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1 Introduction

The classical nonlinear Schrödinger (NLS) model with integrable boundaries has been in-

vestigated by Sklyanin in [1]. In his seminal paper, he also provided a systematic approach

to the study of boundary conditions compatible with integrability. The purpose of this

article is to provide a new integrable boundary associated with a non constant K matrix,

unlike the one found in [1]. The existence of a non constant boundary K matrix is not

a new phenomenon. It is worth remembering the examples in [2] for the NLS model and

in [3] for the sine-Gordon model. However, all these examples have in common the feature

that the dynamical part of the K matrix is represented by additional degrees of freedom

present at the boundary location. In other words, the NLS fields and the sine-Gordon field,

respectively, do not appear in the K matrix.

The boundary presented in the present article does not have additional dynamical

variables and the K matrix is characterized by the presence of the NLS fields. Such a new

boundary is obtained by dressing a Dirichlet boundary with a type I defect [4]. The idea

to dress a boundary with a defect in order to obtain new boundaries is not new. Such a

technique has been used before in [5, 6] and [7]. However, it is the first time it is applied to

the NLS model. It is interesting to point out that the specific dressing taken into account

in this article is not possible in the case of the sine-Gordon model, in the sense that it does

not lead to a new boundary. In fact, a type II defect must be used instead [7]. On the other

hand, it is possible in the case of the complex sine-Gordon model [6]. It is worth reminding

that the type I defect — first introduced in [8] in the context of the sine-Gordon model

— manifests itself as a discontinuity in the field at a specific location. Amongst its many

features, there is the possibility to retain a generalised momentum and the fact that the
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defect conditions have the form of Bäcklund transformation fixed at the defect location.

Not all integrable models can support a type I defect. Amongst the single scalar filed

theory that cannot support such a defect it is worth mentioning the Tzitzéica model —

also known as the a
(2)
2 affine Toda model — for which a type II defect has been introduced

in [9]. The main difference with respect to the type I defect is that the type II requires the

presence of extra degrees of freedom at the defect location. In the case of the NLS model,

see also [10] for different types of defects.

In this article the Lax pair technique will be used in conjunction with the classical r-

matrix formalism in order to prove the integrability of the new boundary. In this context,

it will be shown how the standard Poisson brackets need to be modified in order to take

into account the non trivial coupling of the fields at the boundary. It will be clear that

this modification is required by the presence of time derivatives in the boundary potential

appearing in the Lagrangian density. The same technique can also be applied to the defect

case and this allows to prove, beyond any doubts, the integrability of the kind of defect used

in this article. In fact, it is worth reminding that a complete proof of the defect integrability

via the classical r-matrix was missing so far, despite the fact that strong evidence has been

collected to support this statement. On this issue, see [4, 8, 9, 11–13] and also [14–16].

2 The nonlinear Schrödinger model in the bulk

The nonlinear Schrödinger equation with a cubic attractive interaction term will be taken

to be defined by the field equation

iut + uxx + 2(uū)u = 0. (2.1)

This may be derived in the bulk using an action principle based on the Lagrangian density

L =
i

2
(ūut − ūtu)− |ux|

2 + |u|4. (2.2)

In order to investigate the integrability of the NLS with boundary both a Lax pair

and a r-matrix approach will be used [17]. It is therefore necessary to introduce the main

ingredients of the formulation and to fix the notation. The Lax pair is

U = iūσ+ + iuσ− +
λ

2i
σ3,

V = −

(

i|u|2 +
λ2

2i

)

σ3 + (ūx − iλū)σ+ − (ux − iλu)σ−, (2.3)

where

σ+ =

(

0 1

0 0

)

, σ− =

(

0 0

1 0

)

, σ3 =

(

1 0

0 −1

)

,

with the property

∂tU − ∂xV + [U, V ] = 0 ⇐⇒ [∂t − V, ∂x − U ] = 0, (2.4)
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which holds for any choice of the spectral parameter λ. Note that the Lax pair is defined

up to a gauge transformation G, that is

∂xG = ŨG − GU,

∂tG = Ṽ G − GV, (2.5)

where (Ũ , Ṽ ) is an equivalent Lax pair.

The zero curvature condition (2.4) with matrices (2.3) implies the NLS equation (2.1).

It represents a compatibility condition for the following overdetermined system of linear

equations

∂xT (x, y, λ) = U(x, λ)T (x, y, λ),

∂tT (x, y, λ) = V (x, t)T (x, y, λ)− T (x, y, λ)V (y, t), (2.6)

where T represents a solution of the system with the initial condition

T (x, x, λ) = I.

This is called the monodromy matrix and it can be represented as the following path-

ordered exponential

T (x, y, t, λ) = P

(

exp

∫ x

y
dz U(z, t, λ)

)

. (2.7)

Some useful properties of the monodromy matrix are:

∂yT (x, y, λ) = −T (x, y, λ)U(y, λ),

T (x, y, λ) = T (x,w, λ)T (w, y, λ),

T (x, y, λ) = T−1(y, x, λ),

T̄ (x, y, λ) = σ2T (x, y, λ̄)σ2,

detT (x, y, λ) = 1. (2.8)

The standard definition of the Poisson brackets, which holds in the case of the NLS in

the bulk, is:

{A,B} = i

∫

∞

−∞

dz

(

δA

δu(z)

δB

δū(z)
−

δA

δū(z)

δB

δu(z)

)

, (2.9)

where A and B are two observables, functionals of the fields u and ū. The Poisson brackets

for the NLS fields are:

{u(x), u(y)} = {ū(x), ū(y)} = 0, {u(x), ū(y)} = iδ(x− y).

It follows that the Poisson brackets between two monodromy matrices for any choices of

the spectral parameters λ and µ are:

{T1(x, y, λ), T2(x, y, µ)} = [r12(λ− µ), T1(x, y, λ)T2(x, y, µ)], (2.10)

where

T1(λ) = T (λ)⊗ I, T2(µ) = I ⊗ T (µ).

– 3 –
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The classical r-matrix for the NLS model r12 is

r12(λ) =
P

λ
, (2.11)

where P is the permutation matrix in C
2 ⊗ C

2, namely

P =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











.

Note that

P (A⊗B) = (B ⊗A)P, (2.12)

where A and B are 2× 2 matrices.

Finally, a generating functional for the conserved charges is defined by Q(λ) =

trT (∞,−∞;λ). Provided the fields and their derivatives satisfy suitable conditions at ±∞,

that is they decay to zero,1 it can be shown that {Q(λ), Q(µ)} = 0. As a consequence, the

conserved charges are in involution.

3 The nonlinear Schrödinger model with an integrable defect

Some years ago is was shown in [4] how a defect can be incorporated into the NLS model

without spoiling integrability. One of the key features of this kind of defect is the existence

of a generalized momentum that remains conserved despite the presence of a defect at

a fixed location. In order to show how integrability is preserved, an argument based

on the modified Lax pair was provided. In particular, a generating functional for the

conserved charges was constructed, though the fact that the charges are in involution was

not proved. In other words two generating functionals Q(λ) and Q(µ) were not proved

to Poisson commute. For the time being it is assumed that the integrability argument

developed in [4] suffices, that is that the defect in [4] is indeed integrable. For convenience

and to fix notation, its key features will be presented in this section.

Suppose that a defect is located at x = 0. The field to either side of it will be denoted

v and u.2 A defect contribution D at x = 0 will be added and the full Lagrangian will be

L =

∫ 0

−∞

dxLv +D+

∫

∞

0
dxLu.

The corresponding defect conditions at x = 0 are:

vx =
∂D

∂v̄
−

∂

∂t

∂D

∂v̄t

ux = −
∂D

∂ū
+

∂

∂t

∂D

∂ūt
, (3.1)

1In particular, they satisfy Schwartz boundary conditions.
2Note that the fields u and v are interchanged with respect to [4].
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A suitable defect contribution, which allows a generalized momentum to remain conserved

was found to be

D =
iΩ

2

(

vt − ut
v − u

−
v̄t − ūt
v̄ − ū

)

+ΩD, (3.2)

with

Ω = (α2 − |v − u|2)1/2, D =
Ω2

3
+ (|v|2 + |u|2), (3.3)

and α a real parameter. The term D will be called the defect potential. With this choice

for the defect contribution, the defect conditions (3.1) at x = 0 become

vx = −
1

2

(

i(vt − ut)

Ω
− (v + u)Ω +

(v − u)(|v|2 + |u|2)

Ω

)

,

ux = −
1

2

(

i(vt − ut)

Ω
+ (v + u)Ω +

(v − u)(|v|2 + |u|2)

Ω

)

. (3.4)

In [4] it was noticed as these defect conditions represent Bäcklund transformations fixed

at x = 0. Actually, making use of this fact a slightly more general defect contribution was

found in [14]. In that case another real parameter β is added and the defect potential D is

modified as follows

D =
Ω2

3
+ (|v|2 + |u|2)− Ωβ2 + iβ(v̄u− ūv).

The defect conditions are also modified accordingly.

The generating functional for the conserved charges is:

QD(λ) = tr TD(λ) (3.5)

where the monodromy matrix T)D is:

TD(λ) = T (∞, 0, t;λ)KD(λ)T (0,−∞, t;λ),

with

KD =

(

1 +
β

λ

)

I +
1

λ
((v − u)σ− − (v̄ − ū)σ+ − iΩσ3) . (3.6)

Note that when α tends to zero the discontinuity disappears. Hence, when both parameters

α and β tend to zero the matrix KD tends to the identity. Also note that KD now depends

on the fields u and v. This is a common feature of the KD matrix associated with this

kind of defect. In [4], in order to find this matrix a modified Lax pair argument was

used. Briefly, according to the idea of modified Lax pairs — first introduced in [18] (see

also [8]) — two points a < 0 and b > 0 are introduced. They are the endpoints of two

regions overlapping the defect, one on the left R−, −∞ < x < b and one on the right R+,

a < x < ∞. Relying on the explicit knowledge of the defect conditions, suitable Lax pairs

(U−, V −) and (U+, V +) can be defined on each region. They provide both the equations

of motions for the field u and v and the boundary conditions as a consequence of the zero

curvature (2.4). In the overlapping interval a < x < b the matrices V −, V + must be related

by the following gauge transformation (see (2.5))

∂tKD = V +(b, t)KD −KDV
−(a, t). (3.7)
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It is this expression that allows to find the matrix KD (3.6). In this context, the matrix

KD is also called the Bäcklund matrix [15], which relates the eigenfunctions φ−(v, λ) of the

linear system

∂xφ
−(x, t, λ) = U−φ−(x, t, λ),

∂tφ
−(x, t, λ) = V −φ−(x, t, λ),

to the eigenfunctions φ+(u, λ) of a similar linear system, as follows

φ+(u, λ) = KD(u, v, λ)φ
−(v, λ).

4 The nonlinear Schrödinger model with an integrable boundary

In this section Sklyanin’s formalism will be sketched and a new integrable boundary will

be described. Consider the NLS field u restricted to the positive x-axis.3 This means that

at x = 0 a boundary term B is added and the full Lagrangian is

L =

∫

∞

0
dxLu +B. (4.1)

In [1], Sklyanin provided the first non trivial example of an integrable boundary for the

NLS model. According to [1] the term B is:

B = γ|u|2, (4.2)

where γ is a constant. Notice that the case γ = 0 corresponds to the Neumann boundary

condition and γ = ∞ corresponds to the Dirichlet boundary condition. Using the boundary

term (4.2), the boundary condition at x = 0 is:

ux = −γu. (4.3)

In order to construct a generating functional for the conserved charges, a suitable mon-

odromy matrix is needed. Sklyanin provides a generalisation of the monodromy matrix to

the boundary case which is:

T (λ) = T (∞, 0, t, λ)K(λ)T−1(∞, 0, t,−λ). (4.4)

The crucial step in proving that the conserved charges are in involution, relies on estab-

lishing the following relation

{T1(λ), T2(µ)} = [r12(λ− µ), T1(λ)T2(µ)]

−T2(µ)) r12(λ+ µ) T1(λ) + T1(λ) r12(λ+ µ) T2(µ). (4.5)

The K matrix associated with the boundary (4.2) is:

K = σ3 −
iγ

λ
I, (4.6)

3Note the difference with respect to the usual convention to confine the model to the negative x-axis.
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and K = I corresponds to the Dirichlet boundary condition.

As suggested in [6] (see also [5, 7]) it is possible to combine a defect with a boundary to

create a new boundary. Imagine to put a defect in front of a boundary located at x = 0. On

the negative x-axis the field is v and on the positive x-axis the field is u. Then assume that

the field v at the boundary satisfies the Dirichlet boundary condition, that is v = 0 and vt =

0. Consider the defect conditions (3.4) with v = vt = 0 and take the sum and the difference

of the two equations. It can be noticed that one of these equations provides an expression

for the field vx. Such an expression can be inserted into the other equation to provide a

new boundary condition for the NLS field u restricted to the positive half x-axis, which is

ux =
iut
2Ω

−
uΩ

2
+

u|u|2

2Ω
−

uβ2

2Ω
, Ω2 = (α2 − |u|2). (4.7)

The corresponding boundary term in the Lagrangian (4.1) is:

B =
iΩ

2

(ut
u

−
ūt
ū

)

+
Ω3

3
+ Ω|u|2 − Ω3β2. (4.8)

Notice the appearance of terms containing time derivatives in both the boundary term and

the boundary condition. Also notice that by applying the same trick to the sine-Gordon

model and the corresponding defect (type I [8]), no new boundaries are obtained. The

time derivative terms cancel out and in order to find new boundary it is necessary to use

the type II defect [9] instead, which contains additional degrees of freedom, as shown in [7].

In order to collect evidence to support the claim of integrability of the new boundary

and eventually prove it, the corresponding K matrix is needed and the modified Lax pair

technique will be used to find it. As mentioned in the previous section two regions R−,

−∞ < x < b and R+, a < x < ∞ overlap in a small interval a < x < b around the

boundary location x = 0. Making use of the boundary condition (4.7) the Lax pair can be

defined in each region, they are:

V +(u) = V (u) + θ(b− x)

[(

ux −
iut
2Ω

+
uΩ

2
−

u|u|2

2Ω
+

uβ2

2Ω

)

σ−

−

(

ūx +
iūt
2Ω

+
ūΩ

2
−

ū|u|2

2Ω
+

ūβ2

2Ω

)

σ+

]

, U+(u) = U(u) θ(x− b),

and

V −(u) = V (u) + θ(x− a)

[(

ux +
iut
2Ω

−
uΩ

2
+

u|u|2

2Ω
−

uβ2

2Ω

)

σ− (4.9)

−

(

ūx −
iūt
2Ω

−
ūΩ

2
+

ū|u|2

2Ω
−

ūβ2

2Ω

)

σ+

]

, U−(u) = U(u) θ(a− x).

A few key observations are in order. The region R− will be regarded as a reflection of the

region R+ according to the following reflection principle

u(x) = −u(a+ b− x), (4.10)

– 7 –
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where x ∈ (−∞, b), that is the region R−. Notice that this reflection principle is different

to the one used in [18]. At first, it could seem a little bit weird, however it is perfectly

justified. Consider the monodromy matrix that is required, it is [18]:

T (λ) = T (∞, b, t;λ)K(λ)T (a,−∞, t;λ). (4.11)

The idea is to use a suitable reflection principle in order to rewrite the element

T (a,−∞, t;λ) in (4.11) defined over the region R− as an element over the region R+

in such a way that (4.11) becomes [1]

T (λ) = T (∞, b, t;λ)K(λ)T−1(∞, b, t;−λ). (4.12)

It is exactly the reflection principle (4.10) that allows to identity the two expressions. In

fact, notice that

T−1(∞, b, t;−λ) = T (b,∞, t;−λ) = P exp

(∫ b

∞

dz U(u(z),−λ)

)

.

Perform the change of variable z = a+ b− x, then

P exp

(∫ b

∞

dz U(u(z),−λ)

)

= P exp

(∫ a

−∞

(−dx)U(u(a+ b− x),−λ)

)

.

Finally, using the reflection principle (4.10)

U(u(a+ b− x),−λ) = −U(u(x), λ),

which implies

T−1(∞, b, t,−λ) = T (a,−∞, t, λ).

It is now possible to use the equation (3.7), which also holds in the case of boundaries, in

order to find an expression for the K matrix. The Lax pairs (4.9) together with (4.10) are

used. The reader should bear in mind that the final region of interest is the positive half

x-axis. Notice that it is useful to use the following ansatz for the matrix K

K = A+Bσ3 + Cσ− +Dσ+,

where A, B, C and D are coefficient that depend on the spectral parameter λ and the

field u. Also notice that the matrix K is expected to depend on the field u as was the case

for the defect situation. The expression (3.7) provides the following constraints on these

coefficients

At = −λi(ūC + uD),

Bt =

(

iut
2Ω

−
uΩ

2
+

u|u|2

2Ω
−

uβ2

2Ω

)

D +

(

−
iūt
2Ω

−
ūΩ

2
+

ū|u|2

2Ω
−

ūβ2

2Ω

)

,

Ct =

(

−
iut
Ω

+ uΩ−
u|u|2

Ω
+

uβ2

Ω

)

B − 2iλu|+ 2i|u|2C − λ2iC,

Dt =

(

iūt
Ω

+ ūΩ−
ū|u|2

Ω
+

ūβ2

Ω

)

B − 2iλū| − 2i|u|2D + λ2iD.

– 8 –
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Without loss of generality it is assumed that the coefficient A is independent of the field

u. A solution to the constraints is:

K =

(

1−
(α2 + β2)

λ2

)

I +
2

λ
(ūσ+ − uσ− − iΩσ3) . (4.13)

Notice that a similar calculation can be performed by using the boundary condition (4.3).

In that case the matrix (4.6) is recovered.

4.1 On the integrability of the new boundary

The last step in the attempt to prove the integrability of the new boundary is to show that

the boundary monodromy matrix (4.12), where b is sent to zero — the defect location —

satisfies expression (4.5) with the K matrix given by (4.13). Consider the left hand side

of (4.5). A little bit of algebra allows to rewrite it as follows

{T1, T2}(KT−1)1(KT−1)2 + (TK)1(TK)2{T
−1
1 , T−1

2 }+ (KT )1{T
−1
1 , T2}(KT−1)2

+(TK)2{T1, T
−1
2 }(KT−1)1 + T1T2{K1,K2}T

−1
1 T−1

2 , (4.14)

where a concise, nevertheless understandable, notation has been used. The value of the

Poisson brackets {T1, T2} is given in (2.10) and the Poisson bracket involving T matrices

can also be calculated (see [17] where these kinds of computations are nicely explained).

They are:

{T−1
1 (x, y,−λ), T−1

2 (x, y,−µ)} = [r12(λ− µ), T−1
1 (x, y,−λ)T−1

2 (x, y,−µ)],

{T1(x, y, λ), T
−1
2 (x, y,−µ)} = T1(x, y, λ) r12 (λ+ µ)T−1

2 (x, y,−µ)

−T−1
2 (x, y,−µ) r12(λ+ µ)T1(x, y, λ),

{T−1
1 (x, y,−λ), T2(x, y, µ)} = T−1

1 (x, y,−λ) r12 (λ+ µ)T2(x, y, µ)

−T2(x, y, µ) r12(λ+ µ)T−1
1 (x, y,−λ),

Then (4.14) becomes

[r12(λ− µ), T1(λ)T2(µ)]− T2(µ)r12(λ+ µ)T1(λ) + T1(λ)r12(λ+ µ)T2(µ)

+T1(λ)T2(µ) [ {K1,K2} − r12(λ− µ)K1(λ)K2(µ) +K1(λ)K2(µ)r12(λ− µ)

−K1(λ)r12(λ+ µ)K2(µ) +K2(µ)r12(λ+ µ)K1(λ) ]T
−1
1 (−λ)T−1

2 (−µ). (4.15)

The first line of (4.15) provides the terms on the right hand side of (4.5). Hence, it must be

{K1,K2} = r12(λ− µ)K1(λ)K2(µ)−K1(λ)K2(µ)r12(λ− µ)

+K1(λ)r12(λ+ µ)K2(µ)−K2(µ)r12(λ+ µ)K1(λ). (4.16)

Note that the K matrix does depend on the field u, hence its Poisson brackets are not

automatically zero.

First consider the right hand side of (4.16). Using the explicit expressions (2.11) for

the r matrix and (4.13) for the K matrix, it is possible to compute

r12(λ− µ)K1(λ)K2(µ)−K1(λ)K2(µ)r12(λ− µ)

=
2

λµ

(

1 +
α2 + β2

λµ

)

[P, I ⊗ (ūσ+ − uσ− − iΩσ3)]

– 9 –
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K1(λ)r12(λ+ µ)K2(µ)−K2(µ)r12(λ+ µ)K1(λ)

=
2

λµ

(

1−
α2 + β2

λµ

)

[P, I ⊗ (ūσ+ − uσ− − iΩσ3)] , (4.17)

where property (2.12) has been used. Noticing that

P

λµ
=

r

µ
−

r

λ
,

expressions (4.17), combine together, provide the right hand side of (4.16), which becomes

4

λµ
[P, I ⊗ (ūσ+ − uσ− − iΩσ3)] = 2 [r12,K1(λ) +K2(µ)] . (4.18)

In order to calculate the left hand side of (4.16), the standard definition for the Poisson

brackets (2.9) needs to be slightly modified. In fact, consider the Lagrangian density (4.1)

with boundary term (4.8). Because of the presence of time derivatives, the canonical mo-

menta conjugate to the fields u and ū are different with respect to the conjugate canonical

momenta for the system without the new boundary. In fact, by definition, they are:

δL

δut
= i

ū

2
θ(x) + i

Ω

2u
δ(x) = πθ(x) + ρδ(x),

δL

δūt
= −i

u

2
θ(x)− i

Ω

2ū
δ(x) = π̄θ(x) + ρ̄δ(x).

(4.19)

This strongly suggests the need to modify the Poisson brackets in order to take into account

relations (4.19) at the boundary location. Note how in [9] a similar observation concerning

the conjugate canonical momenta was used in order to discuss second class constraints in

the context of defects. Then, by definition, the canonical Poisson brackets are:

{A,B} =

∫

∞

−∞

dz

{(

δA

δπ(z)

δB

δu(z)
−

δA

δu(z)

δB

δπ(z)
+

δA

δπ̄(z)

δB

δū(z)
−

δA

δū(z)

δB

δπ̄(z)

)

θ(z)

+

(

δA

δρ(z)

δB

δu(z)
−

δA

δu(z)

δB

δρ(z)
+

δA

δρ̄(z)

δB

δū(z)
−

δA

δū(z)

δB

δρ̄(z)

)

δ(z)

}

.

After a little bit of algebra they can be expressed in terms of the fields u and ū, since

π = iū/2, π̄ = −iu/2, ρ = iΩ/2u and ρ̄ = −iΩ/2ū. Hence, the Poisson brackets become

{A,B} = i

∫

∞

0
dz

(

δA

δu(z)

δB

δū(z)
−

δA

δū(z)

δB

δu(z)

)

− 2iΩ

(

∂A

∂u

∂B

∂ū
−

∂A

∂ū

∂B

∂u

)

, (4.20)

where an overall factor of four has been removed. Notice the difference with respect to

the Poisson brackets (2.9). Clearly, the computations performed previously involving the

Poisson brackets for the T matrices are still valid. In addition, the Poisson brackets for

the K matrices can now be calculated. Since the K matrix holds at the boundary location,

only the second term in the Poisson brackets (4.20) is used. Hence

{K(λ),K(µ)}=−
4iΩ

λµ

(

2(σ+ ⊗ σ−−σ− ⊗ σ+)+
iσ3
Ω

⊗ (uσ−+ūσ+)−(uσ−+ūσ+)⊗
iσ3
Ω

)

.

Using the facts that

2(σ+ ⊗ σ− − σ− ⊗ σ+) = [P, I ⊗ σ3]

– 10 –
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and

(uσ− + ūσ+)⊗ σ3 − σ3 ⊗ (uσ− + ūσ+) = [I ⊗ (ūσ+ − uσ−), P ],

the Poisson brackets of the boundary K matrix become

{K(λ),K(µ)} = 2 [r12,K1(λ) +K2(µ)] , (4.21)

as expected. As a consequence, expression (4.16) becomes an identity and integrability is

proved.

As a final note, consider the quantity Ω defined in (4.7). When Ω is equal to zero the

NLS fields at the boundary acquires a fixed value. In particular, when the parameter α

goes to zero the NLS fields at the boundary reduce to zero and the new boundary turns

into the Dirichlet boundary. This makes perfectly sense since, in this case, the defect used

to create the new boundary disappears. Hence the Poisson brackets (4.20) reduce to the

more familiar brackets used in the case of the NLS field restricted to a half line with, for

instance, Dirichlet boundary conditions.

4.2 Conserved charges

In this section it will be shown how the conserved charges can be obtained by using a

suitable generating functional. In order to do so a brief summary of the procedure used in

the bulk will be also presented. Consider first the transition matrix T (L,−L, λ) in the bulk.

Note that this matrix is defined on an interval. Periodic boundary conditions are chosen

on the fields with period 2L. Results for the NLS on the full x−axis are obtained by simply

sending L to ∞ in the final results. In that case the fields and their derivatives are assumed

to satisfy Schwartz boundary conditions at infinity (see section 2). It can be proved [17]

that the transition matrix has the following asymptotic expansion for large real λ

T (L,−L, λ) = (I +W (L, λ)) expZ(L,−L, λ)(I +W (−L, λ))−1, (4.22)

with

W (L, λ) =
∞
∑

n=1

Wn(L)

λn
O(|λ|−∞),

Z(L,−L, λ) = −iLλσ3 − i
∞
∑

n=1

Zn(L,−L)

λn
O(|λ|−∞).

The series coefficients are completely determined. They are:

Z(L,−L) =

(

zn(L,−L) 0

0 −z̄n(L,−L)

)

, zn =

∫ L

−L
ū(z)wn(z) dz, (4.23)

and

W (L) =

(

0 w̄n(L)

−wn(L) 0

)

, w1 = u, wn+1 = −i(wn)x − ū
n−1
∑

k=1

wkwn−k. (4.24)

– 11 –
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The generating functional Q(λ), that is the trace of the monodromy matrix, reduces to

the following expression

Q(λ) = Tr(expZ(L,−L, λ)) = 2 cos(iLλ+ izn) +O(|λ|−∞), λ → ±i∞, (4.25)

where the periodic boundary conditions have been used. Without loss of generality

consider the terms for which λ → i∞, then

ln(TrT (L,−L, λ)) = −i
(z1
λ

+
z2
λ2

+
z3
λ3

)

+O(|λ|−4), λ → i∞, (4.26)

where the first three orders in 1/λ have only been considered. This expansion provides

the conserved charges in the bulk. Explicitly, the first three conserved charges are:

I1 = −i

∫ L

−L
|u|2 dz, I2 = −

∫ L

−L
ūux dz, I3 = i

∫ L

−L
(ūuxx + |u|4) dz.

They correspond — up to an overall factor of −i — to the ‘probability’ or ‘number’,

momentum and energy, respectively.

In the presence of a boundary the situation is slightly different. Consider the NLS

model on the interval 0 ≤ x ≤ L. According to [1] the generating functional is defined as

follows

Q(λ) = Tr
(

K̂(L;λ)T (L, 0;λ)
)

= Tr
(

K̂(L;λ)T (L, 0;λ)K(0;λ)T−1(L, 0;−λ)
)

. (4.27)

The matrices K̂ and K take into account the specific boundary at L and 0, respectively. In

the present case the matrix K̂ is set equal to the identity — Dirichlet boundary conditions4

— while the matrix K is given by (4.13). In the end, the generating functional is provided

by the trace of the monodromy matrix (4.12) restricted to the interval 0 ≤ x ≤ L. Such a

monodromy matrix can be written as follows

T (L, 0;λ) = (I +W (L, λ)) expZ(L, 0, λ)(I +W (0, λ))−1K(0, λ)

·(I +W (0,−λ)) exp(−Z(L, 0,−λ))(I +W (L,−λ))−1,

where (4.22) has been used. Hence

Q(λ) = Tr
(

exp(Z(L, 0, λ)− Z(L, 0,−λ))(I +W (0, λ))−1K(0, λ)(I +W (0,−λ))
)

.

The last group of terms can be rewritten as an asymptotic expansion for large values of λ

as follows

(I +W (0, λ))−1K(0, λ)(I +W (0,−λ)) =
∞
∑

n=0

Hn(0)

λn
+O(|λ|−∞) (4.28)

with

Hn(0)=

(

hn ĥn
h̃n h̄n

)

, h0=1, h1=−2iΩ, h2=−(α2+β2)+2|u|2, h3=2iuxū, . . . ,

(4.29)

4Note that this choice for the boundary condition at L does not interfere with the final choice of Schwartz

boundary conditions when L is sent to ∞.
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where the matrix (4.13) has been used. It should bear in mind that only the diagonal terms

of the matrix Hn are relevant. Finally

ln(Tr T (L, 0, λ)) = −i
∞
∑

n=1

(1− (−1)n)
zn
λn

+ ln

(

∞
∑

n=1

hn
λn

)

+O(|λ|−∞), λ → i∞. (4.30)

Note that the even conserved charges disappear. Up to an overall factor of −2i, the first

two conserved charges to survive, that is the ‘number’ and the energy, are modified as

follows

Î1=−2i

∫ L

0
|u|2 dz−2iΩ|x=0, Î3=2i

∫ L

0
(|u|4−ūxux) dz+

(

−2iΩβ2+2iΩ|u|2+
2

3
iΩ3

)∣

∣

∣

∣

x=0

,

(4.31)

where the logarithm expansion up to order 1/λ3 has been used.

It can be easily verified that Î1 and Î3 coincide with the conserved charges that can be

obtained starting with the bulk charge density and using the boundary conditions (4.7),

as first shown in [19]. In fact, consider the charges I1 on the interval 0 ≤ x ≤ L, that is

I1 = −2i

∫ L

0
|u|2 dz.

Its time derivative is:

∂tI1 = −2i

∫ L

0
(utū+ uūt) dz = −2(uxū− uūx)|x=0,

where the equation of motion (2.1) has been used. Then, using the boundary condition (4.7)

this expression can be rewritten as follows

∂tI1 = 2i∂tΩ|x=0.

Hence, the modified conserved charge Î1 is:

Î1 = −2i

∫ L

0
|u|2 dz − 2iΩ|x=0.

Similarly

I3 = 2i

∫ L

0
(|u|4 + uxxū) dz = 2i

∫ L

0
(|u|4 − uxūx) dz − 2iuxū|x=0,

and its time derivative is:

∂tI3 = 2i(utūx + uxūt)|x=0 − 2i∂t(uxū)|x=0.

Using the boundary conditions

∂tI3 = ∂t

(

−2iΩ|u|2 − i
2

3
Ω3 + 2iβ2Ω− 2iuxū

)∣

∣

∣

∣

x=0

– 13 –
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Hence the modified conserved charge Î3 is:

Î3 = 2i

∫ L

0
(|u|4 − ūxux) dz +

(

−2iΩβ2 + 2iΩ|u|2 +
2

3
iΩ3

)∣

∣

∣

∣

x=0

.

The conserved charges (4.31) obtained by expanding the trace of the monodromy matrix

have been recovered. This procedure can be easily extended to the higher order conserved

charges, though the calculations are much heavier. As an example, the result for the first

non trivial charge, Î5, is presented in appendix A.

5 Conclusions

In this article the possibility to combine a boundary with a defect in order to create a new

integrable boundary has been explored, classically, in the context of the NLS model. Using a

Lagrangian approach a new boundary potential has been obtained by combining a Dirichlet

boundary with a type I defect [4]. Unlike previous examples, the new boundary does not

have any additional degrees of freedom and the boundary conditions are characterized by

the presence of time derivatives of the NLS fields. Clearly, these can be eliminated using

the equation of motion. However, the price to pay for doing so is the introduction of

higher order space derivatives. The modified Lax pair technique has been used to find the

associated K matrix, which, as expected, does depend on the NLS fields. The present case

provides the first example of a non-constant boundary K matrix without additional degrees

of freedom in the context of the NLS model. Then, the integrability of the new boundary

has been proved via the classical r matrix. In order to do so, modified Poisson brackets

has been constructed. These take into account the non trivial coupling of the NLS fields

at the boundary. Finally, the generating functional has been used to derived the first three

conserved charges and these results have been found to agree with the conserved charges

obtained by using a Lagrangian approach, that is by using simply the boundary conditions

instead of the boundary K matrix.

The present investigation also offers the opportunity to prove the integrability of the

type I defect. In fact, in order to prove that

{QD(λ),QD(µ)} = 0, (5.1)

it is necessary to compute the Poisson brackets of the defect KD matrices. The procedure

is very similar to the one adopted in this article for the boundary case. The key point is

the modification of the Poisson brackets as explained in section 4.1. In the case of the type

I defect associated with the defect KD matrix (3.6), the Poisson brackets are taken to be

{A,B} = i

∫

∞

0
dz

(

δA

δu(z)

δB

δū(z)
−

δA

δū(z)

δB

δu(z)

)

− 2iΩ

(

∂A

∂u

∂B

∂ū
−

∂A

∂ū

∂B

∂u

)

= i

∫ 0

−∞

dz

(

δA

δv(z)

δB

δv̄(z)
−

δA

δv̄(z)

δB

δv(z)

)

− 2iΩ

(

∂A

∂v

∂B

∂v̄
−

∂A

∂v̄

∂B

∂v

)

.

Using this definition for the Poisson brackets, it is found that

{KD(λ),KD(µ)} = 2 [r12,KD(λ)⊗ 1 + 1⊗KD(µ)]
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which suffices to prove (5.1). Clearly, the procedure explained in the present article can be

extended to other models in order to prove the integrability of the type I and type II defects.

In this article soliton preserving (SP) boundary conditions have been considered. It

would be interesting to see whether the dressing operating here can be extended to create

new, soliton non preserving (SNP) boundary conditions. In this case the generating func-

tional is going to change and this will affect the conserved charges. However, first it should

be clarify whether the reflection principle used in section 4 for finding the K matrix still

holds or should be modified.

The NLS model can be generalised to multi component complex scalar fields, the

so called vector NLS models [17]. In recent year these models have been the subject of

several investigations in the context of defects [20] and boundaries [21, 22] (see also [2] and

references therein). However, to the author’s knowledge, no type I-like defects are known.

The author believe strongly that vector NLS models can support such defects. It will be

interesting to find them and then investigate their dressing of known boundaries.
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A Î5 charge

In this appendix the modified conserved charge Î5 is derived. Consider the charges I5 on

the interval 0 ≤ x ≤ L. Using formulae (4.23), (4.24) it reads

I5 = −2i

∫ L

0

(

ūuxxxx + 6uxxū|u|
2 + ūxxu|u|

2 + 5u2xū
2 + 6uxūx|x|

2 + 2|u|6
)

dz

= −2i

∫ L

0

(

ūxxuxx − 8uxūx|u|
2 − ū2xu

2 − u2xū
2 + 2|u|6

)

dz

+2i
(

ūuxxx − ūxuxx + 6uxū|u|
2 + ūxu|u|

2
)

Using the equation of motion (2.1) its time derivative can be written as follows:

∂tI5 = 2i
(

ūxtuxx + ūxxuxt − 4uxūt|u|
2 − 4utūx|u|

2
)

|x=0

−4
(

ūxu|u|
4 − uxū|u|

4 + uxuū
2
x − ūxūu

2
x

)

|x=0

+∂t
(

ūuxxx − ūxuxx + 6uxū|u|
2 + ūxu|u|

2
)

|x=0.

Then, using the boundary condition (4.7) and fiddling with the algebra, this expression

can be rewritten as a total time derivative

∂tI5 = 2i ∂t
(

ūuxxx − ūxuxx + 5uxū|u|
2 − 2ūxuxΩ− 2(ūxu+ uxū)(Ω

2 + β2)
)

|x=0

2i ∂t

(

Ω|u|4 − 4Ω|u|2β2 +Ωβ4 − 2Ω3β2 +
Ω4

5

)∣

∣

∣

∣

x=0

.
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Hence, the modified conserved charge is:

Î5 = −2i

∫ L

0

(

ūuxxxx + 6uxxū|u|
2 + ūxxu|u|

2 + 5u2xū
2 + 6uxūx|x|

2 + 2|u|6
)

dz

−2i
(

ūuxxx − ūxuxx + 5uxū|u|
2 − 2ūxuxΩ− 2(ūxu+ uxū)(Ω

2 + β2)
)

|x=0

−2i

(

Ω|u|4 − 4Ω|u|2β2 +Ωβ4 − 2Ω3β2 +
Ω4

5

)∣

∣

∣

∣

x=0

. (A.1)

An identical result is obtained by using the generating functional (4.30). In this case a

lengthy calculation leads to the following expression

Î5 = −2i

∫ L

0

(

ūuxxxx + 6uxxū|u|
2 + ūxxu|u|

2 + 5u2xū
2 + 6uxūx|x|

2 + 2|u|6
)

dz (A.2)

−2i
(

ūuxxx − ūxuxx + 6ūux|u|
2 + ūxu|u|

2 − (ūxu+ ūux)(α
2 + β2)− 2Ωūxux

)

|x=0

−2i

(

8Ω3|u|2 + 6Ω|u|4 − (4Ω3 + 6Ω|u|2)(α2 + β2) + Ω(α2 + β2)2 +
16Ω5

5

)∣

∣

∣

∣

x=0

.

where the coefficients hi (4.29) of the (4.28) expansion have been used, together with

h4 = −2|u|4 + 2|u|2(α2 + β2) + 4ūuxΩ

h5 = 2i
(

uxxūx − uxxxū− 4ūux|u|
2 + ūxu(α

2 + β2)− ūxu|u|
2 + 2ūxuxΩ

)

.

It can be easily verified that expressions (A.1) and (A.2) are identical provided the relation

α2 = Ω2 + |u|2 is used.
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