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Highlights: 

 

 The lithosphere-asthenosphere boundary (LAB) beneath ocean basins is the dehydration 

solidus of pargasite (amphibole), whose stability defines the lithosphere with T  ~ 1100°C, 

P   ~ 3 GPa (~ 90 km) and H2O < 0.02 wt%; 

 

 The LAB is an isotherm with T  1100°C, whose depth L increases with age t, i.e., L  t0.5 

for t < ~ 70 Ma because of conductive cooling to the seafloor; 

 

 The LAB is an isobar at P  3 GPa (~ 90 km) for t > ~ 70 Ma, above which is the conductive 

lithosphere and below which is the convective asthenosphere, explaining why the 

lithosphere cannot grow any thicker when t > ~ 70 Ma and making sub-LAB convection 

possible. 
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ABSTRACT 

 

The plate tectonics theory established ~ 50 years ago has formed a solid framework for 

understanding how the earth works on all scales. In this theory, movement of the tectonic plates 

relative to the subjacent asthenosphere is one of the fundamental tenets. However, the nature 

of the boundary between the lithosphere and asthenosphere (LAB) beneath ocean basins 

remains under debate. The current consensus is that the oceanic lithosphere thickens with age 

by accreting asthenosphere material from below, and reaches its full thickness (L) of ~ 90 km 

at the age (t) of ~ 70 Ma. This lithospheric thickening fits the relation L t1/2, consistent with 

conductive cooling to the seafloor. A puzzling observation is that although conductive cooling 

continues, the oceanic lithosphere ceases to grow any thicker than ~ 90 km when t > 70 Ma. 

Small scale convection close beneath the LAB has been generally invoked to explain this 

puzzle, but why such convection does not occur until L ~ 90 km at t > 70 Ma has been a matter 

of conjecture. In this paper, we summarize the results of many years of experimental petrology 

and petrological studies of oceanic basalts, which indicate consistently that the LAB is a 

petrological phase boundary marking the intersection of the geotherm with the solidus of 

amphibole (pargasite)-bearing lherzolite. That is, petrologically, the LAB is an isotherm of ~ 

1100°C with L  t1/2 for t < 70 Ma and an isobar of ~ 3 GPa (~ 90 km) for t > 70 Ma. This 

unifying concept explains why the LAB depth increases with age for t < 70 Ma and maintains 

constant (~ 90 km) for t > 70 Ma. The LAB, that is intrinsically determined by petrological 

phase equilibria, does not require small-scale convection.  However, because the mantle above 

the LAB is the conductive lithosphere (pargasite-bearing lherzolite/harzburgite) and below the 

LAB is the viscosity-reduced convective asthenosphere (lherzolite/harzburgite + incipient 

melt), the small-scale convection in the asthenosphere close beneath the LAB under older 

seafloors becomes possible, whose convective heat supply balances the conductive heat loss, 

maintaining the constant heat flow, seafloor depth and lithosphere thickness.  
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1. Introduction 

Plate tectonics is a unifying theory that unravels global geology and geological evolution as a 

consequence of Earth’s cooling. The origin and evolution of the oceanic lithosphere best 

illustrate this cooling process (e.g., Sclater et al., 1980; Stein and Stein, 1992). Oceanic crust 

is formed at ocean ridges as the underlying asthenosphere ascends and undergoes 

decompression melting (e.g., McKenzie and Bickle, 1988). The basaltic melts so produced, 

when extracted, build the ocean crust with the peridotitic residues remaining in the mantle, 

accreting new growth to lithospheric plates (e.g., Niu, 1997). The movement of these plates, 

their subsidence and thickening with age by thermal contraction, and their eventual cycling 

back into the Earth’s deep interior through subduction zones provide an efficient mechanism 

to cool the mantle, and is the primary driving force for mantle convection (e.g., Forsyth and 

Uyeda, 1975; Parsons and McKenzie, 1978; Davies and Richards, 1992; Stein and Stein, 1996). 

However, the nature of the boundary between the lithospheric plates and the subjacent 

asthenosphere (LAB) beneath ocean basins remains inconclusive despite many studies to this 

day (e.g., McKenzie, 1967;  Sleep, 1969; Sclater and Francheteau, 1970; Lambert and Wyllie, 

1968,1970; Green and Liebermann, 1976; Forsyth, 1977; Parsons and Sclater, 1977; Parson 

and McKenzie, 1978; Sclater et al., 1980; Wood and Yuen, 1983; Stein and Stein, 1992,1996; 

Phipps Morgan and Smith, 1992; McKenzie et al., 2005; Ballmer et al., 2007; Afonso et al., 

2008a,b; Korenaga and Korenaga, 2008; Crosby and McKenzie, 2009; Fischer et al., 2010; Niu 

et al., 2011; Sleep, 2011; Grose and Afonso, 2013).  

In this paper, we do not wish to go through many detailed arguments in these studies, but 

offer our understanding why the LAB is a petrological phase boundary built on many years of 

experimental petrology and oceanic petrogenesis largely done or led by the authors. To put the 

discussion in the context, we first concisely review the well-established observations and the 

prevailing view on the issue with caveats. We encourage both geophysical and modeling 
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disciplines to consider the petrological concept and the conclusion we offer here in their models 

towards a genuine understanding on the nature of the LAB. 

 

2. Observations and physical foundation 

Cooling of the Earth’s mantle below the seafloor is well-understood because the correlated 

variations of heat flow observations, seafloor subsidence (D) and lithosphere thickness (L) with 

seafloor age (t) are effectively described by the half-space cooling model (HSM) L  t1/2 (also 

D   t1/2) with the base of the thickening lithosphere treated as an isotherm (e.g., Sclater and 

Francheteau, 1970; Lister, 1972; Parsons and Sclater, 1977; Parson and McKenzie, 1978; 

Sclater et al., 1980; Stein and Stein, 1992,1996; Phipps Morgan and Smith, 1992; Afonso et al., 

2008a,b; Crosby and McKenzie, 2009; Sleep, 2011; Grose and Afonso, 2013) (Fig. 1). However, 

the seafloor depth reaches an asymptotic D ≈ 5.5 km (the familiar “seafloor flattening”) 

and the lithosphere reaches an asymptotic L ≈ 90 km after t ≈ 70 Ma (see Fig. 1; Scaler and 

Francheteau, 1970; Forsyth, 1977; Parson and McKenzie, 1978; Stein and Stein,1996; 

McKenzie et al., 2005; Afonso et al., 2008a,b; Korenaga and Korenaga, 2008; Crosby and 

McKenzie, 2009; Sleep, 2011; Grose and Afonso, 2013). Although conductive heat loss from 

the mantle continues with t > 70 Ma, there is apparently no further thickening of the lithosphere 

nor increasing depth to the seafloor. This apparent puzzle has led to many speculations, among 

which the plate model (PM vs. HSM) (e.g., Lister, 1972; Forsyth, 1977; Parson and McKenzie, 

1978; Stein and Stein, 1996; McKenzie et al., 2005; Sleep, 2011) has gained general acceptance 

because it explains L  t1/2 (and D   t1/2) for seafloor with t < 70 Ma and approximately 

constant D and L for seafloor with t > 70 Ma. The PM is based on a proposition that the 

thickened lithosphere becomes unstable and small-scale convection triggered at the LAB raises 

the temperature, providing heat to prevent the lithosphere from thickening. A model invoking 

small-scale convection beneath older oceanic lithosphere has thus been widely applied at the 
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LAB and supported with numerical models of varying sophistication (e.g., Forsyth, 1977; 

Parson and McKenzie, 1978; Buck and Parmentier, 1986; Huang et al., 2003; Ballmer et al., 

2007; Sleep, 2011). The simple question is why such convection does not occur until L  90 

km when t  70 Ma. Before understanding the reason if any, we agree that such treatments are 

a constructive step forward, but they require two discrete functions with heat loss for t < 70 Ma 

(L  t1/2) and excess heat supply to balance conductive heat loss for t > 70 Ma to prevent 

lithosphere from further thickening (L (t)  ) with L  90 km (e.g., Stein and Stein, 1996). 

Because thermodynamically, the material (e.g., earth rocks) behavior in response to the 

pressure-temperature (P-T) change is controlled by the phase equilibria, and because earth 

processes must leave imprints on relevant earth rocks, it is essential that we examine the LAB 

issue petrologically, by means of experimental petrology to constrain the phase equilibria (e.g., 

Green et al., 2010; Green and Falloon, 2015) and by means of petrogenesis of intra-plate ocean 

island basalts erupted on seafloor with age-dependent lithosphere thickness at the time of 

eruption (e.g., Humphreys and Niu, 2009; Niu et al., 2011).  This integrated petrological study 

leads to the insight that the LAB is a petrological boundary controlled by the P-T change of 

mantle peridotite with the presence of trace amount of water. 

 

3. The petrology of intra-plate ocean island basalts 

Intra-plate ocean island basalts (OIB) are solidified melts ultimately derived from the 

asthenosphere and are thus expected to contain information on the asthenosphere and the LAB. 

Despite fine-scale complexity in the geochemistry of mantle melts, macroscopically mantle 

melting must leave compositional imprints on the melting product and residues which reflect 

the physical controls (e.g., Niu, 1997) (e.g., P, T, melt fraction F). For example, studies of 

seamounts and OIB, including magmas containing mantle-derived xenoliths, show that 

parental magmas (with Mg#  75) form a continuum from extremely silica-undersaturated 
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(olivine melilitite and olivine nephelinite; olivine + larnite normative, and olivine + nepheline 

normative) through olivine-rich basanite and alkali picrite to tholeiitic picrite (olivine + 

hypersthene normative) (e.g., Green, 1971; Pilet et al., 2008). This sequence is one of 

increasing silica, alumina and decreasing Ca, Na, K and P. Most importantly, it is a sequence 

of decreasing dissolved C (CO3)
= and H (OH)-  in the parental magmas and is experimentally 

shown to be decreasing pressure of melt segregation and increasing F (Green and Ringwood, 

1967, 1970; Green, 1970, 1971).  

Figure 2 shows correlated variations of heavily averaged global OIB compositions with 

the lithosphere thickness (L), which is equivalent to the LAB depth from the seafloor. The 

significance of these correlations can be effectively expressed in terms of the LAB (km) as a 

function of these compositional parameters as illustrated in Fig. 3a for two scenarios. This is 

the very evidence for the LAB to be the solidus. The asthenospheric mantle upwelling and 

decompression melting produce OIB melts, but the melting stops when the decompression-

melting asthenosphere encounters the LAB. That is, the LAB caps the final depth (pressure) of 

melting (Pf; Fig. 3b), which is termed “lid-effect” (Ellam, 1992; Humphreys and Niu, 2009; 

Niu et al., 2011). OIB erupted on the thicker (older) lithosphere have geochemical 

characteristics of lower extent (or smaller melt fraction F; high Ti72, P72, [La/Sm]N and 

[Sm/Yb]N) and higher pressure (low Si72 and Al72, and high Fe72, Mg72 and [Sm/Yb]N) of 

melting because of shorter decompression melting intervals (lower F  Po-Pf) with melt 

extracted at greater depths (deeper Pf). OIB erupted on thinner (younger) lithosphere have 

signatures of larger melt fraction (low Ti72, P72, [La/Sm]N and [Sm/Yb]N) and lower pressure 

(high Si72 and Al72, and low Fe72, Mg72 and [Sm/Yb]N) of melt extraction  (Fig. 2, 3b; Niu et 

al., 2011) because of larger decompression melting intervals (F  Po-Pf) with melts extracted 

at shallower depths (smaller Pf).  
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Note that melting beneath all ocean islands begins in the garnet peridotite facies (Fig. 3b), 

imparting the familiar ‘garnet signature’ to all OIB melts (e.g. [Sm/Yb]N > 1; Fig. 2). The 

intensity of the garnet signature decreases with increasing F towards beneath thinner 

lithosphere because of the dilution effect of increased F, and with decrease and disappearance 

of residual garnet as decompression melting continues into spinel lherzolite to harzburgite 

residues, depending on the thickness of the lithosphere (or the LAB depth; Fig. 3b). The 

dilution effect is obvious for incompatible elements (e.g., K72, Ti72, P72) and ratios (e.g., 

[La/Sm]N) with decreasing lithosphere thickness. It is important to note also that possible 

variation of mantle potential temperature between ocean islands and island groups may affect 

the OIB compositional variation because of initial melting depth variation, but this effect is 

averaged out and over-shallowed by the “lid-effect” as seen in Figure 2. Mantle source 

heterogeneity can also impart source signature in the observed OIB compositions, but this 

effect, if any, can in fact enhance the “lid-effect” shown in Figures 2-3.  This is because an 

enriched component (or enriched heterogeneities) with lower solidus temperature melts first 

and is concentrated in the lower-F melt produced beneath and erupted on the thickened (older) 

lithosphere, but is diluted in the higher-F melt produced beneath and erupted on the thin 

(younger) lithosphere (Fig. 2, 3b; Niu et al., 2011). The finding of the young (~ 6 Ma) “Petit 

Spots” with highly enriched alkali melts erupted on the 135 Ma Pacific plate (Hirano et al., 

2006; Pilet et al., 2016) supports this concept, and is consistent with empirical parameterization 

(Green and Ringwood, 1967; Green, 1971; Jaques and Green, 1980; Niu and Batiza, 1991) of 

magma composition as a function of P, T and F based on experimental lherzolite melting and 

basalt liquidus studies. 

In brief, the “lid-effect”, as manifested by global OIB compositional systematics as a 

function of the lithosphere thickness in Figures 2-3, requires (1) that the LAB be a solidus, 

below which the diapirically upwelling asthenosphere melts by decompression, at which 
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melting stops, and above which melt freezes if not extracted through channels and conduits to 

the surface, and that (2) there must be a melt-rich layer right beneath the LAB (e.g., Niu and 

O’Hara, 2003, 2009; Niu, 2008; Humphreys and Niu, 2009; Niu et al., 2011, 2012). The latter 

has been detected seismically by a ~ 10% Vs drop (Kawakatsu et al., 2009). 

 

4. Experimental petrology constraints 

Geophysically, the LAB is defined as an isotherm (Fig. 1b), at least for t < ~ 70 Ma, but it is 

petrologically a solidus as shown above (Figs 2, 3). This requires that the solidus in question 

be an isotherm, i.e., dT/dP = 0 with TLAB  1100°C, L = 0 to ~ 90 km for t  ~ 70 Ma. Such an 

isothermal solidus is unexpected because the mantle solidus commonly used in models of 

lithosphere and asthenosphere is not an isotherm, but has dT/dP > 0 as illustrated by the 

anhydrous MORB pyrolite solidus (Fig 4a; Green and Falloon, 2015). Furthermore, the 

constant lithosphere thickness of L = ~ 90 km for t  ~ 70 Ma would require the LAB, or the 

solidus, to be isobaric, i.e., dP/dT = 0 with PLAB  3 GPa. All the above geophysical and 

petrological conditions for the LAB can only be met if the LAB represents the dehydration 

solidus of pargasite amphibole as illustrated in Figure 4a.  That is, the lithosphere is bounded 

by the pargasite amphibole stability with the conditions of TLAB ≤ 1100°C (~ 1050°C – 1150°C) 

and PLAB ≤ 3 GPa (~ 0.5 – 3 GPa; ~ 90 km) (e.g., Green and Liebermann, 1976; Green et al., 

2010; Niu et al., 2011). 

On the origin of the asthenosphere, especially the seismic low-velocity zone (LVZ) atop 

the asthenosphere beneath ocean basins, some consider the possibility that the LVZ may be 

simply the rheologic change in response to pressure-temperature change (e.g., Stixrude and 

Lithgow-Bertelloni, 2005; Afonso et al., 2008a,b; Karato, 2012), but the global seafloor 

petrology (e.g., Niu and O’Hara, 2003, 2008, 2009; Niu and Hekinian, 2004; Niu, 2008; 

Humphreys and Niu, 2009; Niu and Humphreys, 2009; Niu et al., 2011, 2012), the process of 
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cratonic lithosphere thinning (Niu, 2014) and experimental studies require that the LVZ be 

characterized by the presence of a small melt fraction facilitated by a volatile phase dominated 

by H2O (Green, 1970, 1971; Lambert and Wyllie, 1968, 1970; Green and Liebermann, 1976; 

Green et al., 2010; Green and Falloon, 2015). Indeed, the LAB matches the intersections of 

geotherms with the dehydration solidus of pargasite-lherzolite as indicated by the thick red 

dashed line (Fig. 4a). Figure 4a is a highly-simplified quantitative phase diagram (after Green 

and Falloon, 2015) that depicts the key elements of the oceanic upper mantle dynamics. In this 

context, it is conceptually and physically important to distinguish between the asthenosphere 

(and LAB) and the seismic low velocity zone (LVZ). The terms are often used interchangeably, 

but the asthenosphere, defined rheologically, is continuous globally as evidenced by the global 

correlation between surface elevation and lithosphere thickness (e.g., mountain belts vs. 

platforms, platforms/cratons vs. ocean basins).  The LVZ is present beneath global ocean basins 

but only locally beneath continents such as eastern China, eastern Australia and western USA 

likely caused by water introduction associated with subducting/subducted slabs currently or in 

not distant past (Niu, 2014). Figure 4a shows that beneath ocean basins the lithosphere is 

precisely determined by the stability field of the H2O-bearing pargasite (amphibole) in 

lherzolite, bounded by T ≤ 1100°C and P ≤ 3 GPa, i.e. the dehydration solidus (solid red 

dashed line) (Green and Liebermann, 1976; Niu and O’Hara, 2003; Green et al., 2010; Green 

and Falloon, 2015), and is controlled by the reaction: 

 

Pargasite-bearing peridotite [lithosphere]  peridotite + Melt [asthenosphere] 

 

At depths greater than ~ 90 km, P > 3 GPa, pargasite is no longer stable in fertile 

lherzolite. If bulk water content is > ~ 200 ppm then the storage capacity of NAMs (nominally 

anhydrous minerals such as olivine, orthopyroxene, clinopyroxene and aluminous spinel within 

Acce
pte

d o
n 2

01
8-0

6-1
4



 10 / 19 

 

the fertile lherzolite) is exceeded and water-rich vapor is present (Green et al., 2010; Green and 

Falloon, 2015). The vapor-saturated solidus of garnet lherzolite + H2O is approximately 

1000oC at 3 GPa and increases at higher pressure. The striking feature is the near-isothermal 

dehydration solidus (dT/dP  0) at T  1100°C and P ≤ 3 GPa (≤ 90 km).  Intersection of this 

solidus with cooling geotherms controls the LAB = 11 t1/2 km (Fig. 3b) for seafloor of t ≤ 70 

Ma.  Thus, ~ 70 Myrs is the time required for oceanic lithosphere to reach its ‘mature’ thickness 

of ~ 90 km as the result of conductive cooling. With t > 70 Ma, conductive cooling continues 

but the base of the lithosphere remains at ~ 90 km until the temperature at ~ 90 km drops below 

~1000oC (Fig. 4a; Green and Liebermann, 1976; Niu and O’Hara, 2003; Green et al., 2010; 

Green and Falloon, 2015). 

Figure 4b summarizes the petrological control on the LAB beneath ocean basins. The 

oceanic LAB is a straightforward consequence of petrological phase equilibria for lherzolite 

(pyrolite) with 0.02 to 0.4 wt % H2O. This conclusion is supported by the global OIB 

compositional systematics (Figs. 2,3; the ‘lid-effect’), by experimental petrology (Fig. 4a) and 

by observations from seismology, rheology, heat-flow, and electrical conductivity in the 

oceanic lithosphere and asthenosphere as discussed above.  

 

5. Summary 

(1) The results of many years’ studies in both experimental petrology and petrogenesis of 

oceanic basalts have now emerged about the nature of the LAB, which is a petrological 

phase boundary marking the intersection of the geotherm with the dehydration solidus of 

amphibole (pargasite)-bearing lherzolite (Fig. 4a). 

(2) The stability of the pargasite amphibole defines the oceanic lithosphere (i.e., pargasite-

bearing peridotite) to be T  ~ 1100°C, P  ~ 3 GPa (~ 90 km). Beyond this stability field, 

the mantle becomes asthenosphere characterized by “dry” peridotite with an incipient melt 
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phase (Fig. 4a). 

(3) The LAB, the amphibole dehydration solidus, is characterized by an isotherm (dT/dP = 0) 

of 1100°C at P  ~ 3 GPa (< ~ 90 km) and an isobar (dP/dT = 0) of ~ 3 GPa (~ 90 km) at T 

= ~ 1050 – 1150°C (Fig. 4a,b). 

(4) This understanding presents a unifying solution that not only explains why the LAB depth 

increases with increasing seafloor ages from beneath ocean ridges (~ 10 km) to beneath 

seafloors of up to ~ 70 Ma (isothermal solidus with L  t1/2) on a global scale (Figs. 3,4), 

but also reveals the intrinsic control on the globally constant LAB depth (~ 90 km) beneath 

seafloors older than ~ 70 Ma (isobaric solidus at ~ 90 km) (Figs. 1,3,4). 

(5) The LAB, the dehydration solidus, is an intrinsic property of lherzolite with trace amount 

of water. Hence, its existence does not require popularly invoked small-scale convection. 

That is, the LAB is not caused by the small-scale convection.  

(6) However, because the mantle above the LAB is the conductive lithosphere and below the 

LAB is the convective asthenosphere (Figs. 3b, 4b), the viscosity-reduced asthenosphere 

(with incipient melt) can make small-scale convection close beneath the LAB possible 

under older seafloors. Such convection can indeed supply heat to balance the conductive 

heat loss to the seafloor, thus maintaining the constant heat flow, seafloor depth and 

lithosphere thickness. 

(7) Therefore, (a) it is the petrological phase equilibria (Figs. 2-4) that determines the varying 

depth of the LAB beneath the global ocean floors, and (b) it is the LAB that makes the 

small-scale convection possible close beneath the LAB under ocean floors older than ~ 70 

Myrs. 

(8) We encourage geophysical and modeling disciplines to consider this petrological concept 

and conclusion presented here in their models towards an improved understanding on the 

nature of the LAB. 
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Supplementary Information (Supplements A - F) is available in the online version of the 

paper. 
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Figure captions: 

 

Figure 1. a, Global seafloor mean depth (D) variation with age (t) (data from Crosby and 

McKenzie (2009)), which is effectively described by the half-space cooling model (HSM, 

D  t) for seafloor with t ≤ ~ 70 Ma. Conductive cooling continues but seafloor depth 
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flattens when t > 70 Ma. b, With the base of the lithosphere (i.e., the LAB, the depth below 

seafloor) as an isotherm (e.g., 1100°C from Fowler (2005)), the HSM well describes the 

lithosphere thickness L  t (or L = t) for t ≤  70 Ma, but fails to explain the 

approximately constant thickness of ~ 90 km (Stein and Stein, 1996) for t > 70 Ma.  Plate 

models (PM) (e.g., Forsyth, 1977; Parsons and McKenzie, 1978; Stein and Stein, 1996; 

McKenzie et al., 2005; Sleep, 2011) have thus been advocated to account for lithosphere 

thickness variation of all ages. Many versions of PM models exist, but we plot a few for 

comparison with assumed basal isotherms of 1100°C and 1200°C respectively (e.g., McKenzie 

et al., 2005; Grose and Afonso, 2013). The 1100°C (red) and 1200°C (blue) isotherm models 

(Kawakatsu et al., 2009) represent actual depths of the LAB obtained seismically characterized 

by ~ 10% sudden Vs drop, consistent with the LAB being a natural solidus and the presence of 

a melt-rich layer atop the asthenosphere of all seafloor ages in order to fully explain the oceanic 

petrogenesis (Niu and O’Hara, 2003, 2008, 2009; Niu, 2008; Niu et al., 2011). We note the 

large uncertainties in earlier model estimates. For example, Parson and Sclater (1977) 

suggested plate thickness of L = 12510 km with basal T = 1350275°C, whereas Stein and 

Stein (1996) suggested L = 9515 km with basal T = 1450250°C because of lacking solid 

constraints. The petrological results presented in this paper place constraints on L  90 km with 

basal T  1100°C.  We also note the earlier interpretation that the seafloor flattening could be 

caused by mantle plume heating and oceanic plateaus (Sleep, 1987; Davies, 1988; Korenaga 

and Korenaga, 2008), but this is globally unsupported.  

 

Figure 2. Variation of average compositions of global ocean island basalt (OIB) geochemistry 

as a function of lithosphere thickness (the depth of the LAB below seafloor) at the time of OIB 

eruption (modified from Humphreys and Niu (2009); Niu et al. (2011)). The heavy averaging 

was done for 10-kilometer lithosphere thickness intervals using 12996 samples from 115 ocean 
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islands with known seafloor ages (used to calculate L = t) at the time of OIB eruption from 

the Pacific, Atlantic and Indian oceans (see Supplements A-C, E for data details). The subscript 

72 refers to corresponding oxides (SiO2, TiO2, Al2O3, FeO, MgO, CaO, P2O5) corrected for 

fractionation effect to a constant Mg# = 0.72 (Humphreys and Niu, 2009; Niu et al., 2011; 

Supplements B,D). The subscript N refers to rare earth element ratios La/Sm and Sm/Yb 

normalized to C1 chondrite following the tradition (Supplement C). The correlation coefficients 

are statistically significant at confidence levels as indicated. The blue symbol at L = 90 km 

indicates the lithosphere on which sampled islands older than > 70 Ma is all assumed to have 

thickness of ~ 90 km, which is expected (see Stein and Stein, 1996), with the OIB 

compositional variability (2 variation) no greater than that for younger and thinner lithosphere.   

 

Figure 3. a, two scenarios of the LAB (km, depth below seafloor) expressed in terms of OIB 

compositional data in Fig. 2 using multi-variate regressions (see Supplement E). b, cartoon 

illustrating the meaning of the data in Figs 2 and 3a. In OIB genesis, episodic magmatism, sea-

mounts and island chains, and heterogeneity in magma type, trace element and isotopic 

signatures, suggest small scale upwelling or diapirs. This contrasts with near-continuous 

magmatism and larger melt fraction in MORB petrogenesis. We designate Po (~ “dry solidus”) 

as the pressure (depth) within the asthenosphere from which diapiric upwelling/melting begins. 

Melt fraction (F) increases within the upwelling/decompression melting diapir until the diapir 

encounters the LAB (designated Pf), where melting stops with effective melt extraction through 

lithospheric channels/conduits. The melt fraction (F) is proportional to decompression intervals 

(Po-Pf).  This is the “lid effect” (Niu et al., 2011). The pressure recorded in the OIB 

geochemistry is Pf, the final depth of melt-solid equilibration. This is super-imposed on a 

‘mantle source’ signature expressing the pre-upwelling history and heterogeneity within the 

asthenosphere. OIB erupted on older and thickened lithosphere have signatures of lower F 
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(higher Ti72, P72, [La/Sm]N and [Sm/Yb]N) and higher P (low Si72 and Al72, high Mg72 and Fe72) 

of  melt extraction, whereas OIB erupted on younger and thin lithosphere have the reverse. The 

green layer (Fig. 3b) beneath the LAB indicates the presence of a melt-rich layer (supplied by 

the rising incipient melt denoted by the green arrowed wavy lines), which is required to explain 

the compositional systematics of oceanic basalts (Niu and O’Hara, 2003, 2009; Niu and 

Hekinian, 2004; Niu, 2008; Pilet et al., 2016) and is observed seismically (Kawakatsu et al., 

2009). Note the position of the garnet/spinel lherzolite phase boundary is such that 

asthenospheric melting all begins (Po) in the garnet lherzolite stability field, and melt 

segregation/extraction from the upwelling/diapiric asthenosphere may occur throughout until 

the melting cessation capped by the lid (Pf) in the stability fields of garnet, spinel and 

plagioclase lherzolite, depending on the thickness (and age) of the lithosphere. The blue-

arrowed dash lines indicate plate-separation induced asthenosphere flow toward ridges (Niu 

and Hékinian, 2004) with small arrows indicating sub-ridge extraction of dominantly depleted 

(red) and minor enriched (green) melts parental to MORB. 

 

Figure 4. a, A modified model (after Green and Falloon, 2005) to show the thermal and 

dynamic structure of the Earth’s uppermost mantle based on experimental determination of 

phase assemblages, solidus and melt compositions of ideal mantle lherzolite (i.e., MORB 

pyrolite) with the presence of minor volatiles (H2O, CO2 and other H-C-O species) dominated 

by H2O. All the elements are self-explanatory as labeled or indicated. We emphasize that the 

oceanic lithosphere is defined by the pargasite (amphibole) stability field with T ≤ 1100°C 

and P ≤  3 GPa, beyond which pargasite becomes unstable and the pargasite-bearing 

lithosphere becomes asthenosphere with the presence of a minor melt phase. The key is the 

pargasite dehydration solidus indicated with thick red dashed line: (1) dT/dP  0 at T  1100°C 

and (2) dP/dT  0 at P  3 GPa (~ 90 km). The scenario (1) explains LAB  11t1/2 (km) for 
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seafloor of t < 70 Ma, and the scenario (2) explains why the LAB  90 km for seafloor of t > 

70 Ma. Note that the recently seismically detected LAB beneath the mature lithosphere is ~ 80 

- 85 km in depth (Kawakatsu et al., 2009). This is not inconsistent with the ~ 90 km, but within 

the uncertainties of seismic models and experimental petrology. Importantly, the presence of 

sub-solidus carbonate (i.e. relatively oxidised and without graphite or methane) may cause the 

minute carbonatite melt within pargasite-bearing lherzolite in the lower lithosphere. This has 

consequences for electrical conductivity, and possibly rheology and seismic properties near the 

LAB. The pressure effect ~ of 5.5 km seawater column is equivalent to 1.65 km of rock column 

and can be neglected within the overall uncertainties. 4b, Semi-quantitative illustration on the 

nature of the LAB controlled by petrological phase equilibria as depicted in Figs. 2-3, 4a. 
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