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Abstract  
The GluA1 subunit of the AMPA receptor has been implicated in schizophrenia. While GluA1 

is important for cognition, it is not clear what the role of GluA1 is in hedonic responses that 

are relevant to the negative symptoms of disorders such as schizophrenia. Here, we tested 

mice that lack GluA1 (Gria1−/− mice) on consumption of sucrose solutions using a licking 

microstructure analysis. GluA1 deletion drastically reduced palatability (as measured by the 

mean lick cluster size) across a range of sucrose concentrations. Although initial lick rates 

were reduced, measures of consumption across long periods of access to sucrose solutions 

were not affected by GluA1 deletion and Gria1−/− mice showed normal satiety responses to 

high sucrose concentrations. GluA1 deletion also failed to impair flavour conditioning, in 

which increased intake of a flavour occurred as a consequence of prior pairing with a high 

sucrose concentration. These results demonstrate that GluA1 plays a role in responding on 

the basis of palatability rather than other properties, such as the automatic and learnt post-

ingestive, nutritional consequences of sucrose. Therefore, GluA1 knockout mice provide a 

potential model of anhedonia, adding converging evidence to the role of glutamatergic 

dysfunction in various symptoms of schizophrenia and related disorders. 

  



 3 

Introduction 

Glutamatergic dysfunction has been proposed as a potential cause of schizophrenia 1. 

Recently the Gria1 gene that encodes for the GluA1 subunit of the AMPA receptor for 

glutamate has been found to show genome wide association to schizophrenia 2,3. 

Furthermore, post-mortem tests have revealed a reduction in hippocampal GluA1 mRNA 4,5, 

and GluA1 6 and AMPA binding sites 7 in schizophrenia patients. Genetically modified mice 

that lack a functional Gria1 gene now provide a useful means of studying the causal role of 

glutamatergic dysfunction in neuropsychiatric disorders. 

 

Knockout of Gria1 in mice (Gria1−/− mice) results in impaired hippocampal plasticity 8-11 and 

causes cognitive deficits that are associated with dysfunction of the hippocampus 12-14 and 

amygdala 15,16. Furthermore, Gria1−/− mice show behavioural abnormalities that are relevant 

to schizophrenia suggesting that Gria1 deletion models components of the disorder 17-19. In 

particular Gria1−/− mice fail to reduce attention to recently experienced stimuli as a 

consequence of impaired short-term habituation 14,20-22, suggesting that GluA1 deletion may 

model aspects of aberrant salience in disorders such as schizophrenia 23,24. 

 

There is evidence that Gria1−/− mice show behavioural changes that mimic negative 

symptoms, such as anhedonia, in schizophrenia. Ruling out potential confounds, however, 

has proved difficult. For example, there are reports of reduced social behaviour 18,19,25, but 

while these deficits may reflect an aspect of social anhedonia, it is possible that these tests 

are confounded by deficits in spatial habituation 14,20,26. Similarly, it is possible that other 

demonstrations of emotional blunting in Gria1−/− mice 17,27 were caused by impaired short-

term habituation resulting in knockout mice failing to express the normal behavioural 

response.  

 

The role of GluA1 containing AMPA receptors in anhedonia has also been examined in 

relation to consumption of palatable foods 18,25,28. While it remains to be seen whether 
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palatability responses to foods provide a measure of anhedonia that is pertinent to the 

negative symptoms of schizophrenia 29, specific measures of consummatory behavior in 

response to palatable foods can be used to gauge hedonic value in animals (see 30 for a 

review). Previous studies examining sucrose consumption in Gria1−/− mice, however, have 

examined the quantity of intake and have provided mixed results. Bannerman, et al. 28 found 

a reduction in 5% glucose intake, whereas Maksimovic, et al. 25 found increased intake of 

8% sucrose, and Barkus, et al. 18 found similar levels of consumption of 8% sucrose in wild-

type (WT) and GluA1 deficient mice, and the preference for sucrose over water did not differ 

between groups. The different findings may reflect a number of procedural differences 

between the studies. 

 

A problem with using the level of consumption of a palatable food as a measure of 

palatability is that consumption reflects multiple components of feeding behaviour. For 

example, the consumption of sucrose follows an inverted U-shaped function as 

concentration increases 31. Thus, at low concentrations of sucrose, increases in sweetness 

result in increased intake, but this peaks at intermediate levels and increases in 

concentration beyond this point result in reduced intake. We have recently demonstrated 

that mice consume significantly more of 10% sucrose than 2.5% and 20% 32. Thus, while the 

level of consumption may reflect a component of palatability indicating the hedonic value of 

the food, it can also reflect a satiety response reflecting post-ingestive feedback 33. 

 

Compared to measures of consumption, the manner in which foods are consumed offers 

greater insight into their palatability. In studies examining the microstructure of licking 

behaviour it has been found that rodents make clusters of licks (i.e., a series of licks made in 

quick succession) that are separated by pauses 32,34. In contrast to measures of 

consumption, the mean number of licks per cluster (mean lick cluster size) increases 

monotonically as a function of sucrose concentration 32,34,35. Therefore, lick cluster size has 
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been proposed as a measure of palatability that is dissociable from measures of 

consumption (see 30 for a recent review). 

 

In order to provide a purer test of the role of GluA1 containing AMPA receptors in the 

processing of hedonic value we measured the palatability of sucrose solutions at a variety of 

concentrations in Gria1−/− mice using a microstructure analysis of licking behaviour that 

allowed the measurement of lick cluster sizes (the number of licks in succession in which 

there is less than 0.5 s between the end of one lick and the start of the next 32,36). It was 

found that palatability responses were substantially reduced in Gria1−/− mice in comparison 

to WT controls, however, measures of consumption were not consistently affected by GluA1 

deletion. Furthermore, flavour conditioning, based on flavour-sucrose learning, was 

unimpaired, suggesting that the role of GluA1 was limited to palatability responses and did 

not extend to learning based on other properties of sucrose.  
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Results 

Experiment 1: The effect of sucrose concentration on licking during a 10 minute test in 

hungry mice 

Mice were allowed 10 minutes of access to solutions of 4%, 8%, 16% and 32% sucrose. For 

both Gria1−/− and WT mice the vast majority of licks were made within clusters of two or 

more licks (Gria1−/− mean = 97.80% ±0.45 SEM; WT mean = 99.60% ±0.08 SEM), however, 

the proportion of licks made within clusters was significantly higher for WT than Gria1−/− 

mice, t(13) = 3.65, p = .003. The measures of licking behaviour for Gria1−/− and WT mice are 

shown in Figure 1. Summaries of statistical analyses of the main effects and interactions of 

sucrose concentration and genotype are reported in Table 1. Pairwise comparisons for the 

significant main effects of sucrose concentration are shown in Table 2. Total licks increased 

with increasing sucrose concentration similarly for both genotypes (see Figure 1a). There 

was a similar increase across concentrations for volume consumed, but for this measure 

there was an effect of genotype that significantly interacted with sucrose concentration (see 

Figure 1b). Simple main effects analysis revealed that Gria1−/− mice consumed less than WT 

mice of 4%, p < .001, and 8%, p = .004, but not 16% or 32%, p-values > .05. Lick cluster 

sizes (the number of successive licks with less than 0.5 s between the end of one lick and 

the start of the next 32,36) were significantly lower for 4% sucrose compared to all other 

concentrations (see Figure 1c). Gria1−/− mice, however, showed significantly lower lick 

cluster sizes than WT mice, and the effect of genotype did not interact with sucrose 

concentration. WT mice showed longer inter-lick intervals within lick clusters than Gria1−/− 

mice (see Figure 1d). Gria1−/− mice showed similar mean lick durations and volume per 1000 

licks to WT mice across all sucrose concentrations (see Figure 1e-f). 

 

Licking behaviour during the first five minutes 

Initial lick rates have been suggested to reflect the palatability of the consumed food 37,38. 

Therefore, in order to assess initial lick rate we analysed licking behaviour restricted to the 

first five minutes of each session, in one-minute time bins. The data for the total licks and 
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mean lick cluster size are shown in Figure 2 (panels a-d). The number of licks changed with 

sucrose concentration, F(3, 39) = 15.2, p < .001, and showed a general decrease over bins, 

F(4, 52) = 151, p < .001 (see Figure 2a-b). There was a significant bin x genotype 

interaction, F(4, 52) = 4.97, p = .002. Further analysis of the significant bin x genotype 

interaction showed that WT mice made a greater number of licks than Gria1−/− mice in bin 2, 

F(1, 13) = 9.22, p = .010, but not in any other bins, F-values < 4.0, p-values > .05. The effect 

of bin was significant for WT mice, F(4, 24) = 60.7, p < .001, and for Gria1−/− mice, F(4, 28) = 

110, p < .001. All other main effects and interactions were non-significant, F-values < 3.5, p-

values > .08.  

 

Mean lick cluster size increased as a function of sucrose concentration, F(3, 39) = 9.46, p < 

.001 (see Figure 2c-d). Gria1−/− mice made smaller lick cluster sizes than WT mice, F(1, 13) 

= 10.4, p = .007, however, this effect interacted with bin, F(4, 52) = 10.5, p < .001. 

Furthermore, there was a significant concentration x bin x genotype interaction, F(12, 156) = 

3.82, p = .035. To analyse the significant three-way interaction, separate genotype x bin 

ANOVAs were conducted for each sucrose concentration. For the 4%, 8%, and 16% 

sucrose concentrations, there were significant main effects of bin, F-values > 6.4, p-values < 

.006, and genotype, F-values > 9.0, p-values < .011, but no significant bin x genotype 

interactions, F-values < 1.8, p-values > .19. For 32% sucrose, there was a significant bin x 

genotype interaction, F(4, 52) = 9.46, p = .005. Further analysis of this interaction showed 

that WT mice had larger lick cluster sizes than Gria1−/− mice in bin 1, F(1, 13) = 8.46, p = 

.012, but not in any other bins, F-values < 3.5 p-values > .08. Additionally, there was an 

effect of bin for WT mice, F(4, 24) = 14.6, p = .006, and for Gria1−/− mice, F(4, 28) = 7.50, p = 

.008. 

 

Experiment 2: The effect of sucrose concentration on licking during a 1 hour test in hungry 

mice 
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In order to assess consumption over a longer period, in which licking may be affected by 

satiety, mice were allowed 1 hour of access to solutions of 4%, 8%, 16% and 32% sucrose. 

For both Gria1−/− and WT mice the vast majority of licks were made within clusters of two or 

more licks (Gria1−/− mean = 96.70% ±0.36 SEM; WT mean = 99.02% ±0.27 SEM), however, 

the proportion of licks made within clusters was significantly higher for WT than Gria1−/− 

mice, t(30) = 5.10, p < .001. The measures of licking behaviour for Gria1−/− and WT mice are 

shown in Figure 3. Summaries of the main effects and interactions for these analyses can be 

seen in Table 1. Pairwise comparisons for the significant main effects of sucrose 

concentration are shown in Table 2. The total licks and volume consumed decreased with 

increasing sucrose concentration similarly for both genotypes, however there was little 

difference between 4% and 8% (see Figure 3a-b). There was a significant genotype by 

sucrose concentration interaction for lick cluster sizes (see Figure 3c, and Table 1 for the 

statistic). Simple main effects analysis revealed that WT mice had lick cluster sizes that 

increased monotonically with increasing sucrose concentration, F(3, 45) = 14.6, p < .001, 

whereas Gria1−/− mice did not differ with changing sucrose concentration, F(3, 45) = 2.48, p 

= .12. WT mice had higher lick cluster sizes than Gria1−/− mice for all sucrose 

concentrations, F-values > 10.9, p-values < .003. 

 

WT mice showed higher inter-lick intervals within lick clusters than Gria1−/− mice (see Figure 

3d). This measure did not differ with sucrose concentration for either genotype. The mean 

lick duration and mean volume per 1000 licks were similar between genotypes (see Figure 

3e-f). Mean volume per 1000 licks decreased across concentrations, but mean lick duration 

did not. 

 

Licking behaviour during the first five minutes 

As for Experiment 1 we assessed initial lick rates by restricting analysis of licking to the first 

five minutes of the test, measured in one-minute time bins. For the measures of total licks 

and mean lick cluster size, data can be seen for the first five minutes of exposure, in one-
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minute time bins, in Figure 2 (panels e-h). Total licks was, on the whole, greater for higher 

concentrations than for lower concentrations, F(3, 90) = 4.66, p = .004, and decreased over 

bins, F(4, 120) = 131, p < .001 (see Figure 3e-f). Gria1−/− mice made significantly fewer licks 

than WT mice, F(1, 30) = 26.1, p < .001. There was a significant concentration x bin x 

genotype interaction, F(12, 360) = 2.71, p = .002. To analyse the significant three-way 

interaction, separate genotype x bin ANOVAs were conducted for each sucrose 

concentration. For 4% sucrose, there was no significant bin x genotype interaction, F < 1, p 

> 0.4. For 8% sucrose, there was a significant bin x genotype interaction, F(4, 120) = 4.58, p 

= .002. Further analysis of this interaction showed that WT mice made more licks than 

Gria1−/− mice in bins 1-4, F-values > 7.2, p-values < .012, but not in bin 5, F(1, 30) = 2.60, p 

= .12. For 16% and 32% sucrose, there were significant bin x genotype interactions, F-

values > 7.8, p-values < .001. Further analyses of these interactions showed that WT mice 

made more licks than Gria1−/− mice in all bins, F-values > 4.6, p-values < .04. 

 

Mean lick cluster size increased as a function of sucrose concentration, F(3, 90) = 6.58, p < 

.001 (see Figure 3g-h). Lick cluster size decreased over bins, F(4, 120) = 43.1, p < .001, and 

Gria1−/− mice made smaller lick clusters than WT mice, F(1, 30) = 37.9, p < .001. There was 

a significant concentration x bin x genotype interaction, F(12, 360) = 2.31, p = .045. To 

further analyse the significant three-way interaction, separate genotype x bin ANOVAs were 

conducted for each sucrose concentration. For 4% sucrose, there were significant main 

effects of bin, F(4, 120) = 7.28, p < .001, and genotype, F(1, 30) = 18.2, p < .001, and a 

significant bin x genotype interaction, F(4, 120) = 2.80, p = .029. Further analysis of this 

interaction showed that WT mice had larger lick cluster sizes than Gria1−/− mice on bins 1, 3, 

4, and 5, F-values > 4.2, p-values < .048, but not on bin 2, F(1, 30) = 1.91, p = .18. For 8%, 

16%, and 32% sucrose, there were significant main effects of bin, F-values > 11.1, p-values 

< .001, and genotype, F-values > 15.9, p-values < .001, and significant bin x genotype 

interactions, F-values > 2.63, p-values < .038. Further analyses of these interactions showed 
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that WT mice had larger lick cluster sizes than Gria1−/− mice in all bins, F-values > 8.3, p-

values < .008. 

 

Experiment 3: Water and sucrose consumption over a 1 hour test in thirsty mice 

In order to assess the generality of the GluA1-dependent effects in Experiments 1 and 2 

mice were tested with either water or 32% sucrose, but now conducted under restricted 

access to water, such that mice were motivated to drink by thirst.  For both Gria1−/− and WT 

mice the vast majority of licks were made within clusters of two or more licks (Gria1−/− mean 

= 98.06% ±0.41 SEM; WT mean = 98.74% ±0.35 SEM) and there was no significant 

difference between genotypes, t(36) = 1.27, p = 0.21. The measures of licking behaviour for 

Gria1−/− and WT mice are shown in Figure 4. Summaries of the main effects and interactions 

for these analyses can be seen in Table 3. There was a significant genotype x group 

interaction for both the total number of licks and volume consumed (see Figure 4a-b and 

Table 3 for the statistic). Simple main effects analysis showed that the total number of licks 

and consumption for water was greater in WT mice compared to Gria1−/− mice (total licks: 

F(1, 34) = 4.83, p = .035; volume consumed: F(1, 34) = 7.99, p = .008). The reverse was 

true for 32% sucrose, with Gria1−/− mice making more licks and consuming more than WT 

mice (total licks: F(1, 34) = 7.07, p = .012; volume consumed: F(1, 34) = 4.67, p = .038). For 

both genotypes total number of licks and consumption was greater for 32% sucrose than for 

water (WT mice: total licks: F(1, 34) = 6.93, p = .013, volume consumed: F(1, 34) = 4.73, p = 

.037; Gria1−/− mice: total licks: F(1, 34) = 52.3, p < .001, volume consumed: F(1, 34) = 48.0, 

p < .001). 

 

For lick cluster sizes genotype interacted with group (see Figure 4c and Table 3 for statistic) 

such that whereas WT mice made larger lick clusters for 32% sucrose than for water, F(1, 

34) = 36.6, p < .001, Gria1−/− mice did not, F < 1, p = .60. Lick cluster sizes were smaller in 

Gria1−/− mice than WT mice for both water, F(1, 34) = 4.23, p = .048, and 32% sucrose, F(1, 

34) = 54.8, p < .001. For all other measures (inter-lick intervals within lick clusters, mean lick 
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duration, and volume consumed per 1000 licks), behaviour was similar for WT and Gria1−/− 

mice regardless of whether water or sucrose was being consumed (see Figure 4d-f). 

 

Experiment 4: Flavour conditioning with limited (1 session) training in hungry mice 

Training 

In order to assess learning based on the properties of sucrose mice were exposed to a 

flavor paired with a high concentration of sucrose and another flavor paired with a low 

concentration of sucrose. Flavour conditioning is demonstrated by increased intake of the 

flavor previously paired with high concentration of sucrose compared to the other flavor 

when both flavours are paired with the same concentration of sucrose 36. Mice were allowed 

a single 10 minute period of access to a flavour mixed with 32% sucrose (CS+) and a 10 

minute period of access to another flavour mixed with 4% sucrose (CS-). The total licks, 

volume consumed and mean lick cluster size during training are reported in Table 4. Total 

licks and volume consumed were higher to 32% sucrose solution than to 4% (total licks: F(1, 

28) = 87.5, p < .001; volume consumed: F(1, 28) = 134, p < .001). Gria1−/− mice made a 

greater number of total licks compared to WT mice, F(1, 28) = 6.68, p = .015, but the effect 

of genotype for volume consumed was not significant, F(1, 28) = 1.09, p = .31. The effect of 

genotype did not significantly interact with sucrose concentration for either measure (total 

licks: F(1, 28) = 2.97, p = .096; volume consumed: F(1, 28) = 3.46, p = .074). 

 

Mean lick cluster size was larger for 32% sucrose than for 4% in both genotypes, although 

this difference was much greater in the WT mice. There was a significant sucrose 

concentration x genotype interaction, F(1, 28) = 4.58, p = .041. Further analysis of this 

significant interaction showed that mean lick cluster size was greater for 32% sucrose than 

for 4% for WT mice, F(1, 28) = 33.6, p < .001, and Gria1−/− mice, F(1, 28) = 7.68, p = .010. 

WT mice, however, showed a greater mean lick cluster size than Gria1−/− mice for 32% 

sucrose, F(1, 28) = 6.51, p = .016, but not for 4%, F(1, 28) = 1.68, p = .21. 
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Test 

Twenty fours after training mice were allowed access to the CS+ and CS- flavours (10 

minutes per flavour), but now both flavours were mixed with 4% sucrose. Greater 

consumption of the CS+ would indicate conditioning to that flavour. Total licks, volume 

consumed, and mean lick cluster size during the test session are shown in Figure 5 (panels 

a-c). Total licks and volume consumed were higher for the CS+, which had previously been 

paired with 32% sucrose, than to the CS-, which had been paired with 4% sucrose (total 

licks: F(1, 28) = 13.4, p = .001; volume consumed: F(1, 28) = 22.6, p < .001). There were no 

overall differences between genotypes (total licks and volume consumed: F-values < 1, p-

values > .4) and no significant interactions between sucrose concentration and genotype 

(total licks and volume consumed: F-values < 2.3, p-values > .1). 

 

Mean lick cluster size was larger overall for WT mice than for Gria1−/− mice, F(1, 28) = 29.2, 

p < .001, and the mean lick cluster size for the CS+ was higher than that for the CS-, F(1, 

28) = 6.11, p = .020. The stimulus x genotype interaction was not significant, F(1, 28) = 0.02, 

p = .90. 

 

Experiment 5: Flavour conditioning with extended (8 sessions) training in hungry mice 

Training 

Experiment 4 failed to show a difference in flavor conditioning between Gria1−/− and WT 

mice. It is possible that the single exposure to the flavours in Experiment 4 did not provide 

sufficient training to allow a difference between genotypes to emerge. Therefore, in 

Experiment 5 naïve mice received extended training with the flavours prior to the test of 

learning. Mice were allowed eight 10 minute periods of access to a flavour mixed with 32% 

sucrose (CS+) and eight 10 minute periods of access to another flavour mixed with 4% 

sucrose (CS-), with one period of access to each flavour per day. Total licks, volume 

consumed, and mean lick cluster size across all eight training sessions are reported in Table 

4. Total licks and volume consumed were higher for the 32% sucrose than to 4% (total licks: 
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F(1, 11) = 71.8, p < .001; volume consumed:  F(1, 11) = 77.0, p < .001). Both measures 

were similar between genotypes, F-values < 1.5, p-values > .2, and there was no significant 

interaction of sucrose concentration and genotype, F-values < 3.7, p-values > .08. 

 

Mean lick cluster size was larger for 32% sucrose than for 4% in both genotypes, F(1, 11) = 

13.4, p = .004. WT mice had larger lick cluster sizes than Gria1−/− mice, but this effect was 

not significant, F(1, 11) = 1.68, p = .22. There was no significant interaction of sucrose 

concentration and genotype, F < 1, p > .9. 

 

Test 

Twenty fours after training mice were allowed access to the CS+ and CS- flavours (10 

minutes per flavour), but now both flavours were mixed with 4% sucrose. Total licks, volume 

consumed, and mean lick cluster size during the test session are shown in Figure 5 (panels 

d-f). Total licks and volume consumed were higher for the CS+, which had previously been 

paired with 32% sucrose, than for the CS-, which had been paired with 4% sucrose (total 

licks: F(1, 11) = 11.6, p = .006; volume consumed: F(1, 11) = 12.7, p = .004). The genotypes 

did not differ in total licks, F < 1, p > .3, but Gria1−/− mice consumed less than WT mice, F(1, 

11) = 6.70, p = .025. There was no sucrose concentration x genotype interaction for either 

measure, F-values < 1, p-values > .7. 

 

Mean lick cluster size for WT mice was slightly larger for the CS+ than the CS- flavour, but 

this was not the case for Gria1−/− mice. However, there was no sucrose concentration by 

genotype interaction, F(1, 11) = 1.28, p = .28, and the main effects of sucrose concentration, 

F < 1, p > .9, and genotype, F(1, 11) = 1.81, p = .21, were not significant. 
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Discussion 

The experiments reported here examined the effect of GluA1 deletion on palatability 

responses to sucrose solutions. Palatability was assessed using lick cluster size, rather than 

just overall levels of consumption. It was found that GluA1 deletion drastically reduced the 

number of licks in a cluster for a range of sucrose concentrations, regardless of whether 

mice were motivated to consume due to hunger or thirst. In contrast, hunger-motivated 

consumption, when measured over an hour-long period, was normal in Gria1−/− mice. 

Furthermore, Gria1−/− mice were clearly sensitive to the difference between sucrose 

concentrations and showed normal flavour conditioning, based on experience of flavours 

paired with different sucrose concentrations. The findings demonstrate that GluA1 deletion 

impaired the hedonic response to a food, but left satiety responses and sucrose based 

learning intact. 

 

Gria1−/− mice, when hungry, showed a reduction in lick cluster size both when tested over a 

10 minute and an hour long period. Furthermore, when initial consumption during the first 

five minutes was assessed, Gria1−/− mice showed an immediate reduction in lick cluster size. 

Therefore, the reduction was not due to overly rapid adaptation to sucrose, but instead 

reflects a reduction in the automatic response to sucrose. The reduced lick cluster size is in 

contrast to other aspects of licking behaviour that were unaffected by GluA1 deletion. 

Specifically Gria1−/− mice showed normal lick duration and volume consumed per lick. Given 

this, it is unlikely that the reduction in lick cluster size reflects a general deficit in licking. 

However, the inter-lick interval within lick clusters was shorter for Gria1−/− mice than WT 

mice, when mice were hungry. The shorter inter-lick intervals within lick clusters should, all 

other things being equal, lead to larger lick cluster sizes due to fewer inter-lick intervals 

exceeding the 0.5 s inter-cluster interval criterion. Indeed, it has been argued that some 

reductions in lick cluster size are due to longer inter-lick intervals within lick clusters 39. 

Therefore, it seems unlikely that the shorter inter-lick intervals were the cause of the reduced 

lick cluster sizes in Gria1−/− mice. Furthermore, in addition to the data reported here, we also 
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analysed lick clusters using 0.25 and 1 s inter-cluster interval criteria. GluA1 deletion 

reduced lick cluster sizes regardless of the inter-cluster interval criteria. Importantly, when 

mice were thirsty, Gria1−/− mice showed reduced lick cluster sizes in the absence of any 

effect on the inter-lick interval within lick clusters. It is unclear why Gria1−/− mice had shorter 

inter-lick intervals than WT mice under food restriction but not water restriction, but 

differences in motivational levels to drink might be a contributing factor to this difference. 

 

Consistent with other studies of lick cluster size in rodents 32,34,35, lick cluster size increased 

monotonically as a function of sucrose concentration in WT mice. This effect was evident 

when mean lick cluster sizes were calculated over a variety of durations of access to 

sucrose. This was in contrast to the relationship between measures of consumption and 

sucrose concentration. When measured over 10 minutes, total licks and volume consumed 

tended to increase as a function of sucrose concentration, but when measured over one 

hour, total licks and volume consumed tended to decrease with increasing concentrations 

beyond 8%. These results are consistent with the suggestion that initial lick rates reflect the 

palatability of a solution 37,38, but licking over longer periods is affected by satiety responses 

that lead to reductions in consumption of high sucrose concentrations. Thus, consumption 

over time is optimal for intermediate sucrose concentrations. The dissociable effects of 

sucrose concentration on lick cluster size and consumption demonstrate that cluster size is 

more directly linked to palatability. 

 

When measured over an hour-long period, measures of consumption did not differ between 

hungry Gria1−/− and WT mice. Gria1−/− mice showed the same decrease in total licks and 

volume consumed with increasing sucrose concentration as WT mice, demonstrating that 

they were sensitive to the differences in the concentration. However, rates of consumption 

were lower in Gria1−/− mice when measured over 10 minutes. As previously mentioned, initial 

rates of consumption likely reflect palatability 37,38. Therefore, the reduced consumption in 

Gria1−/− mice in the 10-minute exposure is consistent with the findings of reduced lick cluster 
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size, indicating a decrease in palatability. These findings were also evident in the analyses 

of the initial five-minutes of access to sucrose. 

 

When mice were thirsty GluA1 deletion reduced consumption of water, but, in contrast, 

increased consumption of sucrose over the period of an hour. This is in contrast to the 

normal levels of consumption of sucrose evident in Gria1−/− mice over the same time period 

when hungry. It is possible that GluA1 deletion reduced thirst such that water consumption 

was lower, but this does not account for the increase in consumption of sucrose in Gria1−/− 

mice when thirsty. Although it is not clear how GluA1 deletion had opposite effects on the 

consumption of water and sucrose when thirsty, the fact that lick cluster sizes were reduced 

for both water and sucrose in Gria1−/− mice provides a further demonstration that the deficit 

in lick cluster size was independent of overall levels of licking and consumption. 

 

The fact that GluA1 deletion reduced the mean lick cluster size for water, which may be 

considered to be a relatively neutral stimulus in terms of palatability, may suggest that 

Gria1−/− mice have a general deficit in making lick clusters such that rapid licking cannot be 

sustained. There is evidence, however, that water activates acid-sensing taste receptor 

cells, suggesting that it is not neutral and may have some hedonic value when drinking is 

motivated by thirst 40. Therefore, the reduced lick cluster size for water in Gria1−/− mice may 

still simply reflect impaired hedonic responding. While it cannot be ruled out entirely that 

Gria1−/− mice have a motor deficit that results in reduced lick cluster size, the fact that there 

were not consistent changes to other aspects of licking behavior, as mentioned previously, 

makes this possibility appear unlikely. More generally, it is not clear whether GluA1 deletion 

reduced the perceived palatability of foods, or whether instead it simply impaired the 

behavioural expression of palatability. At present it is not possible to test these two 

accounts. 
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Despite the reduction in mean lick cluster size, GluA1 knockout mice showed successful 

flavour learning. In the test phase of the conditioning procedure mice were presented with 

flavours, both mixed with 4% sucrose, but one flavour had previously been paired with 32% 

and one with 4% sucrose in the training phase. Therefore, a difference in consumption in the 

test phase reflects learning based on the prior exposure 36. Gria1−/− and WT mice showed a 

similar conditioning effect with greater consumption of the flavour previously paired with 32% 

than the flavour paired with 4%. This was true when mice received one training exposure 

with each flavour and when mice received eight training exposures with each flavour. 

Therefore, it is unlikely that the lack of effect of genotype is due to either a floor or ceiling 

effect. Importantly, the normal learning in Gria1−/− mice demonstrates that they are able to 

discriminate between different sucrose concentrations. Furthermore, the fact that Gria1−/− 

mice consumed more of a flavour previously paired with 32% sucrose than a flavour 

previously paired with 4% sucrose provides further evidence that motivation for sucrose is 

not impaired.  

 

The results of the present experiments provide the first clear evidence that GluA1 containing 

AMPA receptors play a role in hedonic responses, and that GluA1 deletion models some of 

the negative symptoms of disorders such as schizophrenia. Crucially, the results now 

highlight the need for greater understanding of the role of glutamatergic signalling in 

palatability and hedonia generally. It has been suggested that schizophrenia may reflect an 

altered interaction between the glutamatergic and dopaminergic systems 1. Consistent with 

this proposal, GluA1 deletion has been found to reduce the rate of extracellular dopamine 

clearance in the striatum 19, resulting in hyperdopaminergia, suggesting that this may be a 

cause of the altered, schizophrenia-like behaviours in Gria1−/− mice. Hyperdopaminergia per 

se, however, does not result in the pattern of performance seen with Gria1−/− mice. Thus, 

hyperdopaminergia, as modeled by the dopamine transporter knockout mouse, actually 

results in increased lick cluster sizes 41. Hedonia has also been linked to endogenous opioid 

neurotransmission 42,43, raising the possibility that GluA1 deletion may affect this system. 
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Indeed, GluA1 has been implicated in aspects of opiate-dependent learning 44, and plays a 

role in regulating synaptic plasticity in areas in which opioid neurotransmission has been 

implicated in aspects of hedonia 45-48. Direct manipulation of opioid receptors on palatability 

as measured by lick cluster sizes, however, have failed to find an effect 49,50. Given the lack 

of clarity, there is now a need for better understanding of the primary neurobiological causes 

of hedonic reactions and the effect of glutamatergic dysfunction on those processes.  

 

It is possible that GluA1 deletion impairs responding based on hedonic value by affecting the 

function of the basolateral amygdala. The basolateral amygdala contains neurons that fire in 

response to palatability that also modulate firing in the gustatory cortex 51,52, and the 

basolateral amygdala is important for encoding the sensory-specific incentive motivational 

properties of food rewards 53. GluA1 deletion mimics the effects of lesions of the basolateral 

amygdala on sensory-specific encoding 15,16,54, such that behavior is dependent on stimulus-

response associations rather than response-outcome associations 55. The present results 

may build on this analysis by further demonstrating that GluA1 is necessary for the 

automatic, unconditioned behavioural response to food based on its sensory-specific 

qualities, as well as conditioned responding caused by the associative retrieval of sensory-

specific qualities of food.  

 

In conclusion, the results presented here show that GluA1 is necessary for specific 

consummatory behaviours that relate to the palatability of food. These results provide a new 

insight into the neural basis of palatability and responding based on hedonic value.  
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Methods 

Subjects 

Subjects were Gria1−/− mice and WT age-matched littermates, bred in the Life Sciences 

Support Unit at Durham University (see 8 for details of genetic construction, breeding and 

subsequent genotyping). The mice were originally derived from the 129S2svHsd and 

C57BL/6J/OlaHsd strains, and have subsequently been backcrossed onto the C57BL/6J 

line. The majority of mice had previously been used in unrelated appetitive magazine 

approach studies, and half of the mice in Experiment 2 had previously been used in 

Experiment 4. The mice in Experiment 3 had previously been used in an unrelated appetitive 

magazine approach study and an unrelated study involving the consumption of flavoured 

sucrose solutions. Mice were caged in groups of one to nine in a temperature controlled 

housing room on a 12-hour light-dark cycle (light period: 8am to 8pm). The mice were 11-30 

weeks old at the start of testing, with weights ranging from 14.6-33.4g. For experiments 1, 2, 

4, and 5, prior to the start of testing, weights were reduced by restricting access to food and 

mice were maintained at 85% of their free-feeding weights throughout the experiment. 

These mice had ad libitum access to water in their home cages. For experiment 3, mice had 

ad libitum access to food in their home cages, but were given only one hour of access to 

water per day in their home cage (in addition to any liquids consumed during the 

experimental procedure). All procedures were in accordance with the United Kingdom 

Animals (Scientific Procedures) Act 1986 and were approved by the UK Home Office under 

project license number PPL 70/7785. 

 

Apparatus 

A set of eight identical operant chambers (interior dimensions: 21.6 x 17.8 x 12.7cm; ENV-

307W, Med Associates, Inc., Fairfax, VT, USA), enclosed in sound-attenuating cubicles 

(ENV-022V, Med Associates) were used. The operant chambers were controlled by Med-PC 

IV software (Med Associates). The side walls were made from aluminium, and the front and 

back walls and the ceiling were made from clear Perspex. The chamber floors each 
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comprised a grid of 24 stainless steel rods (0.32cm diameter), spaced 0.79cm apart and 

running perpendicular to the front of the chamber (ENV-307W-GFW, Med Associates). 

Retractable sippers (ENV-352AW, Med Associates) and a small hole in one wall of each 

chamber allowed graduated pipettes to be extended into, and retracted from, the chambers. 

The graduated pipette (10:0.1 ml) allowed measurement of consumption by comparing the 

volumes before and after testing. Contact lickometer controllers (ENV-250, Med Associates) 

allowed contacts between the mice and the graduated pipettes to be recorded at a resolution 

of 0.01 s. A fan (ENV-025F, Med Associates) was located within each of the sound-

attenuating cubicles and was turned on during sessions. Sucrose solutions were made 

weight/volume with commercially available sucrose in distilled water. Flavours used were 

cherry, grape, orange and apple Kool Aid (0.05% w/v, Kraft Foods USA, Rye Brook, NY, 

USA). 

 

Procedure 

Experiment 1: The effect of sucrose concentration on licking during a 10 minute test in 

hungry mice 

Gria1−/− (4 female, 4 male) and WT mice (3 female, 4 male) were allowed to consume 4%, 

8%, 16%, and 32% sucrose solutions on twelve sessions, with one session per day, 

arranged in three blocks of four sessions such that each sucrose concentration was 

consumed once per block. The order in which the concentrations were presented was 

counterbalanced as far as possible within each genotype within each 4-session block, such 

that half of the Gria1−/− mice and approximately half of the WT mice received the two low 

concentrations (4% and 8%) in the first two sessions and the remaining mice received the 

two high concentrations (16% and 32%) with the order of each concentration 

counterbalanced across mice. Then, in the third and fourth sessions, mice received the two 

remaining concentrations in an order approximately counterbalanced with respect to the 

order of the initial two concentrations. Sessions lasted 15 minutes, with the pipette extended 

into the chamber for the final 10 minutes. 
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Experiment 2: The effect of sucrose concentration on licking during a 1 hour test in hungry 

mice 

Gria1−/− (8 female, 8 male) and WT mice (8 female, 8 male) received 8 sessions, two per 

concentration, of exposure to sucrose. Sessions lasted 65 minutes, with the pipette 

extended into the chamber for the final 60 minutes. All other details were identical to 

Experiment 1. 

 

Experiment 3: Water and sucrose consumption over a 1 hour test in thirsty mice 

Gria1−/− (12 female, 6 male) and WT mice (8 female, 12 male) that were under mild water 

deprivation were allowed to consume water for four sessions (data not shown). Mice were 

then split into two groups, with 6 female and 3 male Gria1−/− and 4 female and 6 male WT 

mice per group, matched for mean lick cluster size within genotype and sex. For another 

four sessions, one group continued to receive water while the other group had access to 

32% sucrose solution instead. Each session lasted 65 minutes, with the pipette extended 

into the chamber for the final 60 minutes. 

 

Experiment 4: Flavour conditioning with limited (1 session) training 

Gria1−/− (8 female, 7 male) and WT mice (7 female, 8 male) received a single training 

session, consisting of two trials with an inter-trial interval of approximately 10 minutes. On 

one trial, mice were allowed to drink 4% sucrose solution paired with one flavour (the CS-), 

and on the other trial they could drink 32% sucrose solution paired with another flavour (the 

CS+). The order in which these trials were presented was approximately counterbalanced 

within genotype. Approximately half of the mice were trained with cherry and grape Kool Aid, 

and the other mice with orange and apple Kool Aid. The allocation of flavours to CS+ and 

CS- training was counterbalanced as far as possible within genotype. Each trial lasted 15 

minutes, with the pipette extended into the chamber for the final 10 minutes. Twenty-four 

hours following the training session, mice were given a single test session using the same 
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procedure as during training except that mice received both the CS+ and CS- flavours paired 

with 4% sucrose solution. The order of presentation of flavours during the test session was 

counterbalanced as far as possible with respect to the previous counterbalancing. 

 

Experiment 5: Flavour conditioning with extended (8 sessions) training 

Gria1−/− (3 female, 3 male) and WT mice (3 female, 4 male) received eight sessions of 

training with one CS+ trial and one CS- trial (approximately 10-min ITI) per session. The 

order of trial types (CS+, CS-) alternated across consecutive sessions. All other procedures 

were the same as Experiment 4. 

 

Data Analysis 

Multiple aspects of licking behaviour were recorded and analysed: total number of licks, 

volume consumed, mean lick cluster size, mean inter-lick interval (lick onset to subsequent 

lick onset) within lick clusters, mean lick duration, and mean volume consumed per 1000 

licks. A lick cluster was defined as a series of two or more licks made with less than 0.5 s 

between the end of one lick and the start of the next.  

 

All data were analysed using multifactorial ANOVA. Interactions were analysed with simple 

main effects analysis using the pooled error term from the original ANOVA or separate 

ANOVAs for repeated measures with more than two levels. Where sphericity of within-

subjects variables could not be assumed, a Greenhouse-Geisser correction was applied. 

Post-hoc analyses used the Holm-Bonferroni correction to control for multiple comparisons. 

For those experiments with adequate sample-sizes (Experiments 2 and 4), all analyses were 

initially conducted including sex as a between-subjects factor. Male mice showed larger lick 

cluster sizes than female mice in Experiment 2 (overall and during the first five minutes) and 

in the test stage of Experiment 4. Males also made a higher number of licks than females in 

Experiment 2, but this was not observed in other situations. The only time sex interacted 

with any other factors was for the total number of licks made during the training stage of 
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Experiment 4. Here, female Gria1−/− mice made more licks than female WT mice (but this 

was not true for males), and female WT mice made fewer licks than male WT mice (but this 

was not true for Gria1−/− mice). Overall, therefore, sex had a very limited effect on the 

measures of licking behaviour and thus this factor was excluded from the main analyses for 

ease of exposition. 
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Figure Legends 
 

Figure 1. Licking behaviour as a function of sucrose concentration during a short, 10 minute 

access to sucrose in hungry mice. Six different measures of licking behaviour are given for 

WT (black bars) and Gria1−/− (white bars) mice for consumption of 4%, 8%, 16%, and 32% 

sucrose solutions: (a) total licks; (b) volume consumed (ml); (c) mean lick cluster size; (d) 

inter-lick interval within lick clusters (s); (e) mean lick duration (s); (f) mean volume per 1000 

licks (ml). Error bars indicate SEM. 

 

Figure 2. Initial lick rates and lick cluster sizes across the first five minutes of access to 

sucrose in one-minute time bins in hungry mice. Panels a-d show licking behaviour in 

Experiment 1 (10 minute test) and panels e-h show licking behaviour in Experiment 2 (1 

hour test). Panels a, b, e and f show total licks. Panels c, d, g and h show mean lick cluster 

size. Error bars indicate ±SEM. 

 

Figure 3. Licking behaviour as a function of sucrose concentration during a long, 1 hour 

access to sucrose in hungry mice. Six different measures of licking behaviour are given for 

WT (black bars) and Gria1−/− (white bars) mice for consumption of 4%, 8%, 16%, and 32% 

sucrose solutions: (a) total licks; (b) volume consumed (ml); (c) mean lick cluster size; (d) 

inter-lick interval within lick clusters (s); (e) mean lick duration (s); (f) mean volume per 1000 

licks (ml). Error bars indicate SEM. 

 

Figure 4. Licking behaviour during a 1 hour access to either water or 32% sucrose in thirsty 

mice. Six different measures of licking behaviour are given for WT (black bars) and Gria1−/− 

(white bars) mice for consumption of water and 32% sucrose solution: (a) total licks; (b) 

volume consumed (ml); (c) mean lick cluster size; (d) inter-lick interval within lick clusters (s); 

(e) mean lick duration (s); (f) mean volume per 1000 licks (ml). Error bars indicate SEM. 
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Figure 5. Flavour conditioning as a consequence of limited (one session) and extended 

(eight sessions) training. Measures of responding to the CS+ flavour and the CS- flavour are 

shown by black and white bars respectively. The measures of licking behaviour for limited 

training (Experiment 4) are shown in the left column and those for extended training 

(Experiment 5) are shown on the right. Panels a and d show total licks, b and e show volume 

consumed (ml), and c and f show mean lick cluster size. Error bars indicate SEM. 
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Table 1. 
Results of mixed-model ANOVAs of concentration (4%, 8%, 16%, or 32%) by genotype (WT or Gria1−/−), showing main effects of concentration 
and genotype, and the concentration x genotype interaction, for six measures of consumption behaviour in Experiments 1 and 2. Relevant 
degrees of freedom are given in the table headings (df1 = between-groups degrees of freedom; df2 = error degrees of freedom). Asterisks 
denote significance at various levels: * p < .05; ** p < .01; *** p < .001. 

Measure 
Experiment 1: 10 minute exposure Experiment 2: 1 hour exposure 

Concentration 
(df1=3, df2=39) 

Genotype 
(df1=1, df2=13) 

Interaction 
(df1=3, df2=39) 

Concentration 
(df1=3, df2=90) 

Genotype 
(df1=1, df2=30) 

Interaction 
(df1=3, df2=90) 

Total Licks 
F = 16.8 

p < .001 *** 
F = 1.18 
p = .30 

F = 1.77 
p = .17 

F = 28.6 
p < .001 *** 

F = 1.30 
p = .26 

F = 0.64 
p = .52 

Volume Consumed 
F = 27.2 

p < .001 *** 
F = 10.6 

p = .006 ** 
F = 3.47 

p = .025 * 
F = 63.2 

p < .001 *** 
F = 0.19 
p = .67 

F = 0.52 
p = .54 

Mean Lick Cluster Size 
F = 9.25 

p < .001 *** 
F = 9.47 

p = .009 ** 
F = 0.68 
p = .57 

F = 14.2 
p < .001 *** 

F = 34.3 
p < .001 *** 

F = 9.70 
p < .001 *** 

Mean Inter-lick Interval 
within Lick Clusters 

F = 3.20 
p = .034 * 

F = 8.46 
p = .012 * 

F = 0.38 
p = .77 

F = 0.75 
p = .48 

F = 4.81 
p = .036 * 

F = 0.92 
p = .40 

Mean Lick Duration 
F = 0.37 
p = .77 

F = 1.27 
p = 0.28 

F = 0.28 
p = .84 

F = 2.51 
p = .096 

F = 1.38 
p = .25 

F = 0.93 
p = .39 

Mean Volume per 1000 
Licks 

F = 0.86 
p = .47 

F = 2.54 
p = .14 

F = 1.84 
p = .16 

F = 5.57 
p = .008 ** 

F = 0.77 
p = .39 

F = 0.63 
p = .52 
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Table 2 
Pairwise comparisons of the effect of sucrose concentration on licking behaviour in Experiments 1 and 2. Holm-Bonferroni-adjusted pairwise 
comparisons of the significant main effects of sucrose concentration that were identified in Table 1 to have occurred in the absence of a 
sucrose concentration x genotype interaction. Asterisks denote significance at various levels: * p < .05; ** p < .01; *** p < .001. 

Pairwise 
Comparison 

Experiment 1: 10 minute exposure Experiment 2: 1 hour exposure 

Total Licks 
Mean Lick Cluster 

Size 

Mean Inter-lick 
Interval within Lick 

Clusters 
Total Licks Volume Consumed 

Mean Volume per 
1000 Licks 

4% vs 8% p = .004 ** p = .017 * p > .05 p > .05 p > .05 p > .05 

4% vs 16% p = .013 * p = .036 * p > .05 p < .001 *** p < .001 *** p = .014 * 

4% vs 32% p < .001 *** p = .007 ** p > .05 p < .001 *** p < .001 *** p > .05 

8% vs 16% p > .05 p > .05 p > .05 p < .001 *** p < .001 *** p > .05 

8% vs 32% p = .002 ** p > .05 p > .05 p < .001 *** p < .001 *** p > .05 

16% vs 32% p = .027 * p > .05 p > .05 p < .001 *** p < .001 *** p > .05 
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Table 3. 
Results of univariate ANOVAs of group (water or 32% sucrose) by genotype (WT or Gria1−/−), showing main effects of group and genotype, and 
the group x genotype interaction, for six measures of consumption behaviour in Experiment 3. Relevant degrees of freedom are given in the 
table headings (df1 = between-groups degrees of freedom; df2 = error degrees of freedom). Asterisks denote significance at various levels: * p < 
.05; ** p < .01; *** p < .001. 

Measure 

Experiment 3:  mild water deprivation 

Group 
(df1=1, df2=34) 

Genotype 
(df1=1, df2=34) 

Interaction 
(df1=1, df2=34) 

Total Licks 
F = 49.8 

p < .001 *** 
F = 0.11 
p = .75 

F = 11.8 
p = .002 ** 

Volume Consumed 
F = 42.5 

p < .001 *** 
F = 0.22 
p = .64 

F = 12.4 
p = .001 ** 

Mean Lick Cluster Size 
F = 20.6 

p < .001 *** 
F = 44.8 

p < .001 *** 
F = 14.3 

p = .001 ** 

Mean Inter-lick Interval 
within Lick Clusters 

F = 0.23 
p = .64 

F = 0.50 
p = .48 

F = 1.58 
p = .22 

Mean Lick Duration 
F = 6.09 

p = .019 * 
F = 0.21 
p = .65 

F = 2.06 
p = .16 

Mean Volume per 1000 
Licks 

F = 3.23 
p = .081 

F = 1.53 
p = .22 

F = 0.03 
p = .86 
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Table 4. 
Flavour conditioning training data for Experiments 4 and 5. Mean (SEM) total licks, volume consumed, and lick cluster size for WT and Gria1−/− 
mice for 4% and 32% sucrose solutions during training for Experiments 4 and 5. 

Measure 

Experiment 4: 1 session training Experiment 5: 8 sessions training 

WT Gria1−/− WT Gria1−/− 

4% 32% 4% 32% 4% 32% 4% 32% 

Total Licks 316 (76) 790 (81) 428 (57) 1116 (81) 307 (64) 785 (99) 266 (34) 1021 (127) 

Volume Consumed 
(ml) 

0.36 (0.09) 0.93 (0.10) 0.35 (0.06) 1.13 (0.05) 0.40 (0.06) 0.94 (0.07) 0.22 (0.06) 0.96 (0.08) 

Mean Lick Cluster Size 9.2 (1.3) 17.3 (2.2) 7.4 (0.7) 11.3 (1.0) 10.2 (1.5) 15.1 (3.4) 6.7 (0.5) 11.6 (1.6) 
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