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Abstract 11 

Well-dated paleorecords from periods prior to the Last Glacial Maximum (LGM) are 12 

important for validating models of ice-sheet build-up and growth. However, owing to glacial 13 

erosion, most Late Pleistocene records lie outside of the previously glaciated region, which limits 14 

their ability to inform about the dynamics of paleo-ice sheets. Here, we evaluate new and 15 

previously published chronology data from the Missinaibi Formation, a Pleistocene-aged deposit 16 

in the Hudson Bay Lowlands (HBL), Canada, located near the geographic center of the 17 

Laurentide Ice Sheet (LIS). Available radiocarbon (AMS = 44, conventional = 36), amino acid (n 18 

= 13), uranium-thorium (U-Th, n = 14), thermoluminescence (TL, n = 15) and optically 19 

stimulated luminescence (OSL, n = 5) data suggest that an ice-free HBL may have been possible 20 

during parts of Marine Isotope Stage 7 (MIS 7; ca. 243,000 to ca. 190,000 yr BP), MIS 5 (ca. 21 

130,000 to ca. 71,000 yr BP) and MIS 3 (ca. 29,000 to ca. 57,000). While MIS 7 and MIS 5 are 22 
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well-documented interglacial periods, the development of peat, forest bed and fluvial deposits 23 

dating to MIS 3 (n = 20 radiocarbon dates; 4 TL dates, 3 OSL dates), suggests that the LIS 24 

retreated and remained beyond, or somewhere within, the boundaries of the HBL during this 25 

interstadial. Ice sheet models approximate the margin of the LIS to Southern Ontario during this 26 

time, which is 700 km south of the HBL. Therefore, if correct, our data help constrain a 27 

significantly different configuration and dynamicity for the LIS than previously modelled. We 28 

can find no chronological basis to discount the MIS 3 age assignments. However, since most 29 

data originate from radiocarbon dates lying close to the reliable limit of this geochronometer, 30 

future work on dating the Missinaibi Formation using other geochronological methods (e.g. U-31 

Th, OSL) is necessary in order to confirm the age estimates and strengthen the boundaries of the 32 

LIS during this period. 33 

Keywords 34 

MIS 3, MIS 5, interstadial, pre-LGM, mid-Wisconsin, land-based verification, marine incursion, 35 

meta-analysis, Canadian quartz 36 

Highlights 37 

 Synthesis of pre-LGM chronology data from the central region of the LIS 38 

 Data consist of previously published (n=88) and new contributions (n=39) 39 

 Results suggest an ice-free HBL during parts of MIS 7, MIS 5 and MIS 3 40 

 Radiocarbon, OSL and TL ages form the basis for the MIS 3 assignment 41 

 Implies more dynamicity for the LIS than previously modelled for MIS 3 42 

  43 
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1. Introduction  44 

Understanding the quantitative relations amongst the biosphere, cryosphere and atmosphere 45 

is critically important towards formulating accurate predictions for future climates; and the  46 

growth and decay of ice sheets in the Late Pleistocene provides boundary conditions for testing 47 

Earth System Models (Kleinen et al., 2015; Loutre and Berger, 2003). To make such climate 48 

predictions, these models require empirically derived boundary conditions including the duration 49 

and dynamics of previous glaciations. To that end, the recent deglaciation sequence of the 50 

Laurentide Ice Sheet (LIS) from the Last Glacial Maximum (LGM) to the present-day is well 51 

understood owing to well constrained models of isostatic rebound (Peltier et al., 2015) and a 52 

plethora of radiocarbon ages (Dyke, 2004). However, because of glacial erosion, we have a 53 

highly incomplete understanding of the period prior to the LGM (Kleman et al., 2010).  54 

Records of relative sea level (RSL) and the δ18O from benthic foraminifera are important 55 

tools for approximating the volume of continental ice during the Pleistocene. For example, a 56 

decrease in RSL to -100 m (compared to present-day) (Grant et al., 2014), paired with an 57 

increase in the δ18O from benthic foraminifera (Lisiecki and Raymo, 2005) from ca. 68,000 to 58 

63,000 years before present (yr BP), implies moderate glaciation over North America at that time 59 

(Fig. 1). Immediately following this stadial was a partial deglaciation of the continent as shown 60 

by a rapid rise in RSL, maintaining a level between -70 m and -80 m until 40,000 yr BP (Grant et 61 

al., 2014), and a slight decrease in the δ18O from benthic foraminifera (Lisiecki and Raymo, 62 

2005). This period of implied partial continental glaciation corresponds broadly to the early part 63 

of Marine Isotope Stage 3 (MIS 3; ca. 57,000 to ca. 29,000 yr BP; Lisiecki and Raymo (2005)), 64 

where summer insolation was stable and higher than today at 60° N (Berger and Loutre, 1991).  65 

66 
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 67 

Fig. 1 (single-column figure) Climate proxies for the most recent 150,000 years. (A) δ18O record 68 

from benthic foraminifera (Lisiecki and Raymo, 2005); (B) July insolation at 60oN (Berger and 69 

Loutre, 1991); (C) Relative sea level from the Red Sea (Grant et al., 2014).  70 

  71 
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Understanding the configuration of North American ice sheets during MIS 3 is important 72 

because it will help validate models which approximate ice-sheet build-up and growth for that 73 

time (e.g. Ganopolski and Calov, 2011; Ganopolski et al., 2010; Kleman et al., 2010; Stokes et 74 

al., 2012). 75 

Although rare and spatially discontinuous, available paleorecords from North America 76 

suggest a dynamic and lobed margin of the LIS during MIS 3. For example, the Roxana Silt, a 77 

loess deposit dating to ca. 60,000 to ca. 30,000 yr BP, suggests that glacial activity reached the 78 

Mississippi watershed during that time (Forman and Pierson, 2002). Furthermore, several 79 

corroborative studies on sedimentological and biological records suggest that the LIS advanced 80 

into the continental United States at ca. 45,000 to ca. 42,000 yr BP, resulting in drainage 81 

southward toward the Gulf of Mexico (Hill et al., 2006; Sionneau et al., 2013; Tripsanas et al., 82 

2007). Contrastingly, studies suggest an ice-free MIS 3 in Southern Ontario (Bajc et al., 2015; 83 

Karrow et al., 2001; Karrow and Warner, 1984; Warner et al., 1988), Atlantic Canada (Fréchette 84 

and de Vernal, 2013; Rémillard et al., 2013) and Repulse Bay (McMartin et al., 2015). These 85 

datasets indicate the possibility for a dynamic and regionally varied response of the ice sheet 86 

margin to MIS 3 paleoclimates. Additional terrestrial records, especially those from the 87 

previously glaciated region, are needed to further constrain the boundaries of the LIS during MIS 88 

3. 89 

1.1 Missinaibi Formation, Canada 90 

The Late Pleistocene history of the Hudson Bay Lowlands (HBL), Canada (Fig. 2), has been 91 

identified as an important archive for constraining the history of glaciations over North America 92 

(Dredge and Thorleifson, 1987; Kleman et al., 2010). Importantly, the HBL contains the   93 
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 94 

Fig. 2 (2-column figure). Map of the Hudson Bay Lowlands (HBL) region, showing the locations 95 

of Late Pleistocene age estimates, which are compiled for this study. The location of key sites are 96 

noted on this map. Some sites contain several dates; details from each site are available in 97 

Appendix A. Topographic data was compiled by Amante and Eakins (2009). Inset map shows 98 

the HBL region (box), approximate maximum extent of the Wisconsin Glaciation (hatched lined) 99 

(Dyke et al., 2002) and other sites/regions mentioned in the text. Names which are italicised 100 

represent sectors of the Laurentide Ice Sheet. Further details on the creation of this map are 101 

available in Appendix C.  102 
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Missinaibi Formation, a non-glacial deposit underlying till. Since the HBL is located near the 103 

geographic center of many Pleistocene ice sheets, the age of this non-glacial deposit can be used 104 

to infer the absence of regional ice sheets (e.g. Bos et al., 2009; Helmens et al., 2007; Helmens 105 

and Engels, 2010), therefore improving our understanding of the timing and spatial extent of ice-106 

free regions during Late Pleistocene glaciations over North America. Furthermore, since this 107 

region is likely to have been a peatland for other ice-free periods in the Pleistocene (Allard et al., 108 

2012; Terasmae and Hughes, 1960), constraining the age of this deposit will permit empirical 109 

validation of models which simulate carbon storage and potential methane release during that 110 

time (Kleinen et al., 2015).  111 

Despite the importance of the Missinaibi Formation as a Pleistocene archive, there is no 112 

consensus on its age or whether the deposits are penecontemporaneous or span much of the Late 113 

Pleistocene. The inability to constrain the age of these deposits reflects that radiocarbon dating 114 

has mostly yielded infinite results and there is a scarcity of suitable material for geochronological 115 

methods such as optically stimulated luminescence (OSL) and uranium-thorium (U-Th) dating. 116 

Despite these issues, previous attempts to constrain the age of the Missinaibi Formation have 117 

resulted in the recognition of at least one MIS 5 (ca. 130,000 to 71,000 yr BP) site via U-Th and 118 

OSL dating (Allard et al., 2012; Dubé-Loubert et al., 2013), which is correlative to the 119 

penultimate interglacial period. Given the substantial glacial retreat during the MIS 5 period 120 

(Andrews and Dyke, 2007; NEEM community members, 2013), such deposits can be expected.  121 

There are, however, several sites in the HBL which have yielded MIS 3 ages (Berger and 122 

Nielsen, 1990; McNeely, 2002; Wyatt, 1989). These results have ignited considerable debate, 123 

since an ice-free HBL during that time would imply a significantly different configuration of the 124 

LIS than predicted by glacial models (e.g. Stokes et al., 2012) and what was documented from 125 
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the LGM to present-day (Dyke, 2004). Furthermore, chronology constraints are largely based on 126 

conventional radiocarbon dates (e.g. Wyatt, 1989), or accelerator mass spectrometry (AMS) 127 

radiocarbon determinations made on peat or shell samples (e.g. McNeely, 2002), which can be 128 

subject to contamination and wide error ranges, depending on the context of samples selected for 129 

dating. As a result, evidence for an ice-free HBL during MIS 3 has been largely dismissed, with 130 

a lack of AMS dates on wood being cited as “a benchmark consideration against the possibility 131 

of Middle Wisconsinan deglaciation of the Hudson Bay Lowland” (McNeely, 2002). 132 

1.2 Objectives  133 

Here, we summarize all pre-LGM chronology data in the HBL and contribute new AMS 134 

radiocarbon, OSL and U-Th data to critically evaluate the age(s) of the Missinaibi Formation. 135 

Geochronological data originated from a range of government, academic and unpublished 136 

sources spanning several decades and covering a wide range of uncertainties and errors. To 137 

temper these uncertainties and ensure an objective research approach, we include a short 138 

discussion of all major issues inherent to dating Pleistocene deposits. This information is then 139 

used to rank the chronology data to distinguish between highly-reliable age determinations and 140 

those that have an increased chance of being erroneous. Particular attention is paid to 141 

radiocarbon age estimates, especially discussing the sample material and potential for modern-142 

day contamination, since the MIS 3 period lies at the limit of this geochronometer. A similar 143 

approach was used by Wohlfarth (2010) to evaluate a pre-LGM chronology dataset from 144 

Sweden, by Hughes et al. (2016) for reconstructing the most recent 40,000 years of glaciation 145 

over Eurasia, and by Forman et al. (2014) for evaluating the chronology of Holocene-aged shells 146 

in Lake Turkana, Kenya.  147 
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2. Regional setting 148 

The HBL is a coastal plain encompassing 325,000 km2 of land, located in central Canada, 149 

and constrained by the uplands of the Canadian Shield, James Bay and Hudson Bay (Riley, 150 

2003) (Fig. 2). This remote region is dominated by ombrotrophic bogs, minerotrophic fens and 151 

permafrost along the northern coast (Riley, 2003), all of which are underlain by Paleozoic and 152 

Mesozoic sedimentary rocks. The HBL is situated a maximum of ~170 m above sea level, with a 153 

gradual decrease in elevation towards the James and Hudson bays. Several major rivers are 154 

deeply incised, but meander through this region, discharging into the James and Hudson bays. A 155 

marine incursion, the Tyrell Sea, inundated large parts of the HBL region following the post-156 

LGM deglaciation owing to high sea levels and isostatically depressed land (Lee, 1960). 157 

In the HBL, non-glacial deposits underlying till were first noted in a series of exploratory 158 

trips in the late 19th century (Bell, 1879, 1886), and are comprised of marine, fluvial, peat and 159 

forest-bed units (Skinner, 1973). The marine unit has rarely been noted in the HBL. These  160 

deposits are commonly overlain by two tills (Nguyen, 2014; Skinner, 1973), and subsequently 161 

overlain by Holocene-aged marine, lacustrine and peat deposits. This Pleistocene-aged 162 

stratigraphy is exposed along river banks and ranges in height from 10 to 30 m, with the non-163 

glacial Missinaibi Formation commonly ranging from 1 to 5 m in thickness. The regional extent 164 

of these deposits is unknown because the occurrence is disparate, but it may be correlative with 165 

non-glacial deposits from central and southern Ontario (e.g. Bajc et al., 2015; DiLabio et al., 166 

1988). 167 

While the reason for the preservation of the Missinaibi Formation is not well understood, the 168 

relatively low topography of the HBL, in combination with the confining topographic high of the 169 
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Canadian Shield, may have mitigated glacial erosion in this region, thus preserving these 170 

Pleistocene-aged sediments. Furthermore, the Missinaibi Formation commonly contains fluvial 171 

sequences, which would have presumably been deposited in river valleys similar to today, and 172 

these sheltered environments may have acted to protect these deposits from glacial erosion 173 

(Barnett and Finkelstein, 2013). 174 

3. Critical evaluation of geochronological techniques   175 

We assembled a database (n = 127) consisting of all previously published (n = 88) and 176 

new (n = 39) geochronological data for the Missinaibi Formation (Appendix A). These data 177 

consist of AMS radiocarbon (n = 44), conventional radiocarbon (n= 36), amino acid (n = 13), U-178 

Th (n = 14), TL (n = 15) and OSL (n = 5) methods. All chronology data was ranked on a scale of 179 

1 to 3, with ‘1’ representing most reliable dates; ‘2’ representing ages with somewhat more 180 

uncertainty owing to sample material or depositional context, and ‘3’ less reliable dates. Ranks 181 

and rationales are discussed below, and available in Appendix A. 182 

3.1 Radiocarbon dating 183 

Sample material, which can have a substantial bearing on the resulting data, varied 184 

widely in our database. So long as it is not reworked, wood is the ideal material for radiocarbon 185 

dating since cellulose does not exchange carbon with the atmosphere after formation (Bowman, 186 

1990). As a result, we consider wood dates to be reliable (n = 27 14C AMS of which 25 are new 187 

contributions; n = 18 14C conventional).  188 

Peat (n = 8 14C AMS; n = 15 14C conventional) and shell dates (n = 9 14C AMS; n = 12 189 

14C conventional), which have unique contamination issues, are common in our database. To 190 

minimize the risk of modern-day contamination, peat samples were examined for root structures, 191 
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and humic acids were removed prior to radiocarbon dating. Since no root structures were 192 

identified in the samples, and peat dates have been used commonly and accepted in Holocene 193 

HBL studies (Packalen et al., 2014), we assign high confidence to our newly contributed peat 194 

dates (n = 8). If similar details on the removal of humic acids and rootlets from the samples were 195 

noted for previously published peat dates, we consider those dates to be reliable as well.  196 

Radiocarbon dating of marine shells from the HBL is problematic because most shells are 197 

located in till (e.g. McNeely, 2002), meaning that they are inherently transported and may not 198 

have originated in the HBL. These shell dates are assigned low confidence because they are not 199 

considered to have been deposited in situ. Furthermore, the calcium carbonate component of 200 

shells is commonly subject to post-death isotope fractionation, especially from modern carbon 201 

sources, which can cause artificially young dates (Oviatt et al., 2014; Pigati, 2002).  Blake (1988) 202 

attempted to circumvent this issue by dating the inner and outer fraction of an in situ shell, but 203 

the inner fraction resulted in an infinite determination (sample GSC-1475 inner/outer), and is 204 

therefore of limited use in our analysis. The only other in situ marine shells in our dataset are 205 

from McNeely (2002) (samples AA-7563, TO-2503), however there is limited information about 206 

the pre-treatment and processing of those samples. As a result, we assign lower confidence to 207 

these shell dates in our database. 208 

Radiocarbon ages up to 46,401 14C yr BP were calibrated using the CALIB Rev 7.0.4 and 209 

the INTCAL13 curve (Reimer et al., 2013; Stuiver and Reimer, 1993). Since finite ages greater 210 

than 46,401 (n = 5) exceed the calibration curve, they were left as radiocarbon years (yr 14C). 211 

Following Stuiver and Polach (1977), all dates were rounded to the nearest 100, and error values 212 

were rounded up to the nearest 50-year increment. Some ages (n = 3) were not distinguishable 213 
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from background (Stuiver and Polach, 1977), and were therefore considered to be the same age 214 

as background, which is ca. 49,600 ± 950 yr  14C (Appendix B).   215 

3.2 U-Th dating 216 

Uranium-Thorium dating has provided a chronological constraint for the MIS 5 period in 217 

the HBL (Allard et al., 2012). This method measures the rate of decay of 238U into daughter 218 

isotope species and can be used to date material up to ca. 350,000 yr BP (Geyh, 2008).  The main 219 

requirements for this technique are that the material must contain uranium at deposition, and that 220 

it is not affected by uranium or thorium from the surrounding environment while buried (van 221 

Calsteren and Thomas, 2006). Wood is not commonly dated using this technique because it does 222 

not naturally contain uranium, therefore any uranium uptake must have originated from the 223 

surrounding sediment shortly after burial (Vogel and Kronfeld, 1980). Because U-Th dating of 224 

wood is dependent on initial uranium contamination of the sample, several corroborative age 225 

estimates from the same stratigraphic unit are needed to definitively assign an age (e.g. Allard et 226 

al., 2012; Causse and Vincent, 1989; De Vernal et al., 1986; Mott and Grant, 1985).  227 

Wood pieces encased in clay result in limited permeability to surrounding groundwater, 228 

and are preferred for the U-Th method. Such conditions were met by Allard et al. (2012), who 229 

dated 9 wood logs from deposits underlying till along the Nottaway River. Although slightly 230 

different uranium concentrations were recorded on the outer edge of these logs, the inner, less 231 

permeable, portions yielded consistent age determinations (Allard et al., 2012), which we 232 

consider to be reliable. In the western HBL, two U-Th dates from Nielsen et al. (1986) are 233 

considered less reliable owing to the porosity of the surrounding environment (sand, silt), and 234 
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evidence of thorium contamination, which are suspected to have caused dissimilar isotopic 235 

measurements on wood pieces from the same stratigraphic unit. 236 

We made several new attempts to date wood from two sites in the HBL. Two wood 237 

pieces were submitted from 12-PJB-109 for analysis at Geotop, Université du Québec à 238 

Montréal, for which three dates were obtained (Appendix A). However, in all three cases, the 239 

system was believed to be open with respect to uranium, owing to significantly different results 240 

from the same stratigraphic unit. This exchange may have been caused by the composition of the 241 

sediment matrix, which, although clay-rich (~35%), contained ~50 % silt and ~15% sand. This 242 

texture may have promoted water infiltration. As a result, we consider these ages to be minimum 243 

estimates. A further attempt at 12-PJB-007 showed that there was no significant uranium uptake, 244 

therefore an age assignment was not possible at this site, and these results are excluded from our 245 

dataset.  246 

3.3 OSL dating  247 

Given that MIS 3, our period of interest, corresponds to the limit of radiocarbon dating, 248 

OSL techniques may hold potential to improve our understanding of the age of HBL deposits. 249 

However, OSL dating can be less successful on sediments derived from the Precambrian Shield, 250 

which yields quartz grains showing low light emissions with optical stimulation (“dim quartz”) 251 

(e.g. Demuro et al., 2013). The reason for this low luminescence signal may be that newly-252 

eroded quartz has a limited ability to store charge given a minimal number of cycles of dosing 253 

and solar resetting (Sawakuchi et al., 2011). Glacial environments associated with rapid burial 254 

and high energy settings may also result in partial resetting of electron traps (King et al., 2014; 255 
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Lukas et al., 2007; Rhodes, 2011). As a result, there are no previously published studies which 256 

use OSL on quartz grains from the HBL. 257 

In an attempt to resolve this issue, we used OSL dating on quartz at two separate sites, 258 

12-PJB-109 as well as two samples from the Severn Marine site. An a priori assumption is that 259 

quartz grains in this fluvial system were not uniformly solar reset because of the short distance of 260 

transport in turbid water conditions and possible deposition during the fall and winter with 261 

sedimentation beneath ice cover. Single aliquot regeneration (SAR) protocols (Murray and 262 

Wintle, 2003; Wintle and Murray, 2006) were used to estimate the apparent equivalent dose for a 263 

different size fraction in each sample (Table 1). For 12-PJB-109, each aliquot contained 264 

approximately 10 to 30 quartz grains corresponding to a 2 mm circular diameter of grains 265 

adhered (with silicon) to a circular aluminum disc of 1-cm diameter. Such a small number of 266 

grains per aliquot was measured to isolate the youngest, full solar-reset grain population (cf. 267 

Duller, 2008). It is suspected that < 20% of grains of each aliquot emitted light, i.e. 2 to 6 quartz 268 

grains.  269 

 An Automated Risø TL/OSL–DA–15 system was used for SAR analyses with light from 270 

blue diodes. Optical stimulation for all samples was completed at an elevated temperature (125 271 

°C) using a heating rate of 5 °C/s. All SAR emissions were integrated over the first 0.8 s of 272 

stimulation out of 40 s of measurement, with background based on emissions for the last 30- to 273 

40-second interval. In this study, we used the threshold “fast ratio” of > 15 (cf. Durcan and 274 

Duller, 2011) to quantitatively determine aliquots that are dominated by a fast component and 275 

thus, only those aliquots are included in equivalent dose calculations. The majority of aliquots 276 

(>75%) exhibited a clear so called “fast component” (Fig. 3) which is one of the requirements of 277 

the SAR protocols (Murray and Wintle, 2003).278 
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Table 1: Optically stimulated luminescence (OSL) ages on quartz grains from the sub-till Missinaibi Formation, Hudson Bay 279 

Lowland, Canada 280 

 281 

Sample/ Laboratory  Particle Equivalent Over- U Th K Cosmic Dose rate Dose rate OSL age 

Horizon number Aliquotsa Size (μm)   dose (Gray)b dispersion (%)c (ppm)d (ppm)d (%)d (mGray/yr)e  (mGray/yr) f  (yr)g 

12-PJB-109 BG3800 98/67 250-150 72.27 ± 3.87 62 ± 5 1.22 ± 0.01 6.65 ± 0.01 1.31 ± 0.01 0.16 ± 0.01 1.69 ± 0.09 42,845 ± 3740 

Severn Marine 

84HBL022 

BG3807 90/62 100-63 97.36 ± 6.23 30 ± 3 1.31 ± 0.01 5.78 ± 0.01 1.53 ± 0.01 0.10 ± 0.01 1.64 ± 0.09 52,480 ± 5055 

Severn Marine 

84HBL023 

BG3808 50/30 64-44 85.14 ± 5.26 55 ± 7 1.38 ± 0.01 6.49 ± 0.01 1.64 ± 0.01 0.10 ± 0.01 2.02 ± 0.10 42,190 ± 4010 

 282 
aAliquots used in equivalent dose calculations versus original aliquots measured. 283 

bEquivalent dose calculated on a pure quartz fraction analyzed under blue-light excitation (470 ± 20 nm)  by single aliquot regeneration protocols (Murray and 284 

Wintle, 2003; Wintle and Murray, 2006).  A finite mixture model was used with overdispersion values >20% to determine the youngest equivalent dose 285 

population, with at least 10 aliquots defining this equivalent dose population (Galbraith and Green, 1990).  286 

cValues reflects precision beyond instrumental errors; values of ≤ 20% (at 1 sigma limit) indicate low dispersion in equivalent dose values and an unimodal 287 

distribution.   288 

dU, Th and K content analyzed by inductively-coupled plasma-mass spectrometry analyzed by ALS Laboratories, Reno, NV; U content includes Rb equivalent.  289 

eA cosmic dose rate calculated from parameters in Prescott and Hutton (1994) 290 

fAssumes a moisture content (by weight) of 25 ± 5% for the burial period 291 

gSystematic and random errors calculated in a quadrature at one standard deviation. Datum year is AD 2010292 



16 

 

 293 

 294 

Fig 3 (2 column figure). Optically stimulated luminescence data for quartz grains (BG3807 and 295 

BG3800) from waterlain deposits.  Inset figure is a representative shine down curve of natural 296 

luminescence. Shown are regenerative growth curves, with errors by Monte Carlo simulations 297 

and radial plots defining statistic parameters for equivalent dose determinations. Mean equivalent 298 

dose was determined by the Finite Mixture Model (FMMM) of Galbraith and Green (1990) 299 

because of high overdispersion values >25%; parallel lines denote the lowest significant 300 

equivalent dose population defined by at least 20 aliquots.  301 
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Calculation of equivalent dose by the single aliquot protocols was accomplished for a 302 

majority of aliquots (Table 1).  Aliquots were removed from analysis if (1) the fast ratio was <15 303 

(Durcan and Duller, 2011), (2) the recycling ratio was not between 0.90 and 1.10, (3) the zero 304 

dose was >5 % of the natural emission or (4) the error in equivalent dose determination is >10 %. 305 

Equivalent dose (De) distributions are log normal, highly negatively skewed and exhibited 306 

overdispersion values of 23 % to 103 % (Table 1; Fig. 3). An overdispersion percentage of a De 307 

distribution is an estimate of the relative standard deviation from a central De value in context of 308 

a statistical estimate of errors (Galbraith and Roberts, 2012; Galbraith et al., 1999). A zero 309 

overdispersion percentage indicates high internal consistency in De values with 95% of the De 310 

values within 2σ errors. Overdispersion values ≤ 20 % are routinely assessed for small aliquots 311 

of quartz grains that are well solar reset, like far-traveled eolian and fluvial sands (e.g. Meier et 312 

al., 2013; Olley et al., 2004; Wright et al., 2011) and this value is considered a threshold metric 313 

for calculation of a De value using the central age model of Galbraith et al. (1999). 314 

Overdispersion values >20 % may indicate mixing of grains of various ages or partial solar 315 

resetting of grains. The finite mixture model is an appropriate statistical treatment for such data 316 

(Galbraith and Green, 1990), and this model was used to calculate optical ages (Fig. 3; Table 1).  317 

In addition to our new OSL data, Dubé-Loubert et al. (2013) dated sediments (n = 2) 318 

using feldspar grains, which can be used to date sediments back to 500,000 yr BP. However, 319 

feldspar is more commonly affected by anomalous fading, a process whereby electrons gradually 320 

vacate their traps in the absence of light or heat exposure, which can lead to underestimation of 321 

results (Huntley et al., 1985).  Dubé-Loubert et al. (2013) applied an equivalent dose correction 322 

developed by Lamothe et al. (2003) to mitigate anomalous fading, and we therefore consider 323 

these data points to be reliable.   324 
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3.4 Thermoluminescence dating  325 

Similar to OSL dating, TL dating measures the last exposure of a sediment to sunlight. 326 

However, TL dating can be impacted by anomalous fading, which can lead to underestimation of 327 

results (Huntley et al., 1985). This issue can be mitigated by introducing sample preheats or 328 

adding days to weeks of wait time to allow the laboratory-induced luminescence to pre-fade. 329 

Forman et al. (1987) dated two marine sediments samples from the Severn River in the northern 330 

HBL using this approach to mitigate the effects of anomalous fading, and Berger and Nielsen 331 

(1990) used prolonged sample storage to remove pre-fade for five samples along the Nelson 332 

River (Appendix A). Since effort was made to mitigate the issue with anomalous fading, we 333 

retained the data in our dataset and increased the error to 2σ. 334 

Eight TL samples from non-glacial intervals overlain by till from sites along the Nelson 335 

River were also analyzed by Roy (1998) to determine the extent of solar resetting and anomalous 336 

fading. Seven samples are considered to be unreliable owing to large grain sizes (150 - 250 µm) 337 

which are suspected to have caused improper solar resetting. This insufficient solar resetting was 338 

confirmed by a Holocene-aged sample which resulted in two age estimates of ca. 50,000 yr BP 339 

(Roy, 1998). However, one sample (MOON 2C (delayed)) is more likely a close estimate to the 340 

true depositional age because the grain size is much smaller (4 - 8µm), which would have 341 

allowed for prolonged sediment suspension prior to deposition, and therefore more effective 342 

solar resetting. Furthermore, this sample was corrected for anomalous fading by storing for one 343 

year prior to taking this measurement. However, Roy (1998) acknowledges that anomalous 344 

fading may have continued after the one-year delay. 345 

 346 
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3.5 Amino Acid Epimerization  347 

Amino acid epimerization of allo-isoleucine to isoleucine from molluscs has provided 348 

some of the first evidence for a large-scale recession of the LIS during MIS 3 (Andrews et al., 349 

1983). This technique measures the post-mortem changes in amino acid chirality (e.g. 350 

racemization) for molluscs, such as Hiatella arctica or Mya truncata (Miller and Brigham-351 

Grette, 1989; Rutter et al., 1979). Such changes to amino acid configuration can be detected for 352 

up to ca. 2,000,000 years, making this method suitable for materials of Pleistocene age (Miller 353 

and Brigham-Grette, 1989).  354 

A disadvantage to amino acid dating is that it is a relative dating method. In the HBL, 355 

amino acid age inferences are based on the implicit assumption that the largest ratio corresponds 356 

to a marine incursion during MIS 5e. Younger dates are assigned an age according to this 357 

assumption. Consequently, the application of this technique in the HBL has been controversial 358 

(Andrews et al., 1983; Dyke, 1984), and we assign limited confidence to these age estimates. 359 

Nevertheless, we compiled age estimates from in situ shells in the database. Shells from till (e.g. 360 

Andrews et al., 1983; Nielsen et al., 1986; Shilts, 1982; Wyatt, 1989) are not included in this 361 

compilation because they were incorporated and resided within the glacier for an unknown 362 

amount of time where racemization may have ceased or slowed down (Barnett, 1992).  363 

4. Results 364 

Geochronological data for the Missinaibi Formation is largely confined to the most recent 365 

130,000 yr BP, with one exception being an OSL date suggesting a fluvial deposit at ca. 211,000 366 

± 16,000 yr BP from the Harricana River, published by Dubé-Loubert et al. (2013) (sample 367 

06HA30). This data point represents the oldest age estimate in the HBL region, and aligns with 368 
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the interglaciation of MIS 7 (ca. 243,000 to ca. 190,000 yr BP) (Dubé-Loubert et al., 2013). 369 

Deposits dating to MIS 5 are situated along the Nottaway and Nelson Rivers, and have been 370 

described by Allard et al. (2012), Dubé-Loubert et al. (2013) and Roy (1998) (Fig. 4).  371 

Much of our newly contributed data suggests the possibility of an ice-free MIS 3 in the 372 

HBL. Firstly, wood from 11-PJB-186, an organic-rich sequence overlain by post-glacial marine 373 

sediments along the Black Duck River, suggests that organic accumulation began around 50,100 374 

± 3300 14C yr BP (sample ISGS A1995) and 49,600 ± 950 yr 14C (sample UOC-0587), while the 375 

upper part of the unit dates to 46,300 ± 1750 cal. yr BP (sample ISGS A1656) (Fig. 5). Similarly, 376 

two sites located in close proximity (~ 1.3 km) along the Ridge River, 11-PJB-020 and 12-PJB-377 

007 have yielded radiocarbon dates of 40,000 ± 400 cal. yr BP (sample UOC-0591), 49,600 ± 378 

950 yr 14C (sample UOC-0592; Appendix B), 46,300 ± 1750 cal. yr BP (sample UOC-0590) and 379 

ca. 46,500 ± 2100 14C yr BP (sample ISGS A2424) (Fig. 5). Both sites along the Ridge River are 380 

overlain and underlain by diamicton. At the Severn Marine site, our re-evaluation of TL samples 381 

using OSL techniques have yielded ages of  52,480 ± 5055 (sample BG3807) and 42,190 ± 4010 382 

(sample BG3808) (Fig. 3). 383 

Data from the western region of the HBL also suggests an ice-free MIS 3, where Berger 384 

and Nielsen (1990) published a suite of TL data from fluviolacustrine sediments along a ~100 385 

km stretch of the Nelson River. Another purported MIS 3 site is 24M, which is considered to be 386 

the type location for the Missinaibi Formation (Skinner, 1973; Terasmae and Hughes, 1960). Our 387 

AMS radiocarbon result of ca. 39,700 ± 800 cal. yr BP (sample TO-1753) corresponds well with 388 

other finite determinations in the range of 39,000 to 41,000 yr BP (Olson and Broecker, 1957, 389 

1959), however is in contrast with several infinite determinations,  390 
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Fig. 4 (2 column figure) Summary of chronology data for Pleistocene-aged sites in the Hudson 391 

Bay Lowlands (HBL), Canada. Sites are arranged from north to south. Asterix (*) symbol 392 

represents radiocarbon dates which could not be calibrated because of exceeding the calibration 393 

curve. Cross (†) symbol represents finite ages which are not statistically distinguishable from 394 

background, and are therefore considered to be the same age as background. Infinite 395 

determinations, ages exceeding 150,000 yr BP (n = 1) and those with a high chance of being 396 

erroneous (rank 3) were excluded from this figure. See Appendix A for more details.  397 
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 398 

Fig. 5 (2-column figure). Detailed stratigraphy of three pre-LGM sites from the Hudson Bay 399 

Lowlands, Canada, which have the best evidence of being MIS 3 deposits. All chronology data 400 

presented in this figure are new. Asterix (*) symbol represents radiocarbon dates which could not 401 

be calibrated because of exceeding the calibration curve. Cross (†) symbol represents finite ages 402 

which are not statistically distinguishable from background, and are therefore considered to be 403 

the same age as background. 404 

  405 
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which suggest an older age (MacDonald, 1971; Olson and Broecker, 1959; Preston et al., 1955; 406 

Stuiver et al., 1978; Vogel and Waterbolk, 1972). We therefore consider the age of the 24M site 407 

to be unresolved.  408 

In addition to the data listed above, there are several sites for which only one finite age 409 

estimate is available. Although not described in detail here, these samples are all included in 410 

Appendix A as well as plotted in Fig. 4.  411 

5. Discussion 412 

Our synthesis of available age estimates for non-glacial materials suggests that the HBL 413 

was ice-free during MIS 7 (Dubé-Loubert et al., 2013), MIS 5 (Allard et al., 2012; Roy, 1998) 414 

and possibly during MIS 3. Deposits dating to MIS 7 or MIS 5 are not surprising given that the 415 

LIS was thought to have retreated considerably at those times. However, if age estimations from 416 

the HBL are correct, deposits dating to MIS 3 imply significant reconfiguration of the LIS.   417 

5.1 The validity of >40,000 yr BP radiocarbon dates 418 

A major limitation of our results and subsequent interpretations is that radiocarbon dates 419 

are largely used to constrain the purported ice-free period during MIS 3. This is problematic 420 

because radiocarbon dates in the range of 40,000 to 50,000 yr BP have lost the majority of 14C, 421 

and contamination by small amounts of modern carbon can cause otherwise infinite materials to 422 

appear finite (Andrews and Dyke, 2007; Beukens, 1990). For example, 0.2 % modern-day 423 

carbon contamination will cause a 45,000 year old sample to yield an age of 40,000 years 424 

(Olsson and Eriksson, 1972). It is therefore possible that modern or re-worked carbon is 425 

influencing our radiocarbon dates, thus erroneously suggesting an ice-free MIS 3 in the HBL.  426 
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There is no way to determine whether a single sample has been contaminated by modern-427 

day carbon. Only repeated measurements showing a high degree of precision can increase 428 

confidence that a true representation of the material’s age has been obtained (Scott, 2007). For 429 

example, Bajc et al. (2015) investigated a purported MIS 3 site in Southern Ontario, re-dating 430 

wood pieces using three different cellulose extraction techniques, resulting in age estimate of  ca. 431 

42,000 to ca. 50,000 14C years BP, therefore strengthening a MIS 3 age assignment at that site. A 432 

similar approach was used at a Late Pleistocene site from Atlantic Canada by Rémillard et al. 433 

(2013), where both peat and wood consistently yielded ages of ca. 47,100 to ca. 50,100 yr BP, all 434 

of which overlap at 1σ, thus supporting the MIS 3 interpretation.  435 

In addition to repeated dating of samples, the stratigraphy of age determinations can help 436 

determine whether modern contamination is responsible for finite age estimates. For example, at 437 

the Pilgrimstad site in Sweden, radiocarbon estimates from ca. 40,000 to ca. 50,000 cal. yr BP 438 

were older at the bottom of the sequence and gradually became younger towards the top 439 

(Wohlfarth, 2010 and references therein). If modern-day carbon contamination had influenced 440 

these age estimates, we would expect all determinations to be artificially finite, as well as 441 

possible age reversals in the stratigraphic sequence. Since age estimates largely follow 442 

stratigraphic order, it re-enforces the MIS 3 age assignment. 443 

Following the techniques outlined above, to strengthen age estimates for the Missinaibi 444 

Formation, we made an effort to (1) sample several intervals at a given site to determine if the 445 

resulting age estimates follow stratigraphic order, and (2) date samples multiple times, and at 446 

different radiocarbon laboratories, to test the precision and reproducibility of each age 447 

assignment. These efforts were focussed on three purported MIS 3 sites, 11-PJB-186, 11-PJB-448 

020 and 12-PJB-007 and the results can be seen in Fig. 5 and Appendix A. Although some re-449 
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dating attempts were limited because of low material availability, chronology data at these sites 450 

largely follows stratigraphic order, and samples which have been dated multiple times show 451 

significant reproducibility. Such an agreement would not be expected if these finite estimates 452 

were the result of modern carbon contamination. Therefore, on the basis of radiocarbon dating, 453 

we find no reason to discount the chronology at these three sites. Results from OSL dating 454 

further support the MIS 3 interpretation (Fig 2). However, fluvial and/or marine sediments were 455 

often missing from the sub-till sites, thus a direct comparison of OSL and radiocarbon dates from 456 

the same site has not yet been done. Nevertheless, both radiocarbon and OSL results suggest an 457 

ice-free HBL during MIS 3. The discovery of new sub-till sites to perform OSL dating may hold 458 

potential to significantly improve our understanding of the age of the Missinaibi Formation. 459 

The abundance of infinite radiocarbon dates (n = 47) is also worth considering, although the 460 

interpretation is challenging. Given that the MIS 3 period corresponds to ca. 29,000 to ca. 57,000 461 

yr BP, radiocarbon dating should be able to capture any deposit up to ca. 50,000 yr BP, only 462 

missing those that lie at the lower boundary for MIS 3. It is possible that some of these infinite 463 

age estimates may be from that time. It is equally possible that these infinite dates represent 464 

multiple non-glacial intervals from earlier in the Pleistocene, perhaps correlative with the late 465 

MIS 5 ages from the Nottaway River (Allard et al., 2012). Based solely on chronological 466 

evidence, we do not consider the presence of infinite radiocarbon dates to be evidence in favor or 467 

against any particular age assignment for the Missinaibi Formation. 468 

5.2 Ice Sheet dynamics during MIS 5  469 

Based on available age estimates, the warmest part of the penultimate interglacial, MIS 5e 470 

(peak: ca. 123,000 yr BP), which has been identified elsewhere in Canada (e.g. Fréchette and de 471 
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Vernal, 2013; Karrow et al., 2001), is not preserved in the non-glacial sediments of the HBL at 472 

sites presented here. Instead, OSL data from the Nottaway River, and one TL age from the 473 

Nelson River correspond to the latter part of the MIS 5 interglaciation (Allard et al., 2012; Dubé-474 

Loubert et al., 2013; Roy, 1998).  475 

5.3 Laurentide Ice Sheet during MIS 3 476 

Our data suggests that the HBL may have been deglaciated during ca. 50,000 to 40,000 yr 477 

BP, which, according to RSL and δ18O from benthic foraminifera (Grant et al., 2014; Lisiecki 478 

and Raymo, 2005), corresponds to a time of partial deglaciation of the North American 479 

continent. If correct, data from the HBL constrains the ice-free eastern lobe of the LIS by 700 km 480 

westward and northward than what is suggested by most other Late Pleistocene sites. In Southern 481 

Ontario, these sites include conventional radiocarbon dates on sub-till material from a borehole 482 

and creek exposure (Karrow and Warner, 1984; Warner et al., 1988), three finite AMS dates on 483 

bone and peat samples from a sub-till site exposed along a railroad cut (Karrow et al., 2001) and 484 

six finite AMS dates on sub-till wood fragments from a quarry (Bajc et al., 2015). In Atlantic 485 

Canada, Rémillard et al. (2013) documented four finite AMS ages on sub-till peat, which 486 

suggests that this region may have also been deglaciated during MIS 3. Fréchette and de Vernal 487 

(2013) also infer a deglaciation in Atlantic Canada during MIS 3, but no geochronological data 488 

was available at that site, and instead, age control was based on the stratigraphic position of the 489 

sub-till deposits.  490 

Radiocarbon data from Repulse Bay, northwest of the HBL, may provide corroborative 491 

evidence for a very significant glacial recession during MIS 3. Recently-obtained radiocarbon 492 

data suggests that this region was ice-free for several thousand years during MIS 3 (McMartin et 493 
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al., 2015). However, notably, these data were based on marine shells, which may have associated 494 

uncertainties (see Section 3.1). Nevertheless, duplicate samples analyzed by different 495 

laboratories produced the same interpretation at that site (McMartin et al., 2015), which 496 

strengthens the interpretation. Together with data from the HBL, there seems to be a growing 497 

amount of evidence suggesting that large parts of eastern and central North America may have 498 

been ice-free during MIS 3. 499 

If evidence for a significant glacial recession during MIS 3 is correct, other parts of North 500 

America must have been fully glaciated to compensate for the relatively low sea level during that 501 

time (Grant et al., 2014). It may be possible that the mid- and western regions of North America 502 

were glaciated. For example, TL, and radiocarbon data from the Roxana Silt suggest the 503 

presence of the LIS in the mid-continent during MIS 3 (Forman, 1992; Forman and Pierson, 504 

2002). Records from the Gulf of Mexico, most of which are dated using a series of AMS dates 505 

on foraminifera, also suggest that the LIS spanned into the continental United States for large 506 

parts of MIS 3 (Hill et al., 2006; Sionneau et al., 2013; Tripsanas et al., 2007).  507 

Based on available age estimates of the Missinaibi Formation, it seems that the western 508 

sector of the LIS (Keewatin) was highly active, and the eastern sector (Labrador-Nouveau 509 

Québec) may have experienced restricted growth following MIS 5 and into MIS 3.  Expansion of 510 

the eastern sector may have been preferentially eastward onto the expanding continental shelf as 511 

RSL fell.  Its southern extension may have been affected by the isostatically depressed St 512 

Lawrence River valley, slowing expansion into the lower Great Lakes. This eastern sector of the 513 

LIS may have only reached the western end of Lake Ontario during MIS 3. In this scenario, it is 514 

possible for parts of the HBL to have remained unglaciated. 515 
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The lack of a marine unit at the base of most dated MIS 3 sites may provide supportive 516 

evidence for a MIS 3 age assignment. In the HBL, marine incursions can be expected 517 

immediately following deglaciation as a result of isostatic depression of the land and the close 518 

proximity to Hudson Bay (e.g. Tyrell Sea; Lee, 1960). To account for this missing marine unit, 519 

the Missinaibi Formation could have been deposited at a time when ice had recently receded 520 

beyond the boundaries of the HBL, but when significant parts of the continent remained 521 

glaciated to maintain low RSL, thus preventing a large-scale marine incursion. The early part of 522 

MIS 3 is the only time during the Late Pleistocene when what may have been an extensive 523 

deglaciation is not followed by a substantial rise in sea level to levels similar to present-day 524 

(Grant et al., 2014). We would expect such conditions to prevent a large-scale marine incursion 525 

in the HBL, allowing instead the growth of peat, forest bed and fluvial deposits directly 526 

overlying till, corresponding to the observed Missinaibi Formation. However, two newly-527 

contributed OSL dates from the Severn River suggest that a marine incursion may have 528 

inundated the outer region of the HBL during this time (Fig. 3, 4). 529 

Irrespective of the configuration of the LIS during ca. 50,000 to ca. 42,000 yr BP, there is 530 

a general consensus of substantial continental glaciation between ca. 42,000 to ca. 35,000 yr BP 531 

which would likely have covered the entire HBL region. Karig and Miller (2013) document a 532 

proglacial lake in upper New York state from ca. 37,000 to ca. 34,000 yr BP, and Berger and 533 

Eyles (1994) document till in Southern Ontario at ca. 41,000 yr BP, indicating the proximal 534 

presence of a glacial lobe during that time. Furthermore, sedimentological evidence from the 535 

Gulf of Mexico suggests that the eastern lobe of the LIS was extended beyond Lake Ontario at 536 

that time (Sionneau et al., 2013; Tripsanas et al., 2007), and radiocarbon and OSL dating of cave 537 
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sediments indicates that the LIS may have grown to almost the LGM limit between ca. 40,000 to 538 

ca. 30,000 yr BP (Wood et al., 2010).  539 

Taken together, evidence suggests that the LIS covered large parts of North America 540 

from ca. 42,000 to ca. 35,000 yr BP, which would have undoubtedly glaciated all of the HBL 541 

during that time. Our shortage of age estimates from this time period may be taken as indirect 542 

evidence for a fully glaciated HBL, since this time period is well within the acceptable range of 543 

most geochronological methods. After this purported glaciation, there may have been a brief 544 

retreat of the LIS at ca. 30,000 yr BP (Dyke et al., 2002), followed by a rapid build-up of the ice 545 

sheet towards the LGM (Dyke et al., 2002; Lambeck et al., 2014).  546 

6. Conclusions  547 

Our review of chronology data from the HBL, Canada, helps to constrain the boundaries 548 

of the LIS for periods prior to the LGM, which can help validate important models of ice sheet 549 

extent, build-up and growth (Ganopolski and Calov, 2011; Ganopolski et al., 2010; Kleman et 550 

al., 2010; Stokes et al., 2012). Chronology data suggests that the HBL was ice-free during parts 551 

of MIS 7, MIS 5 and possibly during parts of MIS 3. While glacial retreats at MIS 7 and MIS 5 552 

are well-documented, evidence for a ice-free central region of the LIS during MIS 3 is 553 

noteworthy, since these data extend the ice-free eastern lobe of the LIS by at least 700 km 554 

westward and northward from what is suggested by existing Late Pleistocene sites in Southern 555 

Ontario and Atlantic Canada (Bajc et al., 2015; Rémillard et al., 2013). 556 

Although largely based on radiocarbon determinations, evidence for an ice-free HBL 557 

during the MIS 3 period is reinforced by (1) our successful efforts to re-date purported MIS 3 558 

sites and test the reliability of radiocarbon dating at the limit of this geochronometer, (2) 559 
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paleorecords from Atlantic Canada and Southern Ontario suggesting largely ice-free conditions 560 

during MIS 3 (e.g. Bajc et al., 2009; Bajc et al., 2015; Rémillard et al., 2013), and for which the 561 

western extent is unknown, and (3) a strong agreement between low RSL during MIS 3 and the 562 

lack of marine deposits in the Missinaibi Formation. Future iterations of relevant Earth system 563 

models should include land-based information of the layout and configuration of previous ice 564 

sheets, along with results from till correlations (Dubé-Loubert et al., 2013; Kaszycki et al., 2008; 565 

Nguyen, 2014), geomorphic evidence of ice flow regimes (Kleman et al., 2010; Veillette et al., 566 

1999) and models of ice volume (Peltier et al., 2015). 567 
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