 2009, pp. 326-345.
V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435-2463, 1999.
The-Bro-Project, “The bro network security monitor,” https://www.bro.
org/, accessed: 15-02-2015.

Best-Practical-Solutions, “Rt: Request tracker,” https://www.bestpractical.
com/rt/, accessed: 15-01-2018.

J. B. Kowalski, “Tor network status,” http://torstatus.blutmagie.de/, ac-
cessed: 07-04-2015.

Malware-Capture-Facility-Project, “Analysis of ctu-malware-
capture-1 (zbot.oowo),” http://mcfp.weebly.com/analysis/
analisis-ofctu-malware- capture- 1-zbotoowo, accessed: 07-04-2015.
“Botnet malware pcaps,” http://radkodimitrov.free.bg/, accessed: 07-04-
2015.

Network-Security-Blog, “Dns fast flux - analysis and
detection,” http://newtorksecurityblog.blogspot.cz/2015/02/
dns-fast-flux-analysis-and-detection.html, accessed: 07-04-2015.

1. Ghafir and V. Prenosil, “Blacklist-based malicious ip traffic detection,”
in Global Conference on Communication Technologies (GCCT). IEEE
Xplore Digital Library, 2015, pp. 229-233.

Bro-Project, “new_connection event,” https://www.bro.org/sphinx/scripts/
base/bif/event.bif.bro.html\#id-new_connection, accessed: 01-06-2017.
Kaspersky-Lab-ZAO, “The inevitable move - 64-bit zeus

enhanced with tor,” http://securelist.com/blog/events/58184/
the-inevitable-move-64-bit-zeus-enhanced-with-tor/, accessed: 07-
04-2015.

NETRESEC, “Detecting tor communication in network traffic,”

http://www.netresec.com/?page=Blog\&month=2013-04\&post=
Detecting- TOR-Communication-in-Network-Traffic, — accessed:
04-2015.

1. Ghafir, V. Prenosil, M. Hammoudeh, L. Han, and U. Raza, “Malicious ssl
certificate detection: A step towards advanced persistent threat defence,”
in Proceedings of the International Conference on Future Networks and
Distributed Systems. ACM, 2017, p. 27.
Bro-Project, “Intelligence framework,”
frameworks/intel.html, accessed: 15-02-2017.
The-Bro-Project, “x509_certificate event,” https://www.bro.org/sphinx/
scripts/base/bif/plugins/Bro_X509.events.bif.bro.html\#id-x509\
_certificate, accessed: 01-06-2017.

B. Stone-Gross, M. Cova, B. Gilbert, R. Kemmerer, C. Kruegel, and
G. Vigna, “Analysis of a botnet takeover,” Security & Privacy, IEEE, vol. 9,
no. 1, pp. 64-72, 2011.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:

07-

https://www.bro.org/sphinx/

[41]

[42]

[44]

[45]

[46]

[47]

48

[49]

[50]

[51]

[52

analysis of a botnet takeover,” in Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 2009, pp. 635-647.
I. Ghafir and V. Prenosil, “Dns query failure and algorithmically gener-
ated domain-flux detection,” in International Conference on Frontiers of
Communications, Networks and Applications ICFCNA). IEEE Xplore
Digital Library, 2014, pp. 1-5.

Bro-Project, “dns_message event,” https://www.bro.org/sphinx/scripts/
base/bif/plugins/Bro_DNS.events.bif.bro.html\#id-dns_message,
accessed: 01-08-2017.

M. Mowbray and J. Hagen, “Finding domain-generation algorithms by
looking at length distribution,” in 2014 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2014,
pp. 395-400.

S. Doswell, N. Aslam, D. Kendall, and G. Sexton, ‘“Please slow down!:
the impact on tor performance from mobility,” in Proceedings of the Third
ACM workshop on Security and privacy in smartphones & mobile devices.
ACM, 2013, pp. 87-92.

S. Chakravarty, G. Portokalidis, M. Polychronakis, and A. D. Keromytis,
“Detection and analysis of eavesdropping in anonymous communication
networks,” International Journal of Information Security, pp. 1-16, 2014.
A. Kapadia, “Analysis of the tor browser and its security vulnerabilities,”
2014.

R. Jagerman, W. Sabée, L. Versluis, M. de Vos, and J. Pouwelse, “The
fifteen year struggle of decentralizing privacy-enhancing technology,”
arXiv preprint arXiv:1404.4818, 2014.

J. B. Kowalski, “Tor network status,” http://torstatus.blutmagie.de/, ac-
cessed: 07-09-2017.

1. Ghafir, J. Svoboda, and V. Prenosil, “Tor-based malware and tor con-
nection detection,” in International Conference on Frontiers of Commu-
nications, Networks and Applications (ICFCNA). IEEE Xplore Digital
Library, 2014, pp. 1-6.

Bro-Project, “connection_established event,” https://www.bro.org/sphinx/
scripts/base/bif/plugins/Bro_TCP.events.bif.bro.html\#id-connection\
_established, accessed: 01-11-2017.

The-Bro-Project, “Input framework,” https://www.bro.org/sphinx/
frameworks/input.html, accessed: 01-06-2016.

NETRESEC, “Detecting tor communication in network traffic,”
http://www.netresec.com/?page=Blog\&month=2013-04\&post=
Detecting- TOR-Communication-in-Network-Traffic, accessed:
04-2015.

Oracle, “Network tracing,” https://www.virtualbox.org/wiki/Network\
_tips, accessed: 07-04-2015.

07-

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

