COMMUTATORS OF TRACE ZERO MATRICES OVER
PRINCIPAL IDEAL RINGS

ALEXANDER STASINSKI

ABsTrRACT. We prove that for every trace zero square matrix A of size at least
3 over a principal ideal ring R, there exist trace zero matrices X,Y over R such
that XY — Y X = A. Moreover, we show that X can be taken to be regular
mod every maximal ideal of R. This strengthens our earlier result that A is
a commutator of two matrices (not necessarily of trace zero), and in addition,
the present proof is simpler than the earlier one.

1. INTRODUCTION

Let R be a principal ideal ring, which we will always take to be commutative
with identity (e.g., R could be a field). We let gl,,(R) denote the Lie algebra of
n X n matrices over R with Lie bracket [X,Y] = XY — Y X, and sl,,(R) the sub
Lie algebra of trace zero matrices. In case R = K is a field, a theorem of Albert
and Muckenhoupt [1] says that every A € sl,,(K) is a commutator in gl,, (K), that
is, there exist X,Y € gl,(K) such that [X,Y] = A. To go beyond the field case
requires new ideas and the first major step was taken by Laffey and Reams [4] who
proved the analogous result for R = Z, solving a problem posed by Vaserstein [8,
Section 5]. Whether every element in sl,,(R) is a commutator in gl,,(R) for a PIR
R, was an open problem going back implicitly at least to Lissner [5], and was settled
in the affirmative in [6].

In light of the above results, a natural question is whether X and Y can be taken
in sl,,(R), rather than just gl,,(R). When R = K is a field, it is known by work of
Thompson [7, Theorems 1-4] that any A € sl,(K) can be written as A = [X,Y]
for some X,Y € sl,(K), except when char K = 2 and n = 2. A generalisation of
Thompson’s result, allowing X and Y to lie in an arbitrary hyperplane in gl, (K)
(but assuming n > 2 and |K| > 3), was recently obtained by de Seguins Pazzis [2].
On the other hand, it does not seem possible to modify our proof in [6] to yield the
stronger assertion that every A € sl,,(R), with n > 3, is a commutator of matrices
in sl,,(R), even in the case where R is a field.

The main result of the present paper is that for any principal ideal domain
(henceforth PID) R and A € sl,(R), with n > 3, there exist X,Y € sl,(R) such
that A = [X,Y]. It is also easy to see that when 2 is invertible in R, the same
conclusion holds for A € sly(R). Moreover, it follows from our proof that X can
be chosen to be regular mod every maximal ideal of R (this was stated as an open
problem in [6]). Our proof is significantly simpler than the proof of the main result
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in [6], and the new idea is to consider the matrices

0 0O0--0
T 0 R :
X(x,a) = : 00 |E€ sl (R),
0 1
Tp—1 a 0--0
where x = (x4, ... ,:z:n_l)T € R* ! and a € R; see Section 3. These matrices have

some remarkable properties which let us carry through the proof. More precisely,
we show that for a given non-scalar A € sl,(R) in Laffey—Reams form (see [6,
Theorem 5.6]), we can find x and a such that

tr(X(x,a)"A) =0, forr=1,...,n—1,

and at the same time ensure that X (x,a) mod p is regular in gl,(R/p), for every
maximal ideal p of R, as well as regular in sl,(R/p), for any p for which A is non-
scalar mod p. We note that the condition on the vanishing of traces above is rather
delicate, given that we also want X (x, a) to have the above regularity property and
trace zero, and depends on the existence of a solution of a system of polynomial
equations over R, which in most cases is hopelessly complicated. Nevertheless, for
the matrices X (x,a) the system of equations becomes atypically simple, and we
are able to show that a solution exists. We then use the well known local-global
principle for systems of linear equations over rings, applied to the system defined
by [X(x,a),Y] = A, Y € sl,(R). Working over the localisation R, at a maximal
ideal p of R, we use a variant of the criterion of Laffey and Reams (see Section 2,
Proposition 2.4) to show that the system has a solution if A is non-scalar mod p.
Here we use that A mod p is not merely regular in gl,(R/p) but also regular in
sl, (R/p). The existence of a solution over R, when p is such that A mod p is scalar
is more subtle and requires a separate argument. The existence of a local solution
for every maximal ideal p then implies the existence of a global solution, and since
any non-scalar matrix is GL,, (R)-conjugate to one in Laffey-Reams form, our main
result follows (the case when A is scalar requires a separate discussion, but is easy).

Once the main result has been established for a PID, it is easy to deduce it for
an arbitrary principal ideal ring (not necessary an integral domain).

We end this introduction with a word on notation. A ring (without further
specification) will mean a commutative ring with identity. Throughout, we will use
1, to denote the identity matrix in gl,,(S), where S is a ring. If X € g[,,(S), S[X]
will denote the unital S-algebra generated by X.

2. THE CRITERION OF LAFFEY AND REAMS

In this section, K denotes an arbitrary field. We will prove an analogue of the
Laffey—Reams criterion (see [4, Section 3] and [6, Proposition 3.3|) for a matrix in
s, (R), R a local PID, to be a commutator of matrices in sl,(R). This criterion
plays a key role in our proof of the main theorem.

We need a couple of remarks about regular elements in s, (K). It is well known
that an element X € gl,(K) is regular if and only if

Cyt, (x)(X) = K[X],
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that is, if and only if the centraliser of X in gl,(K) has dimension n. In this
situation, we will say that X is gl,, (K)-regular. Similarly, if X € sl,(K) we define
X to be sl (K)-regular if

dimC’s["(K) (X) =n—1.

For X € sl,(K) it may happen that X is gl,,(K)-regular but not sl,(K)-regular:
take for example (9 9) € sl,,(F2).

The following result describes the precise relationship between the properties
sl,-regular and gl,,-regular over a field.

Lemma 2.1. Let X € sl,,(K). Then the following holds:

(i) If X is sl (K)-regular, then X is gl (K)-regular.
(i1) X is sl (K)-regular if and only if it is gl,,(K)-regular and tr(K[X]) # 0.
(#ii) If char K does not divide n, then an element X is sl,(K)-regular if and
only if it is gl,,(K)-regular.

Proof. For the first part, note that Cy,(x)(X) is either equal to Cq (x)(X) or
is a hypersurface in Cy; (x)(X), so Csi,(x)(X) has codimension at most one in
Cqt, (5)(X). Thus X being sl,(K)-regular implies that dim Cy; (x)(X) < n. But
it is well-known that the dimension of a centraliser in gl,(K) is always at least n,
so X is gl, (K)-regular.

For the second part, first note that Cy, (x)(X) is the kernel of the trace map
tr: Cqi, (k)(X) — K. Now, if X is sl, (K)-regular, then by the previous part, X is
gl,,(K)-regular, so Cy (k)(X) = K[X]. Thus dim Cyy, (k)(X) = n — 1 implies that
this trace map is surjective, that is, that tr(K[X]) # 0. Conversely, if X is gl,,(K)-
regular and tr(K[X]) # 0, then dim Cy (x)(X) = n and tr : Cqy () (X) = K is
surjective, so the kernel has dimension n — 1.

Finally, when char K does not divide n and X is gl,,(K)-regular, then tr(1,) =
n # 0, so the previous part implies that X is sl,, (K )-regular. a

Proposition 2.2. Let X € sl,(K) be sl,,(K)-regular and let A € sl,(K). Then
A =[X,Y] for some Y € sl,,(K) if and only if tr(X"A) =0 forallr =1,...,n—1.

Proof. Since X is gl,(K)-regular by Lemma 2.1, the set {1, X,..., X" 1} is lin-
early independent over K, so the subspace

V={Besl,(K)|tr(X"B)=0forr=1,...,n—1}

has dimension n? — n. The kernel of the linear map sl,,(K) — sl,(K), Y — [X,Y]
is equal to the centraliser Cy, (k) (X), which has dimension n —1 since X is sl,,(K)-
regular. Thus the image [X, sl,,(K)] of the map Y + [X, Y] has dimension n? — n.
Butif A € [X,sl,,(K)], there exists a Y € sl,,(K) such that for every r =1,...,n—1

we have
tr(X"A) = tr(X"(XY =Y X)) = tr(X"T'Y) — tr(X"Y X) = 0.

Thus [X,sl,(K)] € V. Since dimV = dim[X,sl,(K)] we conclude that V =
[X, 5L, (K)]. O

If Sisaring, I C S an ideal and X € g[,,(S), we denote by X the image of X
under the canonical map gl,,(S) — gl,,(S/I).
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Lemma 2.3. Let S be a local ring (commutative, with identity) with mazimal ideal
m. Let X € sl,,(S) be such that Xy is sl,,(S/m)-regular. Then the canonical map

Cat,(5)(X) — Car,, (5/m)(Xm)

18 surjective.

Proof. As Cy, (s/m)(Xm) has dimension n — 1 and is the kernel of the trace map
tr : Cyi (s/m)(Xm) — S/m, this map must be surjective. Thus, there exists an
a € Cyi,(s/m)(Xm) such that tr(a) = 1. Since Xy, is sl,,(S/m)-regular, it is also
gl,,(S/m)-regular, so

Cyt,,(5/m)(Xm) = (S/m)[ X ].

Let a € S[X] C Oy (s)(X) be any lift of a. Then tr(a) € 1+ m, so tr(a) is a unit
in S since S is a local ring. Now, let b € Cs,, (5/m)(Xm) € (S/m)[Xn], and choose
alift b € S[X] of b. Then tr(b) € m, so the element b — tr(b) tr(a)'a € Cst,,(5)(X)
maps onto b € Cy, (5/m)(Xm)- O

The following result is a local version of the criterion of Laffey and Reams (|6,
Proposition 3.3]), with the difference that we need X, to be sl,(R/p)-regular to
ensure that Y € sl,,(R) rather than just in gl,(R).

Proposition 2.4. Assume that R is a local PID with maximal ideal p, let A €
sl,(R) and let X € sl,(R) be such that X, is sl,,(R/p)-reqular. Then A = [X,Y]
for some Y € sl,,(R) if and only if tr(X"A) =0 forr=1,...,n— 1.

Proof. Clearly the condition tr(X"A) = 0 for all » > 1 is necessary for A to be
of the form [X,Y] with Y € s[,(R). Conversely, suppose that tr(X"A) = 0 for
r=1,...,n—1. Let I be the field of fractions of R. We claim that X is s, (F)-
regular, considered as an element of sl,,(F). Indeed, by [6, Proposition 2.6] X is
gl,, (F)-regular, and since X, is sl,,(R/p)-regular, there exists an element a € R[X]
such that tr(a) # 0. Thus tr(F[X]) # 0, and so X is sl, (F)-regular by Lemma 2.1.

Now, by Proposition 2.2 we have A = [X, M] for some M € sl,(F). Let p be a
generator of p. Then there exists a non-negative integer m such that p™M € sl,,(R),
and we have [X,p™M] = p™[X, M] = p™A. Choose m to be minimal with respect
to the property that [X,C] = p™A for some C € sl,(R). Assume that m > 0.
Then [X,,C,] =0, so X, commutes with Cy. Since X, is sl,(R/p)-regular, there
exists a C' € Cor,(r)(X) such that C'p = Cp, by Lemma 2.3. Thus C' = C + pD, for
some D € sl,,(R), so

[X,C] = [X,pD] = p|X, D] = p" A.

Cancelling a factor of p, we obtain a contradiction to the minimality of m. Thus
m = 0, and the result is proved. (I
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3. THE MATRICES X (x,a)

Let S be a ring (commutative with identity), n > 3, x = (z1,...,2,-1)" € "7}
and a € S. The key to our main result is to consider the following matrices:

0 00--0
T 0 1"..
X(xa)=| 1+ = o9 0 |€shs),
0 ;1
Tp_1 a 0--0
that is, X (x,a) = (m;), where
m@i_,_l:l fOI‘iZQ,...,TL—l,
mi =xj—1 fori=2....n—2,
Mp2 = a
mi; =0 otherwise.

We can write X (x,a) in block form as

xa= (7 ).

where 0 = (0,...,0) is a 1 X n matrix and P = (p;;), 1 < 4,5 < n — 1, where
Diig1 = 1fori=1,...,n—2, pp_1,1 = a and p;; = 0 otherwise. Thus, P is the
(row-wise) companion matrix of the polynomial 2"~ ! — a.

Lemma 3.1. Let P € sl,,_1(S) be as above, and let y = (y1,...,Yn—1)" € S"7L.
Then, for any z € S, andr =1,...,n— 1, we have

tr(P"y(2,0,...,0)) = zy,.

Proof. Write P71 = (pl(;_l)), for 1 <4,j < n—1. Since each column in y(z,0,...,0),
except for the first one, is zero, we have

tr(P" " y(z,0,...,0)) = (pg’fl),pggfl), . ,pgr;_l)l)zy

Since P is a companion matrix, there exists av € S™~! such that {v, Pv,..., P" 2y}
is an S-basis for S~ ! and P is the matrix of the linear map defined by P with
respect to this basis. Thus, for each r = 1,...,n — 1, the first row of P! is
(pgrfl),pggfl), . ,pY;_l)l), where pgffl) =1 and all other p;; = 0. Hence
-1 -1 -1
PG el e )2y = 2y

and the lemma follows. O
Lemma 3.2. Forr=1,...,n—1 we have

, 0 0
X(X>a) = (Prlx Pr)7

In particular, tr(X(x,a)") =0 forr =1,...,n—2, and tr(X(x,a)" 1) = (n—1)a.
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Proof. The expression for X (x,a)" follows easily, using block-multiplication of ma-
trices. The assertion about the trace of X(x,a)" for r = 1,...,n — 2 follows from
a simple induction argument, proving that for each » = 1,...,n — 2, we have
P = (pg)), where pz(-;)+r =1fori=1,....,n—1—17r and pgzlfrﬂ-’j
j=1,...,r,and p\") = 0 otherwise. Finally, the relation tr(X (x,a)" 1) = (n—1)a

ij
follows from the fact that the characteristic polynomial of P is x a. O

= a for

n—1 _

Lemma 3.3. Let K be a field, z1,...,2,_1 € K" ! and a € K. If either x,_, # 0
or a # 0, then X(x,a) is gl,,(K)-regular. If a # 0, then X (x,a) is sl,,(K)-regular.

Proof. For simplicity, write X = X (x,a). We will show that if z,,_1 # 0 or a # 0,
then X is gl,, (K)-regular, by showing that {1,,X,..., X" "'} is linearly indepen-
dent. Lemma 3.2 implies that {1,, X, ..., X"~ 2} is linearly independent because P
is regular, so {1,,_1, P, ..., P"~2} is linearly independent. Moreover, by Lemma 3.2
and its proof, we have

Tn—1
axy

n—1 __ 0 6 n—=2., __
X (Pn_Qx al, 1) where P x =

ATn—2

Thus, since P has zero diagonal for all 7 = 1,. .., n—2 (see the proof of Lemma 3.2),
we conclude that X™ ! is not a linear combination of 1,,,X,..., X" 2 ifa #0. On
the other hand, if a = 0 and x,,_1 # 0, then X"~ ! is the matrix whose (2, 1)-entry
is ¢,,—1 and all other entries are zero. Since each matrix in {1,,, X, ... ,X"*2} has a
non-zero (i, j)-entry for some (i, j) # (2,1), we conclude that X"~ is not a linear
combination of 1,,, X,..., X" 2 if a =0 and x,_1 # 0.

Suppose now that a # 0; then X is gl,(K)-regular. If char K { n, Lemma 2.1
implies that X is s, (K)-regular. On the other hand, if char K | n, then

tr(X" ) = (n — 1)a = —a,

by Lemma 3.2, so tr(K[X]) # 0 and Lemma 2.1 implies that X is sl,, (K)-regular.
([l

4. THE FIELD CASE

In this section we give a proof of our main result in the case where R = K is a
field. We give a separate proof in this case, as it is simpler than for a general PID.
The result over a field was first proved by Thompson [7], who also showed that,
apart for some small exceptions, one of the matrices X can in fact be taken to be
nilpotent. We give a new proof of Thompson’s result, but instead of showing that
X can be chosen to be nilpotent, we show that it can be taken to be gl,, (K)-regular
(and often sl,, (K)-regular).

First let n = 2. For x,y, z,s,t,u € K we have

1 2) (2] Gy )
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Thus, if char K = 2, a matrix in sly(K) is of the form [X,Y] for X, Y € sly(K) if
and only if it is scalar. On the other hand, if char K # 2 and a,b,c € K, then

(a b)_ [(50).(CF3)] oo,
© o (E)] =0

Note that all of the matrices involved in the above commutators are gl,, (K)-regular.

Lemma 4.1. Let S be a ring (commutative with identity) such thatn = 1+---+1 =
0 in S. Then, for every X\ € S there exist X,Y € sl,,(S) such that X is gl,,(S)-
reqular and [X,Y] = Al,.

Proof. Take X = (z;;), where z; ;41 =1fori=1,...,n—1 and z;; = 0 otherwise,
and Y = (y;;), where y;11, = j, for j =1,...,n—1 and y;; = 0 otherwise. Then X
is a companion matrix, hence regular as an element of gl (S). A direct computation
shows that [X,Y] = 1,, because —(n — 1) =1 in S, and thus [X,\Y] = A1,. O

Remark 4.2. If S = K is a field, Lemma 4.1 does not hold if X is required to
be sl, (K)-regular; in fact, the X in the lemma is necessarily not sl, (K)-regular,
unless A = 0. The author was alerted to the following simple argument by a
referee: Suppose that [X,Y] = Al,, where A # 0 and X is gl,,(K)-regular. Then
tr(XA\1,) = Atr(X?) = 0, hence tr(X?) =0, for alli = 0,...,n— 1. Thus X is not
s, (K)-regular, by Lemma 2.1.

Theorem 4.3. Let K be a field and A € sl,,(K), with n > 3. Then there exist
X, Y €sl,(K) such that [X,Y] = A. Moreover, if A is scalar, X can be chosen to
be gl,, (K)-regular and if A is non-scalar, X can be chosen to be sl, (K)-regular.

Proof. Assume first that A is scalar. Then either A = 0 or char K divides n. The
former case is trivial, and the latter follows from Lemma 4.1.

Assume now that A is not scalar and let A = (a;;). Then the rational canonical
form implies that after a possible GL,, (K)-conjugation, we can assume that ay; = 0,
a12 = 1 and a;; = 0 whenever j > ¢ + 2. We will show that z1,...,2,-1 € K can
be chosen such that tr(X(x,1)"A) =0 for each r =1,...,n — 1. By Lemma 3.2 we

have
0 0
T _
X(X7 1) - (Prlx Pr) )

where P = (p;;), 1 < 4,5,< n—11is such that p; ;41 = 1fori =1,...,n — 2,
Pn—1,1 = 1 and p;; = 0 otherwise. Writing A in block-form, we have

A (2 (1’0’@"0))’

where a is an n x 1 matrix and Q € gl,,_;(K). Thus

ra (0 0
X(Xv 1) A - (Pra Q/> )
where Q' = P"~'x(1,0,...,0) + P"Q. Thus, by Lemma 3.1,
(X (6 1)7A) = (@) = 2, + x(PTQ),
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for each r = 1,...,n — 1. Put =, = —tr(P"Q), so that tr(X(x,1)"4) = 0, for
r =1,...,n— 1. By Lemma 3.3 X(x,1) is sl,(K)-regular, so Proposition 2.2
implies that there exists a Y € sl,,(K) such that

[X(x,1),Y] = A.
(]

Remark 4.4. Our approach cannot be modified to yield Thompson’s result that X
can be taken to be nilpotent. The reason for this is that X (x,a) is nilpotent if and
only if P is nilpotent if and only if @ = 0. Therefore, even if X(x,a) is nilpotent
and gl,,(K)-regular, it cannot be sl,, (K)-regular, because tr(X (x,0)") = 0 for every
r=1,...,n—1.

5. PROOF OF THE MAIN THEOREM

Throughout this section, R is an arbitrary PID. Note that we consider fields as
special types of PIDs.

Before proving our main result (Theorem 5.3 below), we give a new and simplified
proof of the main result in [6] that any A € sl,(R) is a commutator of matrices in
gl,,(R). The proof of our main result is a bit harder, as it involves a special analysis
for certain prime ideals. Both proofs make essential use of the Laffey-Reams form
and rely on the following key result:

Lemma 5.1. Suppose that A = (a;;) € sl,(R) is in Laffey-Reams form, that is,
ai; = 0 forj > i+2 and A = anl, mod (a12). Then there exists an x =
(r1,...,2n_1)" € R" Y, with x,,_1 = ay1, such that

tr(X(x,a12)"A) =0,
foreachr=1,...,n—1.

Proof. By Lemma 3.2 we have

, 0 0
X(X’ al?) = (Prlx Pr>7

where P = (p;;), 1 < 4,5,< n —1 is such that p; ;41 = 1for i =1,...,n — 2,
Pn—1,1 = @12 and p;; = 0 otherwise (i.e., P is the row-wise companion matrix of

2" 1 —ay3). Writing A in block-form, we have
o ail (a12,0,...,0)
gm0 a0 0)
where a is an n x 1 matrix and @ € gl,,_;(R). Thus

. 0 0
X(X7(112) A= (a11PT—1X+Pra Q/) )
where Q' = P""'x(a12,0,...,0) + P"Q. Thus, by Lemma 3.1,
tr(X (x,a12)"A) = tr(Q") = arnz, + tr(P7Q),

for each r =1,...,n—1. We have tr(P") =0 mod (aj2), forr=1,...,n—1, and
since A = aj11,, mod (a;2) it follows that @ = aq11,—1 mod (ai2). Thus

tr(P7Q) = a11 tr(P") =0 mod (a12),
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so there exist m, € R such that tr(P"Q) = ajam,., for each r = 1,... ,n — 1. Put
T, = —m,., so that
tr(X(x,a12)"A) =0,
forr=1,...,n—1.
Finally, we claim that tr(P"~1Q) = —aj1a12, so that

Tp—1 = Aa11-

Indeed, since P has characteristic polynomial "~ ! —a;9, we have P"~! = a21,_1,
so tr(P"1Q) = a12tr(Q) = a12(—a11), as claimed. O

The following result is essentially [6, Theorem 6.3], but the result here is stronger
in that it says that X can be taken in sl,(R) and such that it is gl,,(R/p)-regular
mod any maximal ideal p of R.

Theorem 5.2. Let A € sl,,(R) with n > 2. Then there exist matrices X € sl,(R)
and Y € gl,,(R) such that [X,Y] = A, where X can be chosen such that X, is
gl,,(R/p)-regular for every mazximal ideal p of R.

Proof. For n = 2 this is proved separately (see the proof of [6, Theorem 6.3]).
Assume from now on that n > 3. First, if A is scalar, then A € sl,,(R) implies that
either A =0 or n =0 in R. The former case is trivial, while the latter follows from
Lemma 4.1.

Assume now that A is not scalar and let A = (a;;). After a possible GL,(R)-
conjugation, we can assume that A is in Laffey-Reams form; see [6, Theorem 5.6].
Moreover, we may assume that (a11,a12) = (1), because if d is a common divisor of
a11 and aq2, we can write A = dA’ for A’ in Laffey—Reams form and if A’ = [X,Y]
with X, Y as in the theorem, then A = [X,dY].

By Lemma 5.1, there exists an x = (21,...,2,-1)" € R*71, with 2,1 = a1,
such that

tr(X(x,a12)"A) =0,
for each r = 1,...,n — 1. Since z,—1 = a1 and (a11,a12) = (1), we have, for
every maximal ideal p of R, that either x,_1 ¢ p or ai2 ¢ p, and therefore X,
is gl,,(R/p)-regular, by Lemma 3.3. Thus, by [6, Proposition 3.3|, there exists a
Y € gl,,(R) such that
[X(X, au), Y] = A.
O

We now come to the proof of our main theorem. Just like the proof of the above
theorem, our proof uses Lemma 5.1, but since here X (x,ai2), cannot in general
be sl,(R/p)-regular for all maximal ideals (cf. Remark 4.2), we need to treat the
exceptional primes separately, and this requires us to pass to the localisations Ry,
for various prime ideals p € Spec(R). For an element X € gl (R) we will write
X (p) for its canonical image in gl,(R,), not to be confused with X, € gl,(R/p).
For any element x € R, we will use the same symbol = to denote the image of x
under the canonical injection R <+ Ry, and the context will make it clear in which
ring we are working. Similarly, we will denote the maximal ideal of R, by p and
will identify X, € gl,,(R/p) with the image of X (p) in gl, (R, /p).

We will prove that for fixed A, X € sl,,(R), and for any maximal ideal p of R,
there exists a solution Y (p) € sl,,(Ry) to the localised equation [X (p), Y (p)] = A(p).
Since the equations [X,Y] = A, tr(Y) = 0 in Y are equivalent to a system of linear
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equations in the entries of Y, the well known (and easy to prove) local-global
principle for systems of linear equations (see, e.g., [3, Proposition 1]) implies the
existence of a global solution.

Theorem 5.3. Let A € sl,,(R) forn > 3. Then there exist matrices X,Y € sl,(R)
such that [X,Y] = A, where X can be chosen such that X, is gl,,(R/p)-regular for
every mazimal ideal p of R. Moreover, X can be chosen such that X, is sl,,(R/p)-
regular for every p such that A, is not scalar.

Proof. Assume first that A is scalar. Then A € 5[, (R) implies that either A =0 or
n = 0 in R. The former case is trivial, while the latter follows from Lemma 4.1.

Assume from now on that A is not scalar and let A = (a;;). After a possible
GL,,(R)-conjugation, we can assume that A is in Laffey—Reams form. Moreover,
we may assume that (ai1,a12) = (1), because if d is a common divisor of a;; and
a2, we can write A = dA’ for A’ in Laffey-Reams form, and if A’ is a commutator
of two matrices in sl,,(R), then so is A.

By Lemma 5.1, there exists an x = (x1,...,2,_1)" € R*!, with 2,1 = a1,
such that

tr(X(x,a12)"A) =0,

for each r =1,...,n — 1. From now on, let X := X (x,a12). Since (a1, a12) = (1),
we have, for every maximal ideal p of R, that either z,_1 ¢ p or a12 ¢ p, and
therefore that X, is gl,(R/p)-regular; see Lemma 3.3. Moreover, since A is in
Laffey-Reams form, we have A = aj11, mod (a;2), and this, combined with the
fact that tr(A) = 0 and (@11, a12) = (1), implies that

(5.1) n € (ar2).

We will now pass to the localisations R, for various maximal ideals p of R. Let
p be any maximal ideal of R. Then we have the local relations

tr(X(p)"A(p)) =0, r=1,...,n—1

in R,. First, suppose that A, is not scalar. Then ai2 ¢ p, so the matrix X (p), = X,
is sl,,(R,/p)-regular, by Lemma 3.3, and so, by Proposition 2.4, there exists a
Y (p) € sl,(Rp) such that

(X (p), Y (p)] = A(p).

Next, suppose that A, is scalar, so that a;o € p. Let F' be the field of fractions
of R. Since A is not scalar, we have ajs # 0, so X is sl,, (F)-regular as an element of
50, (F), by Lemma 3.3. Hence, there exists a Y(0) € sl,,(F) such that [X,Y(0)] = A.
Clearing denominators in Y (0) and passing to the localisation at p, we conclude
that there exists a power p™ of a generator p € R, of p and a @ € sl,(R,), such
that

(5:2) [(X(p), Q@ = p™A(p).

Let m > 0 be the minimal integer such that (5.2) holds for some Q € sl,,(R,). We
will show that m = 0. For a contradiction, assume that m > 1. Reducing (5.2) mod
p, we obtain [X,,Qp] =0, so Q, commutes with X,. Since X, is gl,,(R/p)-regular,

Q= f(X(p)) +pD,
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for some polynomial f(T") € R,[T] of degree at most n — 1 and some D € gl (R,).
Write f(T) =co+ 1T+ -+ ¢y T, for ¢; € R,. By Lemma 3.2, we have

n if i =0,
tr(X) =< (n—1ayy ifi=n—1,
0 otherwise,
which implies
n if i =0,
(5.3) tr(X(p)) =< (n—Dayy ifi=n—1,
0 otherwise.

Hence
(54) 0=1tr(Q) = i citr(X(p)Y) + ptr(D) = con + cp_1(n — 1)ayz + ptr(D).
i=0

Moreover, we have [X(p), Q] = [X (p), pD] = p™A(p), so
0= tr(pDp™ A(p)) = p™*' tr(DA(p)),

and thus tr(DA(p)) = 0. Since A(p) = a111, mod (a12) and (a11,a12) = (1), we
conclude that

(55) tI‘(D) S (alg).

Since n € (a12) by (5.1), we have n = ajon’ for some n’ € R,. Moreover, since
a12 € p and R, is a local ring, n — 1 is a unit in R,, so we can define the matrix

Q" = (con'(n —=1)"" + ¢u1) X (p)" ' +pD.
By (5.3) and (5.4) we have
tr(Q') = con + cp—1(n — 1)aiz + ptr(D) = tr(Q) = 0.
By (5.5) this implies that con + ¢,,—1(n — 1)a12 € (pai2), and thus
con’(n —1)" 4+ ¢,1 € (p).
Writing con’(n — 1)7! + ¢,,—1 = pa for some « € Ry, we then get
[X(p), Q] = [X(p),pD] = [X(p), Q'] = p[X (p),aX (p)" " + D] = p" A(p),
where tr(aX (p)"~! + D) = 0 because
ptr(aX(p)"~' + D) = tr((con’(n — 1)~ + ¢u1) X (p)" " + pD) = tr(Q') = 0.
By cancelling a factor of p, we obtain
[X(p), aX (p)" " + D] = p" " Alp),

which contradicts the minimality of m in (5.2). Thus m = 0, so there exists a
Y (p) € sl,(Rp) such that [X(p),Y (p)] = A(p).

We have thus proved that for any maximal ideal p of R, there exists a Y (p) €
s, (Ry) such that

[X(p), Y (p)] = A(p).

We have shown that there is a local solution Y (p) for every maximal ideal p of
R. Thus, by the local-global principle for systems of linear equations (see, e.g., [3,
Proposition 1]), there exists a Y € sl,,(R) such that

[X,Y] = A.
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d

In the same way as in [6, Corollary 6.4], Theorem 5.3 implies the analogous

statement over any principal ideal ring (PIR), thanks to a theorem of Hungerford
that any PIR is a finite product of homomorphic images of PIDs.

(1
(2]
(3]
(4]

(5]
(6]

[7]
(8]
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