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Abstract

We provide an abstract framework for analyzing discretization error for eigenvalue problems dis-
cretized by discontinuous Galerkin methods such as the local discontinuous Galerkin method and
symmetric interior penalty discontinuous Galerkin method. The analysis applies to clusters of
eigenvalues that may include degenerate eigenvalues. We use asymptotic perturbation theory for
linear operators to analyze the dependence of eigenvalues and eigenspaces on the penalty param-
eter. We first formulate the DG method in the framework of quadratic forms and construct a
companion infinite dimensional eigenvalue problem. With the use of the companion problem,
the eigenvalue/vector error is estimated as a sum of two components. The first component can
be viewed as a “non-conformity” error that we argue can be neglected in practical estimates by
properly choosing the penalty parameter. The second component is estimated a posteriori using
auxiliary subspace techniques, and this constitutes the practical estimate.

Keywords: eigenvalue problem, finite element method, a posteriori error estimates, discontinuous
Galerkin method
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1. Introduction

We present an a posteriori error analysis for penalty type Discontinuous Galerkin (DG) methods.
All such numerical methods have in common the presence of a penalty term that ensures the stability
of the methods. The function of the penalty term is to control the magnitude of the jumps of the
discontinuous solution across the faces of the mesh [35, 37, 5]. An example of penalty term is the
bilinear form J(·, ·) defined below. The strength of the penalization delivered by penalty terms can
be adjusted using a parameter denoted in this work with τ . In general, there is not a unique way
to choose the value of τ , but the analysis can prescribe how an appropriate value can be chosen to
ensure stability; see, for example, Proposition 3.6, which shows that the penalty term τ has to be
sufficiently large for the symmetric interior penalty method. When penalty terms are applied to
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faces of the mesh along the boundary of the domain, their function becomes to enforce boundary
conditions weakly. This is natural in the context of DG methods, but this practice can be traced
back to continuous Galerkin methods [36].

Motivated by the approach from [14], we introduce a notion of the companion discontinuous
Galerkin forms. We present estimates for both multiple and clustered eigenvalues and also provide
estimates for the associated invariant subspaces. In contrast to [14], our approach is based on
the theory of the monotone convergence for quadratic forms from [22, 31]. This theory has been
adapted to the application in numerical analysis in [16]. In the present paper we apply the abstract
results from [16] to split the approximation error for the eigenvalues and spectral projections into
the nonconformity estimate and the a posteriori computable error estimator.

Although our analysis is based on the abstract operator theory from [16] and our results directly
include more general second order differential operators in the div-grad form, we will concentrate
our presentation on the Laplace eigenvalue problem as a prototypical elliptic eigenvalue problem.

Let us make this claim more plausible. Assume we are given a positive-definite family of forms

Bτ (u, v) = B(u, v) + τJ(u, v), u, v ∈ V ⊂ H . (1)

It is assumed that Bτ are closed and densely defined inH and that the form J is positive semidefinite
and bounded on V . An example of Bτ which satisfies these requirements is immediately provided
by the Symmetric Interior Penalty Discontinuous Galerkin (SIPDG) [5] and Local Discontinuous
Galerkin (LDG) [23] discretizations of the Laplace operator in a bounded polygonal domain Ω.

To be precise, let T be a triangulation of Ω and let the functions p and h be the degree
distribution function and the element diameter function, respectively. Here and in what follows,
we will consider the piecewise polynomial space Sp(T ), which is defined by requiring that each
u ∈ Sp(T ) is such that each restriction u|K is a polynomial of degree at most p(K) for each

element K ∈ T . We now define the discontinuous Galerkin space V = Sp(T ) +H1
0 (Ω) and recall

the notation {{·}} and [[·]] for standard jump operators and the appropriate lifting operator L for
the discrete gradients. We now introduce the bilinear forms

B(u, v) =
�

K∈T

�

K
(∇u− L([[u]])) · (∇v − L([[v]])) ,

J(u, v) =
�

F∈F(T )

p2F
hF

�

F
[[u]] · [[v]] .

It is a standard result on the local discontinuous Galerkin method that the forms B and J satisfy
the requirements of (1), cf. [5, 23] and Section 3. We call this Bτ the companion form of the
Laplace eigenvalue problem

−Δu = λu in Ω , u = 0 on ∂Ω . (2)

This is further justified if we observe that the variational formulation of (2)
�

Ω
∇u ·∇v dx = λ(u, v) ∀ v ∈ H1

0 (Ω) , (3)

where (·, ·) is the L2 inner-product and � · � the L2 norm, can be obtained by restricting the form
Bτ to the subspace H1

0 (Ω) ⊂ V . On the other hand the discrete eigenvalue problem

�

K∈T

�

K
(∇u− L([[u]])) · (∇v − L([[v]])) + τ

�

F∈F(T )

p2F
hF

�

F
[[u]] · [[v]] = λ̂τ (u, v), ∀ v ∈ Sp(T ) (4)
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is obtained by restricting the form Bτ to Sp(T ) ⊂ V . This construction provides a framework
for the simultaneous abstract analysis of both the continuous as well as the discrete eigenvalue
problems. We first establish an estimate of the error in the projection of the companion form from
V to H1

0 (Ω) and call this the nonconformity error and denote it by Rnc. We then proceed and
estimate the error in the projection of V to Sp(T ) and call this the a posteriori error and denote it
by Rap(τ). For the a posteriori error component we will also present a computable error estimator
using the technique of hierarchical bases. Finally, both estimators are combined in to provide an
estimate of the approximation error. In particular,

m�

i=1

|λ̂τ,i − λi|

λi
≤

C1

τ − 1
Rnc + C2Rap(τ)

is an example of a type of estimates—for the cluster of lowermost eigenvalues λ1 ≤ · · · ≤ λm < λm+1

of (3)—which we will present in Section 4. Further, we will show that by an appropriate choice of
τ we may make the a posteriori error the dominant part of the error.

In Section 2 we present main abstract results in the context of discontinuous Galerkin methods
and introduce the notation. In Section 3 we review basic facts on discontinuous penalty type
Galerkin methods and establish results which guarantee that the concrete formulations satisfy the
requirements of the abstract theory. In Section 4 we construct a computable a posteriori error
estimator and establish its basic properties. Extensive numerical results will be presented in the
subsequent publication.

2. Abstract variational source and eigenvalue problems

Given an open, bounded domain Ω ⊂ R
d, let V = H1

0 (Ω) + S, where S ⊂ L2(Ω) is finite
dimensional, S �⊂ H1

0 (Ω) and H1
0 (Ω)∩S �= {0}. Let B, J : V ×V → R be symmetric bilinear forms

on V satisfying:

1. For all u, v ∈ H1
0 (Ω), B(u, v) =

�
Ω∇u ·∇v dx.

2. J(v, v) ≥ 0 for all v ∈ V , and Ker(J) = {v ∈ V : J(v, v) = 0} = H1
0 (Ω).

3. If v ∈ V and B(v, v) + J(v, v) = 0 then v = 0.

For τ ≥ 1, we define

B(u, v) = Bτ (u, v) = B(u, v) + τJ(u, v) .

In later sections, S will be a space of discontinuous, piecewise polynomials defined on a simple
partition of the domain Ω, and J will be used to penalize discontinuities of functions in V , as is
typical in penalty-type discontinuous Galerkin (DG) discretizations [5].

We see that B is an inner-product on V when τ ≥ 1, and we denote its induced norm by B as
� · �B. We further decompose S as

S = (H1
0 (Ω) ∩ S)⊕B R ,

so R is the B-orthogonal complement of H1
0 (Ω) ∩ S in S. We now have V = H1

0 (Ω) ⊕ R; here we
are not asserting any sort of orthogonality between H1

0 (Ω) and R, just that H1
0 (Ω) ∩R = {0}.

Suppose that {vn}, where vn = wn + rn with wn ∈ H1
0 (Ω) and rn ∈ R, is a Cauchy sequence

with respect to � · �B. Because H1
0 (Ω) is closed with respect to � · �B, R is finite dimensional, and
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H1
0 (Ω) ∩ R = {0}, there is a constant γ ∈ [0, 1) for which B(w, r) ≤ γ�w�B�r�B for all w ∈ H1

0 (Ω)
and r ∈ R. This strong Cauchy inequality (cf. [13, 28]), together with Young’s inequality, implies
that

�vn − vm�2B = �wn − wm�2B + �rn − rm�2B − 2B(wn − wm, rn − rm)

≥ �wn − wm�2B + �rn − rm�2B − 2γ�wn − wm�B�rn − rm�B

≥ (1− γ2)max(�wn − wm�2B , �rn − rm�2B) .

So we see that both {wn} and {rn} are Cauchy sequences with respect to � · �B. But H1
0 (Ω) and

R are Banach spaces in this norm, so wn → w ∈ H1
0 (Ω) and rn → r ∈ R in � · �B. Therefore, we

deduce that V is closed with respect to � · �B. Therefore, B is a closed form on V .

Remark 2.1. The strong Cauchy inequality is an assertion that there is a positive angle between
the subspaces H1

0 (Ω) and R with respect to the inner-product B. This is equivalent to asserting
that the oblique projector that maps a vector in V to its component in R is a bounded operator
with respect to � · �B.

Let Q ⊂ V be any finite dimensional subspace of V . We consider the following source problems:
given f ∈ L2(Ω), find u(f) ∈ H1

0 (Ω), uτ (f) ∈ V and q(f) ∈ Q such that

B(u(f), v) = Bτ (u(f), v) = (f, v) for all v ∈ H1
0 (Ω) , (5)

Bτ (uτ (f), v) = (f, v) for all v ∈ V , (6)

Bτ (qτ (f), v) = (f, v) for all v ∈ Q . (7)

As a general notational convention we will use capital letters to denote subspaces of V and lower-
case letters to denote the Galerkin projections of the source problem associated to that subspace. In
particular, we will use qτ (f) or q̂τ (f) or q̂m,τ (f) to denote Galerkin projections from (7) for generic
finite dimensional subspaces Q, Q̂ or Q̂m. We will freely modify the notation for any particular
finite dimensional subspace following this general rule where appropriate. The first usage of this
type of notation is in (16).

Here and below, we use (v,w) to denote the L2(Ω) inner-product of v,w ∈ L2(Ω). We also use
||| · |||τ to indicate � · �Bτ , in order to emphasize the τ -dependence of the norm, noting that

H1
0 (Ω) = {v ∈ V : lim

τ→∞
|||v|||τ < ∞} . (8)

The following result appeared as [16, Theorem 4.3].

Theorem 2.2. For f ∈ Ker(J) and τ > 1,

|||u(f)− u2(f)|||
2
1

τ − 1
≤ |||u(f)− uτ (f)|||

2
τ ≤

|||u(f)− u1(f)|||
2
1

jLBB(τ − 1)
,

where jLBB > 0 is the inf-sup (Ladyzhenskaya-Babuška-Brezzi) constant,

jLBB = inf
q∈V/Ker(J)

sup
ψ∈V

|J(q,ψ)|

|||q|||1 |||ψ|||1
. (9)
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The associated eigenvalue problems are: Find (λ,ψ) ∈ R × (H1
0 (Ω) \ {0}) and (λτ ,ψτ ) ∈

R× (V \ {0}) such that

B(ψ, v) = λ(ψ, v) for all v ∈ H1
0 (Ω) , (10)

Bτ (ψτ , v) = λτ (ψτ , v) for all v ∈ V . (11)

These variational eigenvalue problems are attained by discrete sequences of eigenvalues, 0 < λ1 <
λ2 ≤ λ3 ≤ · · · and 0 < λτ,1 ≤ λτ,2 ≤ λτ,3 ≤ · · · . One may choose an associated L2(Ω)-orthonormal
Riesz basis of eigenvectors in both cases:

B(ψj , v) = λj(ψj , v) for all v ∈ H1
0 (Ω) , (ψi,ψj) = δij , span{ψj} = L2(Ω) . (12)

Bτ (ψτ,j , v) = λτ,j(ψτ,j, v) for all v ∈ V , (ψτ,i,ψτ,j) = δij , span{ψτ,j} = L2(Ω) . (13)

For a bounded interval I, we denote by E(I) the L2(Ω)-orthogonal projector onto the B-
invariant subspace associated with the eigenvalues of B in I; Eτ (I) is the natural analogue for Bτ .
It follows from Kato’s monotone convergence theorem [22] that

lim
τ→∞

�E(I) − Eτ (I)� = 0 ,

where � · � is the operator norm on the space of bounded operators on L2(Ω). Furthermore, we
have monotone convergence of eigenvalues, including multiplicities. In other words, for a given m
such that λm < λm+1 we have

λτ,j ≤ λτ ′,j ≤ λj for τ ′ ≥ τ , and lim
τ→∞

λτ,j = λj for 1 ≤ j ≤ m .

Following [38], for a bounded linear operator A on L2(Ω) and a complete orthonormal system
{ek : k ∈ N} in L2(Ω), we define

�A�2HS =

∞�

k=1

�Aek�
2 , (14)

where �v� is the standard norm on L2(Ω). If this quantity is finite, A is called a Hilbert-Schmidt
operator, and �A�HS is its Hilbert-Schmidt norm. It is shown in [38, Lemma 6.58] that �A�HS is
independent of the particular choice of complete orthonormal system, and that

�A� ≤ �A�HS , (15)

where �A� is the operator norm for bounded linear operators on L2(Ω), as before.
Given an L2-orthonormal set of vectors {ψ̂1, · · · , ψ̂m} ⊂ V , whose span we denote by Ŝm, we

define the corresponding approximation defects by

ητ,j(Ŝm) = max
S⊂Ŝm

dimS=m−j−1

min
f∈S

|||uτ (f)− ŝm,τ (f)|||τ
|||uτ (f)|||τ

, 1 ≤ j ≤ m . (16)

Here we have tacitly assumed that ûτ (f) is defined by (7) for the subspace Q = Ŝm. In what
follows we set I = [0,D], where λτ,m < D < λτ,m+1 for all τ > 1. With this we recall the main
error estimates from [7, 17, 16].
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Theorem 2.3. Suppose m ∈ N is such that λτ,m < λτ,m+1, and let λ̂τ,j = |||ψ̂j |||
2
τ denote the Ritz

values associated with Ŝm. If Ŝm is such that

ητ,m(Ŝm)

1− ητ,m(Ŝm)
<

λτ,m+1 − λ̂τ,m

λτ,m+1 + λ̂τ,m

,

then

λ̂τ,1

4λ̂τ,m

m�

i=1

|||uτ (ψ̂i)− λ̂−1
τ,i ψ̂i|||

2
τ

|||uτ (ψ̂i)|||2τ
≤

m�

i=1

|λτ,i − λ̂τ,i|

λ̂τ,i

≤ Cτ,m

m�

i=1

|||uτ (ψ̂i)− ŝm,τ (ψ̂i)|||
2
τ

|||uτ (ψ̂i)|||2τ

�Eτ (I)− Êm�HS ≤ Cτ,m

����
m�

i=1

|||uτ (ψ̂i)− ŝm,τ (ψ̂i)|||2τ

|||uτ (ψ̂i)|||2τ
.

(17)

The constant Cτ,m depends solely on the reciprocal relative distance to the unwanted component of

the spectrum (e.g.
λτ,m+1+λτ,m

λτ,m+1−λτ,m
), Êm is the L2-orthogonal projection onto Ŝm.

Remark 2.4. Although we have emphasized the τ -dependence of Cτ,m by including it in the
subscript, this quantity can be bounded independently of τ when τ is sufficiently large. This is due
to the monotone convergence of the τ -dependent eigenvalues λτ,j to the actual eigenvalues λj.

Following [16], we now formulate a result that combines Theorems 2.2 and 2.3 for the particular
choice of the subspace Ŝm. Namely, we choose that Ŝm is the eigenspace of B associated to the
eigenvalues λ1 ≤ · · · ≤ λm.

Proposition 2.5. Let m be such that λm < λm+1, then we have

clowm

τ − 1

m�

i=1

|||u2(ψi)− λ−1
i ψi|||

2
1 ≤

m�

i=1

λi − λτ,i

λi
≤

Chigh
m

τ − 1

m�

i=1

|||u1(ψi)− λ−1
i ψi|||

2
1 (18)

�E(I)− Eτ (I)�HS ≤

����Chigh
m

τ − 1

m�

i=1

|||u1(ψi)− λ−1
i ψi|||21. (19)

Proof. Note that J(ψi,ψi) = 0 for each i = 1, · · · ,m and that ûτ (ψi) = u(ψi) = λ−1
i ψi. Here

we have used ûτ (f) as defined by (7) for the subspace Q = Sm, the eigenspace associated to the
m lowermost eigenvalues of B. The results now follow directly from Theorems 2.2 and 2.3. The
constant clowm depends on the quotient λ1/λm, whereas the constant Chigh

m depends on jLBB and the

reciprocal of the relative spectral gap measure λm+1−λm

λm+1+λm
.

Remark 2.6. Note that, in (17) and (19), we can take either the operator norm or the Hilbert-
Schmidt norm to measure the difference between orthogonal projections. The inequality for the
operator norm is an overestimate in comparison to the Hilbert-Schmidt norm version of the result as
can be seen in (15). Optimal estimates (independent of the size of the cluster of eigenvalues) of the
operator norm of the projection difference can be obtained by solving a small optimization problem
as has been done in [17, 7]. An alternative approach to obtaining estimates for approximating
clustered eigenvalues can be found in [10]. There the authors use a different measure of the error
and obtain estimates that are independent of the size of the cluster.
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3. LDG and SIPDG within the abstract framework

We now introduce the notation necessary for defining discontinuous Galerkin methods, and
discussing various lifting operators that will be used in what follows. We assume that the compu-
tational domain Ω can be partitioned into a shape-regular mesh T , i.e. there exists a constant Creg

such that for any element K
hK ≤ Creg ρK , (20)

where hK is the diameter of the element K, and ρK is the diameter of the largest inscribed ball in
K. For the analysis we will assume that the elements are affine quadrilaterals (d = 2) or hexahedra
(d = 3). Associated with each K is an affine bijection TK : �K → K from the reference element
�K = [0, 1]d. This map induces a bijection between the faces F of K and the faces �F of �K. We
allow one-irregular meshes (cf. [26]).

The element diameters are collected in the mesh-size vector h = {hK : K ∈ T }, and h denotes
the maximum of all hK in the mesh. We refer to F as an interior mesh face of T if F = ∂K ∩ ∂K ′

for two neighbouring elements K,K ′ ∈ T whose intersection has a positive surface measure. The
set of all interior mesh faces is denoted by FI(T ). Analogously, if the intersection F = ∂K ∩ ∂Ω
of the boundary of an element K ∈ T and ∂Ω is of positive surface measure, we refer to F as a
boundary mesh face of T . The set of all boundary mesh faces of T is denoted by FB(T ) and we
set F(T ) = FI(T ) ∪FB(T ). The diameter of a face F is denoted by hF .

Let an interior face F ∈ FI(T ) be shared by two neighbouring elements K and K ′. We define
the average and jump associated with F of a scalar-valued piecewise smooth function v, by

{{v}} =
1

2
(v|F + v′|F ), [[v]] = v|F nK + v′|F nK ′ ,

where v|F and v′|F are the traces of v on F taken from K and K ′, and nK and nK ′ denote the
unit outward normal vectors on the boundary of elements K and K ′, respectively. Similarly, if q is
piecewise smooth vector field, its average and (normal) jump across F are given by

{{q}} =
1

2

�
q|F + q′|F

�
, [[q]] = q|F · nK + q′|F · nK ′ .

On a boundary face F ∈ FB(T ), we accordingly set {{q}} = q and [[v]] = vn, with n denoting the
unit outward normal vector on ∂Ω. The other trace operators will not be used on boundary faces
and are thereby left undefined. We note that the jump operator [[·]] changes scalars to vectors and
vectors to scalars.

Given an element K ∈ T and an integer p ≥ 0, we define the local polynomial space

Qp(K) = { v : K → R : v ◦ TK ∈ Qp( �K) }, (21)

with Qp( �K) denoting the set of tensor product polynomials on the reference element �K of degree

less than or equal to p in each coordinate direction on �K. In addition, if F ∈ F(K) is a face of K
and �F the corresponding face on the reference element �K, we define

Qp(F ) = { v : F → R : v ◦ TK |F ∈ Qp( �F ) }, (22)

where Qp( �F ) denotes the set of tensor product polynomials on �F of degree less than or equal to p

in each coordinate direction on �F . Now, given a polynomial degree vector p on T , we define the
corresponding hp-DG finite element space by

Sp(T ) = { v ∈ L2(Ω) : v|K ∈ QpK (K), K ∈ T }. (23)
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We take p to be the minimum of all pK in the mesh. If F is a boundary face with adjacent element
K, we take pF = pK . Otherwise, we take pF = max{pK , pK ′}, where K,K ′ are the two elements
sharing the face F .

3.1. Lifting operators

Let Γ denote the union of the boundaries of the elements K in T , which we refer to as the mesh
skeleton. We let T (Γ) := ΠK∈T L

2(∂K) be the product space of functions that are double-valued on
Γ0 := Γ\∂Ω and single-valued on ∂Ω. The space L2(Γ) is defined as the subspace of T (Γ) consisting
of functions for which the values on the joint faces between two adjacent elements coincide. This
space is endowed with the product norm for T (Γ), and L2(Γ0) is taken to be its restriction on Γ0.
Given these function spaces defined on the skeleton Γ, we further define lifting operators to the
space [Sp(T )]d, following [5]:

Definition 3.1 (Lifting operators). We define four lifting operators,

r, rF ,L : [L2(Γ)]d → [Sp(T )]d , l : L2(Γ0) → [Sp(T )]d ,

given by

�

Ω
r(ϕ) · τ dx = −

�

Γ
ϕ · {{τ}} ds, ∀τ ∈ [Sp(T )]d , (24)

�

Ω
rF (ϕ) · τ dx = −

�

F
ϕ · {{τ}} ds, ∀τ ∈ [Sp(T )]d for each face F , (25)

�

Ω
l(q) · τ dx = −

�

Γ0

q[[τ ]] ds, ∀τ ∈ [Sp(T )]d , (26)

L(ϕ) = −r(ϕ) + l(β ·ϕ) , (27)

where β ∈ [L2(Γ0)]d is a vector-valued function that is constant on each face. Definition (27) comes
from [23], which is slightly different from the one in [5] used to define the LDG [23] method. A
final lifting operator R : V → [Sp(T )]d that is useful in analysing the SIPDG [5] method is given
by R(v) = −r([[v]]), so

�

Ω
R(v) · τ dx =

�

F∈F(T )

�

F
[[v]] · {{τ}} ds , ∀τ ∈ [Sp(T )]d . (28)

This R differs by sign from what is given in [5].

Lemma 3.2. For any function u ∈ H1
0 (Ω), any face F ∈ F(T ) and any piecewise constant vector

β defined on the skeleton, it holds that

[[u]] = rF ([[u]]) = r([[u]]) = R(u) = l(β ·[[u]]) = L([[u]]) = 0 .

Proof. For u ∈ H1
0 (Ω), we clearly have [[u]] = 0 ∈ [L2(Γ)]d, so the fact that r(u) and rF (u) are

both defined in terms the L2-projection on [Sp(T )]d with zero right-hand side guarantees that
r([[u]]) = rF ([[u]]) = R(u) = 0. For any piecewise-constant vector β defined on the skeleton, we have
β ·[[u]] = 0 on Γ0, so it follows that l(β ·[[u]]) = 0 and L([[u]]) = 0 as well.
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3.2. Local discontinuous Galerkin method

The Local DG (LDG) method (cf. [5, 23]) can be formulated in terms of the following symmetric
bilinear forms on V = Sp(T ) +H1

0 (Ω),

B(u, v) =
�

K∈T

�

K
(∇u− L([[u]])) · (∇v − L([[v]])) , (29)

J(u, v) =
�

F∈F(T )

p2F
hF

�

F
[[u]] · [[v]] . (30)

We take Bτ = B + τJ as in our abstract formulation. Combining Lemma 3.2 and a Poincaré
inequality, we see that condition (1) from Section 2 is satisfied. It is also clear that condition (2)
holds, so it remains to verify condition (3), and that B(v, v) < ∞ and J(v, v) < ∞ for v ∈ V . To
do so, we will use the energy norm defined as

�u�2E,τ =
�

K∈T

�∇u�2L2(K) + τ
�

F∈F(T )

p2F
hF

�[[u]]�2L2(F ) , (31)

on V . It is shown in [23, Proposition 3.1] that, for any τ > 0,

Bτ (w, v) ≤ Ccont�w�E,τ�v�E,τ ∀w, v ∈ V , (32)

where Ccont > 0 depends only on τ , δ = �β �L∞(Γ0) and the shape-regularity of the mesh. Now
suppose that Bτ (v, v) = 0. This implies that J(v, v) = 0, so v ∈ H1

0 (Ω), and we have Bτ (v, v) =
�∇v�2L2(Ω) = 0. Therefore, v = 0, and we have verified (3).

To take advantage of the abstract results of Section 2, we must establish (9) in this context.
Specifically, we wish to show that jLDG given by

jLDG = inf
q∈V/H1

0
(Ω)

sup
ψ∈V

|J(q,ψ)|

|||q|||1|||ψ|||1
(33)

is bounded away from 0 independent of h and p.

Proposition 3.3. There is a constant cLDG > 0, independent of h and p (and τ), such that, for
all v ∈ V ,

cLDG inf
w∈H1

0
(Ω)

|||v − w|||21 ≤ J(v, v) .

Proof. As discussed in Section 2, we can decompose V as V = H1
0 (Ω) ⊕ R, where R ⊂ Sp(T ).

Writing v = v1 + v2, where v1 ∈ H1
0 (Ω) and v2 ∈ R, we clearly have

inf
w∈H1

0
(Ω)

|||v − w|||21 = inf
w∈H1

0
(Ω)

|||v2 − w|||21 .

In [34] (2D) and [33] (3D), an averaging operator I : Sp(T ) → H1
0 (Ω) is constructed for which

there exists a constant c, independent of h and p, such that, for all v2 ∈ Sp(T ),

�

K∈T

�∇(v2 − Iv2)�
2
L2(K) ≤ c J(v2, v2) .

From this, it is clear that |||v2 − Iv2|||
2
1 ≤ Ccont(c+ 1)J(v2, v2) = c−1

LDG J(v, v), which completes the
proof.
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We can now state the main result of this section.

Proposition 3.4. It holds that jLDG ≥ cLDG, where cLDG is the constant in Proposition 3.3.

Proof. Each member of V/H1
0 (Ω) has the form r − Ir for some r ∈ R, so

jLDG ≥ inf
r∈R

sup
ψ∈V

|J(r − Ir,ψ)|

|||r − Ir|||1|||ψ|||1
≥ inf

r∈R

|J(r − Ir, r − Ir)|

|||r − Ir|||21
= inf

r∈R

|J(r, r)|

|||r − Ir|||21
≥ cLDG .

3.3. Symmetric interior penalty discontinuous Galerkin method

Taking J as in the LDG case (30), the symmetric interior penalty DG (SIPDG) method can be
formulated in terms of the bilinear form Aτ : V × V → R

Aτ (u, v) =
�

K∈T

�

K
∇u ·∇v dx−

�

K∈T

�

K
R(u) ·∇v +R(v) ·∇u dx+ τJ(u, v) . (34)

We note that, when u, v ∈ Sp(T ), we have

�

K∈T

�

K
R(u) ·∇v +R(v) ·∇u dx =

�

F∈F(T )

�

F

�
{{∇u}} · [[v]] + {{∇v}} · [[u]]

�
ds , (35)

which provides a common alternative bilinear form for SIPDG.

Lemma 3.5. There is a constant CR, independent of h and p such that, for any u ∈ V ,

�R(u)�L2(Ω) ≤ CR

�
J(u, u) .

Proof. Letting Π : [L2(Ω)]d → [Sp(T )]d be the L2-projection, we have

�R(u)�L2(Ω) = sup
z∈[L2(Ω)]d

�
ΩR(u) · z dx

�z�L2(Ω)
= sup

z∈[L2(Ω)]d

�
ΩR(u) · Πz dx

�z�L2(Ω)

= sup
z∈[L2(Ω)]2

�
Γ[[u]] · {{Πz}} ds

�z�L2(Ω)
≤ sup

z∈[L2(Ω)]2

�h−1/2p[[u]]�L2(Γ)�h
1/2p−1{{Πz}}�L2(Γ)

�z�L2(Ω)
.

Note that �h−1/2p[[u]]�L2(Γ) =
�

J(u, u), so it remains to bound �h1/2p−1{{Πz}}�L2(Γ) in terms of
�z�L2(Ω). The key to this is a trace inequality (cf. [24, Equation 4.6]),

�q�20,∂K ≤ Cinv
p2K
hK

�q�20,K , ∀q ∈ Sp(K) .

The constant Cinv depends only on the shape-regularity of the mesh. We have

�h1/2p−1{{Πz}}�2L2(Γ) =
�

F∈F(T )

hF
p2F

�

F
{{Πz}} · {{Πz}} ds ≤

1

2

�

K∈T

hK
p2K

�Πz�2L2(∂K)

≤
Cinv

2

�

K∈T

�Πz�2L2(∂K) ≤ (Cinv/2)�z�
2
L2(Ω)

Combining this with the results above completes the proof.
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This result naturally leads to a coercivity result for Aτ provided τ is sufficiently large. We recall
the definition of the energy norm (31) for generic τ .

Proposition 3.6. There are constants 0 < cA < 1 and τ0 > 1 such that Aτ (v, v) ≥ cA�v�
2
E,1 for

all v ∈ V when τ ≥ τ0.

Proof. Using Lemma 3.5 and Young’s inequality, we see that, for any 0 < s < 1,

Aτ (v, v) ≥ (1− s)
�

K∈T

�∇v�2L2(K) − s−1�R(v)�2L2(Ω) + τJ(v, v)

≥ (1− s)
�

K∈T

�∇v�2L2(K) + (τ − C2
R/s)J(v, v) .

At this stage, it is clear that choosing s and τ appropriately completes the proof. For example,
choosing s = 1/2 and τ0 = 2C2

R + 1/2 yields the coercivity bound with cA = 1/2. More generally,
any τ0 > C2

R will yield coercivity with some cA > 0, and it is clear that τ0 has only to do with the
shape-regularity of the mesh.

The continuity of Aτ with respect to � · �E,1 is easy to prove because of Lemma 3.5, so we state
the result without proof.

Proposition 3.7. For τ ≥ 0, Aτ (u, v) ≤ max{2, C2
R + τ} �u�E,1�v�E,1.

We now define B and Bτ for SIPDG by

B(u, v) = Aτ0−1(u, v) , Bτ (u, v) = B(u, v) + τJ(u, v) , (36)

where τ0 > 1 is a penalty parameter guaranteed by Lemma 3.6 to make Aτ0 coercive with respect
to � · �E,1. The discussion above makes it clear that properties (1)-(3) of Section 2 are satisfied. As
in the previous section, we define the relevant inf-sup constant

jSIP = inf
q∈V/H1

0
(Ω)

sup
ψ∈V

|J(q,ψ)|

|||q|||1|||ψ|||1
. (37)

Using essentially the same argument as in Proposition 3.4, we obtain the analogous result for
SIPDG,

Proposition 3.8. There is a constant cSIP > 0, independent of h and p, such that jSIP ≥ cSIP .

4. An a posteriori error estimator

Having in mind the DG space Sp(T ) as motivation, we introduce the one-parameter family of
finite dimensional spaces Sν , ν > 0, satisfying the basic assumptions at the beginning of Section 2.
Think of increasing ν as corresponding to hp-refinement of the DG space. We take Vν = Sν+H1

0 (Ω),
and Bν , Jν : Vν×Vν → R to satisfy conditions (1)–(3), so that Bν,1 is an inner-product on Vν , where
Bν,τ = Bν + τJν . We make the further assumption, as in (9), that there is a constant jLBB > 0,
independent of ν, such that

jLBB = inf
q∈Vν/Ker(Jν)

sup
ψ∈Vν

|Jν(q,ψ)|

|||q|||ν,1 |||ψ|||ν,1
. (38)
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As shown in Section 3, both LDG and SIPDG fit within this abstract framework. What was implicit
in the notation and results of Section 3, namely the dependence of the bilinear forms and norms on
the discretization parameters h and p, is here made explicit by use of the parameter ν as an index.

We recall the notational convention for the Galerkin approximation (7) from the finite dimen-
sional space Ŝν ⊂ Vν for the data f ∈ L2(Ω) as the function ŝν,τ (f) ∈ Ŝν that satisfies

Bν,τ (ŝν,τ (f), v) = (f, v) for all v ∈ Ŝν . (39)

Given an L2-orthonormal set of vectors {ψ̂ν,1, · · · , ψ̂ν,m} ⊂ Vν , whose span we denote by Ŝν,m, we
also recall the definition of the approximation defects (16)

ην,τ,j(Ŝν,m) = max
S⊂Ŝν,m

dimS=m−i−1

min
f∈S

|||uν,τ (f)− ŝν,m,τ (f)|||ν,τ
|||uν,τ (f)|||ν,τ

, 1 ≤ j ≤ m . (40)

We might naturally think of Ŝν,m coming from a computed approximation of Sm in the discrete space
Sν , but this understanding is not necessary for the results below. We now express both eigenvalue
error and invariant subspace projection error in terms of a “non-conformity” component, Rnc, that
will not be factored into practical computations, and an “a posteriori” component, Rap, for which a
posteriori error estimates will be computed and local indicators used to drive an adaptive algorithm.
Let (λi,ψi) ∈ R × H1

0 (Ω) be eigenpairs of B as in (12), and let Sm be the span of {ψ1, . . . ,ψm}.
We define the corresponding non-conformity error by

Rnc(Sm, ν) =

m�

i=1

|||uν,1(ψi)− λ−1
i ψi|||

2
ν,1 . (41)

The a posteriori component of the error is given by

Rap(Ŝν,m, ν, τ) =

m�

i=1

|||uν,τ (ψ̂ν,i)− ŝν,τ (ψ̂ν,i)|||
2
ν,τ

|||uν,τ (ψ̂ν,i)|||2ν,τ
. (42)

Proposition 4.1. In the context of the previous paragraph, if both ην,τ,j(Ŝν,m) and ην,1,j(Sm) satisfy

the conditions of Theorem 2.3, and λ̂ν,τ,i = |||ψ̂ν,i|||
2
ν,τ , then

m�

i=1

|λ̂ν,τ,i − λi|

λi
≤

Chigh
m

τ − 1
Rnc(Sm, ν) +GmRap(Ŝν,m, ν, τ) , (43)

�E(I) − Êν,τ (I)�HS ≤

�
Chigh
m

τ − 1
Rnc(Sm, ν) +Gm

�
Rap(Ŝν,m, ν, τ) . (44)

Here Êν,τ (I) denotes the L2-orthogonal projection onto the subspace Ŝν,m.

Proof. We start from the simple inequality

|λ̂ν,τ,i − λi|

λi
≤

λi − λν,τ,i

λi
+

|λ̂ν,τ,i − λν,τ,i|

λi

≤
λi − λν,τ,i

λi
+

|λ̂ν,τ,i − λν,τ,i|

λν,τ,i
,
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which holds for any i = 1, ..,m. The proof now follows the reasoning of [7]. We obtain from
Theorem 2.3 the estimate

m�

i=1

λ̂ν,τ,i − λν,τ,i

λi
≤ Gm

m�

i=1

|||uν,τ (ψ̂ν,i)− ŝν,τ (ψ̂ν,i)|||
2
ν,τ

|||uν,τ (ψ̂ν,i)|||2ν,τ
,

where the constant Gm is obtained by modifying the constant Cτ,m to account for the different
relative measure of the eigenvalue error. As discussed in Remark 2.4, Cτ,m can be bounded in-
dependently of τ , so we are not being remiss by excluding τ from the subscript of Gm. The
sum

�m
i=1(λi − λν,τ,i)/λi is bounded as in Proposition 2.5. The bound (44) follows by a similar

argument.

Remark 4.2. To relate the estimates from the preceding proposition to other approaches in the
literature recall Remark 2.6. Using the approach from [7, 17] we may obtain similar estimates for
the difference in projections measured in other unitarily invariant norms—in particular, we may do
so for the operator norm. The practical estimates presented in Section 5 are of hierarchical type,
which allows for the computation of estimates in such norms, as was shown in [7, 17]. We have opted
for the Hibert-Schmidt norm in the present work because it provides the cleanest statements of such
estimates within our framework. For an alternative approache to optimality in error estimation for
eigenvalue clusters, we again refer to [10].

4.1. Controlling the non-conformity error

For the following we assume the regularity estimate, as in [3, Property 1], that

|||uν,τ (f)|||ν,τ = sup
v∈Vν

Bν,τ (uν,τ (f), v)

|||v|||ν,τ
≤ C�f�, f ∈ L2(Ω) ,

where C is independent of ν and τ . A trivial, though pessimistic, estimate of the non-conformity
error is given by

Rnc(Sm, ν) =
m�

i=1

|||uν,1(ψi)− λ−1
i ψi|||

2
ν,1 ≤ 2mC2 + 2

m�

i=1

λ−2
i .

Even with this crude estimate, we see that Rap(Ŝν,m, ν, τ) is readily made the dominant term in
the error bounds (43) and (44) by choosing τ sufficiently large.

If the spaces Vν and forms Bν,1 are such that the forms Bν,1 are monotone increasing in ν and

H1
0 (Ω) =

�
v ∈ ∪νVν : lim

ν→∞
|||v|||ν,1 < ∞

�
, (45)

we have the stronger result,

lim
ν→∞

|||uν,1(ψi)− λ−1
i ψi|||ν,1 = 0 , (46)

which implies that the non-conformity error decays as ν increases. The limit (46) follows from the
monotone convergence theorem for forms [32]—for its use in the context of residual error estimates,
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see [16, Theorem 2.1]. Such a family of spaces is generated by pure p-refinement of Sp(T ) for a
fixed triangulation T , if Bν,1 incorporates the penalty term J in (30). More specifically, we have

H1
0 (Ω) =

�
v ∈ ∪p (Sp(T ) +H1

0 (Ω)) : lim
ν→∞

|||v|||ν,1 < ∞
�

,

where Sν = Sp
ν
(T ) and #ν = min{p

ν
}. This suggests that, for discretizations such as LDG and

SIPDG, a modest choice of τ is likely to make Rap the dominant contributor to eigenvalue and
eigenvector error bounds.

5. An auxiliary subspace error estimator

We now turn to providing a computable estimate of Rap(Ŝm, ν, τ). At this stage, we will no
longer consider the approximation space Sν in its most abstract form, but will focus on the hp-
spaces Sν = Sp(T ) that motivated our abstract development. The primary reason for being more
specific here is that the design of a posteriori estimates that are both efficient and reliable requires
more specificity in practice. As such, we replace the subscript ν with hp to reflect this shift. We
wish to obtain a practical a posteriori estimate of

Rap(Ŝm, hp, τ) =

m�

i=1

|||uhp,τ (ψ̂τ,i)− ŝhp,τ (ψ̂τ,i)|||
2
ν,τ

|||uhp,τ (ψ̂τ,i)|||2ν,τ

=
m�

i=1

|||uhp,τ (ψ̂τ,i)− ŝhp,τ (ψ̂τ,i)|||
2
ν,τ

|||uhp,τ (ψ̂τ,i)− ŝhp,τ (ψ̂τ,i)|||2ν,τ + |||ŝhp,τ (ψ̂τ,i)|||2ν,τ
, (47)

so we see that it is sufficient to estimate errors of the form |||uhp,τ (f)−ŝhp,τ (f)|||ν,τ , where f ∈ L2(Ω),

and uhp,τ (f) ∈ Vhp = H1
0 (Ω) + Sp(T ) and ŝhp,τ (f) ∈ Ŝm ⊂ Sp(T ) satisfy (6) and (7).

We will employ a hierarchical basis type error estimator, which is novel in the DG setting, but
is a well-known approach for continuous Galerkin discretizations (cf. [6, 2, 29]), and has been used
successfully for eigenvalue problems (cf. [17, 7]). Recall that the restriction of a function in Sp(T )
to an element K is in the space of tensor-product polynomials QpK (K) (21). We decompose a
p-enrichment of this local space hierarchically,

QpK+1(K) = QpK (K)⊕ EpK+1(K) , (48)

and define an auxiliary space in which we will approximate the error uhp,τ (f) − ŝhp,m,τ(f) as a
function,

Ep(T ) = { v ∈ L2(Ω) : v|K ∈ EpK+1(K), K ∈ T } . (49)

We remark that the definition of EpK+1(K) via the direct-sum (48) leaves some ambiguity, and we
now describe how to make a well-defined choice. For a given p > 1, a hierarchical basis of Qp(K) is
typically built up recursively, beginning with a basis for Q1(K), extending it to a basis of Q2(K)
by adding appropriate functions from Q2(K) \ Q1(K), and continuing in this fashion until a basis
for Qp(K) is obtained. A number of popular strategies for building such hierarchical bases exist
for simplices and tensorial elements, with the construction for the latter being based on simple 1D
hierarchies. The particular strategy used will not factor into our discussion, and we merely point
interested readers to [25, 27, 9, 8, 1, 26] for discussion of several of them. Once a particular strategy
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has been chosen, EpK+1(K) is spanned by those basis functions for QpK+1(K) that are not part of
the basis for QpK (K).

Our hierarchical error estimate is based on the function εhp,τ (f) ∈ Ep(T ) satisfying

Bhp,τ(εhp,τ (f), v) = (f, v)− Bhp,τ (ŝhp,m,τ (f), v) for all v ∈ Ep(T ) . (50)

It is convenient to introduce the space V ′
hp = Vhp+Ep(T ) and the function u′hp,τ (f) ∈ V ′

hp satisfying

Bhp,τ (u
′
hp,τ (f), v) = (f, v) for all v ∈ V ′

hp . (51)

We emphasize that the bilinear form is not modified in either case just because we use polynomials
of one degree higher. The constants we obtained in Section 3 need only be modestly adjusted, in
a p-independent way, to accommodate the use of Bhp,τ on Sp(T )⊕ Ep(T ).

The definitions (50) and (51) make it clear that εhp,τ (f) is the Bhp,τ -orthogonal projection of
u′hp,τ (f)− ŝhp,τ (f) on Ep(T ), so immediately have the lower bound

|||εhp,τ (f)|||hp,τ ≤ |||u′hp,τ (f)− ŝhp,τ(f)|||hp,τ . (52)

Using that Sp(T ) ⊂ Vhp ⊂ V ′
hp, together with Galerkin orthogonality, we have the Pythagorean

identity

|||u′hp,τ (f)− ŝhp,τ(f)|||
2
hp,τ = |||u′hp,τ (f)− uhp,τ (f)|||

2
hp,τ + |||uhp,τ (f)− ŝhp,τ (f)|||

2
hp,τ . (53)

We make the following saturation assumption: there is a constant 0 < q < 1, independent of h and
p, such that

|||u′hp,τ (f)− uhp,τ (f)|||hp,τ ≤ q|||u′hp,τ (f)− ŝhp,τ (f)|||hp,τ . (54)

Under this assumption, we have a lower bound on the actual quantity of interest,

|||εhp,τ (f)|||hp,τ ≤ (1− q2)−1/2|||uhp,τ (f)− ŝhp,τ (f)|||hp,τ . (55)

At this stage, we have the following, computable, estimate of Rap

Rap(Ŝm, hp, τ) ≈ R̂ap(Ŝm, hp, τ) =
m�

i=1

|||εhp,τ (ψ̂τ,i)|||
2
hp,τ

|||εhp,τ (ψ̂τ,i)|||2hp,τ + |||ŝhp,τ (ψ̂τ,i)|||2hp,τ
. (56)

The computation of the terms in R̂ap(Ŝm, hp, τ) deserves further comment. If the vectors

{ψ̂τ,i : 1 ≤ i ≤ m} have been provided without any further information about their origin, the
computation of R̂ap(Ŝm, hp, τ) requires the solution of m source problems in Sp(T ) to obtain the

functions ŝhp,τ(ψ̂τ,i), and m additional source problems in Ep(T ) to obtain the approximate error

functions εhp,τ (ψ̂τ,i). The latter collection of problems is unavoidable for hierarchical-type error
estimates, but the nature of the space Ep(T ) is such that these problems are not as expensive as
one might think. The computation of the ŝhp,τ is greatly simplified if the approximate eigenvectors

ψ̂τ,i have been obtained as via a discrete eigenvalue problem posed in Sp(T ), as will typically be

the case. Specifically, if 0 < λ̂hp,τ,1 ≤ λ̂hp,τ,2 ≤ · · · ≤ λ̂hp,τ,m are the smallest m eigenvalues of the
discrete problem,

Bhp,τ (ψ̂hp,τ , v) = λ̂hp,τ (ψ̂hp,τ , v) ∀v ∈ Sp(T ) , (57)
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and {ψ̂hp,τ,i : 1 ≤ i ≤ m} are corresponding L2-orthonormal eigenvectors, with Ŝm = Ŝhp,m being

their span, we have ŝhp,τ(ψ̂hp,τ,i) = λ̂−1
hp,τ,iψ̂hp,τ,i, and (56) simplifies to

R̂ap(Ŝm, hp, τ) =

m�

i=1

|||εhp,τ (ψ̂τ,i)|||
2
hp,τ

|||εhp,τ (ψ̂τ,i)|||
2
hp,τ + λ̂−2

hp,τ,i

. (58)

Remark 5.1. It may seem odd that, in a paper about eigenvalue and eigenvector error estimation,
the first true mention of how such approximations might be computed comes near the end of the
paper. This was done to emphasize the fact that the results up to this point have not required that
the approximations are obtained by (exactly) solving (57). In particular, inexact solves of (57)
are typically expected. In practice, we advocate using λ̂−1

hp,τ,iψ̂hp,τ,i instead of ŝhp,τ(ψ̂hp,τ,i), as well
as (58), when these quantities are obtained from inexact solves of (57).

We have yet to establish that |||εhp,τ (f)|||hp,τ can be used to bound |||uhp,τ (f)− ŝhp,τ (f)|||hp,τ from
above. Since |||uhp,τ (f) − ŝhp,τ (f)|||hp,τ ≤ |||u′hp,τ (f) − ŝhp,τ(f)|||hp,τ , if we show that |||εhp,τ (f)|||hp,τ
can be used to bound |||u′hp,τ (f) − ŝhp,τ (f)|||hp,τ from above, then we have the bound we actually
seek. In order to do this, we employ the standard approach used in the continuous finite element
setting (cf. [6, 2, 29]), which is based on a strong Cauchy inequality and a (second) saturation
assumption. The strong Cauchy inequality states that there is a constant, 0 < γ < 1, such that

Bhp,τ(v,w) ≤ γ|||v|||hp,τ |||w|||hp,τ ∀v ∈ Sp(T ) , ∀w ∈ Ep(T ) . (59)

The saturation assumption states that u′hp,τ (f) is better approximated in Sp(T ) ⊕ Ep(T ) than it
is in Sp(T ), which makes intuitive sense because Sp(T ) ⊕ Ep(T ) locally contains polynomials of
one degree higher than Sp(T ). More formally, this saturation assumption states that there is a
constant, 0 < µ < 1, such that

inf
v∈Sp(T )⊕Ep(T )

|||u′hp,τ (f)− v|||hp,τ ≤ µ|||u′hp,τ (f)− ŝhp,τ (f)|||hp,τ . (60)

With these ingredients, one may take the argument of [6, Theorem 1] essentially verbatim to obtain

|||uhp,τ (f)− ŝhp,τ (f)|||
2
hp,τ ≤ |||u′hp,τ (f)− ŝhp,τ(f)|||

2
hp,τ ≤

|||εhp,τ (ψ̂τ,i)|||
2
hp,τ

(1− γ2)(1 − µ2)
. (61)

Based on the discussion above, we obtain our final result, which compares the ideal quantity
Rap(Ŝm, hp, τ) to the computable one R̂ap(Ŝm, hp, τ).

Proposition 5.2. Under the saturation assumptions (54) and (60), R̂ap(Ŝm, hp, τ) provides an
approximation of Rap(Ŝm, hp, τ) that is both efficient and reliable. More specifically,

c R̂ap(Ŝm, hp, τ) ≤ Rap(Ŝm, hp, τ) ≤ c−1R̂ap(Ŝm, hp, τ) ,

where c = (1−γ2)(1−µ2)(1−q2) and γ is the optimal constant in the strong Cauchy inequality (59).

Proof. We bound the terms in Rap(Ŝm, hp, τ) by their corresponding terms in R̂ap(Ŝm, hp, τ). To

save space, we use the shorthand ehp,τ (ψ̂τ,i) = uhp,τ (ψ̂τ,i) − ŝhp,τ (ψ̂τ,i). Combining (55) and (61),
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we have the upper- and lower-bounds,

|||ehp,τ (ψ̂τ,i)|||
2
hp,τ

|||ehp,τ (ψ̂τ,i)|||2hp,τ + |||ŝhp,τ (ψ̂τ,i)|||2hp,τ
≤ c−1

|||εhp,τ (ψ̂τ,i)|||
2
hp,τ

|||εhp,τ (ψ̂τ,i)|||2hp,τ + |||ŝhp,τ (ψ̂τ,i)|||2hp,τ
,

|||ehp,τ (ψ̂τ,i)|||
2
hp,τ

|||ehp,τ (ψ̂τ,i)|||
2
hp,τ + |||ŝhp,τ (ψ̂τ,i)|||

2
hp,τ

≥ c
|||εhp,τ (ψ̂τ,i)|||

2
hp,τ

|||εhp,τ (ψ̂τ,i)|||
2
hp,τ + |||ŝhp,τ (ψ̂τ,i)|||

2
hp,τ

,

where c = (1− γ2)(1− µ2)(1 − q2). Summing these inequalities completes the proof.

Remark 5.3. Since the introduction of hierarchical type error estimators in the 1980s, saturation
assumptions of the form (60) have been typical in their reliability analysis for continuous Galerkin
approximations in the energy norm setting (cf. [6]). Although the saturation assumption can be
removed if one is willing to incorporate an additional “oscillation term” in the upper-bound, as
was done in [17, 7, 19, 21], we thought that type of reliability analysis would unnecessarily add
to the technical burden on readers, so we have not pursued it here. For additional insights on,
and justification of, the use of saturation assumptions in finite element analysis, we refer interested
readers to [12, 11]. References [17, 7] above are specifically related to eigenvalue problems, and
provide several numerical examples that justify the use of hierarchical error estimators in this
context for continuous Galerkin discretizations.
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[26] P. Šoĺın, K. Segeth, and I. Doležel. Higher-order finite element methods. Studies in Advanced
Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2004. With 1 CD-ROM (Windows,
Macintosh, UNIX and LINUX).

[27] B. Szabó and I. Babuška. Finite element analysis. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1991.

[28] D. B. Szyld. The many proofs of an identity on the norm of oblique projections. Numer.
Algorithms, 42(3-4):309–323, 2006.

[29] R. Verfürth. A posteriori error estimation techniques for finite element methods. Numerical
Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013.

[30] T. Warburton and M. Embree. The role of the penalty in the local discontinuous Galerkin
method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Engrg., 195(25-
28):3205–3223, 2006.

[31] J. Weidmann. Stetige Abhängigkeit der Eigenwerte und Eigenfunktionen elliptischer Differen-
tialoperatoren vom Gebiet. Math. Scand., 54(1):51–69, 1984.

[32] J. Weidmann. Stetige Abhängigkeit der Eigenwerte und Eigenfunktionen elliptischer Differen-
tialoperatoren vom Gebiet. Math. Scand., 54(1):51–69, 1984.
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