COMMUTATORS OF TRACE ZERO MATRICES OVER PRINCIPAL IDEAL RINGS

ALEXANDER STASINSKI

ABSTRACT. We prove that for every trace zero square matrix A of size at least 3 over a principal ideal ring R , there exist trace zero matrices X, Y over R such that $XY - YX = A$. Moreover, we show that X can be taken to be regular mod every maximal ideal of R. This strengthens our earlier result that A is a commutator of two matrices (not necessarily of trace zero), and in addition, the present proof is simpler than the earlier one.

1. INTRODUCTION

Let R be a principal ideal ring, which we will always take to be commutative with identity (e.g., R could be a field). We let $\mathfrak{gl}_n(R)$ denote the Lie algebra of $n \times n$ matrices over R with Lie bracket $[X, Y] = XY - YX$, and $\mathfrak{sl}_n(R)$ the sub Lie algebra of trace zero matrices. In case $R = K$ is a field, a theorem of Albert and Muckenhoupt [1] says that every $A \in \mathfrak{sl}_n(K)$ is a commutator in $\mathfrak{gl}_n(K)$, that is, there exist $X, Y \in \mathfrak{gl}_n(K)$ such that $[X, Y] = A$. To go beyond the field case requires new ideas and the first major step was taken by Laffey and Reams [4] who proved the analogous result for $R = \mathbb{Z}$, solving a problem posed by Vaserstein [8, Section 5. Whether every element in $\mathfrak{sl}_n(R)$ is a commutator in $\mathfrak{gl}_n(R)$ for a PIR R, was an open problem going back implicitly at least to Lissner [5], and was settled in the affirmative in [6].

In light of the above results, a natural question is whether X and Y can be taken in $\mathfrak{sl}_n(R)$, rather than just $\mathfrak{gl}_n(R)$. When $R = K$ is a field, it is known by work of Thompson [7, Theorems 1-4] that any $A \in \mathfrak{sl}_n(K)$ can be written as $A = [X, Y]$ for some $X, Y \in \mathfrak{sl}_n(K)$, except when char $K = 2$ and $n = 2$. A generalisation of Thompson's result, allowing X and Y to lie in an arbitrary hyperplane in $\mathfrak{gl}_n(K)$ (but assuming $n > 2$ and $|K| > 3$), was recently obtained by de Seguins Pazzis [2]. On the other hand, it does not seem possible to modify our proof in [6] to yield the stronger assertion that every $A \in \mathfrak{sl}_n(R)$, with $n \geq 3$, is a commutator of matrices in $\mathfrak{sl}_n(R)$, even in the case where R is a field.

The main result of the present paper is that for any principal ideal domain (henceforth PID) R and $A \in \mathfrak{sl}_n(R)$, with $n \geq 3$, there exist $X, Y \in \mathfrak{sl}_n(R)$ such that $A = [X, Y]$. It is also easy to see that when 2 is invertible in R, the same conclusion holds for $A \in \mathfrak{sl}_2(R)$. Moreover, it follows from our proof that X can be chosen to be regular mod every maximal ideal of R (this was stated as an open problem in [6]). Our proof is significantly simpler than the proof of the main result

in [6], and the new idea is to consider the matrices

$$
X(\mathbf{x}, a) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ x_1 & 0 & 1 & \cdots \\ \vdots & \vdots & 0 & 0 \\ x_{n-1} & a & 0 & 0 \end{pmatrix} \in \mathfrak{sl}_n(R),
$$

where $\mathbf{x} = (x_1, \ldots, x_{n-1})^{\mathsf{T}} \in R^{n-1}$ and $a \in R$; see Section 3. These matrices have some remarkable properties which let us carry through the proof. More precisely, we show that for a given non-scalar $A \in \mathfrak{sl}_n(R)$ in Laffey–Reams form (see [6, Theorem 5.6.), we can find **x** and a such that

$$
tr(X(\mathbf{x}, a)^r A) = 0
$$
, for $r = 1, ..., n - 1$,

and at the same time ensure that $X(\mathbf{x}, a)$ mod \mathfrak{p} is regular in $\mathfrak{gl}_n(R/\mathfrak{p})$, for every maximal ideal p of R, as well as regular in $\mathfrak{sl}_n(R/\mathfrak{p})$, for any p for which A is nonscalar mod p. We note that the condition on the vanishing of traces above is rather delicate, given that we also want $X(\mathbf{x}, a)$ to have the above regularity property and trace zero, and depends on the existence of a solution of a system of polynomial equations over R , which in most cases is hopelessly complicated. Nevertheless, for the matrices $X(\mathbf{x}, a)$ the system of equations becomes atypically simple, and we are able to show that a solution exists. We then use the well known local-global principle for systems of linear equations over rings, applied to the system defined by $[X(\mathbf{x}, a), Y] = A$, $Y \in \mathfrak{sl}_n(R)$. Working over the localisation $R_{\mathfrak{p}}$ at a maximal ideal $\mathfrak p$ of R , we use a variant of the criterion of Laffey and Reams (see Section 2, Proposition 2.4) to show that the system has a solution if A is non-scalar mod \mathfrak{p} . Here we use that A mod $\mathfrak p$ is not merely regular in $\mathfrak{gl}_n(R/\mathfrak p)$ but also regular in $\mathfrak{sl}_n(R/\mathfrak{p})$. The existence of a solution over $R_{\mathfrak{p}}$ when p is such that A mod p is scalar is more subtle and requires a separate argument. The existence of a local solution for every maximal ideal p then implies the existence of a global solution, and since any non-scalar matrix is $GL_n(R)$ -conjugate to one in Laffey-Reams form, our main result follows (the case when A is scalar requires a separate discussion, but is easy).

Once the main result has been established for a PID, it is easy to deduce it for an arbitrary principal ideal ring (not necessary an integral domain).

We end this introduction with a word on notation. A ring (without further specification) will mean a commutative ring with identity. Throughout, we will use 1_n to denote the identity matrix in $\mathfrak{gl}_n(S)$, where S is a ring. If $X \in \mathfrak{gl}_n(S)$, $S[X]$ will denote the unital S-algebra generated by X.

2. The criterion of Laffey and Reams

In this section, K denotes an arbitrary field. We will prove an analogue of the Laffey–Reams criterion (see [4, Section 3] and [6, Proposition 3.3]) for a matrix in $\mathfrak{sl}_n(R)$, R a local PID, to be a commutator of matrices in $\mathfrak{sl}_n(R)$. This criterion plays a key role in our proof of the main theorem.

We need a couple of remarks about regular elements in $\mathfrak{sl}_n(K)$. It is well known that an element $X \in \mathfrak{gl}_n(K)$ is regular if and only if

$$
C_{\mathfrak{gl}_n(K)}(X) = K[X],
$$

that is, if and only if the centraliser of X in $\mathfrak{gl}_n(K)$ has dimension n. In this situation, we will say that X is $\mathfrak{gl}_n(K)$ -regular. Similarly, if $X \in \mathfrak{sl}_n(K)$ we define X to be $\mathfrak{sl}_n(K)$ -regular if

$$
\dim C_{\mathfrak{sl}_n(K)}(X) = n - 1.
$$

For $X \in \mathfrak{sl}_n(K)$ it may happen that X is $\mathfrak{gl}_n(K)$ -regular but not $\mathfrak{sl}_n(K)$ -regular: take for example $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathfrak{sl}_n(\mathbb{F}_2)$.

The following result describes the precise relationship between the properties \mathfrak{sl}_n -regular and \mathfrak{gl}_n -regular over a field.

Lemma 2.1. Let $X \in \mathfrak{sl}_n(K)$. Then the following holds:

- (i) If X is $\mathfrak{sl}_n(K)$ -regular, then X is $\mathfrak{gl}_n(K)$ -regular.
- (ii) X is $\mathfrak{sl}_n(K)$ -regular if and only if it is $\mathfrak{gl}_n(K)$ -regular and $\text{tr}(K[X]) \neq 0$.
- (iii) If char K does not divide n, then an element X is $\mathfrak{sl}_n(K)$ -regular if and only if it is $\mathfrak{gl}_n(K)$ -regular.

Proof. For the first part, note that $C_{\mathfrak{sl}_n(K)}(X)$ is either equal to $C_{\mathfrak{gl}_n(K)}(X)$ or is a hypersurface in $C_{\mathfrak{gl}_n(K)}(X)$, so $C_{\mathfrak{sl}_n(K)}(X)$ has codimension at most one in $C_{\mathfrak{gl}_n(K)}(X)$. Thus X being $\mathfrak{sl}_n(K)$ -regular implies that $\dim C_{\mathfrak{gl}_n(K)}(X) \leq n$. But it is well-known that the dimension of a centraliser in $\mathfrak{gl}_n(K)$ is always at least n, so X is $\mathfrak{gl}_n(K)$ -regular.

For the second part, first note that $C_{\mathfrak{sl}_n(K)}(X)$ is the kernel of the trace map $\text{tr}: C_{\mathfrak{gl}_n(K)}(X) \to K$. Now, if X is $\mathfrak{sl}_n(K)$ -regular, then by the previous part, X is $\mathfrak{gl}_n(K)$ -regular, so $C_{\mathfrak{gl}_n(K)}(X) = K[X]$. Thus $\dim C_{\mathfrak{sl}_n(K)}(X) = n-1$ implies that this trace map is surjective, that is, that $tr(K[X]) \neq 0$. Conversely, if X is $\mathfrak{gl}_n(K)$ regular and $tr(K[X]) \neq 0$, then $\dim C_{\mathfrak{gl}_n(K)}(X) = n$ and $tr : C_{\mathfrak{gl}_n(K)}(X) \to K$ is surjective, so the kernel has dimension $n - 1$.

Finally, when char K does not divide n and X is $\mathfrak{gl}_n(K)$ -regular, then $\text{tr}(1_n)$ = $n \neq 0$, so the previous part implies that X is $\mathfrak{sl}_n(K)$ -regular.

Proposition 2.2. Let $X \in \mathfrak{sl}_n(K)$ be $\mathfrak{sl}_n(K)$ -regular and let $A \in \mathfrak{sl}_n(K)$. Then $A = [X, Y]$ for some $Y \in \mathfrak{sl}_n(K)$ if and only if $\text{tr}(X^r A) = 0$ for all $r = 1, \ldots, n-1$.

Proof. Since X is $\mathfrak{gl}_n(K)$ -regular by Lemma 2.1, the set $\{1_n, X, \ldots, X^{n-1}\}\$ is linearly independent over K , so the subspace

$$
V = \{ B \in \mathfrak{sl}_n(K) \mid \text{tr}(X^r B) = 0 \text{ for } r = 1, \dots, n - 1 \}
$$

has dimension $n^2 - n$. The kernel of the linear map $\mathfrak{sl}_n(K) \to \mathfrak{sl}_n(K)$, $Y \mapsto [X, Y]$ is equal to the centraliser $C_{\mathfrak{sl}_n(K)}(X)$, which has dimension $n-1$ since X is $\mathfrak{sl}_n(K)$ regular. Thus the image $[X, \mathfrak{sl}_n(K)]$ of the map $Y \mapsto [X, Y]$ has dimension $n^2 - n$. But if $A \in [X, \mathfrak{sl}_n(K)]$, there exists a $Y \in \mathfrak{sl}_n(K)$ such that for every $r = 1, \ldots, n-1$ we have

$$
tr(X^r A) = tr(X^r (XY - YX)) = tr(X^{r+1}Y) - tr(X^r YX) = 0.
$$

Thus $[X, \mathfrak{sl}_n(K)] \subseteq V$. Since $\dim V = \dim[X, \mathfrak{sl}_n(K)]$ we conclude that $V =$ $[X, \mathfrak{sl}_n(K)].$

If S is a ring, $I \subseteq S$ an ideal and $X \in \mathfrak{gl}_n(S)$, we denote by X_I the image of X under the canonical map $\mathfrak{gl}_n(S) \to \mathfrak{gl}_n(S/I)$.

Lemma 2.3. Let S be a local ring (commutative, with identity) with maximal ideal m. Let $X \in \mathfrak{sl}_n(S)$ be such that $X_{\mathfrak{m}}$ is $\mathfrak{sl}_n(S/\mathfrak{m})$ -regular. Then the canonical map

$$
C_{\mathfrak{sl}_n(S)}(X) \longrightarrow C_{\mathfrak{sl}_n(S/\mathfrak{m})}(X_{\mathfrak{m}})
$$

is surjective.

Proof. As $C_{\mathfrak{sl}_n(S/\mathfrak{m})}(X_{\mathfrak{m}})$ has dimension $n-1$ and is the kernel of the trace map tr : $C_{\mathfrak{gl}_n(S/\mathfrak{m})}(X_{\mathfrak{m}}) \to S/\mathfrak{m}$, this map must be surjective. Thus, there exists an $a \in C_{\mathfrak{gl}_n(S/\mathfrak{m})}(X_\mathfrak{m})$ such that $\text{tr}(a) = 1$. Since $X_\mathfrak{m}$ is $\mathfrak{sl}_n(S/\mathfrak{m})$ -regular, it is also $\mathfrak{gl}_n(S/\mathfrak{m})$ -regular, so

$$
C_{\mathfrak{gl}_n(S/\mathfrak{m})}(X_{\mathfrak{m}})=(S/\mathfrak{m})[X_{\mathfrak{m}}].
$$

Let $\hat{a} \in S[X] \subseteq C_{\mathfrak{gl}_n(S)}(X)$ be any lift of a. Then $\text{tr}(\hat{a}) \in 1 + \mathfrak{m}$, so $\text{tr}(\hat{a})$ is a unit in S since S is a local ring. Now, let $b \in C_{\mathfrak{sl}_n(S/\mathfrak{m})}(X_{\mathfrak{m}}) \subseteq (S/\mathfrak{m})[X_{\mathfrak{m}}]$, and choose a lift $\hat{b} \in S[X]$ of b. Then $\text{tr}(\hat{b}) \in \mathfrak{m}$, so the element $\hat{b} - \text{tr}(\hat{b}) \text{tr}(\hat{a})^{-1} \hat{a} \in C_{\mathfrak{sl}_n(S)}(X)$ maps onto $b \in C_{\mathfrak{sl}_n(S/\mathfrak{m})}(X_{\mathfrak{m}}).$

The following result is a local version of the criterion of Laffey and Reams ([6, Proposition 3.3]), with the difference that we need X_p to be $\mathfrak{sl}_n(R/\mathfrak{p})$ -regular to ensure that $Y \in \mathfrak{sl}_n(R)$ rather than just in $\mathfrak{gl}_n(R)$.

Proposition 2.4. Assume that R is a local PID with maximal ideal p, let $A \in$ $\mathfrak{sl}_n(R)$ and let $X \in \mathfrak{sl}_n(R)$ be such that $X_{\mathfrak{p}}$ is $\mathfrak{sl}_n(R/\mathfrak{p})$ -regular. Then $A = [X, Y]$ for some $Y \in \mathfrak{sl}_n(R)$ if and only if $\text{tr}(X^rA) = 0$ for $r = 1, \ldots, n-1$.

Proof. Clearly the condition $tr(X^r A) = 0$ for all $r \ge 1$ is necessary for A to be of the form $[X, Y]$ with $Y \in \mathfrak{sl}_n(R)$. Conversely, suppose that $\text{tr}(X^r A) = 0$ for $r = 1, \ldots, n-1$. Let F be the field of fractions of R. We claim that X is $\mathfrak{sl}_n(F)$ regular, considered as an element of $\mathfrak{sl}_n(F)$. Indeed, by [6, Proposition 2.6] X is $\mathfrak{gl}_n(F)$ -regular, and since $X_{\mathfrak{p}}$ is $\mathfrak{sl}_n(R/\mathfrak{p})$ -regular, there exists an element $a \in R[X]$ such that tr(a) $\neq 0$. Thus tr($F[X]$) $\neq 0$, and so X is $\mathfrak{sl}_n(F)$ -regular by Lemma 2.1.

Now, by Proposition 2.2 we have $A = [X, M]$ for some $M \in \mathfrak{sl}_n(F)$. Let p be a generator of $\mathfrak p$. Then there exists a non-negative integer m such that $p^mM \in \mathfrak{sl}_n(R)$, and we have $[X, p^m M] = p^m [X, M] = p^m A$. Choose m to be minimal with respect to the property that $[X, C] = p^m A$ for some $C \in \mathfrak{sl}_n(R)$. Assume that $m > 0$. Then $[X_{\mathfrak{p}}, C_{\mathfrak{p}}] = 0$, so $X_{\mathfrak{p}}$ commutes with $C_{\mathfrak{p}}$. Since $X_{\mathfrak{p}}$ is $\mathfrak{sl}_n(R/\mathfrak{p})$ -regular, there exists a $\hat{C} \in C_{\mathfrak{sl}_n(R)}(X)$ such that $\hat{C}_{\mathfrak{p}} = C_{\mathfrak{p}}$, by Lemma 2.3. Thus $C = \hat{C} + pD$, for some $D \in \mathfrak{sl}_n(R)$, so

$$
[X, C] = [X, pD] = p[X, D] = p^m A.
$$

Cancelling a factor of p, we obtain a contradiction to the minimality of m . Thus $m = 0$, and the result is proved.

3. THE MATRICES
$$
X(\mathbf{x}, a)
$$

Let S be a ring (commutative with identity), $n \geq 3$, $\mathbf{x} = (x_1, \dots, x_{n-1})^{\mathsf{T}} \in S^{n-1}$ and $a \in S$. The key to our main result is to consider the following matrices:

$$
X(\mathbf{x}, a) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ x_1 & 0 & 1 & \cdots \\ \vdots & \vdots & 0 & 0 \\ \vdots & 0 & \cdots & 1 \\ x_{n-1} & a & 0 & 0 \end{pmatrix} \in \mathfrak{sl}_n(S),
$$

that is, $X(\mathbf{x}, a) = (m_{ij})$, where

$$
\begin{cases}\nm_{i,i+1} = 1 & \text{for } i = 2, ..., n-1, \\
m_{i1} = x_{i-1} & \text{for } i = 2, ..., n-2, \\
m_{n,2} = a & \\
m_{ij} = 0 & \text{otherwise.} \n\end{cases}
$$

We can write $X(\mathbf{x}, a)$ in block form as

$$
X(\mathbf{x}, a) = \begin{pmatrix} 0 & \overline{0} \\ \mathbf{x} & P \end{pmatrix},
$$

where $\overline{0} = (0, \ldots, 0)$ is a $1 \times n$ matrix and $P = (p_{ij}), 1 \le i, j \le n - 1$, where $p_{i,i+1} = 1$ for $i = 1, ..., n-2$, $p_{n-1,1} = a$ and $p_{ij} = 0$ otherwise. Thus, P is the (row-wise) companion matrix of the polynomial $x^{n-1} - a$.

Lemma 3.1. Let $P \in \mathfrak{sl}_{n-1}(S)$ be as above, and let $\mathbf{y} = (y_1, \ldots, y_{n-1})^{\mathsf{T}} \in S^{n-1}$. Then, for any $z \in S$, and $r = 1, \ldots, n - 1$, we have

$$
\operatorname{tr}(P^{r-1}\mathbf{y}(z,0,\ldots,0))=zy_r.
$$

Proof. Write $P^{r-1} = (p_{ij}^{(r-1)})$, for $1 \le i, j \le n-1$. Since each column in $y(z, 0, \ldots, 0)$, except for the first one, is zero, we have

$$
\text{tr}(P^{r-1}\mathbf{y}(z,0,\ldots,0))=(p_{11}^{(r-1)},p_{12}^{(r-1)},\ldots,p_{1,n-1}^{(r-1)})z\mathbf{y}.
$$

Since P is a companion matrix, there exists a $v \in S^{n-1}$ such that $\{v, Pv, \ldots, P^{n-2}v\}$ is an S-basis for S^{n-1} and P is the matrix of the linear map defined by P with respect to this basis. Thus, for each $r = 1, \ldots, n-1$, the first row of P^{r-1} is $(p_{11}^{(r-1)}, p_{12}^{(r-1)}, \ldots, p_{1,n-1}^{(r-1)})$, where $p_{1r}^{(r-1)} = 1$ and all other $p_{1j} = 0$. Hence

$$
(p_{11}^{(r-1)}, p_{12}^{(r-1)}, \ldots, p_{1,n-1}^{(r-1)})z\mathbf{y} = zy_r,
$$

and the lemma follows. $\hfill \square$

Lemma 3.2. For $r = 1, ..., n - 1$ we have

$$
X(\mathbf{x},a)^r = \begin{pmatrix} 0 & \overline{0} \\ P^{r-1}\mathbf{x} & P^r \end{pmatrix},
$$

In particular, $tr(X(\mathbf{x}, a)^r) = 0$ for $r = 1, ..., n-2$, and $tr(X(\mathbf{x}, a)^{n-1}) = (n-1)a$.

Proof. The expression for $X(\mathbf{x}, a)^r$ follows easily, using block-multiplication of matrices. The assertion about the trace of $X(\mathbf{x}, a)^r$ for $r = 1, \ldots, n-2$ follows from a simple induction argument, proving that for each $r = 1, \ldots, n-2$, we have $P^{r} = (p_{ij}^{(r)})$, where $p_{i,i+r}^{(r)} = 1$ for $i = 1, ..., n-1-r$ and $p_{n-1-r+j,j}^{(r)} = a$ for $j = 1, \ldots, r$, and $p_{ij}^{(r)} = 0$ otherwise. Finally, the relation $\text{tr}(X(\mathbf{x}, a)^{n-1}) = (n-1)a$ follows from the fact that the characteristic polynomial of P is $x^{n-1} - a$. \Box

Lemma 3.3. Let K be a field, $x_1, \ldots, x_{n-1} \in K^{n-1}$ and $a \in K$. If either $x_{n-1} \neq 0$ or $a \neq 0$, then $X(\mathbf{x}, a)$ is $\mathfrak{gl}_n(K)$ -regular. If $a \neq 0$, then $X(\mathbf{x}, a)$ is $\mathfrak{sl}_n(K)$ -regular.

Proof. For simplicity, write $X = X(\mathbf{x}, a)$. We will show that if $x_{n-1} \neq 0$ or $a \neq 0$, then X is $\mathfrak{gl}_n(K)$ -regular, by showing that $\{1_n, X, \ldots, X^{n-1}\}\$ is linearly independent. Lemma 3.2 implies that $\{1_n, X, \ldots, X^{n-2}\}\$ is linearly independent because P is regular, so $\{1_{n-1}, P, \ldots, P^{n-2}\}\$ is linearly independent. Moreover, by Lemma 3.2 and its proof, we have

$$
X^{n-1} = \begin{pmatrix} 0 & \overline{0} \\ P^{n-2} \mathbf{x} & a \mathbf{1}_{n-1} \end{pmatrix}, \qquad \text{where} \qquad P^{n-2} \mathbf{x} = \begin{pmatrix} x_{n-1} \\ ax_1 \\ \vdots \\ ax_{n-2} \end{pmatrix}.
$$

Thus, since P^i has zero diagonal for all $r = 1, \ldots, n-2$ (see the proof of Lemma 3.2), we conclude that X^{n-1} is not a linear combination of $1_n, X, \ldots, X^{n-2}$ if $a \neq 0$. On the other hand, if $a = 0$ and $x_{n-1} \neq 0$, then X^{n-1} is the matrix whose $(2, 1)$ -entry is x_{n-1} and all other entries are zero. Since each matrix in $\{1_n, X, \ldots, X^{n-2}\}\)$ has a non-zero (i, j) -entry for some $(i, j) \neq (2, 1)$, we conclude that X^{n-1} is not a linear combination of $1_n, X, \ldots, X^{n-2}$ if $a = 0$ and $x_{n-1} \neq 0$.

Suppose now that $a \neq 0$; then X is $\mathfrak{gl}_n(K)$ -regular. If char $K \nmid n$, Lemma 2.1 implies that X is $\mathfrak{sl}_n(K)$ -regular. On the other hand, if char $K \mid n$, then

$$
tr(X^{n-1}) = (n-1)a = -a,
$$

by Lemma 3.2, so $tr(K[X]) \neq 0$ and Lemma 2.1 implies that X is $\mathfrak{sl}_n(K)$ -regular. \Box

4. The field case

In this section we give a proof of our main result in the case where $R = K$ is a field. We give a separate proof in this case, as it is simpler than for a general PID. The result over a field was first proved by Thompson [7], who also showed that, apart for some small exceptions, one of the matrices X can in fact be taken to be nilpotent. We give a new proof of Thompson's result, but instead of showing that X can be chosen to be nilpotent, we show that it can be taken to be $\mathfrak{gl}_n(K)$ -regular (and often $\mathfrak{sl}_n(K)$ -regular).

First let $n = 2$. For $x, y, z, s, t, u \in K$ we have

$$
\left[\begin{pmatrix} x & y \\ z & -x \end{pmatrix}, \begin{pmatrix} s & t \\ u & -s \end{pmatrix}\right] = \begin{pmatrix} uy - tz & 2(tx - sy) \\ 2(sz - ux) & tz - uy \end{pmatrix}.
$$

Thus, if char $K = 2$, a matrix in $\mathfrak{sl}_2(K)$ is of the form $[X, Y]$ for $X, Y \in \mathfrak{sl}_2(K)$ if and only if it is scalar. On the other hand, if char $K \neq 2$ and $a, b, c \in K$, then

$$
\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = \begin{cases} \left[\begin{pmatrix} 0 & 1 \\ -\frac{c}{b} & 0 \end{pmatrix}, \begin{pmatrix} -\frac{b}{2} & 0 \\ a & \frac{b}{2} \end{pmatrix} \right] & \text{if } b \neq 0, \\ \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} \frac{c}{2} & -a \\ 0 & -\frac{c}{2} \end{pmatrix} \right] & \text{if } b = 0. \end{cases}
$$

Note that all of the matrices involved in the above commutators are $\mathfrak{gl}_n(K)$ -regular.

Lemma 4.1. Let S be a ring (commutative with identity) such that $n = 1 + \cdots + 1 =$ 0 in S. Then, for every $\lambda \in S$ there exist $X, Y \in \mathfrak{sl}_n(S)$ such that X is $\mathfrak{gl}_n(S)$. regular and $[X, Y] = \lambda 1_n$.

Proof. Take $X = (x_{ij})$, where $x_{i,i+1} = 1$ for $i = 1, ..., n-1$ and $x_{ij} = 0$ otherwise, and $Y = (y_{ij})$, where $y_{j+1,j} = j$, for $j = 1, ..., n-1$ and $y_{ij} = 0$ otherwise. Then X is a companion matrix, hence regular as an element of $\mathfrak{gl}_n(S)$. A direct computation shows that $[X, Y] = 1_n$, because $-(n-1) = 1$ in S, and thus $[X, \lambda Y] = \lambda 1_n$. \Box

Remark 4.2. If $S = K$ is a field, Lemma 4.1 does not hold if X is required to be $\mathfrak{sl}_n(K)$ -regular; in fact, the X in the lemma is necessarily not $\mathfrak{sl}_n(K)$ -regular, unless $\lambda = 0$. The author was alerted to the following simple argument by a referee: Suppose that $[X, Y] = \lambda 1_n$ where $\lambda \neq 0$ and X is $\mathfrak{gl}_n(K)$ -regular. Then $\text{tr}(X^i \lambda 1_n) = \lambda \, \text{tr}(X^i) = 0$, hence $\text{tr}(X^i) = 0$, for all $i = 0, \ldots, n-1$. Thus X is not $\mathfrak{sl}_n(K)$ -regular, by Lemma 2.1.

Theorem 4.3. Let K be a field and $A \in \mathfrak{sl}_n(K)$, with $n \geq 3$. Then there exist $X, Y \in \mathfrak{sl}_n(K)$ such that $[X, Y] = A$. Moreover, if A is scalar, X can be chosen to be $\mathfrak{gl}_n(K)$ -regular and if A is non-scalar, X can be chosen to be $\mathfrak{sl}_n(K)$ -regular.

Proof. Assume first that A is scalar. Then either $A = 0$ or char K divides n. The former case is trivial, and the latter follows from Lemma 4.1.

Assume now that A is not scalar and let $A = (a_{ij})$. Then the rational canonical form implies that after a possible $GL_n(K)$ -conjugation, we can assume that $a_{11} = 0$, $a_{12} = 1$ and $a_{ij} = 0$ whenever $j \geq i + 2$. We will show that $x_1, \ldots, x_{n-1} \in K$ can be chosen such that $tr(X(\mathbf{x}, 1)^r A) = 0$ for each $r = 1, \ldots, n - 1$. By Lemma 3.2 we have

$$
X(\mathbf{x},1)^r = \begin{pmatrix} 0 & \overline{0} \\ P^{r-1}\mathbf{x} & P^r \end{pmatrix},
$$

where $P = (p_{ij}), 1 \le i, j \le n-1$ is such that $p_{i,i+1} = 1$ for $i = 1, ..., n-2$, $p_{n-1,1} = 1$ and $p_{ij} = 0$ otherwise. Writing A in block-form, we have

$$
A = \begin{pmatrix} 0 & (1, 0, \dots, 0) \\ \mathbf{a} & Q \end{pmatrix},
$$

where **a** is an $n \times 1$ matrix and $Q \in \mathfrak{gl}_{n-1}(K)$. Thus

$$
X(\mathbf{x},1)^r A = \begin{pmatrix} 0 & \overline{0} \\ P^r \mathbf{a} & Q' \end{pmatrix},
$$

where $Q' = P^{r-1}\mathbf{x}(1,0,\ldots,0) + P^rQ$. Thus, by Lemma 3.1,

$$
\operatorname{tr}(X(\mathbf{x},1)^r A) = \operatorname{tr}(Q') = x_r + \operatorname{tr}(P^r Q),
$$

for each $r = 1, \ldots, n - 1$. Put $x_r = -\text{tr}(P^rQ)$, so that $\text{tr}(X(\mathbf{x}, 1)^rA) = 0$, for $r = 1, \ldots, n - 1$. By Lemma 3.3 $X(\mathbf{x}, 1)$ is $\mathfrak{sl}_n(K)$ -regular, so Proposition 2.2 implies that there exists a $Y \in \mathfrak{sl}_n(K)$ such that

$$
[X(\mathbf{x}, 1), Y] = A.
$$

Remark 4.4. Our approach cannot be modified to yield Thompson's result that X can be taken to be nilpotent. The reason for this is that $X(\mathbf{x}, a)$ is nilpotent if and only if P is nilpotent if and only if $a = 0$. Therefore, even if $X(\mathbf{x}, a)$ is nilpotent and $\mathfrak{gl}_n(K)$ -regular, it cannot be $\mathfrak{sl}_n(K)$ -regular, because $\text{tr}(X(\mathbf{x},0)^r) = 0$ for every $r = 1, \ldots, n - 1.$

5. Proof of the Main Theorem

Throughout this section, R is an arbitrary PID. Note that we consider fields as special types of PIDs.

Before proving our main result (Theorem 5.3 below), we give a new and simplified proof of the main result in [6] that any $A \in \mathfrak{sl}_n(R)$ is a commutator of matrices in $\mathfrak{gl}_n(R)$. The proof of our main result is a bit harder, as it involves a special analysis for certain prime ideals. Both proofs make essential use of the Laffey-Reams form and rely on the following key result:

Lemma 5.1. Suppose that $A = (a_{ij}) \in \mathfrak{sl}_n(R)$ is in Laffey-Reams form, that is, $a_{ij} = 0$ for $j \geq i + 2$ and $A \equiv a_{11} 1_n \mod (a_{12})$. Then there exists an $\mathbf{x} =$ $(x_1, \ldots, x_{n-1})^{\mathsf{T}} \in R^{n-1}$, with $x_{n-1} = a_{11}$, such that

$$
\operatorname{tr}(X(\mathbf{x},a_{12})^rA)=0,
$$

for each $r = 1, \ldots, n - 1$.

Proof. By Lemma 3.2 we have

$$
X(\mathbf{x}, a_{12})^r = \begin{pmatrix} 0 & \overline{0} \\ P^{r-1}\mathbf{x} & P^r \end{pmatrix},
$$

where $P = (p_{ij}), 1 \le i, j \le n-1$ is such that $p_{i,i+1} = 1$ for $i = 1, ..., n-2$, $p_{n-1,1} = a_{12}$ and $p_{ij} = 0$ otherwise (i.e., P is the row-wise companion matrix of $x^{n-1} - a_{12}$). Writing A in block-form, we have

$$
A = \begin{pmatrix} a_{11} & (a_{12}, 0, \dots, 0) \\ \mathbf{a} & Q \end{pmatrix},
$$

where **a** is an $n \times 1$ matrix and $Q \in \mathfrak{gl}_{n-1}(R)$. Thus

$$
X(\mathbf{x}, a_{12})^r A = \begin{pmatrix} 0 & \overline{0} \\ a_{11} P^{r-1} \mathbf{x} + P^r \mathbf{a} & Q' \end{pmatrix},
$$

where $Q' = P^{r-1} \mathbf{x}(a_{12}, 0, \dots, 0) + P^r Q$. Thus, by Lemma 3.1,

$$
tr(X(\mathbf{x}, a_{12})^r A) = tr(Q') = a_{12}x_r + tr(P^r Q),
$$

for each $r = 1, \ldots, n - 1$. We have $\text{tr}(P^r) \equiv 0 \mod (a_{12})$, for $r = 1, \ldots, n - 1$, and since $A \equiv a_{11}1_n \mod (a_{12})$ it follows that $Q \equiv a_{11}1_{n-1} \mod (a_{12})$. Thus

$$
tr(P^rQ) \equiv a_{11} tr(P^r) \equiv 0 \mod (a_{12}),
$$

so there exist $m_r \in R$ such that $tr(P^rQ) = a_{12}m_r$, for each $r = 1, ..., n - 1$. Put $x_r = -m_r$, so that

$$
\operatorname{tr}(X(\mathbf{x},a_{12})^rA)=0,
$$

for $r = 1, \ldots, n - 1$.

Finally, we claim that $tr(P^{n-1}Q) = -a_{11}a_{12}$, so that

$$
x_{n-1}=a_{11}.
$$

Indeed, since P has characteristic polynomial $x^{n-1} - a_{12}$, we have $P^{n-1} = a_{12} 1_{n-1}$, so $\text{tr}(P^{n-1}Q) = a_{12} \text{tr}(Q) = a_{12}(-a_{11}),$ as claimed.

The following result is essentially [6, Theorem 6.3], but the result here is stronger in that it says that X can be taken in $\mathfrak{sl}_n(R)$ and such that it is $\mathfrak{gl}_n(R/\mathfrak{p})$ -regular mod any maximal ideal p of R.

Theorem 5.2. Let $A \in \mathfrak{sl}_n(R)$ with $n \geq 2$. Then there exist matrices $X \in \mathfrak{sl}_n(R)$ and $Y \in \mathfrak{gl}_n(R)$ such that $[X, Y] = A$, where X can be chosen such that X_p is $\mathfrak{gl}_n(R/\mathfrak{p})$ -regular for every maximal ideal \mathfrak{p} of R.

Proof. For $n = 2$ this is proved separately (see the proof of [6, Theorem 6.3]). Assume from now on that $n \geq 3$. First, if A is scalar, then $A \in \mathfrak{sl}_n(R)$ implies that either $A = 0$ or $n = 0$ in R. The former case is trivial, while the latter follows from Lemma 4.1.

Assume now that A is not scalar and let $A = (a_{ij})$. After a possible $GL_n(R)$ conjugation, we can assume that A is in Laffey–Reams form; see [6, Theorem 5.6]. Moreover, we may assume that $(a_{11}, a_{12}) = (1)$, because if d is a common divisor of a_{11} and a_{12} , we can write $A = dA'$ for A' in Laffey–Reams form and if $A' = [X, Y]$ with X, Y as in the theorem, then $A = [X, dY]$.

By Lemma 5.1, there exists an $\mathbf{x} = (x_1, ..., x_{n-1})^T \in R^{n-1}$, with $x_{n-1} = a_{11}$, such that

$$
\operatorname{tr}(X(\mathbf{x},a_{12})^rA)=0,
$$

for each $r = 1, ..., n - 1$. Since $x_{n-1} = a_{11}$ and $(a_{11}, a_{12}) = (1)$, we have, for every maximal ideal p of R, that either $x_{n-1} \notin \mathfrak{p}$ or $a_{12} \notin \mathfrak{p}$, and therefore $X_{\mathfrak{p}}$ is $\mathfrak{gl}_n(R/\mathfrak{p})$ -regular, by Lemma 3.3. Thus, by [6, Proposition 3.3], there exists a $Y \in \mathfrak{gl}_n(R)$ such that

$$
[X(\mathbf{x}, a_{12}), Y] = A.
$$

We now come to the proof of our main theorem. Just like the proof of the above theorem, our proof uses Lemma 5.1, but since here $X(\mathbf{x}, a_{12})$ cannot in general be $\mathfrak{sl}_n(R/\mathfrak{p})$ -regular for all maximal ideals (cf. Remark 4.2), we need to treat the exceptional primes separately, and this requires us to pass to the localisations R_p , for various prime ideals $\mathfrak{p} \in \text{Spec}(R)$. For an element $X \in \mathfrak{gl}_n(R)$ we will write $X(\mathfrak{p})$ for its canonical image in $\mathfrak{gl}_n(R_{\mathfrak{p}})$, not to be confused with $X_{\mathfrak{p}} \in \mathfrak{gl}_n(R/\mathfrak{p})$. For any element $x \in R$, we will use the same symbol x to denote the image of x under the canonical injection $R \hookrightarrow R_p$, and the context will make it clear in which ring we are working. Similarly, we will denote the maximal ideal of R_p by p and will identify $X_{\mathfrak{p}} \in \mathfrak{gl}_n(R/\mathfrak{p})$ with the image of $X(\mathfrak{p})$ in $\mathfrak{gl}_n(R_{\mathfrak{p}}/\mathfrak{p})$.

We will prove that for fixed $A, X \in \mathfrak{sl}_n(R)$, and for any maximal ideal $\mathfrak p$ of R, there exists a solution $Y(\mathfrak{p}) \in \mathfrak{sl}_n(R_{\mathfrak{p}})$ to the localised equation $|X(\mathfrak{p}), Y(\mathfrak{p})| = A(\mathfrak{p})$. Since the equations $[X, Y] = A$, $tr(Y) = 0$ in Y are equivalent to a system of linear

equations in the entries of Y , the well known (and easy to prove) local-global principle for systems of linear equations (see, e.g., [3, Proposition 1]) implies the existence of a global solution.

Theorem 5.3. Let $A \in \mathfrak{sl}_n(R)$ for $n \geq 3$. Then there exist matrices $X, Y \in \mathfrak{sl}_n(R)$ such that $[X, Y] = A$, where X can be chosen such that $X_{\mathfrak{p}}$ is $\mathfrak{gl}_n(R/\mathfrak{p})$ -regular for every maximal ideal $\mathfrak p$ of R. Moreover, X can be chosen such that $X_{\mathfrak p}$ is $\mathfrak{sl}_n(R/\mathfrak p)$ regular for every $\mathfrak p$ such that $A_{\mathfrak p}$ is not scalar.

Proof. Assume first that A is scalar. Then $A \in \mathfrak{sl}_n(R)$ implies that either $A = 0$ or $n = 0$ in R. The former case is trivial, while the latter follows from Lemma 4.1.

Assume from now on that A is not scalar and let $A = (a_{ij})$. After a possible $GL_n(R)$ -conjugation, we can assume that A is in Laffey–Reams form. Moreover, we may assume that $(a_{11}, a_{12}) = (1)$, because if d is a common divisor of a_{11} and a_{12} , we can write $A = dA'$ for A' in Laffey–Reams form, and if A' is a commutator of two matrices in $\mathfrak{sl}_n(R)$, then so is A.

By Lemma 5.1, there exists an $\mathbf{x} = (x_1, ..., x_{n-1})^T \in R^{n-1}$, with $x_{n-1} = a_{11}$, such that

$$
\operatorname{tr}(X(\mathbf{x},a_{12})^rA)=0,
$$

for each $r = 1, \ldots, n - 1$. From now on, let $X := X(\mathbf{x}, a_{12})$. Since $(a_{11}, a_{12}) = (1)$, we have, for every maximal ideal p of R, that either $x_{n-1} \notin \mathfrak{p}$ or $a_{12} \notin \mathfrak{p}$, and therefore that X_p is $\mathfrak{gl}_n(R/\mathfrak{p})$ -regular; see Lemma 3.3. Moreover, since A is in Laffey-Reams form, we have $A \equiv a_{11}1_n \mod (a_{12})$, and this, combined with the fact that $tr(A) = 0$ and $(a_{11}, a_{12}) = (1)$, implies that

$$
(5.1) \t\t n \in (a_{12}).
$$

We will now pass to the localisations $R_{\mathfrak{p}}$ for various maximal ideals \mathfrak{p} of R. Let $\mathfrak p$ be any maximal ideal of R. Then we have the local relations

$$
tr(X(\mathfrak{p})^r A(\mathfrak{p})) = 0, \qquad r = 1, ..., n - 1.
$$

in R_p . First, suppose that A_p is not scalar. Then $a_{12} \notin \mathfrak{p}$, so the matrix $X(\mathfrak{p})_p = X_p$ is $\mathfrak{sl}_n(R_p/\mathfrak{p})$ -regular, by Lemma 3.3, and so, by Proposition 2.4, there exists a $Y(\mathfrak{p}) \in \mathfrak{sl}_n(R_{\mathfrak{p}})$ such that

$$
[X(\mathfrak{p}), Y(\mathfrak{p})] = A(\mathfrak{p}).
$$

Next, suppose that A_p is scalar, so that $a_{12} \in \mathfrak{p}$. Let F be the field of fractions of R. Since A is not scalar, we have $a_{12} \neq 0$, so X is $\mathfrak{sl}_n(F)$ -regular as an element of $\mathfrak{sl}_n(F)$, by Lemma 3.3. Hence, there exists a $Y(0) \in \mathfrak{sl}_n(F)$ such that $[X, Y(0)] = A$. Clearing denominators in $Y(0)$ and passing to the localisation at \mathfrak{p} , we conclude that there exists a power p^m of a generator $p \in R_p$ of $\mathfrak p$ and a $Q \in \mathfrak{sl}_n(R_p)$, such that

(5.2)
$$
[X(\mathfrak{p}), Q] = p^m A(\mathfrak{p}).
$$

Let $m \geq 0$ be the minimal integer such that (5.2) holds for some $Q \in \mathfrak{sl}_n(R_{\mathfrak{p}})$. We will show that $m = 0$. For a contradiction, assume that $m \ge 1$. Reducing (5.2) mod **p**, we obtain $[X_{\mathfrak{p}}, Q_{\mathfrak{p}}] = 0$, so $Q_{\mathfrak{p}}$ commutes with $X_{\mathfrak{p}}$. Since $X_{\mathfrak{p}}$ is $\mathfrak{gl}_n(R/\mathfrak{p})$ -regular,

$$
Q = f(X(\mathfrak{p})) + pD,
$$

for some polynomial $f(T) \in R_{\mathfrak{p}}[T]$ of degree at most $n-1$ and some $D \in \mathfrak{gl}_n(R_{\mathfrak{p}})$. Write $f(T) = c_0 + c_1 T + \cdots + c_{n-1} T^{n-1}$, for $c_i \in R_p$. By Lemma 3.2, we have

$$
\text{tr}(X^{i}) = \begin{cases} n & \text{if } i = 0, \\ (n-1)a_{12} & \text{if } i = n-1, \\ 0 & \text{otherwise,} \end{cases}
$$

which implies

(5.3)
$$
\operatorname{tr}(X(\mathfrak{p})^i) = \begin{cases} n & \text{if } i = 0, \\ (n-1)a_{12} & \text{if } i = n-1, \\ 0 & \text{otherwise.} \end{cases}
$$

Hence

(5.4)
$$
0 = \text{tr}(Q) = \sum_{i=0}^{n-1} c_i \text{tr}(X(\mathfrak{p})^i) + p \text{tr}(D) = c_0 n + c_{n-1}(n-1)a_{12} + p \text{tr}(D).
$$

Moreover, we have $[X(\mathfrak{p}), Q] = [X(\mathfrak{p}), p] = p^m A(\mathfrak{p}),$ so

$$
0 = \operatorname{tr}(pDp^m A(\mathfrak{p})) = p^{m+1} \operatorname{tr}(DA(\mathfrak{p})),
$$

and thus $tr(DA(\mathfrak{p})) = 0$. Since $A(\mathfrak{p}) \equiv a_{11}1_n \bmod (a_{12})$ and $(a_{11}, a_{12}) = (1)$, we conclude that

$$
(5.5) \t\t\t tr(D) \in (a_{12}).
$$

Since $n \in (a_{12})$ by (5.1), we have $n = a_{12}n'$ for some $n' \in R_p$. Moreover, since $a_{12} \in \mathfrak{p}$ and $R_{\mathfrak{p}}$ is a local ring, $n-1$ is a unit in $R_{\mathfrak{p}}$, so we can define the matrix

 $Q' = (c_0 n'(n-1)^{-1} + c_{n-1})X(\mathfrak{p})^{n-1} + pD.$

By (5.3) and (5.4) we have

$$
tr(Q') = c_0 n + c_{n-1}(n-1)a_{12} + p tr(D) = tr(Q) = 0.
$$

By (5.5) this implies that $c_0 n + c_{n-1}(n-1)a_{12} \in (pa_{12})$, and thus

$$
c_0 n'(n-1)^{-1} + c_{n-1} \in (p).
$$

Writing $c_0 n'(n-1)^{-1} + c_{n-1} = p\alpha$ for some $\alpha \in R_p$, we then get

$$
[X(\mathfrak{p}), Q] = [X(\mathfrak{p}), pD] = [X(\mathfrak{p}), Q'] = p[X(\mathfrak{p}), \alpha X(\mathfrak{p})^{n-1} + D] = p^m A(\mathfrak{p}),
$$
 where $\text{tr}(\alpha X(\mathfrak{p})^{n-1} + D) = 0$ because

$$
p \operatorname{tr}(\alpha X(\mathfrak{p})^{n-1} + D) = \operatorname{tr}((c_0 n'(n-1)^{-1} + c_{n-1})X(\mathfrak{p})^{n-1} + pD) = \operatorname{tr}(Q') = 0.
$$

By cancelling a factor of p , we obtain

$$
[X(\mathfrak{p}), \alpha X(\mathfrak{p})^{n-1} + D] = p^{m-1}A(\mathfrak{p}),
$$

which contradicts the minimality of m in (5.2) . Thus $m = 0$, so there exists a $Y(\mathfrak{p}) \in \mathfrak{sl}_n(R_{\mathfrak{p}})$ such that $[X(\mathfrak{p}), Y(\mathfrak{p})] = A(\mathfrak{p}).$

We have thus proved that for any maximal ideal p of R, there exists a $Y(\mathfrak{p}) \in$ $\mathfrak{sl}_n(R_{\mathfrak{p}})$ such that

$$
[X(\mathfrak{p}), Y(\mathfrak{p})] = A(\mathfrak{p}).
$$

We have shown that there is a local solution $Y(\mathfrak{p})$ for every maximal ideal p of R. Thus, by the local-global principle for systems of linear equations (see, e.g., [3, Proposition 1]), there exists a $Y \in \mathfrak{sl}_n(R)$ such that

$$
[X,Y] = A.
$$

In the same way as in [6, Corollary 6.4], Theorem 5.3 implies the analogous statement over any principal ideal ring (PIR), thanks to a theorem of Hungerford that any PIR is a finite product of homomorphic images of PIDs.

REFERENCES

- [1] A. A. Albert and Benjamin Muckenhoupt. On matrices of trace zero. Michigan Math. J., 4:1–3, 1957.
- [2] Clément de Seguins Pazzis. Commutators from a hyperplane of matrices. Electron. J. Linear Algebra, 27:39–54, 2014.
- [3] J. A. Hermida and T. Sánchez-Giralda. Linear equations over commutative rings and determinantal ideals. J. Algebra, 99(1):72–79, 1986.
- [4] Thomas J. Laffey and Robert Reams. Integral similarity and commutators of integral matrices. Linear Algebra Appl., 197/198:671–689, 1994.
- [5] David Lissner. Matrices over polynomial rings. Trans. Amer. Math. Soc., 98:285–305, 1961.
- [6] Alexander Stasinski. Similarity and commutators of matrices over principal ideal rings. Trans. Amer. Math. Soc., 368:2333–2354, 2016.
- [7] R. C. Thompson. Matrices with zero trace. Israel J. Math., 4:33-42, 1966.
- [8] L. N. Vaserstein. Noncommutative number theory. In Algebraic K-theory and Algebraic Number Theory, volume 83 of Contemp. Math., pages 445–449. AMS, Providence, RI, 1989.

Department of Mathematical Sciences, Durham University, South Rd, Durham, DH1 3LE, UK

 $E\text{-}mail$ $address:$ alexander.stasinski@durham.ac.uk