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Abstract We use the energy method to obtain the non-linear stability threshold for
thermosolutal convection porous media of Brinkman type with reaction. The obtained
non-linear boundaries for different values of the reaction terms are compared with
the relevant linear instability boundaries obtained by Wang and Tan (Phys Lett A
373:776–780, 2009). Using the energy theorywe obtain the non-linear stability thresh-
old below which the solution is globally stable. The compound matrix numerical
technique is implemented to solve the associated system of equations with the corre-
sponding boundary conditions. Two systems are investigated, the heated below salted
above case and the heated below salted below case. The effect of the reaction terms
and Brinkman term on the Rayleigh number is discussed and presented graphically.

Keywords Porous media · Brinkman model · Thermosolutal convection · Energy
method · Non-linear stability
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1 Introduction

Convection in porous media has attracted the attention of many researchers and has
been an area of great interest in addition to its wide range of applications. Thermal
convection in porous media and stability analysis returns back to Horton and Rogers
[2], Lapwood [3] and Nield and Barletta [4]. The problem of double-diffusive convec-
tion in porous media is well investigated by Nield [5], Rudraiah et al. [6], Wollkind
and Frisch [7,8], Nield and Bejan [9], Ingham and Pop [10,11], Vafai [12,13] and
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Vadasz [14]. Bdzil and Frisch [15] performed a linear stability analysis where the
fluid catalysed at the lower boundary of the layer and they developed their work in
Bdzil and Frisch [16] and a similar work carried by Gutkowicz-Krusin and Ross [17].
Many recent studies in double and multi-component convection are accomplished by
Rionero [18–21]. The first study on the reactive convection in porous media was due
to Steinberg and Brand [22,23]. More studies were carried out by Gatica et al. [24,25],
Viljoen et al. [26] and Malashetty and Gaikwad [27]. Pritchard and Richardson [28]
figured out a model similar to that of Steinberg and Brand [22,23]. They considered
the Darcy model to study the onset of thermosolutal convection using linear instability
technique. Wang and Tan [1] extended the previous work of Pritchard and Richardson
[28] in which Wang and Tan [1] considered Darcy-Brinkman model and used normal
mode analysis to carry out a linear instability analysis.

We are studying nonlinear stability using an energy stabilitymethod. Thismethod is
being used extensively by many leading mathematicians, see for example, Straughan
[29,30], Rionero [31], Capone et al. [32], Straughan [33], Capone and De Luca [34],
Rionero and Torcicollo [35], Capone et al. [36], Lombardo and Mulone [37], Rionero
[38], De Luca [39] and De Luca and Rionero [40]. The work in this paper may be
considered as an extension of Wang and Tan [1] and Pritchard and Richardson [28].
Al-Sulaimi [41] used the energy method to carry out a nonlinear stability analysis of
Darcy thermosolutal convection with reaction. In this article, the energy stability of
Brinkman thermosolutal convectionwith reaction is considered. The compoundmatrix
numerical technique is used to solve the associated system of equations with the cor-
responding boundary conditions. Two systems are investigated separately, the heated
below-salted above system and the heated below-salted below system. The energy
stability boundaries obtained for different values of the reaction rates are compared
with the relevant linear instability boundaries. Some linear instability boundaries are
obtained by Wang and Tan [1], but they do not correspond directly to what we require
and hence we recompute also the linear values using the D2 Chebyshev tau method.

The aim of the study is to obtain the nonlinear stability boundaries below which
the solution is globally stable by using the energy method and compare the nonlinear
boundaries with the relevant linear instability boundaries obtained by Wang and Tan
[1]. Considering a porous medium of Brinkman type occupying a bounded three-
dimensional domain, the variation of the onset of thermosolutal convection with the
reaction rate and Brinkman coefficient is discussed.

2 Basic equations

Our model consists of the Brinkman equation with the density in the buoyancy term
depends linearly on the temperature T and salt concentration C , the continuity equa-
tion, the advection–diffusion equation for the transport of heat and the equation for
the transport of solute with reaction terms,

p,i = − μ

K
vi − ρ0[1 − αT (T − T0) + αC (C − C0)]gki + λ�vi ,

vi,i = 0,
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1

M
T,t + vi T,i = kT�T,

φ̂C,t + viC,i = φ̂kC�C + k̂[ f1(T − T0) + f0 − C]. (1)

Here vi , p, T,C are the velocity, pressure, temperature and salt concentration. K is
the matrix permeability, μ is the fluid viscosity, ρ0 is the fluid density. kC , kT are the
molecular diffusivity of the solute through the fluid and the effective diffusivity of the
heat through the saturated medium. M is the ratio of the heat capacity of the fluid to
the heat capacity of the medium, φ̂ is the matrix porosity, k̂ is the reaction coefficient
and f0 + f1(T −T0) = Ceq(T ) in Pritchard and Richardson [28], where f0, f1 and T0
are constants. Moreover, g is the gravity, k = (0, 0, 1) and αT and αC are the thermal
and solutal expansion coefficients respectively. The symbol� is the Laplace operator.
The Eq. (1) are taken in the domain R

2 × (0, d) × {t > 0}. The boundary conditions
are

vi = 0 on z = 0, d,

T = TL on z = 0, T = TU on z = d,

C = CL on z = 0, C = CU on z = d, (2)

where TL , TU ,CL ,CU all constants, with TL > TU since our systems are heated
below. For the salted above porous medium CU > CL while for the salted below case
CL > CU . In the steady state, we look for

v̄i = 0,

T̄ = T̄ (z),

C̄ = C̄(z). (3)

Assuming Ceq(T̄ (z)) = C̄(z) (see Pritchard and Richardson [28] and Al-Sulaimi
[41]), we find the steady solution or the basic state to (1) which we are interested in
studying its stability and which satisfies (2) as

v̄i = 0,

T̄ (z) = −βT z + TL ,

C̄(z) = −βC z + CL , (4)

where βT = (TL − TU )/d and βC = (CL − CU )/d are the temperature and salt
gradients respectively.

To analyze the stability of the solutions (4) we define perturbations (ui , π, θ, φ)

such that

vi = v̄i + ui ,

p = p̄ + π,

T = T̄ + θ,

C = C̄ + φ (5)
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Using these perturbations in Eq. (1) we derive the equations governing (ui , π, θ, φ)

as

π,i = − μ

K
ui + ρ0gkiαT θ − ρ0gkiαCφ + λ�ui ,

ui,i = 0,
1

M
θt + uiθ,i = βTw + kT�θ,

φ̂φt + uiφ,i = βCw + φ̂kC�φ + k̂ f1θ − k̂φ, (6)

where w = u3. To non-dimensionalize the system (6), we define the length, time and
velocity scales, L , τ and U , by L = d, τ = d/MU and U = kT /d. We introduce
pressure, temperature and salt scales as

P = Udμ

K
, T �2 = μβT kT

αT ρ0gK
, C�2 = μβCkT Le

αCρ0gK φ̂
,

where Le = kT /kC is the Lewis number. The temperature and salt Rayleigh numbers
are defined as

R =
√

βT d2KαT ρ0g

kTμ
,

Rs =
√

βCd2KαCρ0gLe

φ̂kTμ
when CL > CU or Rs =

√
|βC |d2KαCρ0gLe

φ̂kTμ
when

CL < CU .

Then, the fully nonlinear, perturbed dimensionless form of (6) is

π,i = −ui + Rkiθ − Rskiφ + γ̃ �ui ,

ui,i = 0,

θ,t + uiθ,i = Rw + �θ,

εφ,t + Le

φ̂
uiφ,i = ∓Rsw + �φ + hθ − ηφ, (7)

where ε = MLe, γ̃ = λK/μd2 the Brinkman coefficient and h and η are the reaction
terms

h = k̂ f1d2T �

φ̂kCC�
and η = k̂d2

φ̂kC
.

Moreover, +Rs is taken for the salted below system and −Rs is taken for the salted
above system. The corresponding boundary conditions are

Dw = w = θ = φ = 0 on z = 0 and z = 1. (8)
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3 Linear instability theory

To study the linear instability, we drop the nonlinear terms of (7) and take the double
curl of equation (7)1 and retaining only the third component of the resulting equation
to reduce (7) to studying the system

�w − R�∗θ + Rs�
∗φ − γ̃ �2w = 0,

θ,t = Rw + �θ,

εφ,t = ∓Rsw + �φ + hθ − ηφ,

(9)

where �∗ is the horizontal Laplacian. Assuming a normal mode representation for w,
θ and φ of the form w = W (z) f (x, y) , θ = Θ(z) f (x, y) and φ = Φ(z) f (x, y)
where f (x, y) is a plan tiling function satisfying

�∗ f = −a2 f ; (10)

(see Straughan [29]) and a is a wave number. Using (10) and applying the normal
mode representations to (9), we find

(D2 − a2)W + Ra2Θ − Rsa
2Φ − γ̃ (D2 − a2)2W = 0,

σΘ = RW + (D2 − a2)Θ,

εσΦ = ∓RsW + (D2 − a2)Φ + hΘ − ηΦ,

(11)

where D = d/dz. This is an eigenvalue problem for σ to be solved subject to the
boundary conditions

DW = W = Θ = Φ = 0 , on z = 0, 1. (12)

System (11) with the corresponding boundary conditions (12) is solved using the D2

Clebyshev tau method. Detailed numerical results for the heated below-salted above
and heated below-salted below are reported separately in the subsections (6.1) and
(6.2). We determine the critical Rayleigh number given by Ra2L = mina2 R

2(a2)
where for all R2 > Ra2L the system is unstable.

4 Nonlinear energy stability theory

In order to study the nonlinear stability of the Brinkmanmodel for the double diffusive
convection, we consider the nonlinear system of equations in the dimensionless form
(7) and the corresponding boundary conditions (8). Taking into consideration the
periodicity of the systemand the smoothness of the boundary to allow the application of
theDivergence Theorem.Multiply Eq. (7)1 by ui and integrate over V using integration
byparts. Similarly,multiplyEq. (7)3 by θ andEq. (7)4 byφ and integrate. The following
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system of energy equations is obtained

0 = −‖u‖2 + R(θ, w) − Rs(φ,w) − γ̃ ‖∇u‖2,
d

dt

1

2
‖θ‖2 = R(θ, w) − ‖∇θ‖2,

d

dt

ε

2
‖φ‖2 = ∓Rs(φ,w) − ‖∇φ‖2 + h(θ, φ) − η‖φ‖2. (13)

Then we form the combination of the equations in system (13) as

(13)1 + (13)2 + λ(13)3,

where λ a coupling parameter. This leads to the energy identity

dE

dt
= I − D = −D

(
1 − I

D

)
, (14)

where

E = 1

2
‖θ‖2 + ελ

2
‖φ‖2,

I = 2R(θ, w) + λh(θ, φ) − (1 ± λ)Rs(φ,w),

D = ‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2 + γ̃ ‖∇u‖2. (15)

Then
dE

dt
≤ −D

(
1 − max

H

I

D

)
= −D

(
1 − 1

RE

)
(16)

is an energy inequality which follows from the energy identity, where H is the space
of admissible solutions. Namely

H =
{
ui , θ, φ ∈ H1(V ) : ui = θ = φ = 0 on z = 0, 1

}
,

and
1

RE
= max

H

I

D
. (17)

The nonlinear stability ensues when RE > 1 which implies that 1 − 1/RE > 0.
By using the Poincaré inequality we can show

D ≥ 2kπ2
(‖θ‖2 + λε‖φ‖2

2

)
= 2kπ2E, (18)

where k = min
{ 1
MLe , 1

}
. Then from (16) we may derive the inequality

dE

dt
≤ −2a1kπ

2E(t),
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where the coefficient a1 is defined by

a1 = RE − 1

RE
.

Upon integration we obtain

E(t) ≤ E(0)e−2a1kπ2t . (19)

Inequality (19) shows that under the condition RE > 1, E(t) → 0 as t → ∞. This
result according to Eq. (15)1, proves that ‖θ‖2 → 0 and ‖φ‖2 → 0 as t → ∞.
To show the decay of ‖u‖, we have to use the Poincaré inequality, the Arithmetic–
Geometric Mean inequality and the fact ‖w‖2 ≤ ‖u‖2 in the energy equation (13)1 to
obtain

(1 + γ̃ π2)‖u‖2 ≤
(
Rα

2
+ Rsβ

2

)
‖u‖2 + R

2α
‖θ‖2 + Rs

2β
‖φ‖2, (20)

where α and β are constants to be chosen such that Rα + Rsβ = 1, which gives
α = 1/2R and β = 1/2Rs . This leads to(

1

2
+ γ̃ π2

)
‖u‖2 ≤ R2‖θ‖2 + R2

s ‖φ‖2. (21)

Inequality (21) shows that R−1
E guarantees in addition to the decay of ‖θ‖ and ‖φ‖,

also decay of ‖u‖.
Turning our attention to the maximization problem (17). We have to solve it by

deriving the Euler–Lagrange equations. The maximum problem is

1

RE
= max

H

2R(θ, w) + λh(θ, φ) − Rs(1 ± λ)(φ,w)

‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2 + γ̃ ‖∇u‖2 . (22)

Rescaling φ by putting φ̃ = √
λφ. Equation (22) will be

1

RE
= max

H

2R(θ, w) + √
λh(θ, φ̃) − Rs f (λ)(φ̃, w)

‖u‖2 + ‖∇θ‖2 + ‖∇φ̃‖2 + η‖φ̃‖2 + γ̃ ‖∇u‖2 , (23)

where

f (λ) = 1 ± λ√
λ

.

The Euler–Lagrange equations for this maximum are

2ui − 2RREkiθ + Rs RE f ki φ̃ − 2γ̃ �ui = −RE P,i

− 2�θ − 2RE Rw − √
λREhφ̃ = 0

− 2�φ̃ + 2ηφ̃ + RE Rs f w − √
λREhθ = 0,

(24)
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where P is a Lagrange multiplier. To remove the Lagrange multiplier, we take the
double Curl of equation (24)1 and retaining only the third component of the resulting
equation to reduce (24) to

�w − RRE�∗θ +
(
1 ± λ

2

)
Rs RE�∗φ − γ̃ �2w = 0 ,

�θ + RE Rw + RE
λh

2
φ = 0 ,

(� − η)φ − RE Rs

(
1 ± λ

2λ

)
w + RE

h

2
θ = 0,

(25)

where �∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian. Introducing the normal
mode representation as presented in Sect. 3, system (25) becomes

(D2 − a2)W − γ̃ (D2 − a2)2W + a2RE RΘ − a2RE Rs

(
1 ± λ

2

)
Φ = 0,

RE RW + (D2 − a2)Θ +
(
hλ

2

)
REΦ = 0,

RE Rs

(
1 ± λ

2λ

)
W − h

2
REΘ + ηΦ − (D2 − a2)Φ = 0.

(26)

The Laplace operator is equivalent to � = D2 − a2, where D = ∂/∂z. The corre-
sponding boundary conditions are

DW = W = Θ = Φ = 0 , on z = 0, 1. (27)

Wecandetermine the criticalRayleigh number given by Ra2E =maxλ mina2 R
2(a2, λ),

where for all R2 < Ra2E the system is stable.

5 Numerical method

Wehave used the D2 Chebyshev taumethod (Dongarra et al. [42]) to find the bound for
the linear instability theory, system (11) and the corresponding boundary conditions
(12). For the energy theory we have used the compound matrix technique (Lindsay
and Straughan [43]).

5.1 The D2 Chebyshev tau method for the linear theory

Using the D2 Chebyshev to solve (11) subject to (12), we have to introduce a variable
χ such that χ = �w. Then, Eq. (11) will be
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(D2 − a2)W − χ = 0,

γ̃ (D2 − a2)χ − χ − a2RΘ + a2RsΦ = 0,

(D2 − a2)Θ + RW = σΘ,

(D2 − a2)Φ − ηΦ + hΘ ∓ RsW = εσΦ.

(28)

The functions W, χ,Θ and Φ are expanded in terms of Chebyshev polynomials

W (z) = ΣN
n=1wnTn(z), χ(z) = ΣN

n=1χnTn(z), Θ(z) = ΣN
n=1θnTn(z),

Φ(z) = ΣN
n=1φnTn(z).

Since Tn(±1) = (±1)n and T ′
n(±1) = (±1)n−1n2 , implies that the boundary condi-

tions (12) become
w2 + w4 + w6 + · · · + wN = 0,

w1 + w3 + w5 + · · · + wN−1 = 0
(29)

with similar representations for θn and φn

θ2 + θ4 + θ6 + · · · + θN = 0,

θ1 + θ3 + θ5 + · · · + θN−1 = 0,
(30)

φ2 + φ4 + φ6 + · · · + φN = 0,

φ1 + φ3 + φ5 + · · · + φN−1 = 0,
(31)

while the boundary condition Dw = 0 becomes

22w2 + 42w4 + 62w6 + · · · + N 2wN = 0,

w1 + 32w3 + 52w5 + · · · + (N − 1)2wN−1 = 0
(32)

Therefore, the Chebyshev tau method reduces to solving the matrix system Ax =
σ Bx, where x = (w1, w2, . . . , wN , χ1, χ2, . . . , χN , θ1, . . . , θN , φ1, . . . , φN ) and the
matrices A and B are given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4D2 − a2 I −I 0 0
BC1 0 · · · 0 0 · · · 0 0 · · · 0
BC2 0 · · · 0 0 · · · 0 0 · · · 0
0 4D2 − a2 I − I

γ̃
−a2R I

γ̃
a2Rs

I
γ̃

BC7 0 · · · 0 0 · · · 0 0 · · · 0
BC8 0 · · · 0 0 · · · 0 0 · · · 0
RI 0 4D2 − a2 I 0

0 · · · 0 0 · · · 0 BC3 0 · · · 0
0 · · · 0 0 · · · 0 BC4 0 · · · 0
∓Rs I 0 hI 4D2 − (a2 + η)I
0 · · · 0 0 · · · 0 0 · · · 0 BC5
0 · · · 0 0 · · · 0 0 · · · 0 BC6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 I 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 ε I
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where in the matrix A the notations BC1, BC2 refer to the boundary conditions (29),
BC3, BC4 refer to (30) , BC5, BC6 refer to (31) and BC7, BC8 refer to the boundary
conditions (32). We solved the matrix system by the QZ algorithm (Dongarra et al.
[42]).

5.2 The compound matrix technique for the energy theory

To employ the compound matrix method (Lindsay and Straughan [43]), we have to
write system (26) as

D4W = −a4W + 2a2D2W− a2

γ̃
W+ 1

γ̃
D2W+RE R

a2

γ̃
Θ − a2

γ̃

(
1 ± λ

2

)
RE RsΦ,

D2Θ = a2Θ − RE RW −
(
hλ

2

)
REΦ,

D2Φ =
(
a2 + η

)
Φ − h

2
REΘ +

(
1 ± λ

2λ

)
RE RsW. (33)

The compound matrix for (33) works with the 4 × 4 minors of the 8 × 4 solution
matrix formed from

U1 = (
W1,W

′
1,W

′′
1 ,W ′′′

1 ,Θ1,Θ
′
1, Φ1, Φ

′
1

)
,

U2 = (
W2,W

′
2,W

′′
2 ,W ′′′

2 ,Θ2,Θ
′
2, Φ2, Φ

′
2

)
,

U3 = (
W3,W

′
3,W

′′
3 ,W ′′′

3 ,Θ3,Θ
′
3, Φ3, Φ

′
3

)
,

U4 = (
W4,W

′
4,W

′′
4 ,W ′′′

4 ,Θ4,Θ
′
4, Φ4, Φ

′
4

)
.

(34)

The solutionsUi for i = 1, 2, 3, 4 are independent solutions to (33) for different initial
values, Ui ’s correspond to solutions for starting values

(0, 0, 1, 0, 0, 0, 0, 0)T , (0, 0, 0, 1, 0, 0, 0, 0)T ,

(0, 0, 0, 0, 0, 1, 0, 0)T , (0, 0, 0, 0, 0, 0, 0, 1)T ,
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respectively. We define C8
4 = 70 new variables y1, . . . , y70 as the 4 × 4 minors. For

example

y1 =

∣∣∣∣∣∣∣∣
W1 W2 W3 W4
W ′

1 W ′
2 W ′

3 W ′
4

W ′′
1 W ′′

2 W ′′
3 W ′′

4
W ′′′

1 W ′′′
2 W ′′′

3 W ′′′
4

∣∣∣∣∣∣∣∣
implies that y1 = W1W ′

2W
′′
3 W

′′′
4 + · · · , which gives 24 terms for y1. So, the idea is

to derive y2, . . . , y70 similarly and then obtain differential equations for the yi ’s by
differentiation. There is no need to write out the whole determinant each time. The
first term, y1, suffices. By differentiating each yi and substituting from Eq. (33) we
obtain differential equations for the yi , cf. Lindsay and Straughan [43] and chapter 19
of Straughan [29]. These equations are integrated numerically from 0 to 1. We keep
the boundary conditions (27) at z = 0 and replace the ones at z = 1 by

W ′′
1 (0) = W ′′′

2 (0) = Θ ′
3(0) = Φ ′

4(0) = 1, (35)

which using the yi ’s yields the initial condition for the y′
i ’s as

y60(0) = 1. (36)

Using yi ’s, the final condition which satisfies (27) is seen to be

y11(1) = 0. (37)

The eigenvalue R is varied until (37) is satisfied to some pre-assigned tolerance.

6 Numerical results and conclusion

6.1 Heated below salted above system

The numerical integration is carried out for different values of the reaction rates,
h and η and different values of the Brinkman coefficient γ̃ . We found that when the
layer is heated below and salted above in the case of no reaction i.e. h = η = 0 and
when Brinkman coefficient γ̃ = 1 that the numerical methods used give exactly the
same values for RaL and RaE . The graphical representation of these values shows that
the linear instability threshold coincide with the energy stability threshold as it is clear
in Fig. 1a and that there is no region of subcritical instability. As we increase the values
of the reaction rates h and η, the linear instability boundary starts to diverge from the
energy stability boundary. Figure 1 shows the effect of increasing the values of the
reaction rates, as we increase the values of h and η, the gap between the boundaries
increases. Any point (Rs2, Ra2) in the space above the linear instability boundary,
the solid line Ra2L , represents a region where the system is unstable because the
linear instability boundary guarantees instability. On the other hand, if (Rs2, Ra2)
lies below the energy stability boundary, the dashed line Ra2E , represents the space
where the system is definitely stable. Note that as the reaction rates increase, the peak
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Fig. 1 Linear instability and energy stability boundaries for the salted above Brinkman convection problem
for different values of the reaction rates h and η. a h = η = 0. b h = 5, η = 3

Table 1 Some numerical values obtained for the linear boundary RaL and energy boundary RaE tem-
perature Rayleigh number with corresponding salt Rayleigh number Rs and the the corresponding critical
wave numbers aL and aE when γ̃ = 1, h = 9 and η = 6 in the case of heated below salted above system

R2
s aL Ra2L aE Ra2E λ

1 3.13 1766.156 3.12 1752.197 0.055

3 3.13 1775.442 3.12 1752.187 0.099

5 3.14 1781.378 3.12 1752.179 0.132

6 3.14 1783.775 3.12 1752.175 0.146

12 3.15 1794.255 3.12 1752.157 0.220

20 3.15 1803.123 3.12 1752.137 0.304

of the linear instability curve moves to a higher position resulting in a wider region
of possible subcritical instability between the energy stability threshold and the linear
instability threshold. Moreover, there is a slight noticeable decrease in the energy
stability threshold as the values of Rs → +∞. Table 1 represents some numerical
values obtained.

To study the effect of each one of h and η on the stability of the system, a bigger
difference between their values is considered. It has been noticed that when h is bigger
compared to η, the region of possible subcritical instability is wider and increasing the
value of h implies more divergence of the linear instability boundary from the energy
stability boundary and a movement of the peak value of the linear instability threshold
to a higher position, as Fig. 2a shows. Compared to the case when η has a bigger value
than h, the linear and energy boundaries coincide as shown in Fig. 2b and the linear
boundary covers the content of stability. This is expected, as system (7) shows that
hΘ is a destabilizing term while −ηΦ is a stabilizing term.

Examining the effect of different values of the Brinkman coefficient (effective
viscosity term) on the stability boundaries, reveals that increasing the value of γ̃

results in a wider space of global stability below the energy stability threshold and
a wider region of potential subcritical instability. The effect of different values of
γ̃ (= 0.5, 2) are presented graphically in Fig. 3.
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Fig. 2 Linear instability and energy stability boundaries for the salted aboveBrinkman convection problem.
The difference between the values of the reaction rates h and η is large. a h = 10, η = 0. b h = 0, η = 10
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Fig. 3 Linear instability and energy stability boundaries for the salted above Brinkman convection problem
for different values of the Brinkman constant when h = 9 and η = 6. a γ̃ = 0.5. b γ̃ = 2

6.2 Heated and salted Below system

It is instructive to write system (7) and the boundary conditions (8) for the salted below
case as an abstract equation of form

Aut = L(u) + N (u),

where u = (u1, u2, u3, θ, φ), N (u) represents the nonlinear terms in (7) so

N (u) =

⎛
⎜⎜⎜⎜⎝

0
0
0

−uiθ,i

− Le
φ̂
uiφ,i

⎞
⎟⎟⎟⎟⎠ ,
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and L is the linear operator. In fact, the linear operator for (7) is

L =

⎛
⎜⎜⎜⎜⎝

−1 + γ̃ � 0 0 0 0
0 −1 + γ̃ � 0 0 0
0 0 −1 + γ̃ � R −Rs

0 0 R � 0
0 0 Rs h � − ηI

⎞
⎟⎟⎟⎟⎠ .

We may split L into a symmetric plus skew-symmetric part as follows

L = Ls + L A ,

where

Ls =

⎛
⎜⎜⎜⎜⎝

−1 + γ̃ � 0 0 0 0
0 −1 + γ̃ � 0 0 0
0 0 −1 + γ̃ � R 0
0 0 R � h

2
0 0 0 h

2 � − ηI

⎞
⎟⎟⎟⎟⎠ ,

and

L A =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −Rs

0 0 0 0 − h
2

0 0 Rs
h
2 0

⎞
⎟⎟⎟⎟⎠ .

For the salted above case, the previous subsection, LA would be zero and the analogous
linear operator L would be symmetric. Even when h = 0 in the salted below case, we
expect some problem with nonlinear energy stability theory since

(u, L(u)) 
= (u, Ls(u))

where (·, ·) is the inner product on (H1(V ))5 withV being a period cell for the solution.
For the problem of this subsection, governed by Eqs. (7) and (8) for the salted below
case, we have two sources of anti-symmetry, the Rs term and the h term.

The numerical values are presented graphically for different values of the reaction
rates h and η in Fig. 4. It has been noticed that as the reaction rate increases, the
gap between the linear instability and energy stability boundaries increases due to
the divergence of the linear threshold yielding a wider region of potential subcritical
instability. Whereas, the energy stability threshold is approximately constant or more
precisely it is decreasing unnoticeably as shown in Figs. 4 and 5. As expected from
system (7) one sees that hΘ will destabilize the system while −ηΦ will stabilize the
system which is clear and shown in Fig. 5 i.e, when the value of h is smaller compared
to η the space of possible subcritical instability is less compared to the case when h
is larger than η. The effect of changing the value of γ̃ can be noticed in Fig. 6 for
γ̃ = 0.5, 2. The gap between the boundaries increases and the space of global stability
is wider as γ̃ increases.
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Fig. 4 Linear instability and energy stability boundaries for the salted belowBrinkman convection problem
for different values of the reaction rates h and η. a h = η = 0. b h = 9, η = 6
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Fig. 5 Linear instability and energy stability boundaries for the salted belowBrinkman convection problem.
The difference between the values of the reaction rates h and η is large. a h = 20, η = 1. b h = 1, η = 20
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Fig. 6 Linear instability and energy stability boundaries for the salted belowBrinkman convection problem
for different values of the Brinkman coefficient when h = 10 and η = 0. a γ̃ = 0.5. b γ̃ = 2

The numerical values and their graphical representations show that the linear insta-
bility theory does not necessarily represent accurately the onset of convection and we
may explain that this is due to the two sources of anti-symmetry the Rs term and the h
term. By this we mean that the linear instability boundary is definitely a threshold for
instability, but in this case, it may be possible for instability to arise with a Rayleigh
number below the linear instability boundary.
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