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Abstract In order to answer the question on how much the
trilinear Higgs self-coupling could deviate from its Standard
Model value in weakly coupled models, we study both the-
oretical and phenomenological constraints. As a first step,
we discuss this question by modifying the Standard Model
using effective operators. Considering constraints from vac-
uum stability and perturbativity, we show that only the latter
can be reliably assessed in a model-independent way. We then
focus on UV models which receive constraints from Higgs
coupling measurements, electroweak precision tests, vacuum
stability and perturbativity. We find that the interplay of cur-
rent measurements with perturbativity already excludes self-
coupling modifications above a factor of a few with respect
to the Standard Model value.
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1 Introduction

The recent discovery of the Higgs boson at the Large Hadron
Collider (LHC) [1,2] marks a milestone event for high-
energy physics. Yet, the Higgs boson is only a remnant
of the underlying mechanism of spontaneous electroweak
(EW) symmetry breaking, the so-called Brout–Englert–
Higgs mechanism [3,4]. In order to improve our understand-
ing of the dynamics initiating EW symmetry breaking, a key
ingredient is the global structure of the scalar potential that
triggers the spontaneous breaking of SU (2)L × U (1)Y →
U (1)QED. While the ongoing LHC program, focussing on
precise measurements of Higgs and gauge boson masses and
couplings, will continue to improve our understanding of the
potential’s local structure in the vicinity of the EW mini-
mum, information on the shape of the vacuum in a model-
independent way is experimentally very difficult to obtain.1

However, if one specifies the degrees of freedom and inter-
actions in the scalar sector, one can calculate the form of the
scalar potential. After EW symmetry breaking such poten-
tial gives rise to multi-scalar interactions, i.e. at lowest order
cubic and quartic Higgs self-interactions. While the former
can be probed directly in searches for multi-Higgs final states
[7–29], indirectly via their effect on precision observables
[30,31] or loop corrections to single Higgs production [32–

1 The energy scale of non-perturbative phenomena, e.g. the mass of the
SU (2)L sphalerons [5], could potentially allow one to probe the scalar
potential away from the EW minimum [6].
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36], the latter are inaccessible at the LHC or a future linear
collider [37–39]. Thus, to obtain a glimpse at the shape of
the scalar potential we have to focus on the cubic scalar self-
coupling.

If new light degrees of freedom contribute to the Higgs
potential, they typically dominate the multi-Higgs phe-
nomenology. On the other hand, if new degrees of freedom
are heavy, it is widely argued that the effective field theory
(EFT) approach is most suitable to study deformations of
the Standard Model (SM) Higgs potential in a rather model-
independent and predictive way. Thus, in the latter case,
where we assume that no light states below the cutoff scale
� � v ≡ 246 GeV exist, it is tempting to introduce an opera-
tor |H |6 (where H denotes the usual Higgs doublet) and con-
nect the (global) properties of the vacuum, e.g. whether the
EW minimum is a local or global one, with the cubic Higgs
self-coupling. In particular, one could consider using vac-
uum stability arguments to infer model-independent bounds
on the triple Higgs coupling.

In this work, we show that this approach is flawed. In
particular, there can be two kinds of instabilities correspond-
ing to the possible emergence of new minima either at large
field values v � h̄ � � or at h̄ = 0 (where h̄ denotes the
background field of the effective Higgs potential, whose min-
imum determines the ground state of the theory). The former,
is shown to be spurious since the very expansion of the scalar
potential in powers of h̄/� in the vicinity of an instability
leads to the breakdown of the EFT expansion [40]. In Sect. 2
we explicitly show that a weakly coupled toy model can fea-
ture an absolutely stable vacuum in the full theory, while
obtaining a spurious instability in the EFT limit. Similarly,
the second type of instability, due to the emergence of a new
minimum in h̄ = 0, is also shown to be not under control
when including only the lowest terms in the EFT expansion.

On the other hand, allowing for too large Higgs self-
couplings (either trilinear or quadrilinear ones) raises the
question of the validity of perturbative methods. When tree-
level scattering amplitudes violate unitarity, large higher-
order corrections are necessary to restore unitarity, thus lead-
ing to the breakdown of the perturbative expansion. This
argument has been employed in the past to set theoretical
bounds on couplings and scales. The most famous example
is the scattering of longitudinal vector bosons, which has
been used to set a theoretical limit on the Higgs boson mass
by performing a partial-wave analysis [41,42]. We apply this
method in Sect. 2.3 in order to set a bound on Higgs self-
couplings by considering the hh → hh scattering. In addi-
tion, we show that the requirement that the loop-corrected
Higgs scalar vertices are smaller than their tree-level val-
ues gives a very similar theoretical bound on Higgs self-
couplings.

Given the apparent limitations of the EFT framework in
setting bounds beyond perturbativity, we focus on UV com-

plete scenarios from Sect. 3 onwards to investigate the ques-
tion of the maximally allowed triple Higgs coupling. We
consider for simplicity only weakly coupled models, as they
retain a higher degree of predictivity and we have full con-
trol of the theory. Particularly large deviations are expected
in scenarios where the SM is augmented by extra scalars.
We focus on new scalars �, which can couple via a tadpole
operator of the type O� = � f (H), where f (H) is a string
of Higgs fields (or their charge conjugates). In Sect. 3 we
argue that such couplings potentially give the largest contri-
butions to the Higgs self-coupling and classify all the possi-
ble representations of � that lead to such interactions. As a
result of the presence of the new scalars, the vacuum struc-
ture of the scalar potential is more contrived and it becomes
challenging to establish a direct relation between Higgs self-
coupling deviations and the stability of the EW vacuum.
Still, parts of the parameter space can be excluded by requir-
ing the vacuum to be (meta)stable. In addition, we take into
account phenomenological limits from Higgs coupling mea-
surements and EW precision tests. Together with a perturba-
tivity requirement for the parameters of the extended scalar
potential, we find that maximal deviations up to few times
the SM trilinear Higgs self-coupling are still feasible.

Looking beyond tree level, we investigate loop-induced
modifications in Sect. 3.3. While such contributions are
expected to be smaller, they are of particular interested as
they are induced by a plethora of new physics models. We
discuss here the case of fermionic loops, since in such a case
one can regain a direct correlation between the triple Higgs
coupling and the stability of the EW vacuum. We comment
on this relation, explicitly studying the case of low-scale see-
saw models, which are largely unconstrained by other Higgs
couplings’ measurements. Finally, in Sect. 4 we present our
conclusions.

2 Theoretical constraints on Higgs self-couplings

Let us parametrise the Higgs potential in the SM broken phase
as
V (h) = 1

2
m2

hh
2 + 1

3!λhhhh
3 + 1

4!λhhhhh
4, (1)

where h denotes the CP-even neutral components of the
Higgs doublet, i.e. H = 1√

2
(0, v + h)T in the unitary gauge,

andλhhh (λhhhh) is the modified trilinear (quadrilinear) Higgs
self-coupling. In the SM we have

λSM
hhh = 3m2

h
v

� 190 GeV and λSM
hhhh = 3m2

h

v2 � 0.77.

(2)

The question we want to address is whether there exist some
model-independent bounds on the value of the Higgs self-
couplings. To this end, we will consider two classes of theo-
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retical constraints which are vacuum stability and perturba-
tivity. While the latter is, strictly speaking, not a bound, it is
still interesting given our limitations in using Eq. (1) beyond
perturbation theory. In Sect. 2.3 we will provide a simple
perturbativity criterium which can be applied to the poten-
tial of Eq. (1). On the other hand, in order to formulate the
question of vacuum stability in a gauge-invariant way we will
add an operator c6

v2 |H |6 to the SM Lagrangian and study the
vacuum structure of the theory. Would then be possible to set
model-independent bounds on the Wilson coefficient c6 from
the requirement that the EW vacuum is absolutely stable or
long-lived enough? As we are going to see, the answer to this
question is in general negative, requiring a careful analysis
of the range of applicability of the EFT.

2.1 EW symmetry breaking with d = 6 operators

We start by reviewing EW symmetry breaking in the SM
augmented by the operator |H |6 (see e.g. [43]). The truncated
potential reads

V (6)(H) = −μ2 |H |2 + λ |H |4 + c6

v2
|H |6 , (3)

where the normalisation of the d = 6 operator is given in
terms of v = (

√
2Gμ)−1/2 � 246 GeV. Note that c6 = c̄6λ

in the notation of Ref. [44]. In the following, we will focus on
weakly coupled regimes, where c6 is at most of O (

v2/�2
)

and � is the cutoff of the EFT.2

In order to minimise the potential, we project the Higgs
doublet on its background real component, H → 1√

2
h̄. From

the equation

V (6)′(h̄) =
(

−μ2 + λh̄2 + 3c6

4v2 h̄
4
)
h̄ = 0, (4)

we find three possible stationary points: h̄ = 0, v+, v−,
where

v2± = 2v2

3c6

⎛

⎝−λ ± |λ|
√

1 + 3c6μ2

λ2v2

⎞

⎠

= (± |λ| − λ)
2v2

3c6
± μ2

|λ| ∓ 3c6μ
4

4 |λ|3 v2
+ O

(
c2

6

)
, (5)

and in the last step we expanded for c6 � 1. The nature of
the stationary points (whether they correspond to maxima or
minima) depends on the second derivative of the potential

V (6)′′(h̄) = −μ2 + 3λh̄2 + 15c6

4v2 h̄4. (6)

2 By naive dimensional analysis the scaling of c6 is g4∗v2/�2, where
g∗ denotes a generic coupling which can range up to 4π in strongly
coupled theories (see e.g. [45]). However, in theories where the Higgs
mass is protected by an additional symmetry, like e.g. in composite
Higgs models, the scaling of the coefficient c6 is expected to be c6 ∼
λg2∗v2/�2 = λv2/ f 2, with 1/ f ≡ g∗/� [44,46]. Hence, also in this
case values of c6 ∼ 1 lead to the breakdown of the EFT expansion.

Considering the possible signs of the potential parameters in
Eq. (3) we have in total 23 = 8 combinations, out of which
only 4 lead to a phenomenologically viable (i.e. h̄ �= 0) EW
minimum:

1. μ2 > 0, λ > 0, c6 > 0: In this case Eq. (5) yields (at the
next-to-leading order in the c6 expansion)

v2+ � μ2

λ

(
1 − 3c6μ

2

4λ2v2

)
, (7)

v2− � −4λv2

3c6

(
1 + 3c6μ

2

4λ2v2

)
. (8)

As c6 > 0, only v+ is a stationary point and from Eq. (6)
we find

V (6)′′(0) = −μ2 < 0, (9)

V (6)′′(v+) � 2μ2
(

1 + 3c6μ
2

4λ2v2

)
> 0. (10)

Hence, h̄ = 0 is a maximum, while h̄ = v+ can be
identified with the EW minimum v. Note that in the c6 →
0 limit we recover the SM result.

2. μ2 > 0, λ > 0, c6 < 0: In addition to h̄ = 0 and v+, as
before, we have a third stationary point v−, as now c6 < 0
(cf. Eq. (8)). The latter corresponds to a maximum, as
implied by

V (6)′′(v−) � 8λ2v2

3c6

(
1 + 9c6μ

2

4λ2v2

)
< 0. (11)

The potential, which is sketched in the left panel of Fig. 1,
features an instability at large field values h̄ � v− ∼√

λ� (where we used c6 ∼ v2/�2). The instability looks,
however, specious, because it is close to the cutoff of the
EFT. As in the previous case, for c6 → 0 we recover the
SM since the position of the second maximum is pushed
to infinity.

3. μ2 < 0, λ < 0, c6 > 0: Substituting in Eq. (5) we get

v2+ � 4 |λ| v2

3c6

(
1 + 3c6μ

2

4λ2v2

)
, (12)

v2− � −μ2

|λ|
(

1 − 3c6μ
2

4λ2v2

)
, (13)

while the second derivatives of the potential read

V (6)′′(0) = −μ2 > 0, (14)

V (6)′′(v+) � 8λ2v2

3c6

(
1 + 9c6μ

2

4λ2v2

)
> 0, (15)

V (6)′′(v−) � 2μ2
(

1 + 3c6μ
2

4λ2v2

)
< 0. (16)
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Thus h̄ = 0 and v+ are minima, while v− is a maximum.
Note that the potential gets flipped when compared to
that of case 2. (cf. solid curve in the right panel of Fig. 1).
This time, however, we must identify the EW minimum v

with v+ ∼ √|λ|� (where we used c6 ∼ v2/�2), which
means that the EW vacuum expectation value (VEV) is
generated by the physics at the cutoff scale. This corre-
sponds to a non-decoupling EFT, since in the c6 → 0
limit the EW minimum is pushed to infinity and we do
not re-obtain the SM.

4. μ2 > 0, λ < 0, c6 > 0: This case is similar to the
previous one, with the difference that h̄ = 0 is a max-
imum (cf. Eq. (14)), the maximum in v− disappears
(cf. Eq. (13)), while the � dominated EW minimum
remains in v+ (cf. Eq. (15)). Also in this case the limit
c6 → 0 does not reproduce the SM.

2.2 Vacuum instabilities

There are essentially two types of instabilities associated with
the presence of the coupling c6: the most obvious one, at large
field values, is triggered by a negative c6 (case 2 in Sect. 2.1),
while the other one has to do with the destabilisation of the
EW ground state against the minimum in h̄ = 0 (case 3 in
Sect. 2.1), which happens for large, positive, values of c6

(dashed curve in the right plot of Fig. 1).
This might suggest that there is a lower and upper bound on

c6 by the requirement that the EW minimum is the absolute
one. However, we are going to argue that there is no such
a model-independent bound within a generic EFT. Let us
discuss in turn the two kind of instabilities.

2.2.1 Large-field-value instability: h̄ � �

The main observation here is that the very expansion of the
scalar potential in powers of h̄/� in the vicinity of an insta-
bility leads to the breakdown of the EFT expansion [40].3

This has to be traced back to the fact that when the scalar
potential is close to vanish, field configurations h̄ ∼ � do
not cost prohibitive energy to excite, contrary to the standard
case V (h̄ ∼ �) ∼ �4.

The spurious nature of the |H |6 instability is clearly exem-
plified by taking the EFT limit of a simple toy model that
features, by construction, absolute stability in the full theory
[40]. Let h and φ be two real scalar fields, whose potential
reads

3 This instability was discussed in a slightly different context in
Ref. [40]. There it was shown that the effect of an |H |6 operator on
the vacuum stability analysis of the SM is always small, whenever it
can be reliably computed within the EFT.

V (h, φ) = −1

2
m2h2 + 1

4
λh4 + 1

2
M2φ2 + ξh3φ

+κh2φ2 + 1

4
λ′φ4. (17)

Let us consider now the limit M2 � m2 > 0. The stationary
equations can be solved perturbatively for m2/M2 � 1, thus
yielding

〈h〉 �
(
m2

λ

) 1
2

, (18)

〈φ〉 � − ξ

M2

(
m2

λ

) 3
2

� 〈h〉 , (19)

which is a global minimum as long as M2 >
9ξ2

2λ2 m
2. More-

over, a sufficient condition for the potential to be bounded
from below is

κ > 0, ∧ λ >
ξ2

κ
, ∧ λ′ > 0, (20)

so by choosing the potential parameters as in Eq. (20) it is
always possible to ensure that the vacuum in Eqs. (18)–(19)
is absolutely stable.

Now we integrate � out. A standard calculation yields

VEFT(h) � −1

2
m2h2 + 1

4
λh4 − 1

2
ξ2 h6

M2 + 2κh2 . (21)

As a consequence of Eq. (20) the EFT potential in Eq. (21)
is clearly stable as well. On the other hand, by expanding the
denominator of the h6 term for M2 � 2κh2, we get

VEFT(h) � −1

2
m2h2 + 1

4
λh4 − 1

2

ξ2

M2 h
6 + ξ2κ

M4 h
8 + . . . .

(22)

Apparently, the h6 operator features an instability, which
however is not supported by the full renormalisable model in
view of the stability conditions in Eq. (20). The key point is
that the spurious instability sourced by the h6 term does not
capture the κ dependence, as the appropriate resummation of
the geometric series shows in Eq. (21). We hence conclude
that it is not possible to set a model-independent bound on
c6 from the requirement of stability at large field values.

We finally note that a possible gauge-invariant way to
realise the toy model in Eq. (17) is given by an Higgs
doublet H ∼ (1, 2, 1/2) (where the quantum numbers
in the bracket denote the transformation properties under
SU (3)c × SU (2)L × U (1)Y ) coupled to an EW quadruplet
� ∼ (1, 4,−3/2) via the scalar potential

V (H,�) = − μ2
H |H |2 + μ2

� |�|2 + λH |H |4
+ λ1 |H |2 |�|2 + λ2H

∗H�∗�
+ (λ3HHH� + h.c.) + λ� |�|4
+ λ̃��∗��∗�, (23)
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Fig. 1 The two kind of instabilities triggered by a sizable c6. Left: A
negative c6 is responsible for a large-field-value instability close to the
scale �. Right: The EW minimum is generated by the physics at the

cutoff scale �. For large enough c6 > 0, the absolute minimum is in
h̄ = 0 (dashed line), and the EW vacuum gets destabilised

where non-trivial SU (2)L contractions are left understood.
We have checked that the same qualitative conclusions
obtained within the toy model apply to the more realistic
case of Eq. (23).

2.2.2 Low-scale instability: h̄ = 0

In order to study this case it is more convenient to trade the
parameters μ2 and λ in terms of the EW VEV v and the
physical Higgs mass mh . Imposing the existence of the EW
minimum h̄ = v from Eq. (4) and expanding over the Higgs
field fluctuations v → v + h, one gets

μ2 = λv2 + 3

4
c6v

2 = m2
h

2
− 3

4
c6v

2, (24)

λ = m2
h

2v2 − 3

2
c6. (25)

By substituting v = 246 GeV and mh = 125 GeV in
Eqs. (24)–(25), we find μ2 < 0 and λ < 0 as long as
c6 � 0.17. This is precisely the situation described in case
3 of Sect. 2.1. By taking an even larger c6 the minimum
in h̄ = 0 might become the absolute one (cf. Fig. 1). This
happens for (see also [34])

V (6)(v) = c6v
4 − m2

hv
2

8
> 0 = V (6)(h̄ = 0), (26)

corresponding to c6 � 0.26. However, for a weakly coupled
theory where c6 scales like v2/�2, such value of c6 implies
a very low cutoff scale of � � 480 GeV, thus making the
application of the EFT questionable. On the other hand, even
admitting for a strongly coupled origin of c6, higher-order
operators cannot be consistently neglected for assessing the
global structure of the Higgs potential away from the EW

minimum, since |H |6 gives access only up to the sixth deriva-
tive of the potential on the EW minimum.

2.3 Perturbativity bounds

On general grounds, one expects that too large values of
the Higgs self-couplings are bounded by perturbativity argu-
ments. In the following, we compare two criteria: the former
is based on the partial-wave unitarity of the Higgs bosons’
scattering amplitude, while the latter consists in the require-
ment that the loop corrections to the Higgs self-interaction
vertices are smaller than the tree-level ones. Both criteria
yield a similar result.

2.3.1 Partial-wave unitarity

The 2 → 2 Higgs bosons’ scattering amplitude grows for
large values of the Higgs self-couplings, eventually leading to
unitarity violation and hence to the breakdown of the pertur-
bative expansion.4 Using the modified Lagrangian in Eq. (1),
the hh → hh scattering amplitude reads (see also Fig. 2)

M = −λ2
hhh

(
1

s − m2
h

+ 1

t − m2
h

+ 1

u − m2
h

)

− λhhhh,

(27)

with s, t , u denoting the standard Mandelstam variables
defined in the centre of mass frame. In particular, we also
have t = −(s − 4m2

h) sin2 θ
2 and u = −(s − 4m2

h) cos2 θ
2 ,

where
√
s is the centre of mass energy and θ is the azimuthal

angle with respect to the colliding axis.

4 A similar approach was used in order to set constraints on the size of
MSSM trilinear couplings (see e.g. [47]).
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Fig. 2 hh → hh scattering amplitudes: s + t + u channels + 4-vertex (4vrtx) contributions

The J = 0 partial wave is found to be

a0
hh→hh = −1

2

√
s(s − 4m2

h)

16πs

×
⎡

⎢
⎣λ2

hhh

⎛

⎜
⎝

1

s − m2
h

− 2
log

s−3m2
h

m2
h

s − 4m2
h

⎞

⎟
⎠ + λhhhh

⎤

⎥
⎦ ,

(28)

where we paid attention to keep the kinematical factors which
makes the amplitude to vanish at threshold (

√
s = 2mh) and

we multiplied by an extra 1/2 factor due to the presence of
identical particles in the initial and final state (see e.g. [48] for
a collection of relevant formulae). Following standard argu-
ments [49,50], perturbative unitarity bounds are obtained by
requiring

∣∣Re a0
hh→hh

∣∣ < 1/2.
The bound is displayed in Fig. 3 for the orthogonal cases

in which either λhhh (upper plots) or λhhhh (lower plots) is
modified with respect to the SM case. Note that the situation
is qualitatively different for the two cases: being h3 a rele-
vant operator, the unitarity bound on λhhh is maximised at
low energy, while in the case of h4 the partial wave grows
with energy reaching an asymptotic value at

√
s → ∞.5

In particular, from the right-side plots in Fig. 3 we read the
following unitarity bounds:
∣∣∣λhhh/λSM

hhh

∣∣∣ � 6.5 and
∣∣∣λhhhh/λSM

hhhh

∣∣∣ � 65. (29)

Of course, one expects that new physics effects should
modify at the same time both λhhh and λhhhh . However, since
the h3 and h4 operators dominate the partial wave in two well-
separated energy regimes they cannot cancel each other over
the whole range of

√
s. Hence, since we require perturbativ-

ity at any value of
√
s, the bounds in Eq. (29) hold also in

more general situations (as we have checked numerically by
employing the full expression in Eq. (28)).

Let us inspect, for instance, the case where the modified
SM potential arises from the operator |H |6 as in Eq. (3). In
such a case we have

5 Note that this behaviour is different from the case of effective opera-
tors, whose scattering amplitudes grow indefinitely with the energy.

λhhh = λSM
hhh + 6 c6v � λSM

hhh (1 + 7.8 c6) , (30)

λhhhh = λSM
hhhh + 36 c6 � λSM

hhhh (1 + 47 c6) . (31)

The perturbativity bound coming from the h3 (h4) vertex in
Eq. (29) translates into |c6| � 0.71 (1.4).

2.3.2 Loop-corrected vertices

An alternative way to assess perturbativity is by requiring
that the loop-corrected trilinear scalar vertex is smaller (in
absolute value) than λhhh . If that were not the case, we
clearly could not reliably use perturbation theory whenever
λhhh entered some physical process. A similar criterium was
employed for trilinear scalar interactions in Ref. [48], by set-
ting to zero the external momenta of the 3-point function.
Following the same argument, we obtain


λhhh(pi → 0) = 1

32π2 λ3
hhh

1

m2
h

. (32)

By requiring that |
λhhh/λhhh | < 1, the trilinear Higgs self-
coupling is bounded by
∣∣∣λhhh/λSM

hhh

∣∣∣ � 12. (33)

A stronger perturbativity bound can be obtained by looking at
the full kinematical dependence of the trilinear vertex at the
one-loop order. Considering the finite one-loop contribution
due to λhhh we obtain


λhhh(
√
s,mh) = − 1

16π2 λ3
hhhC0(m2

h,m
2
h , s;mh ,mh ,mh),

(34)

where C0 is a scalar Passarino–Veltman function (defined
according to the conventions of Ref. [51]) and

√
s denotes

the off-shell momentum of a Higgs boson line. Since we
only took into account the loop correction where the λhhh
coupling occurs, there are no divergent contributions, and
we neglected scheme-dependent finite terms. It should be
understood that what we aim at is not a proper calculation
of the quantum corrections to λhhh , but rather a simple esti-
mate of the validity of perturbation theory. The reason why
an estimate based solely on the contribution in Eq. (34) is
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Fig. 3 Up/Left: Kinematical dependence of
∣∣Re a0

hh→hh

∣∣ for the ref-
erence values λhhh/λ

SM
hhh = 7 and λhhhh = λSM

hhhh . Up/Right: Partial-
wave unitarity bound

∣
∣Re a0

hh→hh

∣
∣ < 1/2 on λhhh/λ

SM
hhh as a function

of
√
s and for λhhhh = λSM

hhhh . Down/Left: Kinematical dependence of∣
∣Re a0

hh→hh

∣
∣ for the reference values λhhhh/λ

SM
hhhh = 65 and λhhh =

λSM
hhh . Down/Right: Partial-wave unitarity bound

∣∣Re a0
hh→hh

∣∣ < 1/2 on
λhhhh/λ

SM
hhhh as a function of

√
s and for λhhh = λSM

hhh . Dashed, dotted,
dot-dashed and full curves denote, respectively, the s, t + u, 4vrtx and
s + t + u + 4vrtx contribution to the partial wave. Note that s and 4vrtx
have the opposite sign of t + u (cf. Eq. (28))

reasonable is the following: (i) in the large λhhh limit, where
the perturbativity bound is relevant, pure SM contributions
are subleading and (ii) even though by gauge invariance one
should worry about simultaneous λhhhh corrections, these are
divergent and hence scheme dependent. Then the estimate in
Eq. (34) would be inaccurate only if the finite contribution (in
a given renormalisation scheme) due to λhhhh were to can-
cel the one stemming from λhhh to a large extent and over
the full kinematical range. This, however, is very unlikely,
given that the corrections have a very different kinematical
dependence.

The perturbativity bound, denoted by λ∗
hhh , is shown

in Fig. 4 as a function of
√
s. Note that above threshold,√

s > 2mh , C0 develops an imaginary part and hence we
have separately considered both the real and the imaginary
contribution to the bound. Since one should require that per-

turbativity must hold for any value of
√
s, the bound is max-

imised close to threshold and reads
∣∣∣λhhh/λSM

hhh

∣∣∣ � 6, (35)

which is consistent with the (conceptually different) con-
straint obtained in Eq. (29).

A similar argument can be used to set a perturbativity
bound on λhhhh by looking at its beta function (see e.g. [52]).
By requiring

∣∣βλhhhh/λhhhh
∣∣ < 1, we get |λhhhh | < 16π2

3 �
53. Normalizing the latter with respect to the SM value
implies

∣∣∣λhhhh/λSM
hhhh

∣∣∣ � 68, (36)

which again is consistent with Eq. (29).
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Fig. 4 Perturbativity bound λhhh < λ∗
hhh from the loop-corrected

trilinear vertex as a function of
√
s. Full and dashed curves denote,

respectively, the real (|Re (
λhhh)/λhhh | < 1) and imaginary
(|Im (
λhhh)/λhhh | < 1) contributions to the bound due to the ver-
tex correction in Eq. (34)

In the end, given the impossibility of setting genuine
model-independent bounds on λhhh beyond perturbativity,
we focus in the next section on UV complete scenarios when
investigating the question of the maximal value of the triple
Higgs coupling. We focus for simplicity on weakly coupled
models, as they retain a higher degree of predictivity and we
have full control of the theory.

3 UV complete models

If the new degrees of freedom are very light, they can affect
the Higgs-pair production process in different ways (like
e.g. resonant production [53–60] or by scalar/fermionic con-
tributions to the gluon fusion loop [61–63]) and the dom-
inant effect does not need to be associated with the λhhh
coupling deviation. Hence, we focus on the case where the
new physics is above the EW scale, but not necessarily yet
in the EFT regime where the effects are expected to decou-
ple rapidly. The latter language is nonetheless useful in order
to classify the representations which are potentially more
prone to induce a large effect: at tree level there are basically
three class of diagrams (cf. Fig. 5) which can generate |H |6
by integrating out a heavy new scalar degree of freedom.6

6 Note that it is also possible to exchange a massive vector at tree level,
e.g. in presence of the trilinear coupling gV H†DμH Vμ, where Vμ has
gauge quantum numbers (1, 1, 0) or (1, 3, 0) (see e.g. [64,65]). After
integrating Vμ out and applying the equations of motion one obtains an
|H |6 operator with Wilson coefficient proportional to λg2

V /M2
V . On the

other hand, massive vectors (either in their gauge extended of strongly
coupled version) require a UV completion, thus going beyond our sim-
plifying assumption of a one-particle extension of the SM.

Here, we concentrate on trilinear Higgs self-coupling modi-
fications generated by |H |6, since they uniquely modify the
Higgs self-couplings. Also the operator ∂μ(H†H)∂μ(H†H)

gives a contribution to the shift in the trilinear Higgs self-
coupling, but it modifies all other Higgs couplings as well.

In fact, the connecting motive between the diagrams
in Fig. 5 turns out to be a tadpole operator of the type
O� = � f (H), where f (H) is a string of Higgs fields (or
their charged conjugates). The full list of scalar extensions
that couple linearly to H can be found in Table 1 (see also
Refs. [66–68]), where hyperchargeless multiplets are under-
stood to be real. For simplicity, we will focus on one-particle
extensions of the SM in order to point out their features in a
clear way.

Another useful way to understand the origin of the tri-
linear Higgs self-coupling modification, which does not rely
on the EFT language is the following: the tadpole opera-
tor will unavoidably generate a VEV for �, and the neutral
components h0 ⊂ H and φ0 ⊂ � will mix via the tadpole
operator itself. After projecting the two neutral components
on the Higgs boson mass eigenstate, namely h0 → h cos θ

and φ0 → h sin θ , we have the following contribution to the
triple-Higgs vertex:


λhhh = μ� sin θ cos2 θ or λ�v sin θ cos3 θ, (37)

depending on whether the tadpole operator is d = 3 (μ�

coupling) or d = 4 (λ� coupling). Since there is a single
suppression from the mixing angle, bounded at the level of
θ � 0.3 from Higgs coupling measurements, the tadpole
interaction is expected to yield the largest contribution, while
other mixing operators in the scalar potential entail extra
suppressions from sin θ . We can also naively estimate the
contribution in the following way: assuming that μ�/v � 4π

and λ� � 4π by perturbativity we get


λhhh

λSM
hhh

� 4π sin θ cos2 θ
v2

3m2
h

∼ 4. (38)

To make this estimate more precise, we will look in detail
at two paradigmatic examples among those in Table 1: one
model which exhibits a tree-level custodial symmetry (sin-
glet case, Sect. 3.1) and one which does not (triplet case,
Sect. 3.2).

A notable feature of tadpole interactions is that, being
“odd” in �, they are potentially bounded by vacuum stability
considerations. Remarkably, we find that vacuum stability is
never a crucial discriminant for bounding the largest value
of λhhh , because whenever the tadpole coupling is large the
instability can be tamed by large (within the perturbativity
domain) quartic couplings. For this reason we find it relevant
to discuss in Sect. 3.3 a class of loop-induced trilinear Higgs
self-couplings that arise due to vector-like fermions, where
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Fig. 5 Tree-level generation of the |H |6 operator (external lines, black) obtained by integrating out new scalar degrees of freedom (internal
propagators, red)

Table 1 List of new scalars �

inducing a tree-level
modification of the triple-Higgs
coupling via the tadpole
operator O�

� O�

(1, 1, 0) �HH†

(1, 2, 1
2 ) �HH†H†

(1, 3, 0) �HH†

(1, 3, 1) �H†H†

(1, 4, 1
2 ) �HH†H†

(1, 4, 3
2 ) �H†H†H†

one can establish a direct connection between λhhh and the
vacuum instability.

3.1 Tree-level custodially symmetric cases

Among the cases in Table 1, the singlet and the doublet do
not violate custodial symmetry at tree level and hence have
the chance to yield the largest contribution to λhhh . We will
discuss in detail the singlet case, while we only comment on
the case of the doublet towards the end of the subsection. The
scalar potential reads

V (H,�) = μ2
1|H |2 + λ1|H |4 + 1

2
μ2

2�
2 + μ4|H |2�

+1

2
λ3|H |2�2 + 1

3
μ3�

3 + 1

4
λ2�

4, (39)

where we have omitted a tadpole term for the singlet field, as
it can be reabsorbed in the singlet VEV by a field redefinition.

In fact, the μ4 coupling unavoidably induces a VEV for �

and also leads to a mixing between H and �. In Appendix A.1
we give the tadpole equations and we define the mixing angle
θ between the singlet and doublet fields. Some of the parame-
ters of the potential can be expressed in terms of the physical
masses and VEVs and their mixing angle. We chose as input
parameters

vH = 246.2 GeV, vS,

m1 = 125 GeV, m2, θ, λ2, λ3. (40)

Their relations to the other parameters of the potential can be
found in Appendix A.1. Note that the scenario in which the
SM-like Higgs boson is heavier than the singlet-like scalar is
phenomenologically viable as well, but we will restrict our-
selves to the casem1 � m2. The reason being that we want to

discuss deviations to the Higgs-pair production process that
are mainly stemming from the trilinear Higgs self-coupling,
while the contribution from the exchange of the singlet-like
Higgs boson in the triangle diagrams is suppressed. For a
discussion of resonant Higgs-pair production in the singlet
model we refer to Refs. [53–60].

The trilinear Higgs self-coupling is given by

λhhh = 6λ1vH cos3 θ − (3μ4 + 3λ3vS) cos2 θ sin θ

+3λ3vH cos θ sin2 θ − sin3 θ(2μ3 + 6vSλ2)

= λSM
hhh cos θ

[

1 + sin2 θ

(
λ3v

2
H

m2
1

− 1

)

+ sin4 θ
v2
H

3v2
S

(

1 − m2
2

m2
1

)

− vH

3vS

sin3 θ

cos θ

(

2 sin2 θ + 2 cos2 θ
m2

2

m2
1

−λ3v
2
H

m2
1

+ 2v2
Sλ2

m2
1

)]

, (41)

where in the last step we expressed λhhh in terms of the input
parameters in Eq. (40).

In order to make contact with the discussion at the begin-
ning of Sect. 3 on the importance of tadpole operators for
enhancing the trilinear Higgs self-coupling, let us compare
the expression in Eq. (41) with the one obtained in the Z2-
symmetric limit with μ3,4 → 0, which yields

λ
Z2–symmetric
hhh = λSM

hhh

(
cos3 θ − sin3 θ

vH

vS

)
. (42)

It is thus evident that the shift in the trilinear Higgs self-
coupling can be much larger for the general singlet potential
with tadpole terms. In the last step of Eq. (41) we see indeed
that potentially large contributions can arise from sizable val-
ues of λ3.7

In the following we will discuss which values the trilin-
ear Higgs self-coupling can take, by accounting for several
constraints.

7 For comparison, in the Z2-symmetric case one finds that the maximal
deviations on the trilinear Higgs self-coupling are at the 10% level, in
the case where the second Higgs boson cannot be directly detected at
the LHC [69,70].
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3.1.1 Indirect bounds

The model parameters can be restricted by EW precision
tests, Higgs coupling measurements, perturbativity argu-
ments and vacuum stability. These will then indirectly con-
strain the trilinear Higgs self-coupling in the model.

EW precision tests:
In Ref. [71] it was pointed out that the measurement of the W
boson mass constrains the scalar singlet model more strongly
than a fit on the S, T , U parameters. Even though the study
in Ref. [71] concerns a Z2 symmetric potential, we can use
the bounds here, since at the one-loop order the additional
parameters in the scalar potential do not play any role for
the gauge boson vacuum polarisations. For m2 > 800 GeV,
Ref. [71] finds the bound | sin θ | < 0.2.

Higgs coupling measurements:
The Higgs production and decay rates are modified with
respect to the SM by a universal factor

σ(pp → h + X) = cos2 θ σSM(pp → h + X), (43)

�(h → XX) = cos2 θ �SM(h → XX). (44)

If the SM-like Higgs boson corresponds to the lightest eigen-
state, its branching ratios are not modified compared to the
SM. In Ref. [72] a limit on sin2 θ < 0.12 at 90% C.L. from
Higgs signal measurements is given. This limit turns out to
be stronger than the limits from direct searches of the heavier
Higgs boson, as long as m2 > 450 GeV [73], such that we
will not need to take the latter into account for the parameter
space we consider.

Perturbativity:
For large enough potential couplings unitarity is violated in
tree-level scattering processes, thus signalling the breakdown
of perturbation theory. Simple criteria can be derived from
the i i → j j scattering, with i and j running over the (real)
Higgs and singlet fields. By requiring |Re a0| < 1/2 for the
eigenvalues of the J = 0 partial-wave scattering matrix, we
derive the following constraint in the high-energy limit:

3 (λ1 + λ2) ±
√

9 (λ1 − λ2)
2 + λ2

3 < 16π. (45)

The dimensionful parameters μ3 and μ4 can be restricted
by unitarity arguments as well. However, being associated
to super-renormalisable operators the bounds are maximised
at low energies, where the possible presence of resonances
actually requires a careful treatment of the pole singularities.
Following the argument of Ref. [48], in order to define the
perturbative domain of μ3 and μ4 we require instead that the
one-loop corrected trilinear scalar couplings at zero exter-
nal momenta remain smaller than the tree-level ones. In the

SU (2) limit we obtain

|μ4|
max (|μ1| , |μ2|) < 4π, ∧

∣∣
∣∣
μ3

μ2

∣∣
∣∣ < 4π. (46)

The saturation of the bounds in Eqs. (45)–(46) correspond to
an extreme situation, where we progressively enter a strongly
coupled regime for which the perturbative calculation does
not make sense anymore. For this reason, we will also present
the results in another regime where we keep the couplings
significantly smaller. For that we use in Eq. (46) the replace-
ment 4π → 1 and in the scan we restrict 0 < λ2 < 1/6 and
|λ3| < 1.

Vacuum stability:
The requirement that the scalar potential is bounded from
below imposes the following conditions on the quartic scalar
interactions:

λ1 > 0, ∧ λ2 > 0, ∧ λ3 > −2
√

λ2λ1. (47)

The study of the minima of the scalar potential exhibits a rich
structure, with new local minima (e.g. in h = 0) that arise
in some regions of the parameter space and which might
eventually destabilise the EW vacuum. A detailed analysis
of the vacuum structure at tree level can be found in Refs. [55,
74]. We check for vacuum stability by using Vevacious
[75,76], with a model file generated with SARAH [77–81].

3.1.2 Results

In order to show the results we perform a scan over the param-
eter space. The universally scanned parameters in both cases
are

m1 = 125 GeV, 800 GeV < m2 < 2000 GeV,

vH = 246.2 GeV, |vS| < m2, 0.9 < cos θ < 1.(48)

We will perform two different scans. In the first one we use
the maximally allowed values according to the perturbativity
argument

Scan 1: 0 < λ2 <
8

3
π, |λ3| < 16π, (49)

and reject all points that do not fulfil Eqs. (45), (46) and (47).
In the second scan we restrict ourselves to a weakly coupled
scenario and scan the input parameters

Scan 2: 0 < λ2 < 1/6, |λ3| < 1, (50)

together with |μ4|/max(|μ1|, |μ2|) < 1 and |μ3/μ2| < 1.
In Fig. 6 the trilinear Higgs self-coupling normalised to the

SM coupling is shown. The colour code of the points indicate
whether they correspond to a stable, metastable or unstable
vacuum configuration. By accounting for the bounds of the
mW boson measurement we find the following range for the
allowed trilinear Higgs self-coupling:
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Fig. 6 Left: The trilinear Higgs self-coupling normalised to
the SM reference value for scan 1 (strongly coupled regime).
The red/yellow/green points correspond, respectively, to unsta-

ble/metastable/stable configurations. The dashed vertical lines indicate
the bounds on cos θ from the respective experimental measurements.
Right: Same as in left panel, but for scan 2 (weakly coupled regime)

Scan 1: − 1.5 < λhhh/λ
SM
hhh < 8.7, (51)

Scan 2: − 0.3 < λhhh/λ
SM
hhh < 2.0. (52)

In fact, the largest value of the trilinear Higgs self-coupling is
crucially related to the perturbativity domain. The bounds on
the trilinear Higgs self-coupling obtained from scan 1 should
hence be treated with care, as they are very close to the non-
perturbative regime and loop corrections can be expected to
be large. This can be easily understood looking at the formu-
lae in Eq. (41). By allowing for rather large values of e.g. λ3

we can get much larger deviations. Note that we find here a
larger value for λhhh/λ

SM
hhh as in Sect. 2.3, since we require

a weaker perturbativity criterium in Eq. (46), corresponding
to the one in Eq. (33). Indeed, due to the possible presence
of resonances which requires a careful treatment of the pole
singularities we could not apply the bound in Eq. (29) from
partial-wave unitarity in a straightforward manner. On the
other hand, as can be inferred from Fig. 6, the requirement of
a stable vacuum has only a very small impact on the bound
of the trilinear Higgs self-coupling. The little impact of vac-
uum stability can be understood by the fact that the presence
of many parameters in the scalar potential basically uncor-
relates the stability conditions from the value of the trilinear
Higgs self-coupling.

At this point, we would like to comment on previous stud-
ies in the context of the scalar singlet. In Ref. [82], deviations
for λhhh/λ

SM
hhh up to −10 were found. Note, however, that

much weaker limits on the mixing angle θ were employed,
since the bound stemming from the mW measurement was
not used. In addition, weaker bounds from the Higgs coupling
measurements were employed. In Ref. [83,84] one-loop cor-
rections to the trilinear Higgs self-coupling were computed.
They can give large corrections (even up to 100%) from non-
decoupling effects in the Higgs boson loops if λ3v

2
H � μ2

2

[85]. This is not surprising, given the fact that one is saturat-
ing the perturbativity limit where loop effects are not under
control.

We conclude with a few remarks on the other custo-
dial symmetric case, namely the two-Higgs doublet model
(2HDM). The question of the trilinear Higgs self-coupling
was addressed in detail in the context of the Z2 symmetric
case [86,87], where it was shown that the expected deviations
are well below those allowed in the general singlet model.
On the other hand, a full study in the context of the general
2HDM (including the �HH†H† tadpole operator) is still
missing to the best of our knowledge (see, however, [88] for
a qualitative study). In such a case we expect potentially large
deviations. We leave this study for future investigations.

3.2 Tree-level custodially violating cases

We shall discuss the cases corresponding to the last four
rows in Table 1 altogether, since they have in common the
fact that the tadpole term � f (H) contributing to a poten-
tially sizable triple Higgs self-coupling generates a custodial-
breaking VEV for �, which is strongly bounded by EW pre-
cision tests.

Let us exemplify the analysis for the case of a real EW
triplet with zero hypercharge, � ∼ (1, 3, 0). The scalar
potential reads (see e.g. [89])

V (H,�) = μ2
1 |H |2 + 1

2
μ2

2 |�|2 + λ1 |H |4 + 1

4
λ2 |�|4

+1

2
λ3 |H |2 |�|2 + μ4H

†σαH�α, (53)

where, without loss of generality, we can take μ4 > 0 by
reabsorbing the sign in the definition of �. The minimisation
of the potential and the calculation of the scalar spectrum is
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deferred to Appendix A.2. In particular, we can choose the
following independent observables as parameter inputs for
the model:

vH =
√

v2 − 4v2
T , vT < 3.5 GeV,

m1 = 125 GeV, m2, mh± , θ, (54)

where v = 246.2 GeV. The trilinear Higgs self-coupling is
given by

λhhh = 6λ1vH cos3 θ + 3 (μ4 − λ3vT ) cos2 θ sin θ

+3λ3vH cos θ sin2 θ − 6λ2vT sin3 θ

= 3m2
1

vH

cos θ

[

1 +
(

2m2
h±v2

H

(v2
H + 4v2

T )m
2
1

− 1

)

sin2 θ

+
(

m2
h±v2

H

(v2
H + 4v2

T )m
2
1

− 1

)
vH

vT

sin3 θ

cos θ

]

, (55)

where in the last step we expressed λhhh in terms of the
parameters in Eq. (54).

3.2.1 Indirect bounds

As in the singlet case, we are going to consider in turn EW
precision tests, Higgs coupling measurements, perturbativ-
ity arguments and vacuum stability in order to constrain the
trilinear Higgs self-coupling in the triplet model.

EW precision tests:
The main bound comes from the tree-level modification
of the ρ parameter. In the SM the custodial symmetry of
the Higgs potential ensures the tree-level relation ρ ≡
m2

W /m2
Z cos2 θW = 1. Extra sources of custodial symme-

try breaking which cannot be accounted within the SM are
described by the ρ0 ≡ ρ/ρSM parameter. Provided that the
new physics which yields ρ0 �= 1 does not significantly affect
the SM radiative corrections,8 a global fit to EW observables
yields ρ

(fit)
0 = 1.00037 ± 0.00023 [92]. In the triplet model

one has

ρtree
0 = 1 + 4

v2
T

v2
H

, (56)

and using the 2σ -level bound from ρ
(fit)
0 we obtain vT < 3.5

GeV.

Higgs coupling measurements:
In case of a triplet, the Higgs couplings are modified by cos θ ,
while the gauge-Higgs boson couplings get a contribution
from the triplet admixture proportional to sin θ . The mixing
angle between the doublet and triplet scalar fields is neces-
sarily rather small since θ → 0 for vT/vH → 0. This means

8 This does not need to be the case in models with ρ �= 1 at tree
level, where four input parameters (instead of three) are required for the
EW renormalisation [89–91]. An investigation of this issue is, however,
beyond the scope of this paper.

that the tree-level Higgs couplings to fermions and gauge
bosons are basically unmodified. The charged Higgs boson
contributes to the loop-induced h → γ γ and h → Zγ decay.
Its contribution is, however, negligible for mh± � 300 GeV
[67]. Perturbativity requirements and EW precision tests lead
to rather small mass splittings of O(few GeV) between the
neutral and charged components of the triplet. Since we are
interested in a non-resonant region of phase space for the
Higgs-pair production process, we consider scenarios with
significantly larger charged Higgs boson masses mh± and
m2. Furthermore, we check for exclusion limits of additional
Higgs bosons by means of the code HiggsBounds [93–
95]. It turns out, however, that, for our parameter space scan,
no points are excluded.

Perturbativity:
The adimensional couplings in the potential of Eq. (53)
are bounded by perturbative unitarity. Looking at correlated
matrix of 2 → 2 scattering processes one finds [96]

λ1 < 4π, λ2 < 4π, λ3 < 8π,

6λ1 + 5λ2 ±
√

(6λ1 − 5λ2)2 + 12λ2
3 < 16π. (57)

For the dimensionful parameter μ4 we estimate the finite
loop corrections to the μ4 vertex at zero external momenta
and require it to be smaller than the tree-level value. In the
SU (2)L limit we obtain

|μ4|
max (|μ1| , |μ2|) < 4π. (58)

Vacuum stability:
By requiring that the potential is bounded from below, we
obtain the conditions

λ1 > 0, ∧ λ2 > 0, ∧ λ3 > −2
√

λ1λ2. (59)

Also the massive coupling μ4 can destabilise the potential, if
too large. We check for vacuum stability using Vevacious
[75,76], with a model file generated with SARAH [77–81].

In principle, one should check also for charge breaking
(CB) minima. For a CB stationary point we find the necessary
condition (cf. Appendix A.2 for notation)

v
η+
CB

(
λ3

2
v2
H,CB + μ2

2 + λ2v
2
T,CB + 2λ2|vη+

CB |2
)

= 0, (60)

where the subscript “CB” refers to the VEVs in the CB min-
imum and 〈η+η−〉 = |vη+

CB |2. In addition, from the other
stationary equations we find that vH,CB = 0 for v

η+
CB �= 0 (if

μ4 �= 0). Hence, Eq. (60) implies that non-zero CB stationary
points can exist only if

1

2λ2

(
μ2

2 + λ2v
2
T,CB

)
< 0. (61)

Since λ2 > 0 from the boundedness of the potential, there
are no CB stationary points as long as μ2

2 > 0. We checked
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Fig. 7 The modification of the trilinear Higgs self-coupling with
respect to the SM as a function of vT /v. For all points the minimum
(vH , vT ) is the global one

explicitly that for all our parameter points μ2
2 > 0. This can

be explained as follows. For vT /vH � 1, we can approximate

μ2
2 � − sin 2θ(m2

2 − m2
1)vH

4vT

and

tan 2θ � 4vT

vHμ4
(λ3vT − μ4) . (62)

Since we work in the basis where μ4 > 0, the requirement
that m2

h± > 0 implies vT > 0 (cf. Eq. (93)). In our scan
we use mh± > 800 GeV. From that we can compute a lower
bound on μ4/vT by using Eq. (103). Due to the perturbativity
bound on λ3, i.e. λ3 < 8π/

√
3, from Eq. (57) one then finds

that (λ3 − μ4/vT ) < 0. Hence, for our scan μ2
2 > 0 and we

do not need to care for CB minima.

3.2.2 Results

As for the singlet, we perform a scan over the parameter
space. The scan parameters are

m1 = 125 GeV, 800 GeV < mh± < 4000 GeV,

v = 246.2 GeV,

0 < vT < 3.55 GeV, 0.95 < cos θ < 1, 0 < λ2 < 4π.

(63)

It turns out that it is better to scan over λ2 rather thanm2 since
the mass difference between m2 and mh± is small due to the
perturbativity requirement on λ2 (cf. Eq. (105)). In Fig. 7 we
show the results of our parameter scan. The trilinear Higgs
self-coupling can only be modified by a few percent in the
triplet model. This is a consequence of the small values for
vT /vH allowed by EW precision data.

As can be inferred from the plot, all points are stable at
tree level. That can be understood as follows. In the neutral

direction of H the potential has stationary points in 〈H〉 = 0
and 〈H〉 = vH/

√
2. For 〈H〉 = vH/

√
2 the derivative of the

potential with respect to the neutral component η0 of � reads

∂V

∂η0
= λ2η

3
0 +

(
μ2

2 + λ3

2
v2
H

)
η0 − μ4

2
v2
H = 0. (64)

The discriminant of the cubic equation then reads


 = −4λ2

(
μ2

2 + λ3

2
v2
H

)2

− 27

4
λ2

2 μ2
4 v4

H , (65)

and 
 < 0 for all parameter sets due to the boundedness
from below condition on λ2 from eq. (59), hence there are no
further stationary points with 〈H〉 = vH/

√
2 in H direction.

Note that for the singlet in Sect. 3.1, due to the S3 term in the
potential, the discriminant can also be larger than zero and
hence other neutral minima can arise.

Two further stationary points are possible, namely (〈H〉 =
0, 〈�〉 = 0) and (〈H〉 = 0, |〈�〉|2 = −μ2

2/λ2). Since we
always find μ2

2 > 0 in our scan the latter is not relevant here
and (〈H〉 = 0, 〈�〉 = 0) must be a maximum by construc-
tion.

It is instructive to compare the previous results with the
EFT limit where the triplet mass parameter is μ2 � v. By
integrating out the triplet in the SU (2)L limit via the equa-
tions of motion

�α � − μ4

μ2
2 + λ3 |H |2 H

†σαH (66)

the potential in the EFT reads

VEFT(H) � −1

2

μ2
4

μ2
2 + λ3 |H |2 |H |4

= − μ2
4

2μ2
2

|H |4 + μ2
4λ3

2μ4
2

|H |6 + · · · , (67)

where the expansion in the last term holds for Higgs fluctua-
tions around the EW VEV. The first term in Eq. (67) simply
redefines the Higgs quartic coupling in the SM EFT, while
the second one yields

c6 = μ2
4v

2
Hλ3

2μ4
2

. (68)

Always working in the μ2 � v limit, we can approximate
the triplet VEV as (cf. Eq. (91))

vT � μ4v
2
H

2μ2
2

. (69)

Hence, it is possible to recast the modified triple Higgs cou-
pling as

λhhh

λSM
hhh

= 1 + 2c6v
2
H

m2
h

= 1 + 4v2
Tλ3

m2
h

, (70)

where in the last step we have replaced c6 in terms of
vT (cf. Eqs. (68)–(69)). By plugging vT � 3.5 GeV and
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−→

Fig. 8 Schematic view of the connection between the beta function of
λ and the loop-induced trilinear Higgs self-coupling via new fermions

λ3 ∈ [−2
√

0.1 × 4π, 8π/
√

3] from perturbativity and vac-
uum stability (also, λ1 ∼ 0.1 in order to reproduce the
Higgs mass), we get λhhh/λSM

hhh ∈ [0.99, 1.046], which fairly
describes the range of deviations in Fig. 7.

A final comment on the other custodially violating cases
is in order. By denoting the VEV of the complex mul-
tiplet as 〈�〉 = v�/

√
2, the 2σ -level bound from ρ

(fit)
0

implies v� � 1.7, 2.9, 1.0 GeV, respectively for � =
(1, 3, 1), (1, 4, 1

2 ), (1, 4, 3
2 ). We hence expect suppressed

contributions for the trilinear Higgs self-coupling, similarly
to the triplet case.

3.3 Loop-induced trilinear Higgs self-coupling
vs. vacuum stability

Loop modifications of the trilinear Higgs self-coupling are
naturally expected to be smaller than tree-level ones. Nev-
ertheless, we consider here the case where the new particles
circulating in the loops are vector-like fermions, since we
regain a clean correlation between the triple Higgs coupling
and vacuum instability. This can easily be understood by
looking at the loop of fermions contributing to the beta func-
tion of the Higgs self-coupling, which is basically the same
diagram responsible for the radiative generation of the trilin-
ear Higgs self-coupling in the broken phase after taking one
Higgs to its VEV (cf. Fig. 8).

There are basically two qualitatively different possibili-
ties: i) non-SM-singlet fermions coupling to the Higgs and
a SM fermion and i i) SM-singlet fermions coupling to the
Higgs and a lepton doublet. The former cases are bounded by
other Higgs coupling measurements, which typically imply
a very suppressed contribution to the trilinear Higgs self-
coupling. The latter is more interesting, and correspond to
the case of a right-handed neutrino, which is largely uncon-
strained by other Higgs coupling measurements. A recent
analysis was performed in Refs. [97,98] in the context of a
simplified 3+1 Dirac neutrino model [97] and for the inverse
seesaw model [98], finding deviations of the trilinear Higgs
self-coupling with respect to the SM value up to 30%.

We want to show here the impact of vacuum stability in
such a class of scenarios. Let us consider, for definiteness,
the case of the inverse seesaw (similar conclusions apply to

other neutrino mass models as well). We add to the SM field
content three right-handed neutrinos and three gauge singlets
X with opposite lepton number, via the Lagrangian term

LISS = −YνL H̃νR − MRνcX − 1

2
μX XcX + h.c., (71)

where H̃ = iσ2H∗ and we suppressed family indices.
We refer to Ref. [98] for the relevant notation and con-
ventions. Taking, in particular, a diagonal Yukawa struc-
ture Yν = |yν | I3 and a common mass scale for the three
heavy neutrinos, MR = 10 TeV, one can assess the impact
of the heavy neutrino states on the running of the Higgs self-
coupling and hence on the stability of the Higgs effective
potential Veff(h) ≈ 1/4 λeff(h)h4, where λeff(h) is approxi-
mated with the MS running coupling λ(μ = h). We use the
two-loop beta functions for the SM couplings (g1,2,3, yt , λ)

and take into account the corrections due to yν at the one-loop
level (and consistently we neglect the matching contributions
of yν to λ(Mt )). For simplicity, we also integrate in the heavy
neutrinos at the common threshold MR = 10 TeV, while a
more careful treatment should take into account intermedi-
ate EFTs when integrating in single neutrino thresholds (see
e.g. Ref. [99]). Hence, in the case of a hierarchical heavy neu-
trino spectrum, our estimate of the largest energy scale until
which the model can be consistently extrapolated should be
conservatively rescaled starting from the heaviest threshold.

The results are displayed in Fig. 9 where we plot the
value of λeff as a function of the renormalisation scale μ.
The instability bound (red area) is computed by considering
the probability of decay against quantum tunnelling in the
modified Higgs potential integrated over the past light-cone
(see e.g. [100,101])

PEW �
(

μ

H0

)4

e
− 8π2

3|λeff (μ)| , (72)

where H0 � 10−42 GeV is the present Hubble constant. In
particular, requiring PEW � 1 corresponds to

|λeff(μ)| � 0.064

1 + 0.022 log10
(

μ
1 TeV

) , (73)

which sets the instability bound for λeff < 0.
By increasing the value of yν between 0.1 and 1 (in

steps of 0.1), the instability scale dangerously approaches the
heavy neutrino threshold (see Fig. 9), and in order to com-
ply with the existence of the EW vacuum the model must be
UV completed before entering the instability region. Using
the approximate expression for 
BSM

approx ≡ λhhh/λ
SM
hhh − 1

in Eq. (4.5) of [98] we find that yν = 0.8 corresponds to

BSM

approx = 0.1 %. Hence, from Fig. 9 we read that modifica-
tions of the trilinear Higgs self-coupling above the per mil
level require an UV completion within a few orders of magni-
tude from the scale where the heavy neutrinos are integrated
in.
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Fig. 9 Running of λeff in the presence of a common heavy neutrino
threshold MR = 10 TeV. Labels denote the value of yν ∈ [0.1, 1] with
steps of 0.1 (blue curves), while yν = 0 corresponds to the SM case
(black curve). The instability bound is represented by the red-shaded
area

4 Conclusions

In this paper we have addressed the question on how much
could the trilinear Higgs self-coupling deviate from its SM
value. We first discussed in Sect. 2 theoretical constraints on
Higgs self-couplings from a general standpoint by consider-
ing two main arguments: vacuum instability and pertubativ-
ity. We showed that the former cannot be reliably assessed
in a model-independent way, due to the breakdown of the
EFT in describing the global structure of the Higgs potential
away from the EW minimum. In particular, we have explic-
itly shown that by augmenting the SM via an |H |6 operator
one can generate two type of instabilities, either at large field
values v � H � � or in H = 0. In both cases, however,
any reliable statement about the stability of the EW vacuum
entails the knowledge of the full tower of effective opera-
tors, thus jeopardizing the connection with the Higgs self-
couplings, whose leading order deviations are still governed
by the d = 6 operators.

On the other hand, it is possible to use perturbativity
in order to set fairly model-independent limits on Higgs
self-couplings. In Sect. 2.3 we have employed two differ-
ent criteria, based either on the partial-wave unitarity of the
hh → hh scattering or on the loop corrections of the tree-
level vertices, in order to establish the perturbative domain
of the Higgs self-couplings. Though being conceptually dif-
ferent, the two criteria agree well with each other both
for the triple and the quartic Higgs coupling modifications:
|λhhh/λSM

hhh | � 6.5 (6.0) and |λhhhh/λSM
hhhh | � 65 (68), with

the first number corresponding to perturbative unitarity and
the one in the bracket stemming from the loop-corrected ver-

tex. Let us stress that indirect tests of the trilinear Higgs
self-coupling either via single Higgs production [33–35] or
EW precision tests [30,31] and current measurements of non-
resonant Higgs-pair production [12] bound values of λhhh ,
which are, at the moment, well above our perturbativity limit∣∣λhhh/λSM

hhh

∣∣ � 6.
In the second part of the paper (Sect. 3), we investigated

the size of the trilinear Higgs self-coupling in explicit mod-
els. First, we identified the class of models potentially lead-
ing to the largest modifications in the trilinear Higgs self-
coupling, namely scalar extensions featuring a tadpole oper-
ator of the type O� = � f (H), where f (H) is a string of
Higgs fields. The list of new scalars coupling linearly to
H can be found in Table 1. They include both custodial
symmetric (EW singlet and doublet) and custodial violat-
ing (EW triplets and quadruplets) scalar extensions. As two
representative examples, we studied in detail the size of the
trilinear Higgs self-coupling in the singlet and triplet exten-
sion, by taking into account constraints from EW precision
tests, Higgs coupling measurements, direct searches for new
scalars, vacuum stability and perturbativity. While in the sin-
glet extension modifications of the trilinear Higgs coupling
in the range − 1.5 < λhhh/λ

SM
hhh < 8.7 are still possible, for

the custodially violating extensions, like e.g. the triplet case,
only modifications up to few percent are allowed.

Remarkably, vacuum stability is not a crucial discrimi-
nant for limiting the size of the trilinear Higgs self-coupling
in models featuring new scalars, where the intricate struc-
ture of the scalar potential allows for regions in parame-
ter space where large quartics (at the boundary of pertur-
bativity) can tame the instabilities triggered by the tadpole
operators. On the other hand, we have also found circum-
stances where vacuum stability can be very relevant. That is
the case in which the trilinear Higgs self-coupling is mod-
ified by loops of heavy fermions. In our explicit example
in Sect. 3.3 we have considered the case of low-scale see-
saw models, where the vacuum metastability bound can siz-
ably reduce the allowed range for the trilinear Higgs self-
coupling.
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A Scalar potential parameters

In this appendix we collect some details as regards the scalar
potential (e.g. tadpole equations and scalar spectrum) for the
two models studied in Sect. 3.

A.1 Singlet

The scalar fields can be expanded around their VEVs by

H = 1√
2

(
0

vH + h

)
, � = (vS + S), (74)

where we employed the unitary gauge for the Higgs doublet.
The tadpole conditions can be written as

−μ4vS − λ3v
2
S

2
− μ2

1 − λ1v
2
H = 0, (75)

−μ4v
2
H

2
− 1

2
λ3v

2
HvS − μ2

2vS − λ2v
3
S − μ3v

2
S = 0. (76)

The first condition allows one to replace μ2
1 in terms of vH .

The mass matrix in the real (h, S) basis then reads

M2
0 =

(
mhh mhS

mhS mSS

)
, (77)

with

mhh = 2v2
Hλ1, (78)

mhS = vH (μ4 + λ3vS) , (79)

mSS = μ2
2 + 1

2

(
λ3v

2
H + 6v2

Sλ2 + 4vSμ3

)
. (80)

The mass matrix is diagonalised by rotating

(
h1

h2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
h
S

)
, (81)

with

tan 2θ = 2mhS

mSS − mhh

, (82)

and mass eigenvalues

m2
1,2 = 1

2

(
mhh + mSS ∓

√
4m2

hS + (mhh − mSS)2

)

= 1

2

(
mhh + mSS ± (mhh − mSS)

1

cos 2θ

)
. (83)

Expressing the couplings of the potential in terms of the
parameters used for the scan, we find

μ2
1 = −1

4

[(
−2λ3v

2
S + m2

1 + m2
2

)
+ cos(2θ)(m2

1 − m2
2)

−2
vS

vH

sin(2θ)(m2
1 − m2

2)

]
, (84)

μ2
2 = 1

2

[(
λ3v

2
H − m2

1 − m2
2 + 2λ2v

2
S

)

+vH

vS

sin(2θ)(m2
1 − m2

2) + cos(2θ)(m2
1 − m2

2)

]
, (85)

μ3 = 1

2vS

[(
m2

1 + m2
2 − λ3v

2
H − 4λ2v

2
S

)

−1

2

vH

vS

sin(2θ)(m2
1 − m2

2) − cos(2θ)(m2
1 − m2

2)

]
,

(86)

μ4 = sin(2θ)(m2
2 − m2

1) − 2λ3vHvS

2vH

, (87)

λ1 = cos(2θ)(m2
1 − m2

2) + m2
1 + m2

2

4v2
H

. (88)

A.2 Triplet

The scalar fields can be expanded around their charge-
preserving VEVs via

H =
(

φ+
1√
2

(
vH + h0 + iG0

)
)

, � =
⎛

⎝
η1

η2

vT + η0

⎞

⎠ ,

(89)

where the charged eigenstates for � are defined as η± =
1√
2

(η1 ∓ iη2). The tadpole conditions can be written as

0 = μ2
1 + λ1v

2
H + λ3

2
v2
T − μ4vT , (90)

0 = vT

(
μ2

2 + λ2v
2
T + λ3

2
v2
H

)
− μ4

2
v2
H . (91)

For vT = 0 there is no doublet/triplet mixing and Eq. (91)
implies μ4 = 0, which corresponds to the custodial symmet-
ric tree-level relation ρ = 1. From now on we will assume
vT �= 0. By evaluating the second derivatives of the scalar
potential and after imposing the stationary Eqs. (90)–(90),
we find the following scalar spectrum:

• Charged scalars: in the complex (φ+, η+) basis

M2+ =
(

2μ4vT μ4vH

μ4vH
μ4v

2
H

2vT

)

, (92)
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which features a null eigenvalue, corresponding to the
Goldstone boson G+ eaten by the W , and a massive state
h± with mass

m2
h± = μ4

(
v2
H + 4v2

T

)

2vT

. (93)

• Neutral pseudo-scalar: G0, corresponding to the Gold-
stone boson eaten by the Z .

• Neutral scalars: in the real (h0, η0) basis

M2
0 =

(
mhh mhη

mhη mηη

)
, (94)

with

mhh = 2λ1v
2
H , (95)

mhη = v (λ3vT − μ4) , (96)

mηη = 2λ2v
2
T + μ4v

2
H

2vT

. (97)

The mass eigenstates are obtained via the rotation

(
h1

h2

)
=

(
cos θ − sin θ

sin θ cos θ

) (
h0

η0

)
, (98)

with

tan 2θ = 2vH (λ3vT − μ4)

2λ2v
2
T + μ4v

2
H

2vT
− 2λ1v

2
H

, (99)

and mass eigenvalues

m2
1,2 = 1

2

(
mhh + mηη ∓

√
4m2

hη + (mhh − mηη)2

)

= 1

2

(
mhh + mηη ± (mhh − mηη)

1

cos 2θ

)
. (100)

Moreover, the W boson mass is given by

m2
W = g2

4

(
v2
H + 4v2

T

)
, (101)

which fixes v2 = (246.2 GeV)2 = v2
H + 4v2

T , while EW
precision tests set a bound on the custodial-breaking VEV
vT � 3.5 GeV. Summarising, an independent set of parame-
ters can be chosen as

vH =
√

v2 − 4v2
T , vT < 3.55 GeV,

m1 = 125 GeV, m2, mh± , θ. (102)

Note, however, that in Sect. 3.2 we scan over λ2 instead ofm2.
For completeness, we report here the potential parameters

expressed in terms of those in Eq. (102)

μ4 = 2m2
h±vT

v2
H + 4v2

T

, (103)

λ1 = m2
1 + m2

2 + (
m2

1 − m2
2

)
cos 2θ

4v2
H

, (104)

λ2 =
(
m2

1 + m2
2

)
vT − μ4v

2
H + (

m2
2 − m2

1

)
vT cos 2θ

4v3
T

,

(105)

λ3 = 2μ4vH + (
m2

2 − m2
1

)
sin 2θ

2vHvT

. (106)
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