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We show that measuring commuting observables can be sufficient to assess that a bipartite state is
entangled according to either nonseparability or the stronger criterion of “steerability.” Indeed, the
measurement of a single observable might reveal the strength of the interferences between the two
subsystems, as if an interferometer were used. For definiteness, we focus on the two-point correlation
function of density fluctuations obtained by in situ measurements in homogeneous one-dimensional cold
atomic Bose gases. We then compare this situation to that found in transonic stationary flows mimicking a
black hole geometry where correlated phonon pairs are emitted on either side of the sonic horizon by the
analogue Hawking effect. We briefly apply our considerations to two recent experiments.
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I. INTRODUCTION

Quantum field theory allows the creation of pairs of
correlated (quasi)particles via strong variations of the classical
background [1]. When focusing on the correlations between
the two particles, two cases are particularly clear. Firstly,
when the background is homogeneous and time dependent,
one obtains pairs of quanta with opposite wave numbers,
as is the case in an expanding homogeneous universe; see
Refs. [2–5] for works discussing these correlations. Secondly,
when the background is stationary but inhomogeneous the
pairs of created quanta carry opposite energies, as is the case
for electro-production in a constant electric field and for the
(Hawking) radiation emitted by a black hole [6].
In both cases, pair production can be stimulated by

quasiparticles already present, or emerge via excitation of
vacuum fluctuations. The latter contribution is of particular
interest, as it gives rise to entangled states. Entanglement is a
well-defined notion for pure states; for mixed states, on the
other hand, some care is needed to properly define which
subset is to be considered “entangled.” Indeed, historically,
several inequivalent criteria have been discussed and com-
pared, see e.g. [7]. In this paperweonly consider two of them:
nonseparability [8,9], which is particularly simple, and the
older and stronger criterion based on the possibility of
steering the outcome of a measurement on a subsystem
having already measured the state of its partner [10]. These
notions are recalled in Appendix A for bosonic degrees of
freedom, which is the case we shall consider in this paper.
For each of these criteria, we also present some inequalities
relating observable quantities that are sufficient for the
criterion to be satisfied. This step is crucial as it translates
the criterion, which is defined in rather abstract terms, at the

level of observables. For instance, in homogeneous systems,
the bipartite state of phonons of wave vectors k;−k is
necessarily nonseparable whenever the following inequality
is satisfied [11,12]:

nkn−k − jckj2 < 0; ð1Þ

where n�k ¼ hb̂†�kb̂�ki give the mean occupation number
of particles with wave number �k, and the norm of ck ¼
hb̂kb̂−ki accounts for the strength of the correlation between
the k and −k quanta.
Having identified the relevant inequalities, one should then

address the question of their observability, that is, identify
possible sets of measurements which are sufficient to assess
that the inequality is violated, and therefore that the state
under consideration is necessarily entangled. At first sight, it
seems natural to consider measurements of noncommuting
observables. In fact, to be able to verify that some Bell
inequality is violated, it is necessary to consider some set of
noncommuting observables, see [13,14] for bosonic degrees
of freedom. This is the line of thought thatwas adopted in [15]
and further advocated in [16]. However, when considering
pair creation of quasiparticles of opposite wave numbers
k;−k in homogeneous systems, it was noticed in [17,18] and
further clarified in [4] that in situ measurements of the kth
Fourier component of the connected part of the density-
density correlation function at some time t,Gð2Þðk; tÞ, can be
sufficient to assess the nonseparability of the state.1

In the present paper we pursue the analysis undertaken
in [4]. We clarify and extend it in several directions, first by

*scott.robertson@th.u‑psud.fr
†florent.michel@th.u‑psud.fr
‡renaud.parentani@th.u‑psud.fr

1It should be pointed out that the commuting measurements we
propose could certainly be reproduced within a classical frame-
work. But this does not concern us, for our aim is not to show the
impossibility of a classical description of the results. Instead, it is
to see what can be inferred from them when adopting a quantum
mechanical framework from the outset.
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considering the stronger criterion of “steerability”, then by
distinguishing the isotropic and anisotropic homogeneous
cases. In this paper we also consider globally inhomo-
geneous background flows which contain two homo-
geneous domains where the two-point function Gð2Þ can
be analyzed in k space. Our motivation there is to reconsider
the entanglement of phonon pairs produced by the analogue
Hawking effect in a stationary transonic flow, following the
observability [19,20] and the experimental implementation
[21] of the criterion studied in [22].
The paper is organized as follows. In Sec. II, we study

density fluctuations in globally homogeneous backgrounds.
We demonstrate that in situ measurements of density
fluctuations performed at a given time can contain enough
information to assess that the bipartite phonon state of wave
numbers k;−k is nonseparable, or even obeys the stronger
criterion of steerability. In Sec. III, we study the statistical
properties of the density fluctuations in the asymptotic
homogeneous domains of a stationary transonic flow mim-
icking a black hole geometry. We conclude in Section IV. In
Appendix A, we recall the two notions of entanglement
described above, while in Appendix B we consider the extra
information about the phonon state one could extract by
measuring phase fluctuations (which do not commute with
measurements of the density).

II. IN SITU MEASUREMENTS OF ATOMIC
DENSITY FLUCTUATIONS

For simplicity and definiteness, we consider elongated
(i.e., effectively one-dimensional) atomic condensates, with
transverse dimensions much smaller than their length. Such
condensates can be realized using a cylindrically symmetric
harmonic potential where the transverse trapping frequency
ω⊥ is much larger than the longitudinal one, see [4,23–25].
The transverse excitations then have high frequencies of
order ω⊥, and therefore, low-frequency excitations are fully
characterized by their longitudinal momentum k and their
energy ωk (we work in units where ℏ≡ 1). These are well-
defined when the effective one-dimensional background
condensate is homogeneous and stationary in a sufficiently
large domain, i.e., with extension in space (respectively in
time) larger than 1=jkj (respectively 1=ωk).
In this paper, when measuring density fluctuations, we

shall assume that the above conditions are satisfied, though
in general the background can be inhomogeneous and/or
nonstationary on larger scales. In Sec. II Awe introduce the
relevant quantities applicable to stationary backgrounds,
while in Secs. II B and II C we restrict our attention to
systems that are also globally homogeneous. The extension to
inhomogeneous stationary systems is delayed until Sec. III.

A. Generalities

We work in the standard second-quantized formalism
and adopt the Bogoliubov approximation [26,27], where

the field operator for the dilute Bose gas is written
Φ̂ðt; xÞ ¼ e−iμtþiKxðΦ0 þ δϕ̂ðt; xÞÞ, where Φ0 is a c num-
ber that describes the condensed fraction of the gas, μ is the
chemical potential, K is the condensate momentum, and δϕ̂
describes perturbations on top of the condensate. Since we
assume (local) homogeneity and stationarity of the back-
ground, jΦ0j2 ≡ ρ0 is constant, and is equal to the one-
dimensional number density of condensed atoms. We can
also refer to these as atoms with zero momentum (relative
to the condensate). Since we have explicitly factored out
the spatial component of the condensate wave function, Φ0

is independent of x, and can be taken to be real and positive
so that Φ0 ¼ ffiffiffiffiffi

ρ0
p

. As an operator, the total atom number
density is

ρ̂ðt; xÞ ¼ Φ̂†ðt; xÞΦ̂ðt; xÞ;
≈ ρ0 þ ffiffiffiffiffi

ρ0
p ðδϕ̂ðt; xÞ þ δϕ̂†ðt; xÞÞ; ð2Þ

where in the second line we have neglected the nonlinear
contribution of the perturbations. Linear density fluctuations
are thus described by the operator δρ̂ ¼ ffiffiffiffiffi

ρ0
p ðδϕ̂þ δϕ̂†Þ. In

the body of this paper,we shall only use in situmeasurements
of δρ̂ðt; xÞ performed at some time t. Using the equal-time
commutators ½Φ̂ðt;xÞ;Φ̂ðt;x0Þ� ¼ 0 and ½Φ̂ðt;xÞ;Φ̂†ðt;x0Þ� ¼
δðx−x0Þ, one easily verifies that δρ̂ðt; xÞ and δρ̂ðt0; x0Þ
commute with each other when t ¼ t0. Hence only commut-
ing measurements are considered in what follows.
At quadratic order, the statistical properties of δρ̂ðt; xÞ

are encoded in the (equal-time) two-point function

Gð2Þðt; x; t; x0Þ ¼ hδρ̂ðt; xÞδρ̂ðt; x0Þi;
¼ hρ̂ðt; xÞρ̂ðt; x0Þi − hρ̂ðt; xÞihρ̂ðt; x0Þi; ð3Þ

where the expression on the second line makes clear that
Gð2Þðt; x; t; x0Þ is the connected part of the density-density
correlation function. Hence the contributions of coherent
states of phonons are removed by the subtraction. This two-
point function has been experimentally studied by repeated
measurements of ρðxÞ in Refs. [21,28,29], which motivated
the present study.2

The density fluctuations include all atoms carrying a
nonzero momentum (relative to the condensate), and thus
all nonconstant Fourier components of the density profile.
Indeed, it is useful to invoke homogeneity of the back-
ground to write explicitly the Fourier components of the
density fluctuations and the density-density two-point
function: for a region of length L and a wave vector
k ∈ 2πZ=L, we have

2To see what additional information can be extracted from
phase measurements, in Appendix B we study other two-point
functions involving the phase fluctuation δθ̂, which does not
commute with δρ̂, even at equal time.
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Gð2Þðt; k; t; k0Þ≡
Z

L

0

dx e−ikx
Z

L

0

dx0eik0x0Gð2Þðt; x; t; x0Þ

¼ hρ̂kðtÞρ̂†k0 ðtÞi; ð4Þ

where

ρ̂kðtÞ≡
Z

L

0

e−ikxρ̂ðt; xÞdx: ð5Þ

Because ρ̂ðt; xÞ is a Hermitian operator, it follows immedi-
ately from (5) that ρ̂†kðtÞ ¼ ρ̂−kðtÞ, and therefore (since at
equal time different Fourier components ρ̂k always com-
mute) that ρ̂kðtÞ and ρ̂†kðtÞ commute with each other; the
ordering of the operators on the right-hand side of Eq. (4) is
thus irrelevant. Returning to Eq. (2) for the expression for
the density fluctuations, we get

ρ̂kðtÞ ¼ δρ̂kðtÞ ¼
ffiffiffiffi
N

p
ðϕ̂kðtÞ þ ϕ̂†

−kðtÞÞ; ð6Þ

where N ¼ ρ0L is the number of condensed atoms in the
region of length L, and where the normalization factor

ffiffiffiffi
N

p
has been chosen so that the operators ϕ̂k satisfy the standard
equal-time commutation relation

½ϕ̂kðtÞ; ϕ̂†
k0 ðtÞ� ¼ δk;k0 : ð7Þ

Note the two contributions to ρ̂k in Eq. (6), the first
of which destroys an atom of momentum k, and the
second of which creates an atom of momentum −k.
The appearance of these two operators is required for
the identity ρ̂†kðtÞ ¼ ρ̂−kðtÞ to be satisfied, and is thus
instrumental in ensuring that ρ̂kðtÞ commutes with ρ̂†kðtÞ.
Both have the effect of reducing the momentum by k,
and are indistinguishable when measuring the atomic
density at a given time. As a result they interfere when
evaluating the Fourier components of the two-point
function in Eq. (4). It is precisely these interferences
that we shall exploit for assessing the nonseparability of
the state.
It should also be noticed that measurements of ρ̂kðtÞ

performed at different times do not generally commute.
When we refer to such measurements, we do so in a
“weakly noncommuting” sense: the measurements would
be noncommuting if performed on the same experimental
realization, but (since the condensate is generally destroyed
when the density profile ρðxÞ is measured3) the measure-
ments are actually performed on different realizations of the
same system.
As explained in textbooks [27,30], the Hamiltonian

of linear perturbations is diagonalized by writing

ϕ̂k¼ukφ̂kþvkφ̂
†
−k, where u

2
k − v2k ¼ 1

4 in order to preserve
the bosonic commutation relation (7) with ϕ̂k replaced by
φ̂k. Then Eq. (6) is equivalent to

ρ̂kðtÞ ¼
ffiffiffiffi
N

p
ðuk þ vkÞðφ̂kðtÞ þ φ̂†

−kðtÞÞ: ð8Þ
The operators φ̂k correspond to collective excitations
(phonons), with φ̂k (φ̂†

k) destroying (creating) a phonon
of momentum k relative to the condensate. The fact that
they diagonalize the Hamiltonian means that (so long as the
background is stationary) the k and −k sectors decouple, so
that we can write

φ̂kðtÞ ¼ b̂ke−iωkt; φ̂†
−kðtÞ ¼ b̂†−ke

iω−kt; ð9Þ
where the operators b̂k and b̂

†
−k do not depend on time. The

lab frame frequency ωk is related to the condensate rest
frame frequency Ωk by a Doppler shift:

ωk − vk ¼ Ωk ≡ cjkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ξ2=4

q
; ð10Þ

where v is the flow velocity of the condensate, c is the
speed of low-frequency phonons, and ξ ¼ 1=mc is the
healing length (m being the atomic mass). Here Ωk is taken
to be positive, since the negative-frequency solutions are
automatically accounted for by the Hermitian conjugate
operators in the second of Eqs. (9).

B. Homogeneous systems

Let us first analyze density fluctuations on condensates
which are stationary and globally homogeneous. We also
assume that the phonon states are statistically homo-
geneous. Then, the two-point function of Eq. (3) depends
only on the spatial interval jx − x0j, and not on x and x0

individually. The expectation value of ρ̂kðtÞρ̂†k0 ðtÞ can be
nonzero only when k ¼ k0; the nontrivial part of the two-
point function is therefore simply hρ̂kðtÞρ̂†kðtÞi, and can be
expressed in terms of only k and t. In fact, the Fourier-
transformed two-point function necessarily has the form

Gð2Þðk; tÞ ¼ Nðuk þ vkÞ2ð1þ nk þ n−k þ 2Re½cke−2iΩkt�Þ:
ð11Þ

It is thus fully governed by the following expectation
values:

n�k ¼ hb̂†�kb̂�ki; ck ¼ hb̂kb̂−ki: ð12Þ
The mean occupation numbers n�k are real and positive,
while ck is in general a complex number. The time-
dependence of Gð2Þðk; tÞ comes only from the last term of
Eq. (11), since n�k and ck are constant in time whenever the

3This is not necessarily the case if one follows the rather
sophisticated method proposed in [15].

4uk and vk are then uniquely defined by the additional relation
uk=vk ¼ −ð1þ k2ξ2=2þ kξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ξ2=4

p
Þ, where ξ is the heal-

ing length defined later in the paragraph.
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background is stationary.5 Note that, being a function of k
only, Eq. (11) is manifestly Galilean invariant.
Measurements of Gð2Þðk; tÞ thus allow us to extract a

certain amount of information about the phonon state.
The first thing to notice is that, even in the absence of any
phonons (i.e. n�k ¼ ck ¼ 0), Gð2ÞðkÞ does not vanish but
takes the value

Gð2Þ
vacðkÞ ¼ Nðuk þ vkÞ2; ð13Þ

which is due to vacuum fluctuations, see the thick black
curve in the left plot of Fig. 1. The presence of uncorrelated
phonons (i.e. n�k ≠ 0, ck ¼ 0) increases this value by a
relative amount of nk þ n−k, see the colored curves in the
left plot which correspond to thermal states with temper-
atures respectively equal to T=mc2 ¼ 1=4, 1=

ffiffiffi
3

p
and 1. In

fact, in a thermal state, one has nk ¼ n−k ¼ ðeΩk=T − 1Þ−1
where T is the temperature (in the condensate rest frame),
and Gð2ÞðkÞ thus becomes

Gð2ÞðkÞ ¼ Nðuk þ vkÞ2 coth
�
Ωk

2T

�
: ð14Þ

The ratio Gð2ÞðkÞ=N is precisely the “static structure factor”
shown (with T=mc2 ¼ 0 and 1=4) in Fig. 7.4 of [27] [for the
sake of comparison, their healing length is defined as
1=ð ffiffiffi

2
p

mcÞ, which is a factor of 1=
ffiffiffi
2

p
smaller than ours

given after Eq. (10)]. In the high-k limit, it tends to 1,whereas
in the low-k limit it approaches T=mc2 (wherewe emphasize
that, because ofGalilean invariance, the k → 0 limit gives the
temperature in the rest frame of the condensate). By careful

measurements of ρðxÞ, it is thus possible to extract the
physical quantities N, ξ and T, as reported in [28].
It should be noticed that it is the total number of phonons

nk þ n−k which is extracted, as we are unable to distinguish
between the left- and right-moving sectors. Note that this is
closely related to the fact that ρ̂k and ρ̂

†
k commute. In effect,

the indistinguishable character of nk and n−k is the price we
pay in restricting ourselves to commuting measurements.
Moreover, if we allow for anisotropic states where nk and
n−k are characterized by different temperatures in the limit
k → 0, say Trm and T lm, then the low-k limit of Gð2ÞðkÞ=N
would yield the arithmetic mean of these two, i.e. it would
approach

Gð2ÞðkÞ
N

→
Trm þ T lm

2mc2
: ð15Þ

Finally, the presence of correlations (i.e. ck ≠ 0) causes
the two-point function to vary sinusoidally with a fre-
quency 2Ωk, a relative amplitude 2jckj and a phase equal to
the phase of ck, see the right plot of Fig. 1 for two
examples. We refer to our former work [4] where these two
examples are obtained after having modified the trapping
frequency in the perpendicular directions, ω⊥, in such a
way that the square of the phonon speed c2 increases by a
factor of 2, while starting with different initial temper-
atures. (Notice that in that work, we effectively used a
different normalization convention for the Fourier trans-
form of ρ̂, so that there was no factor of N out front in the
expression for Gð2ÞðkÞ.) The rate of change of c2ðtÞ is
chosen in such a way that it is slow with respect toω⊥, so as
not to cause any oscillations of the condensate itself; see
Ref. [4]. As explained in that work, longitudinal phonon
modes with frequencies much lower than the rate of change
of ω⊥ respond to that change as if it were sudden, inducing
a significant mode amplification. It should also be recalled
that, when starting from vacuum, this dynamical Casimir
effect (DCE) leads to the spontaneous production of

0 1 2 3 4 5

0.5

1

1 2 3 4 5

0.2

0.4

0.6

0.8

1.

FIG. 1. Fourier transform of equal-time density-density correlation function. On the left is shown Gð2ÞðkÞ=N of Eq. (11) when the
phonon state itself is stationary and thermal, i.e. ck ¼ 0 and 2nk þ 1 ¼ cothðΩk=2TÞ. The various curves correspond to different
temperatures: T=mc2 ¼ 0 (black), 1=4 (blue), 1=

ffiffiffi
3

p
(purple) and 1 (yellow). On the right is shown Gð2ÞðkÞ=N after a lapse of time t

following an increase in c2 by a factor of 2 (the same situation as in Fig. 5 of [4]). The two curves correspond to different initial
temperatures: T ¼ 0 (blue) and T ¼ mc2in (purple), where cin is the initial value of the phonon speed, and where cf and ξf are the final
values of the phonon speed and the healing length, respectively. As the lapse of time t increases, at fixed k, Gð2ÞðkÞ oscillates with the
final frequency 2Ωk, and the number of oscillations visible in the plot of Gð2ÞðkÞ=N increases.

5In this paper, we shall not describe the preceding time-
dependent processes which have engendered these expectation
values. The interested reader is referred to [2–4] where several
scenarios are studied in detail. One of these scenarios is briefly
discussed after Eq. (15).
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maximally entangled pairs with oppositewave vectors k;−k,
by which wemean that themaximal value of jckj (for a given
nk) allowed by quantummechanics is reached [seeEq. (A7)].

C. Assessing entanglement

We now turn to the extraction of the degree of entangle-
ment of the phonon state by studying the behavior of
Gð2Þðk; tÞ of Eq. (3). To this end, we shall use the notions of
nonseparability and steerability, which are briefly recalled
in Appendix A.
As mentioned in the introduction, inequality (1) is a

sufficient condition for nonseparability of the k;−k bipar-
tite state (and, in fact, is also necessary whenever the state is
Gaussian) [11,12,20]. In Appendix A, we further demon-
strate that a sufficient condition for (1) to be satisfied is

Gð2Þðk; tÞ < Gð2Þ
vacðkÞ ¼ Nðuk þ vkÞ2; ð16Þ

for some time t. This is one of our key results, and was
previously reported (for isotropic states with nk ¼ n−k) in
[4]. The indistinguishability of the k and −k sectors in the
expression ρ̂kðtÞρ̂†kðtÞ enteringGð2Þðk; tÞ causes the density-
density measurements to act as an effective interferometer
for these two channels. With varying t, it gives us access to
the two-mode phase space spanned by the modes k and −k,
see Eq. (11). Inequality (16), which expresses the (periodic)
reduction of the noise below its vacuum value, implies the
existence of a subfluctuant direction in this phase space
[11], thus directly revealing the entanglement of the state.
This dipping below vacuum noise is a key feature of several
practical measurements of entanglement, see also e.g.
[15,31,32]. Crucially, it is directly revealed by observations
performed at a single time only; in particular, it does not
yield any of the individual expectation values n�k or ck, but
only that they stand in a certain relation to one another.

Indeed, the extraction of n�k and ck separately (which in
the present settings are equivalent to the knowledge of the
full covariance matrix, see Appendix A) would require the
performance of noncommuting measurements, given that
the number operators n̂�k ¼ b̂†�kb̂�k do not commute with
ĉk ¼ b̂kb̂−k, nor even the Hermitian part of ĉk with its anti-
Hermitian part.
In practical terms, to verify if inequality (16) is satisfied, it

suffices to look for the lower enveloping curve of Gð2Þðk; tÞ,
i.e., the minimum value reached by Gð2Þðk; tÞ when varying
time. In the left plot of Fig. 2, in dotted lines with the
corresponding colors, we have added the upper and lower
envelopes for the two examples considered in the right plot of
Fig. 1. To facilitate the reading, on the right plot of Fig. 2 we

represent the ratio Gð2Þðk; tÞ=Gð2Þ
vacðkÞ; the state is then

nonseparablewhenever the curve drops below 1. One clearly
sees that the lower envelope of the blue curve (which
corresponds to the case with a vanishing temperature) is
below the threshold for all values of k, as can be understood
from the fact that the final phonon state in that case is a pure
two-mode squeezed state. By contrast, the lower envelope of
the purple curve (which corresponds to an initial temperature
equal to mc2in, where cin is the initial phonon speed) dips
below the nonseparability threshold only for kξ≳ 1.2.
On the right plot of Fig. 2, we have also added a thick

dotted black line showing the threshold

Gð2Þðk; tÞ < Gð2Þ
vacðkÞ
2

; ð17Þ

which is a sufficient condition for steerability, see
Appendix A. It is not crossed by either of the two cases
shown on the left plot, although, for the casewith a vanishing
temperature (the blue curve), the phonon state is in fact
steerable for all values of k. The reason is that there is a

1 2 3 4 5

0.2

0.4

0.6

0.8

1.

nonseparable

steerable

1 2 3 4 5
k f

0.5

1.

1.5

2.

G 2 k f , mc f
2 t 5

N uk vk
2

FIG. 2. Assessing the entanglement of the phonon state. On the left are plotted the same density-density correlation functions as in the
right panel of Fig. 1, with their upper and lower envelopes shown in dashed lines. Nonseparability is guaranteed when the minimum
value of Gð2Þðk; tÞ is less than the correlation function associated to vacuum fluctuations, i.e. to the dipping of the lower envelope below
the thick black curve. For the blue curve (at T ¼ 0) the threshold is crossed for all k, whereas for the purple curve (at T ¼ mc2in) it is
crossed only for kξ ≳ 1.2. On the right are shown the same correlation functions, normalized by ðuk þ vkÞ2 so that the nonseparability
threshold occurs at exactly 1. Also included there in yellow is the result having increased c2 by a factor of 8 (at T ¼ 0). For kξ≲ 0.8, this
curve satisfies the sufficient condition for steerability given in Eq. (17) and indicated by the thick horizontal dotted line.
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minimal value ofnk belowwhich the threshold (17) cannot be
reached, even for maximally entangled states; see Eq. (A13)
in Appendix A. To show that there is no problem of principle,
we have added a third case (shown in yellow) which is
obtained (for a vanishing initial temperature) when varying
the trapping frequency ω⊥ in the perpendicular direction in
such a way that the effective speed of sound c2 appearing in
Eq. (10) changes by a factor of 8, and not by a factor of 2 as for
the blue curve. This greater change induces enough mode
amplification for certain modes (those with kξ≲ 0.8) to dip
below the threshold (17), even though, as for the blue curve,
the state is pure and all two-mode systems ðk;−kÞ are in fact
steerable.

III. INHOMOGENEOUS STATIONARY
BACKGROUND

We now turn to the complementary case of a flow profile
corresponding to an analogue black hole [33,34], by which
we mean that the one-dimensional flow is transonic and
stationary [35] and that the velocity increases in the direction
of the flow. Hence the background is necessarily inhomo-
geneous but we shall also assume that it possesses (suffi-
ciently long) homogeneous regions on both sides of the sonic
horizon so that ρ̂k, the Fourier components of the density
ρ̂ðxÞ, can be extracted on either side.6 An example of such a
flow, known as the “waterfall” solution [38], is shown in the
left panel of Fig. 3, with the flow to the right so that v > 0.
It has been chosen because it is close to that used in the
experimental work [21], see also Figs. 1 and 2 of [39]. It is
now well-established that the transonic character of the
background flow gives rise to a steady pair production of
outgoing phonons carrying opposite frequencies �ω (in
similar fashion to the above described DCE which produces
phonon pairs of opposite wave vectors �k).
When the dispersive effects [governed by the healing

length ξ, see Eq. (10)] can be neglected, it can be shown
[33–35] that phase fluctuations propagating in a transonic
background flow obey a (massless) d’Alembertian equation
in an effective black hole metric. The analogue event horizon
is located where the flow velocity v crosses the sound speed
c. This is captured by the analogue metric, which reads

ds2 ¼ −c2ðxÞdt2 þ ðdx − vðxÞdtÞ2: ð18Þ

In this case, the steady phonon emission is thermal, with
temperature (measured in the “stationary” frame inwhich the
flow profile vðxÞ is at rest) proportional to the rate of change
of v − c at the sonic horizon:

TH ¼ 1

2π
∂xðv − cÞjhor: ð19Þ

This follows immediately from the analogywith theHawking
radiation emitted byblackholes [33].Whendispersive effects
are no longer neglected, this result appears at leading order
in THξ=c, as can be shown by solving the stationary
Bogoliubov-de Gennes equation on transonic flows [35].
If stationarity is achieved in an experiment, then the

density-density correlation function (3) depends only on
the time difference and not on t and t0 individually. Given
the form of ρ̂kðtÞ in Eqs. (8) and (9), this ensures that the
expectation value of ρ̂kðtÞρ̂†k0 ðtÞ in the asymptotic flat
regions can be nonzero only when the corresponding
frequencies ωk and ωk0 (measured in the stationary frame)
are equal in magnitude.7

The following developments have a lot in common with
Refs. [19,20], which are also based on in situmeasurements
of density fluctuations. Our first aim is to contrast the rather
simple procedure of Sec. II to the rather complicated
procedure adopted in these references. We also wish to
clarify the origin and consequences of the commuting
character of the measurements.

A. Practical and conceptual difficulties

Let us briefly discuss the main properties characterizing
density fluctuations in transonic flows, with particular
emphasis on their differences with respect to the globally
homogeneous case, and the complications thereby induced.
Firstly, at fixed jωj, three stationary modes are mixed by

the scattering on a transonic flow [35,39], rather than two as
on a globally homogeneous background. One of these
phonons is copropagating with the flow, while the other
two are counterpropagating; adopting a common notation,
these shall be labeled by the superscripts v and u,
respectively. Taking the rest frame frequency Ω > 0 (and
given that the flow velocity v > 0), the v phonon has
positive wave number k while the u phonons have
negative k. More important are their (conserved) frequen-
cies �ω in the stationary frame, which for Ω > 0 give the
signs of their energies: the v phonon has positive energy
while the two u phonons have opposite energies.8 Two
types of phonon pair carrying zero total energy are thus
spontaneously produced: ðu; uÞ pairs involving the two

6The assumption of homogeneity far from the horizon is rather
mild as it has been shown that transonic flows analogous to black
holes, i.e., with the flow velocity vðx; tÞ increasing along the
direction of the flow, obey “no-hair” theorems [36,37]: they expel
perturbations away from the sonic horizon where v crosses the
sound speed c. Therefore stationary asymptotically uniform
transonic flows act (in a finite interval of x containing the sonic
horizon) as attractors for neighboring flows.

7As a result, the correlation pattern projected onto the
ðk; k0Þ-plane is more complicated than the strict k ¼ k0 condition
characterizing pair production in globally homogeneous flows;
see [40] for the structure of these correlations after time-of-flight
measurements, and [41] for the corresponding curves in a
stationary inhomogeneous water wave system.

8Whereas the two positive-energy phonons can propagate
throughout the entire space, the negative-energy phonon exists
only in the region where the flow is supersonic; see Fig. 1 in
Ref. [22] for the spacetime trajectories followed by the three
types of phonon.
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counterpropagating modes, and ðu; vÞ pairs involving the
copropagating v mode.
Despite this 3-mode mixing, it can be shown that the

inequality,

nuωnu−ω − jcuuω j2 < 0; ð20Þ
guarantees that the bipartite state characterizing the two u
modes (and obtained by tracing over the v mode) is
nonseparable [22]. In strict analogy with the quantities
entering Eq. (1), we have nu�ω ¼ hb̂u†�ωb̂

u
�ωi and cuuω ¼

hb̂uωb̂u−ωi, where b̂u�ω ðb̂u†�ωÞ destroys (creates) a u phonon of
frequency �ω. It can also be shown that the couplings
involving the v mode are generally smaller than those
relating the two u modes [22]. Therefore, the v mode is
essentially a spectator, and a fair understanding of the
physics can be reached by focusing on the ðu; uÞ coupling
terms. That said, from an experimental point of view, the
indistinguishability of nk and n−k when measuring the k-th
Fourier transform of density fluctuations means that one
cannot simply discard the v modes when one attempts to
assess the nonseparability of the state, for the mean
occupation numbers will be polluted by their presence.
Secondly, and more crucially, is the fact that the u

phonons of opposite energy appear on opposite sides of
the sonic horizon and then propagate away from each other
in separate regions of space. As a result, one is now
necessarily dealing with two distinct atomic densities:
ρ̂subðxÞ in the subsonic (upstream) region, and ρ̂supðx0Þ in
the supersonic (downstream) region. Explicitly, on Fourier
transforming the density operator (and arbitrarily setting
t ¼ 0 since the state is stationary and all measurements are
made at equal time), we have (see Eq. (8) and [19])

ρ̂subk ¼
ffiffiffiffiffiffiffiffiffi
Nsub

p
ðusubk þ vsubk Þðb̂subk þ ðb̂sub−k Þ†Þ;

ρ̂supk0 ¼
ffiffiffiffiffiffiffiffiffi
Nsup

p
ðusupk0 þ vsupk0 Þðb̂supk0 þ ðb̂sup−k0 Þ†Þ: ð21Þ

We have added superscripts ‘sub’ and ‘sup’ to the
Bogoliubov coefficients uk and vk to indicate that they
depend on the healing lengths ξsub and ξsup defined on either
side.We have also added superscripts “sub” and “sup” to the
phonon operators b̂k because they encode different modes
with support in nonoverlapping regions of space; for in-
stance, the commutator ½b̂subk ; ðb̂supk0 Þ†� vanishes even when
k ¼ k0. Finally, to facilitate the reading, we use an unprimed
k to refer to a measurement made in the subsonic region, and
a primed k0 to refer to a corresponding measurement in the
supersonic region. It will prove convenient to employ this
notation in the remainder of this section.
The fact that the entangled outgoing u phonons propa-

gate in different regions has two important consequences.
On the one hand, they produce a nonlocal long-distance
correlation pattern in the ðx; x0Þ-plane which signals the
production of correlated phonon pairs of type ðu; uÞ
[42,43]. This nonlocal correlation pattern has been reported
in the experimental work [21] and agrees with theoretical
predictions to a large extent [39]. On the other hand, as far
as entanglement is concerned, their associated density
fluctuations no longer (locally) interfere. This implies that
one can no longer assess the entanglement of the state by
simply comparing, as we did in Eq. (16), the measured
value of Gð2ÞðkÞ for some kwith the corresponding vacuum

expression Gð2Þ
vacðkÞ.

Instead, one is forced to follow themore indirect procedure
proposed in [19], which involves combining three different
measurements of the density-density correlation function.
Indeed, each of the three quantities entering Eq. (20) should
be estimated by pairing differently ρ̂subk and ρ̂supk0 of the first
and second lines of Eq. (21), where k and k0 are both negative
(i.e. they correspond to u modes) and are related by ωsub

k ¼
−ωsup

k0 ; see Eq. (10) for the expression forωk (recalling that c
and ξ are different in the two asymptotic regions), and the
right panel of Fig. 3 for the behavior of these solutions in the
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FIG. 3. Flow and dispersion profiles for a “waterfall” configuration. On the left are shown the flow velocity v and the low-frequency
phonon speed c, both normalized with respect to the supersonic (downstream) flow velocity vsup. In the supersonic region, the Mach
number Msup ¼ 4 fixes that in the subsonic (upstream) region at Msub ¼ 1=2, which is close to that reported in [21]; see also [39]. The
position is labelled such that v and c cross at x ¼ 0, which corresponds to the analogue event horizon. On the right are shown the
corresponding behaviors of the wave vectors of counterpropagating phonons (both in the subsonic and supersonic regions and
adimensionalized by the local value of the healing length) as functions of ω=TH , where TH is given in Eq. (19). It can be seen that, when
ω=TH is small enough (≲4), dispersive effects are small, which means that Eqs. (18) and (19) provide reliable approximations.
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flow shown in the left panel. The wave numbers should thus
be considered as functions of the frequency, which can be
shown explicitly bywriting k ¼ kuω and k0 ¼ k0uω . In short, the
mean occupation numbers nuω and nu−ω should be extracted,
respectively, from the expectation values of ρ̂subk ρ̂sub†k and
ρ̂supk0 ρ̂

sup †
k0 , while the correlation term cuuω should be extracted

from the expectation value of ρ̂subk ρ̂supk0 .
9

B. Explicit expressions

We first consider the autocorrelation Gð2ÞsubðkÞ ¼
hρ̂subk ρ̂sub†k i in the subsonic region, noting that the autocor-
relation in the supersonic region is entirely analogous.
Assuming the stationarity of the phonon state, we have

Gð2Þsubðk; kÞ ¼ Nsubðusubk þ vsubk Þ2ð1þ nsubk þ nsub−k Þ
¼ Gð2Þsub

vac ðkÞð1þ nsubk þ nsub−k Þ: ð22Þ

As in (16), we see the key role played by the vacuum two-

point function Gð2Þsub
vac ðkÞ in extracting the observable quan-

tity, here nsubk þ nsub−k , characterizing the phonon state. As
could have been expected from the analysis of the former
section, it is the total occupation number nsubk þ nsub−k that is
extracted from the densitymeasurements.Hence thevmodes
do (positively) contribute to the measurements of ρ̂subk ρ̂sub†k
which therefore only gives an upper bound for the u-mode
occupation number nuω ¼ nsubk , where k ¼ kuω. Note also that,
if the state is stationary, then since jωu

kj ≠ jωv
kjwhenever the

flow velocity is nonzero, we necessarily have on each side
ck ¼ 0, i.e. u and v modes of wave numbers k and −k are
completely uncorrelated. Whereas, in the homogeneous
case, the interference between phonon modes of opposite
wave numbers is useful because it combines precisely those
two modes that are entangled by the time-varying back-
ground, here a possible interference (for instance due to some
lack of stationarity of the background flow) would be a
hindrance in that it combines modes which are not related by

the stationary analogue Hawking effect, and thus would
pollute the measurements.10

It turns out that the extraction of the correlation term cuuω
is not polluted by v modes when the stationarity of the
phonon state is assumed and when the sub- and supersonic
regions are sufficiently well-separated that any residual
contribution due to the finite width of the autocorrelation
can be safely ignored. Indeed, using again k ¼ kuω and
k0 ¼ k0uω , one easily verifies that the only term in the cross-
correlation which is nonvanishing has the following form:

Gð2Þsub= supðk;−k0Þ
¼ hρ̂subk ρ̂supk0 i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NsubNsup

p
ðusubk þ vsubk Þðusupk0 þ vsupk0 Þck;k0 ; ð23Þ

where we have defined ck;k0 ≡ hb̂subk b̂supk0 i. Importantly, in
order to extract jcuuω j from jck;k0 j, it is not sufficient to use k
and k0 with opposite values of ω; one should also carefully
choose the relative location and extension of the spatial
windows used in the sub- and supersonic regions so as to
maximize the overlap of the phonon modes with oppositeω,
see the function FðωÞ entering Eq. (32) in Ref. [20].11

Assuming that the optimum overlap is reached (i.e.
jFðωÞj ¼ 1), one gets the sought-after relation jcuuω j ¼
jck;k0 j; more generally, we have jcuuω j ≥ jck;k0 j, i.e., the
measured value jck;k0 j gives an underestimation of the
strength of the correlations present in the phonon state.
In brief, under the assumption of stationarity, noticing that

the populations nu�ω are both being overestimated by theGð2Þ
measurements if one ignores the population of the v modes,
while the correlation strength jcuuω j is being underestimated if
the optimum overlap between the two windows is not
reached, Eq. (20) combined with the above equations tells
us that a sufficient criterion for nonseparability is [19,20]

Δð2Þðk; k0Þ≡ ½Gð2Þsubðk; kÞ −Gð2Þsub
vac ðkÞ�

× ½Gð2Þ supðk0; k0Þ −Gð2Þ sup
vac ðk0Þ�

− jGð2Þsub= supðk;−k0Þj2 < 0: ð24Þ

9It thus appears that one needs to measure separately the three
ingredients entering condition (20). This raises a puzzling question,
since on the one hand, the occupation numbers n̂u�ω ¼ b̂u†�ωb̂

u
�ω,

considered as operators, do not commute with the operator
ĉuuω ¼ b̂uωb̂

u
−ω, while on the other hand these three quantities are

extracted from measurements (performed at a given time) of ρ̂ðxÞ
for various values of x which do commute. The resolution of this
paradox comes from the operator content of ρ̂subk and ρ̂supk0 of
Eq. (21). Each of them contains with equal weight a destruction
operator and a creation operator corresponding to modes with
opposite values of k. This guarantees that the three relevant
combinations ρ̂subk ρ̂sub†k , ρ̂supk0 ρ̂

sup †
k0 and ρ̂subk ρ̂supk0 commute with each

other. Although they do not contribute to the three uu quantities
entering Eq. (20), the v operators ðb̂v−kÞ†; ðb̂v−k0 Þ† are necessary to
ensure the commutation of the density measurements.

10For the sake of clarity, we wish to emphasize that the v
modes which are coupled to the u modes by the density
measurements, and which are related to them through having
the same magnitude of wave number jkj, are to be distinguished
from the v modes which are coupled to the u modes by the
analogue Hawking effect, related by having the same magnitude
of frequency jωj, and which only appear in the downstream
(supersonic) region; see Eq. (58) of [35]. In the homogeneous
case, by contrast, the modes coupled by the DCE are precisely
those which are also coupled by the density measurements.

11This function FðωÞ plays a similar role as the factor multi-
plying 2RT in Eq. (9) of the Hong-Ou-Mandel paper [31]. As
mentioned there, one immediately sees that the strongest interfer-
ence occurs when this factor is 1, which is its maximum value. The
occurrence of such a function limiting the relative intensity of the
correlations is very general, and when its maximum value is less
than 1, it encodes decoherence effects; see e.g. Ref. [44].
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To illustrate what this procedure entails, we have plotted
in Fig. 4 the three relevant Fourier transforms ofGð2Þðx; x0Þ,
as well as the difference of (24), that are theoretically
obtained by solving the BdG equation on a stationary
transonic flow described by an exact solution (called a
“waterfall” or “half-soliton”) of the GPE on a step function
potential [39]. These stationary asymptotically homo-
geneous flows form a one-parameter family of solutions
that can be labeled by the asymptotic Mach numberMsup ¼
vsup=csup in the downstream supersonic region; the corre-
sponding Mach number in the upstream subsonic region is
Msub ¼ M−1=2

sup . We worked with Msup ¼ 4 as it matches
what has been observed in [21]. We also considered two
initial temperatures (in the condensate rest frame) for the
incident v modes: Tv

Ω;in ¼ 0 and Tv
Ω;in ¼ 2TH, where TH

[of Eq. (19)] is the effective low-frequency temperature of
the emitted u phonons.

In terms of the u and v modes that combine to give
the autocorrelation of Eq. (22), Hawking radiation is
inherently anisotropic: the u- and v-mode populations on
any one side are generally very different. If the ingoing v-
mode state is close to vacuum, the k → 0 limit of Gð2ÞðkÞ
[governed by Eq. (15)] will then be Tu

Ω=2mc2. Notice that
the extracted temperature of the u modes is that measured
in the condensate rest frame; i.e., it is associated to the
rest frame frequency Ω rather than to the conserved
frequency ω, these being related by a Doppler shift, see
Eq. (10).12 In the limit k → 0, they become proportional,
namely Ω ¼ ω=ð1 −MÞ where M ¼ v=c is the Mach
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FIG. 4. Density-density correlation function for a waterfall in BEC, with Mach number in the supersonic region Msup ¼ 4 (close to
that reported in [21]). The plots in the upper row show the autocorrelation Gð2ÞðkÞ in the subsonic (left panel) and supersonic (right
panel) regions, while the lower left panel plots the cross-correlation Gð2Þðk; k0Þ. The lower right panel shows instead the difference
appearing in inequality (24). The variously colored curves correspond to different initial temperatures (in the frame of the condensate) of
the incident v modes: Tv

Ω;in ¼ 0 (blue curves) and Tv
Ω;in ¼ 2TH (red curves—the kinks appearing in these are numerical artifacts due to

assuming that the scattering is trivial above ωmax, the maximum frequency at which ðu; uÞ phonon pairs are produced). In the upper
plots, the thick black curves show the autocorrelation in vacuum, which must be subtracted before insertion into inequality (24). The
solid curves are those that are actually observed; by contrast the dotted curves are those that would result if the measurements were able
to distinguish u and v modes, and only the occupation numbers of u modes were to appear in all expressions. When the initial
temperature Tv

Ω;in ¼ 2TH , the pollution of the density measurements by the presence of vmodes dramatically affects the observations of

Gð2ÞðkÞ in the subsonic and supersonic regions (and, therefore, also the computed value of Δð2Þ), as can be seen by comparing the solid
and dotted red curves in the upper plots and in the lower right plot. Indeed, since the u-v coupling is small, the occupation numbers of u
modes remain essentially the same whether or not there is an initial thermal state, as indicated by the fact that the dotted red curves are
almost the same as the blue curves in the upper plots.

12In fact, the inverse transformation should be considered to
express the initial temperature of the condensate T in, naturally
expressed in terms of Ω, in terms of the conserved frequency ω
governing the Hawking effect; see Sec. II C of [22].
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number. Therefore, the associated temperatures are related
in the same manner: we have, for the counterpropagating
u modes,

Tu
Ω ¼ Tu

ω

j1 −Mj : ð25Þ

Taking into account the above facts that, when the ingoing
state is vacuum, in the subsonic region the v modes are in
their vacuum state and the outgoing u modes have a ω
temperature close to TH of Eq. (19), we arrive at the
conclusion that the k → 0 limit of Gð2ÞðkÞ is

Gð2Þ
subðkÞ
Nsub

→
1

2

TH

mc2sub

1

1 −Msub
: ð26Þ

As far as we know, this combination of effects has not yet
been discussed in the literature, although it can be shown
to agree with Eq. (35) of [39]. We should also point out
that, for the waterfall flow (close to the flow realized in
[21]) with Msub ¼ 1=2, the product 2ð1 −MsubÞ ¼ 1. In
that case, we recover from Eq. (26) the standard expres-
sion Gð2ÞðkÞ=N → TH=mc2 [see below Eq. (14)], as if
neither of the above effects were modifying Gð2ÞðkÞ.
Notice finally that a more complicated expression than
(26) governs the low-k behavior of Gð2ÞðkÞ in the super-
sonic region due to the production of vmodes; see the first
term in Eq. (53) of [35].

IV. CONCLUSION

In this paper, we have considered the properties of the
equal-time density-density correlation function in homo-
geneous domains of elongated effectively one-dimensional
atomic cold gases. We began by studying globally homo-
geneous systems, examining the time-dependence of the
Fourier transform of the density-density correlation func-
tion at fixed wave number k. In this case, Gð2Þðk; tÞ, the kth
component of the two-point function, displays periodic
oscillations whose amplitude depends on the strength of the
correlations between the phonon modes of opposite wave
numbers. These oscillations arise from the interference
between the contributions of these modes when measuring
the atomic density. We demonstrated that if the minimal
value periodically reached by Gð2Þðk; tÞ goes below

Gð2Þ
vacðkÞ, the constant value Gð2ÞðkÞ has in the vacuum

state, then the bipartite phonon state of wave numbers k;−k
is necessarily nonseparable. Remarkably, repeated in situ
measurements of the atomic density ρðxÞ at a given time

(one for which Gð2Þðk; tÞ < Gð2Þ
vacðkÞ) are sufficient to assess

the nonseparability of the bipartite phonon state. In this, we
see that the commuting character of these measurements
does not prevent one from having access to the entangle-
ment of the state, in contrast to the fact that the knowledge
of all entries of the covariance matrix does require the
performance of noncommuting measurements. In fact, a

closer analysis shows that in situ measurements of ρðxÞ
performed at an appropriate time give us access to the
particular combination of the elements of the covariance
matrix which governs the degree of entanglement between
the two subsystems. In mathematical terms, the combina-
tion appearing in (1) gives the lowest eigenvalue of the
determinant used in the function P which appears in the
generalized Peres-Horodecki criterion. Hence the sign of
the difference entering (1) is equal to the sign of P (see
Appendix A). By a similar analysis (performed at the end
of Sec. II C), we showed that the stronger criterion of
steerability can also be experimentally verified by studying
the behavior of Gð2ÞðkÞ at a given time, i.e. by commuting
measurements of density fluctuations. We hope that forth-
coming experiments could exploit the simple analysis
of Sec. II C to assess entanglement of bipartite phonon
states ðk;−kÞ.
In the second part of the paper, we studied the density

fluctuations measured asymptotically on each side of a
transonic stationary flow whose velocity increases along
the direction of the flow, mimicking a black hole metric and
giving rise to the steady production of phonon pairs of zero
total energy by a process analogous to the Hawking effect.
The relevant phonons, i.e. those which are counterpropagat-
ing with respect to the flow, are emitted on either side of
the horizon, so that (in stark contrast to the homogeneous
case) they live in nonoverlapping regions of space and do not
(directly) interfere. It is thus no longer possible to extract
information about the entanglement of the relevant phonon
modes by directly observing the oscillations of the density-
density correlations. Rather, one should combine three
different measurements of these correlations. Two of them
are autocorrelations performed in each asymptotic region,
and give upper bounds for the mean occupations numbers
nu�ω of the relevant phonons. The reason they give only upper
bounds is our inability to subtract the (weak but unknown)
contributions of the copropagating modes, which act as
spectator modes in the present process in that they are
only weakly involved in the mode mixing taking place near
the sonic horizon. The third measurement instead is a cross-
correlation, coming from Fourier components of the two-
point function evaluated on either side of the horizon. It gives
a lower bound for the norm of cuuω which governs the strength
of the correlations between the two relevant phonon modes.
Although the spectator copropagating modes do not con-
tribute to the mean value of this measurement (because
we assumed stationarity), their contribution to the operators
being measured guarantees that the third measurement
commutes with the former two. To us this is a remarkable
illustration of the counterintuitive nature of quantum
mechanics.
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APPENDIX A: DEGREES OF ENTANGLEMENT
IN BIPARTITE SYSTEMS

Entanglement is one of the most telling signs of the
quantum nature of physics. Moreover it is a rich and often
subtle subject. Whereas for pure states, “entanglement” is a
fairly well-defined property, with several equivalent for-
mulations, it was pointed out by Werner [8] and subsequent
authors that for mixed states these formulations are no
longer equivalent. This leads to a hierarchy of different
degrees of entanglement for general quantum states. Here
we consider two such notions: nonseparability and steer-
ability (defined below). In preparation for the study of
density perturbations in atomic Bose gases presented in the
main text, we restrict our attention to two-mode bosonic
states, each single-mode subsystem having its own quan-
tum amplitude operators b̂j and b̂†j (j ¼ 1, 2) subject to the
usual bosonic commutation relation ½b̂i; b̂†j � ¼ δi;j.

1. The criteria

a. Nonseparability

Nonseparable states are best defined as the complement
of the set of separable states, for which an explicit
definition can be given. For a fixed pair of subsystems
denoted 1 and 2, such that the Hilbert space of the whole
system is the tensor product H1 ⊗ H2 of the Hilbert spaces
for each subsystem, the bipartite state ρ̂1;2 is said to be
separable with respect to subsystems 1 and 2 whenever it
can be written in the form13

ρ̂1;2 ¼
X
a

Pa ρ̂
a
1 ⊗ ρ̂a2; ðA1Þ

where the ρ̂aj are states pertaining to each of the subsystems
separately and the Pa ≥ 0 are real numbers. ThenP

aPa ¼ 1, and the state ρ̂1;2 has the properties of a
probability distribution. When more than one Pa ≠ 0,
ρ̂1;2 entails correlations between the subsystems 1 and 2,
but only in a classical sense: the overall state can be

obtained by using a random number generator to pick the
factorized ath-state ρ̂a1 ⊗ ρ̂a2 distributed according to the
probability distribution Pa, and placing each subsystem
separately in the states ρ̂a1 and ρ̂a2 . Note that uncorrelated
states are necessarily separable. Conversely, nonseparable
states are those which cannot be written in the form
(A1). Such states are necessarily correlated, but their
correlations cannot be accounted for by the above
classical means.

b. Steerability

The notion of steerability was originally formulated
along the lines of thinking present in the original EPR
paper [45]. The idea is to consider making measurements
on one subsystem, say 1, and using the results of such
measurements to infer the values of correlated quantities for
the second subsystem 2.14 As formulated more recently by
Reid [47], when considering a pair of noncommuting
operators Â2 and B̂2 with a c-number commutator,15 the
mathematical description of steering can be written as

ΔinfA2 · ΔinfB2 <
1

2
j½Â2; B̂2�j: ðA2Þ

Here,ΔinfA2 refers to the inferred standard deviation ofA2 on
subsystem 2 having measured A1 on subsystem 1, that is,

ΔinfA2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðÂ2 − Ā2ðA1ÞÞ2i

q
; ðA3Þ

where Ā2ðA1Þ is the conditional (mean) value of Â2 given that
a (projective) measurement of Â1 on subsystem 1 yields the
eigenvalue A1, and given that the state of the system is ρ̂1;2.
Several comments are needed in order to appreciate the
content of inequality (A2). Firstly, a measurement of B̂1,
which does not commute with Â1, is performed on sub-
system 1 when computing ΔinfB2. Secondly, the right-hand
side of (A2) gives the usual lower bound for theproduct of the
standard deviations ofA2 andB2 according to theHeisenberg
uncertainty principle applied to subsystem 2. The latter is
steerable by subsystem 1, then, when correlations between
the two subsystems are so strong that the inferred standard
deviations of subsystem 2 are able to violate the Heisenberg
uncertainty relation. Thirdly, in general the steerability
criterion is asymmetric: it is different depending on which
of the two subsystems is measured and which is being

13The fixedness of the subsystems is crucial in this definition,
in that the allowed canonical transformations belong to the set of
local linear transformations Spð2;RÞ1 ⊗ Spð2;RÞ2, where
Spð2;RÞj is the real symplectic group restricted to subsystem
j; see Eq. (15) in Ref. [9].

14Schrödinger [46] coined the term “steering” to describe the
ability to “steer” the subsystem 2 into an eigenstate of either of
two noncommuting observables Â2; B̂2, by choosing the meas-
urement made on the subsystem 1.

15We refer the reader to the more recent work [48] for a
discussion when the commutator is a q number, a scenario that is
beyond the scope of the present paper. We are grateful to Iacopo
Carusotto for pointing out some imprecision in our former
presentation of the criterion.
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“steered.” Finally, steerability is a stronger entanglement
criterion than nonseparability; see the forthcoming analysis
and Refs. [7,10].

2. Sufficient inequalities

The mathematical definitions of nonseparability and
steerability given above are too general to be straightfor-
wardly applied to experimental data. It is then useful to
identify inequalities relating observable quantities which,
when violated, are sufficient to assess that the state is
entangled according to one of the above criteria.
Before doing so, we remind the reader (see Eq. (B3) of

[12]) that quantum mechanical settings imply that the
following inequalities cannot be violated:

jc12j2 ≤ n1ðn2 þ 1Þ
≤ n2ðn1 þ 1Þ; ðA4Þ

where ni ¼ hb̂†i b̂ii and c12 ¼ hb̂1b̂2i. We emphasize that
these inequalities apply to any bipartite state, and therefore,
the following entanglement criteria will be limited by them.
On the other hand, measurements which violate them
would imply that the usual bosonic commutation relations
do not apply, or that quantum mechanics altogether is
brought into question.

a. Nonseparability

A commonly used sufficient criterion for nonseparability
is the generalized Peres-Horodecki (gPH) criterion, an
algebraic condition on the covariance matrix of a two-state
system. It is expressed by Simon [9] using the two-mode
operators X̂ ¼ ½q̂1; p̂1; q̂2; p̂2� and the covariance matrix
Vαβ¼hfΔX̂α;ΔX̂βgi=2, where, as usual, q̂j¼ðb̂jþb̂†jÞ=

ffiffiffi
2

p

and p̂j ¼ ðb̂j − b̂†jÞ=ð
ffiffiffi
2

p
iÞ for each subsystem. A neces-

sary condition for separability is

V þ i
2

�
J 0

0 −J

�
≥ 0; where J ¼

�
0 1

−1 0

�
: ðA5Þ

That is, if the state is separable, the operator on the left-
hand side of (A5) must be positive-semidefinite. Violation
of the inequality is therefore a sufficient condition for
the state to be nonseparable.16 It can be written in the
equivalent form P ≥ 0, where P is a scalar function of
the elements of the covariance matrix [9]. Much of the
literature works directly with the function P, see e.g.
Figure 4 of [15]. This has the advantage of generality,
but at the expense of obtuseness of the expressions.
If we restrict ourselves to states for which the two-point

function Gð2Þðt; x; t0; x0Þ is either homogeneous (when the
background is homogeneous) or stationary (when the

background is stationary), the gPH criterion can be sim-
plified. Expectation values such as hb̂2i i or hb̂†i b̂ji (where
i ≠ j) must then vanish, and the gPH criterion for non-
separability takes the form (see Appendix B of [12])

P¼ððn1þ1Þðn2þ1Þ− jc12j2Þðn1n2− jc12j2Þ< 0; ðA6Þ

where ni ¼ hb̂†i b̂ii and c12 ¼ hb̂1b̂2i. Using the inequalities
of Eq. (A4), one verifies that the first term in brackets in
(A6) is necessarily positive. For the class of states here
considered, the gPH criterion is thus equivalent to

n1n2 − jc12j2 < 0; ðA7Þ

which is exactly condition (1). Interestingly, for all two-
mode states, (A7) is sufficient for the gPH criterion to be
satisfied, and hence for the state to be nonseparable (see
Table 1 of [20], and Appendix B of [12]).
When assessing nonseparability in the homogeneous

case (see Sec. II C), we use another sufficient criterion,
namely inequality (16). Given the form taken by Gð2Þðk; tÞ
in a homogeneous state [see Eq. (11)], this is equivalent to

n1 þ n2
2

− jc12j < 0: ðA8Þ

That is, the “product” condition (A7) is replaced by the
“sum” condition (A8). In the isotropic case n1 ¼ n2, the
proof of the sufficiency of the sum condition is immediate,
for it is then equivalent to the product condition; whereas in
the anisotropic case n1 ≠ n2, the inequality

�
n1 þ n2

2

�
2

− n1n2 ¼
�
n1 − n2

2

�
2

> 0 ðA9Þ

guarantees that (A8) implies (A7). The sum condition (A8) is
thus a sufficient condition for nonseparability that can be
accessed directly via measurements ofGð2Þðk; tÞ of Eq. (11).

b. Steerability

For the subclass of homogeneous or stationary states,
using Ref. [7] a sufficient condition for steerability can be
shown to be

Δ1→2
steer ≡ n2

�
n1 þ

1

2

�
− jc12j2 < 0: ðA10Þ

Note that it is asymmetric with respect to the exchange of
n1 and n2, which reflects the fact that it depends on which
subsystem is being steered by the other. In the present case,
it is subsystem 2 which is steered by subsystem 1, hence the
arrow in the superscript of Δ1→2

steer . Note that for Gaussian
states, (A10) is also a necessary criterion.
As for nonseparability, there is a sum condition for

steerability that is sufficient for inequality (A10) to be
satisfied. To derive it, we use the inequality

16In fact, if the state ρ̂1;2 is Gaussian, violation of inequality
(A5) is also necessary for the nonseparability of the state.
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�
n1 þ n2

2
þ 1

4

�
2

− n2

�
n1 þ

1

2

�
¼

�
n1 − n2

2
þ 1

4

�
2

≥ 0;

ðA11Þ
which guarantees that (A10) is satisfied whenever

n1 þ n2
2

− jc12j < −
1

4
: ðA12Þ

Unlike the product condition, the sum condition is sym-
metric under the exchange of n1 and n2; thus, if it is
satisfied, each of the two subsystems is steerable by the
other. Notice that it has the same structure as the symmetric
inequality (A8). Therefore, using Eq. (11), it can also be

expressed directly in terms of Gð2Þðk; tÞ andGð2Þ
vacðkÞ, giving

rise to inequality (17). This condition is represented by the
dashed vertical line in Fig. 5 and by the horizontal dotted
line in Fig. 2.
It should be noticed that it crosses the outermost limit of

physical stateswithn1 ¼ n2 ≡ n for finitevalues of themean
occupation number n and the correlation strength jcj, i.e.

nmin
steer ¼

1

8
; jcjmin

steer ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmin
steerðnmin

steer þ 1Þ
q

¼ 3

8
: ðA13Þ

This can be understood from the fact that the realization of
inequality (17) requires sufficiently large oscillations of the

Gð2Þðk; tÞ with respect to Gð2Þ
vacðkÞ. It is interesting to notice

that it is the symmetric condition (A12) that is used in the
recent work [49], where the threshold is correctly pointed
out. Indeed, they measure the variances of linear combina-
tions of operators pertaining to subsystems 1 and 2 [as in
Eq. (6)], which in the language of Sec. II amounts to
measuring Gð2Þðk; tÞ of Eq. (11).
To summarize, although steerability is originally formu-

lated in terms of inferred variances [see Eq. (A3)], a
sufficient criterion can be expressed in terms of variances
of linear combinations of operators pertaining to the two
subsystems. Using the law of total variance [50], this
possibility follows from the inequality

ðΔinfA2Þ2 ≤ hðÂ1 � Â2 − hÂ1 � Â2iÞ2i; ðA14Þ

which guarantees the sufficiency of Eq. (A12) and therefore
of Eq. (17).
For the interested reader,we add a simple illustration of the

role of the inferred variance using the Wigner function of a
Gaussian isotropic (n1 ¼ n2 ≡ n) state (for a similar analysis
based on theHusimiQ distribution, seeAppendixD of [11]).
The state is thus completely characterized by the expectation
values n and c12. We further assume that the correlation term
c12 is real, so that the quadrature operators q̂j and p̂j

introduced above can be used in the steerability criterion
(A2). Using as variables the coherent state amplitudes
uj ¼ ðqj þ ipjÞ=

ffiffiffi
2

p
, the Wigner function of the bipartite

state ρ̂1;2 is given by

W1;2ðu1; u2Þ ¼ N exp
�
−

ju1j2
nþ 1=2

�

× exp

�
−
ju2 − ū2ðu1Þj2
ðΔinfq2Þ2

�
; ðA15Þ

where N is a normalization prefactor, and where we have
defined

ū2ðu1Þ ¼
c12

nþ 1=2
u⋆1 ; ðΔinfq2Þ2 ¼

1

2
þ Δ1→2

steer

nþ 1=2
:

ðA16Þ
Straightforward symmetry arguments show that ðΔinfp2Þ2 ¼
ðΔinfq2Þ2. The first exponential factor in Eq. (A15) is (up to a
normalization prefactor) the reduced Wigner function of
subsystem 1 having traced over the degrees of freedom
pertaining to subsystem 2. It is characterized by a width
which is the total standard deviation of q̂1 (or p̂1). The second
factor is the conditionalWigner functionof subsystem2given
that a measurement of b̂1 yields the value u1. It is charac-
terized both by a conditional mean ū2ðu1Þ and by a width
which is the inferred standard deviation of q̂2 (or p̂2) given a
measurement of q̂1 (or p̂1). Subsystem 2 is steerable by

FIG. 5. Entangled states. Assuming either homogeneity or
stationarity of the two-mode state, along with isotropy
n1 ¼ n2 ≡ n, the color in the ðn;ΔÞ-plane (where Δ≡ n − jcj)
determines the degree of entanglement of a Gaussian state (see
footnote 16). The white region is physically inaccessible, since it
does not conform to (A4). The entire shaded region corresponds
to physical states for which Δ < 0, and thus to nonseparable
states; since we have assumed isotropy, the product and sum
conditions (A7) and (A8) are equivalent. Within this region, the
darker shaded region corresponds to physical states for which
(A10) is satisfied. The dashed line corresponds to the strong
steerability condition (A12), and it crosses the outermost limit of
physical states at n ¼ nmin

steer of Eq. (A13).
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subsystem 1whenever the inferred variance is smaller than its
vacuum value of 1=2, which occurs precisely when condition
(A10) is satisfied.

APPENDIX B: ADDITIONAL INFORMATION
FROM OTHER TYPES OF MEASUREMENT

1. Phase fluctuations and noncommuting
measurements

In addition to density fluctuations, it is interesting to
study the two-point correlation functions involving the
phase fluctuations δθ̂ in order to see what is the extra
information about nk and ck that could be extracted. Using
again Φ̂ðt; xÞ ¼ e−iμtþiKxðΦ0 þ δϕ̂ðt; xÞÞ, one has

δϕ̂ðt; xÞ ¼ δρ̂

2
ffiffiffiffiffi
ρ0

p þ i
ffiffiffiffiffi
ρ0

p
δθ̂: ðB1Þ

Then, as in (8), it is useful to work with the spatial Fourier
transform and to express it using the phonon operators.
One finds

δθ̂k ¼
ffiffiffiffi
N

p

2iρ0
ðuk − vkÞðφ̂k − φ̂†

−kÞ: ðB2Þ

Much as for the ρ̂k, we here have θ̂
†
k ¼ θ̂−k and ½θ̂k; θ̂†k� ¼ 0.

Therefore, the correlation hjθ̂kj2i is well-defined, and we
have

hjθ̂kj2i ¼ hθ̂kθ̂−ki

¼ N
4ρ20

ðuk − vkÞ2ð1þ nk þ n−k − 2Re½cke−2iωkt�Þ:

ðB3Þ
ComparingwithEq. (11), we see that we gain little additional
information from phase measurements: indeed, apart from
the minus sign in the prefactor ðuk − vkÞ2, the essential
difference occurs in the minus sign in front of the oscillating
term.Thus, themeasurement is just as ifwehad examined the
density-density correlation shifted in time by half a period.
To conclude, let us now consider the information

encoded in density-phase correlations:

hfρ̂k; θ̂−kgi ¼ 2Lðiδnk þ Im½cke−2iωkt�Þ; ðB4Þ
where curly brackets signify the anti-commutator (used
here because ρ̂k and θ̂−k do not commute, since they obey
½ ρ̂k; θ̂−k0 � ¼ iLδk;k0). This measurement does give us access
to new information: the degree of anisotropy δnk ¼
ðnk − n−kÞ=2.

2. Anisotropy

It is useful to investigate the effects of anisotropy further.
Let us define δnk ≡ ðnk − n−kÞ=2. Then the observable
accessible from measurements of h ρ̂kρ̂−ki is

1

2
ðnk þ n−kÞ − jckj ¼ nk − jckj − δnk: ðB5Þ

On the other hand, the criterion that determines separability
is nkn−k − jckj2 > 0 or, taking the square root for ease
of comparison with measurements,

ffiffiffiffiffiffiffiffiffiffiffiffi
nkn−k

p −jckj>0.
Substituting δnk and Taylor expanding the square root,
we find

ffiffiffiffiffiffiffiffiffiffiffiffi
nkn−k

p
− jckj ¼ nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2δnk=nk

p
− jckj

¼ nk − jckj − δnk −
ðδnkÞ2
2nk

þOððδnkÞ3Þ:

ðB6Þ

Therefore, the theoretical and measurable criteria first differ
at quadratic order in δnk. That is, if there is a small degree of
anisotropy, the theoretical separability threshold occurs
slightly above that directly accessible to measurement: there
is a small band just above the vacuum value of h ρ̂kρ̂−ki
where the corresponding state is nonseparable, and its
thickness varies as ðδnkÞ2.
Continuing in this vein, let us assume that we can place a

lower bound on the degree of anisotropy, i.e. we have
jδnkj > Mk > 0 for some Mk. From what has been said so
far, it is clear that there will exist states which do not satisfy
1
2
ðnk þ n−kÞ − jckj < 0, but which are nonetheless non-

separable. Can we improve the sufficiency criterion in order
to be able to recognize some of these states? We shall allow

FIG. 6. Nonseparable states. Assuming either homogeneity or
stationarity of the two-mode state, and if the degree of anistropy
δn≡ jn1 − n2j=2 is known, the point in the ðn̄;ΔÞ-plane (where
n̄≡ ðn1 þ n2Þ=2 and Δ≡ n̄ − jcj) determines the degree of
entanglement of a Gaussian state (see footnote 16). The white
region is inaccessible to quantum mechanical states. Within the
shaded region, we have used different colors to illustrate the set of
all nonseparable states when δn ¼ 0 (blue), 1=4 (green) and 1=2
(red). The gray regions correspond to separable states. The left-
most colored curve always represents the boundary of quantum
mechanical states given the value of δn.

ROBERTSON, MICHEL, and PARENTANI PHYSICAL REVIEW D 96, 045012 (2017)

045012-14



ourselves to collect measurements of Gð2Þðk; tÞ at different
times, but even then, it is clear from Eq. (11) that we have
experimental access only to nk þ n−k and jckj. The
improved criterion must therefore contain only these values
(in addition to the bound Mk). Let us first assume
separability, i.e. nkn−k − jckj2 ≥ 0, and derive a necessary
condition for this to be true; any violation of this condition
will then constitute a sufficient condition for nonsepar-
ability. Firstly, we note that an equivalent separability
criterion (from straightforward algebraic rearrangement) is

2ðδnkÞ2 ≤
1

2
ðn2k þ n2−kÞ − jckj2: ðB7Þ

We then have

4ðδnkÞ2 ≤ 4ðδnkÞ2 þ 2ðnkn−k − jckj2Þ
≤ ðnk þ n−kÞ2 − 4jckj2
¼ ðnk þ n−k − 2jckjÞðnk þ n−k þ 2jckjÞ; ðB8Þ

where in the first line we have used the standard criterion
for separability and in the second line we have used the
equivalent condition (B7). The result can be rewritten in the
form

1

2
ðnk þ n−kÞ − jckj ≥

2ðδnkÞ2
nk þ n−k þ 2jckj

: ðB9Þ

Violation of this inequality is therefore sufficient to be able
to assert the nonseparability of the state, and if we assume a
known lower bound for jδnkj > Mk, we can shift the
nonseparability criterion to

1

2
ðnk þ n−kÞ − jckj <

2M2
k

nk þ n−k þ 2jckj
: ðB10Þ

The knowledge of δn on nonseparability is clearly
illustrated in Fig. 6.
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