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Abstract

We study the design of fixed-parameter algorithms for problems already known to be solvable in
polynomial time. The main motivation is to get more efficient algorithms for problems with unattractive
polynomial running times. Here, we focus on a fundamental graph problem: Longest Path, that is,
given an undirected graph, find a maximum-length path in G. Longest Path is NP-hard in general
but known to be solvable in O(n4) time on n-vertex interval graphs. We show how to solve Longest
Path on Interval Graphs, parameterized by vertex deletion number k to proper interval graphs, in
O(k9n) time. Notably, Longest Path is trivially solvable in linear time on proper interval graphs, and
the parameter value k can be approximated up to a factor of 4 in linear time. From a more general
perspective, we believe that using parameterized complexity analysis may enable a refined understanding
of efficiency aspects for polynomial-time solvable problems similarly to what classical parameterized
complexity analysis does for NP-hard problems.

Keywords: polynomial-time algorithm, longest path problem, interval graphs, proper interval vertex
deletion set, data reduction, fixed-parameter algorithm.

1 Introduction

Parameterized complexity analysis [20, 22, 24, 44] is a flourishing field dealing with the exact solvability
of NP-hard problems. The key idea is to lift classical complexity analysis, rooted in the P versus NP
phenomenon, from a one-dimensional to a two- (or even multi-)dimensional perspective, the key concept
being “fixed-parameter tractability (FPT)”. But why should this natural and successful approach be limited
to intractable (i.e., NP-hard) problems? We are convinced that appropriately parameterizing polynomially
solvable problems sheds new light on what makes a problem far from being solvable in linear time, in the
same way as classical FPT algorithms help in illuminating what makes an NP-hard problem far from being
solvable in polynomial time. In a nutshell, the credo and leitmotif of this paper is that “FPT inside P” is a
very interesting, but still too little explored, line of research.

The known results fitting under this leitmotif are somewhat scattered around in the literature and do
not systematically refer to or exploit the toolbox of parameterized algorithm design. This should change
and “FPT inside P” should be placed on a much wider footing, using parameterized algorithm design
techniques such as data reduction and kernelization. As a simple illustrative example, consider the Maximum
Matching problem. By following a “Buss-like” kernelization (as is standard knowledge in parameterized
algorithmics [22, 44]) and then applying a known polynomial-time matching algorithm, it is not difficult to
derive an efficient algorithm that, given a graph G with n vertices, computes a matching of size at least k in
O(kn+ k3) time. For the sake of completeness we present the details of this algorithm in Section 5.

More formally, and somewhat more generally, we propose the following scenario. Given a problem with
instance size n for which there exists an O(nc)-time algorithm, our aim is to identify appropriate parameters
k and to derive algorithms with time complexity f(k) · nc′ such that c′ < c, where f(k) depends only on k.
First we refine the class FPT by defining, for every polynomially-bounded function p(n), the class FPT(p(n))
containing the problems solvable in f(k) · p(n) time, where f(k) is an arbitrary (possibly exponential) func-
tion of k. It is important to note that, in strong contrast to FPT algorithms for NP-hard problems, here
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the function f(k) may also become polynomial in k. Motivated by this, we refine the complexity class P
by introducing, for every polynomial function p(n), the class P-FPT (p(n)) (Polynomial Fixed-Parameter
Tractable), containing the problems solvable in O(kt · p(n)) time for some constant t ≥ 1, i.e., the depen-
dency of the complexity on the parameter k is at most polynomial. In this paper we focus our attention on
the (practically perhaps most attractive) subclass PL-FPT (Polynomial-Linear Fixed-Parameter Tractable),
where PL-FPT = P-FPT(n). For example, the algorithm we sketched above for Maximum Matching,
parameterized by solution size k, yields containment in the class PL-FPT.

In an attempt to systematically follow the leitmotif “FPT inside P”, we put forward three desirable
algorithmic properties:

1. The running time should have a polynomial dependency on the parameter.

2. The running time should be as close to linear as possible if the parameter value is constant, improving
upon an existing “high-degree” polynomial-time (unparameterized) algorithm.

3. The parameter value, or a good approximation thereof, should be computable efficiently (preferably in
linear time) for arbitrary parameter values.

In addition, as this research direction is still only little explored, we suggest to focus first on problems
for which the best known upper bounds of the time complexity are polynomials of high degree, e.g., O(n4)
or higher.

Related work. Here we discuss previous work on graph problems that fits under the leitmotif “FPT
inside P”; however, there exists further related work also in other topics such as string matching [6], XPath
query evaluation in XML databases [12], and Linear Program solving [40].

The complexity of some known polynomial-time algorithms can be easily “tuned” with respect to specific
parameters, thus immediately reducing the complexity whenever these parameters are bounded. For instance,
in n-vertex and m-edge graphs with nonnegative edge weights, Dijkstra’s O(m+ n log n)-time algorithm for
computing shortest paths can be adapted to an O(m + n log k)-time algorithm, where k is the number of
distinct edge weights [39] (also refer to [46]). In addition, motivated by the quest for explaining the efficiency
of several shortest path heuristics for road networks (where Dijkstra’s algorithm is too slow for routing
applications), the “highway dimension” was introduced [4] as a parameterization helping to do rigorous
proofs about the quality of the heuristics. Altogether, the work on shortest path computations shows that,
despite of known quasi-linear-time algorithms, adopting a parameterized view may be of significant (practical)
interest.

Maximum flow computations constitute another important application area for “FPT inside P”. An
O(k3n log n)-time maximum flow algorithm was presented [33] for graphs that can be made planar by delet-
ing k “crossing edges”; notably, here it is assumed that the embedding and the k crossing edges are given
along with the input. An O(g8n log2 n log2 C)-time maximum flow algorithm was developed [17], where g is
the genus of the graph and C is the sum of all edge capacities; here it is also assumed that the embedding
and the parameter g are given in the input. Finally, we remark that multiterminal flow [31] and Wiener
index computations [14] have exploited the treewidth parameter, assuming that the corresponding tree de-
composition of the graph is given. However, in both publications [14,31] the dependency on the parameter k
is exponential.

We finally mention that, very recently, two further works delved deeper into “FPT inside P” algorithms
for Maximum Matching [25, 42].

Our contribution. In this paper, to illustrate the potential algorithmic challenges posed by the “FPT
inside P” framework (which seem to go clearly beyond the known “FPT inside P” examples), we focus on
Longest Path on Interval Graphs, which is known to be solvable in O(n4) time [35], and we derive
a PL-FPT-algorithm (with the appropriate parameterization) that satisfies all three desirable algorithmic
properties described above.

The Longest Path problem asks, given an undirected graph G, to compute a maximum-length path
in G. On general graphs, the decision variant of Longest Path is NP-complete and many FPT algorithms
have been designed for it, e.g., [5, 10, 18, 26, 38, 50], contributing to the parameterized algorithm design
toolkit techniques such as color-coding [5] (and further randomized techniques [18, 38]) as well as algebraic
approaches [50]. The currently best known deterministic FPT algorithm runs in O(2.851kn log2 n logW ) time
on weighted graphs with maximum edge weight W , where k is the number of vertices in the path [26], while
the currently best known randomized FPT algorithm runs in O(1.66knO(1)) time with constant, one-sided
error [10]. Longest Path is known to be solvable in polynomial time only on very few non-trivial graph
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classes [35,41] (see also [49] for much smaller graph classes). This problem has also been studied on directed
graphs; a polynomial-time algorithm was given by Gutin [30] for the class of orientations of multipartite
tournaments, which was later extended by Bang-Jensen and Gutin [7]. With respect to undirected graphs,
a few years ago it was shown that Longest Path on Interval Graphs can be solved in polynomial
time, providing an algorithm that runs in O(n4) time [35]; this algorithm has been extended with the same
running time to the larger class of cocomparability graphs [41] using a lexicographic depth first search
(LDFS) approach. Notably, a longest path in a proper interval graph can be computed by a trivial linear-
time algorithm since every connected proper interval graph has a Hamiltonian path [8]. Consequently, as
the classes of interval graphs and of proper interval graphs seem to behave quite differently, it is natural to
parameterize Longest Path on Interval Graphs by the size k of a minimum proper interval (vertex)
deletion set, i.e., by the minimum number of vertices that need to be deleted to obtain a proper interval
graph. That is, this parameterization exploits what is also known as “distance from triviality” [16,23,29,45]
in the sense that the parameter k measures how far a given input instance is from a trivially solvable special
case. As it turns out, one can compute a 4-approximation of k in O(n+m) time for an interval graph
with n vertices and m edges. Using this constant-factor approximation of k, we provide a polynomial fixed-
parameter algorithm that runs in O(k9n) time, thus proving that Longest Path on Interval Graphs is
in the class PL-FPT when parameterized by the size of a minimum proper interval deletion set.

To develop our algorithm, we first introduce in Section 2 two data reduction rules on interval graphs.
Each of these reductions shrinks the size of specific vertex subsets, called reducible and weakly reducible
sets, respectively. Then, given any proper interval deletion set D of an interval graph G, in Section 3 we
appropriately decompose the graph G \D into two collections S1 and S2 of reducible and weakly reducible

sets, respectively, on which we apply the reduction rules of Section 2. The resulting interval graph Ĝ is
weighted (with weights on its vertices) and has some special properties; we call Ĝ a special weighted interval

graph with parameter κ, where in this case κ = O(k3). Notably, although Ĝ has reduced size, it still has
O(n) vertices. Then, in Section 4 we present a fixed-parameter algorithm (with parameter κ) computing in
O(κ3n) time the maximum weight of a path in a special weighted interval graph. We note here that such a
maximum-weight path in a special weighted interval graph can be directly mapped back to a longest path
in the original interval graph. Thus, our parameterized algorithm computes a longest path in the initial
interval graph G in O(κ3n) = O(k9n) time.

Turning our attention away from Longest Path on Interval Graphs we present for the sake of
completeness our “Buss-like” kernelization of the Maximum Matching problem in Section 5. Using this
kernelization an efficient algorithm can be easily deduced which, given an arbitrary graph G with n vertices,
computes a matching of size at least k in G in O(kn + k3) time. Finally, in the concluding Section 6 we
discuss our contribution and provide a brief outlook for future research directions.

Notation. We consider finite, simple, and undirected graphs. Given a graph G, we denote by V (G) and
E(G) the sets of its vertices and edges, respectively. A graph G is weighted if it is given along with a weight
function w : V (G) → N on its vertices. An edge between two vertices u and v of a graph G = (V,E) is
denoted by uv, and in this case u and v are said to be adjacent. The neighborhood of a vertex u ∈ V is the
set N(u) = {v ∈ V | uv ∈ E} of its adjacent vertices. The cardinality of N(u) is the degree deg(u) of u.
For every subset S ⊆ V we denote by G[S] the subgraph of G induced by the vertex set S and we define
G \ S = G[V \ S]. A set S ⊆ V induces an independent set (resp. a clique) in G if uv /∈ E (resp. if uv ∈ E)
for every pair of vertices u, v ∈ S. Furthermore, S is a vertex cover if and only if V \ S is an independent
set. For any two graphs G1, G2, we write G1 ⊆ G2 if G1 is an induced subgraph of G2. A matching M in
a graph G is a set of edges of G without common vertices. All paths considered in this paper are simple.
Whenever a path P visits the vertices v1, v2, . . . , vk in this order, we write P = (v1, v2, . . . , vk). Furthermore,
for two vertex-disjoint paths P = (a, . . . , b) and Q = (c, . . . , d) where bc ∈ E, we denote by (P,Q) the path
(a, . . . , b, c, . . . , d).

A graph G = (V,E) is an interval graph if each vertex v ∈ V can be bijectively assigned to a closed
interval Iv on the real line, such that uv ∈ E if and only if Iu ∩ Iv 6= ∅, and then the collection of intervals
I = {Iv : v ∈ V } is called an interval representation of G. The interval graph G is a proper interval graph
if it admits an interval representation I such that Iu * Iv for every u, v ∈ V , and then I is called a proper
interval representation. Given an interval graph G = (V,E), a subset D ⊆ V is a proper interval deletion set
of G if G \D is a proper interval graph. The proper interval deletion number of G is the size of the smallest
proper interval deletion set. Finally, for any positive integer t, we denote [t] = {1, 2, . . . , t}.
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Figure 1: (a) The forbidden induced subgraph (claw K1,3) for an interval graph to be a proper interval graph
and (b) an interval representation of the K1,3.

2 Data reductions on interval graphs

In this section we present two data reductions on interval graphs. The first reduction (cf. Section 2.2) shrinks
the size of a collection of vertex subsets of a certain kind, called reducible sets, and it produces a weighted
interval graph. The second reduction (cf. Section 2.3) is applied to an arbitrary weighted interval graph; it
shrinks the size of a collection of another kind of vertex subsets, called weakly reducible sets, and it produces
a smaller weighted interval graph. Both reductions retain as an invariant the maximum path weight. The
proof of this invariant is based on the crucial notion of a normal path in an interval graph (cf. Section 2.1).
The following vertex ordering characterizes interval graphs [47]. Moreover, given an interval graph G with n
vertices and m edges, this vertex ordering of G can be computed in O(n+m) time [47].

Lemma 1 ([47]) A graph G is an interval graph if and only if there is an ordering σ (called right-endpoint
ordering) of V (G) such that for all u <σ v <σ z, if uz ∈ E(G) then also vz ∈ E(G).

In the remainder of the paper we assume that we are given an interval graph G with n vertices and
m edges as input, together with an interval representation I of G, where the endpoints of the intervals
are given sorted increasingly. Without loss of generality, we assume that the endpoints of all intervals are
distinct. For every vertex v ∈ V (G) we denote by Iv = [lv, rv] the interval of I that corresponds to v, i.e., lv
and rv are the left and the right endpoint of Iv, respectively. In particular, G is assumed to be given along
with the right-endpoint ordering σ of its vertices V (G), i.e., u <σ v if and only if ru < rv in the interval
representation I (see also Lemma 1). Given a set S ⊆ V (G), we denote by I[S] the interval representation
induced from I on the intervals of the vertices of S. We say that two vertices u1, u2 ∈ S are consecutive
in S (with respect to the vertex ordering σ) if u1 <σ u2 and for every vertex u ∈ S \ {u1, u2} either u <σ u1
or u2 <σ u. Furthermore, for two sets S1, S2 ⊆ V (G), we write S1 <σ S2 whenever u <σ v for every u ∈ S1

and v ∈ S2. Finally, we denote by span(S) the interval [min{lv : v ∈ S},max{rv : v ∈ S}].
It is well known that an interval graph G is a proper interval graph if and only if G is K1,3-free, i.e., if G

does not include the claw K1,3 with four vertices (cf. Figure 1) as an induced subgraph [48]. It is worth
noting here that, to the best of our knowledge, it is unknown whether a minimum proper interval deletion
set of an interval graph G can be computed in polynomial time. However, since there is a unique forbidden
induced subgraph K1,3 on four vertices, we can apply Cai’s generic algorithm [15] on an arbitrary given
interval graph G with n vertices to compute a proper interval deletion set of G of size at most k in FPT
time 4k · poly(n). The main idea of Cai’s bounded search tree algorithm in our case is that we repeat the
following two steps until we either get a K1,3-free graph or have used up the deletion of k vertices from G:
(i) detect an induced K1,3, (ii) branch on deleting one of the four vertices of the detected K1,3. At every
iteration of this process we have four possibilities on the next vertex to delete. Thus, since we can delete up
to k vertices in total, the whole process finishes after at most 4k · poly(n) steps.

As we prove in the next theorem, a 4-approximation of the minimum proper interval deletion number of
an interval graph can be computed much more efficiently.

Theorem 1 Let G = (V,E) be an interval graph, where |V | = n and |E| = m. Let k be the size of the
minimum proper interval deletion set of G. Then a proper interval deletion set D of size at most 4k can be
computed in O(n+m) time.

Proof. Let {u, v1, v2, v3} be a set of four vertices that induces a K1,3 in G such that v1, v2, v3 ∈ N(u),
v1 <σ v2 <σ v3, and Iv2 ⊆ Iu in the interval representation I (cf. Figure 1). Let v′1 (resp. v′3) be the
neighbor of vertex u with the leftmost right endpoint rv′1 (resp. with the rightmost left endpoint lv′3) in the
representation I, i.e., rv′1 = min{rv : v ∈ N(u)} and lv′3 = max{lv : v ∈ N(u)}. Then note that the set
{u, v′1, v2, v′3} also induces a K1,3 in G.
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We now describe an O(n + m)-time algorithm that iteratively detects an induced K1,3 and removes its
vertices from the current graph. During its execution the algorithm maintains a set D of “marked” vertices; a
vertex is marked if it has been removed from the graph at a previous iteration. Initially, D = ∅, i.e., all vertices
are unmarked. The algorithm processes once every vertex u ∈ V in an arbitrary order. If u ∈ D (i.e., if u has
been marked at a previous iteration), then the algorithm ignores u and proceeds with the next vertex in V . If
u /∈ D (i.e., if u is unmarked), then the algorithm iterates for every vertex v ∈ N(u) \D and it computes the
vertices z1(u), z2(u) ∈ N(u)\D such that rz1(u) = min{rv : v ∈ N(u)\D} and lz2(u) = max{lv : v ∈ N(u)\D}.
In the case where N(u) \D = ∅, the algorithm defines z1(u) = z2(u) = u. Then the algorithm iterates once
again for every vertex v ∈ N(u) \D and it checks whether the set {u, v, z1(u), z2(u)} induces a K1,3 in G. If
it detects at least one vertex v ∈ N(u)\D such that {u, v, z1(u), z2(u)} induces a K1,3, then it marks all four
vertices {u, v, z1(u), z2(u)}, i.e., it adds these vertices to the set D. Otherwise the algorithm proceeds with
processing the next vertex of V . It is easy to check that every vertex u ∈ V is processed by this algorithm
in O(deg(u)) time, and thus all vertices of V are processed in O(n+m) time in total.

The algorithm terminates after it has processed all vertices of V and it returns the computed set D of

all quadruples of marked vertices. Note that there are |D|4 such quadruples. This set D is clearly a proper
interval deletion set of G, since G \D does not contain an induced K1,3, i.e., k ≤ |D|. In addition, each of
the detected quadruples of the set D induces a K1,3 in the initial interval graph G, and thus any minimum

proper interval deletion set must contain at least one vertex from each of these quadruples, i.e., k ≥ |D|
4 .

Summarizing k ≤ |D| ≤ 4k.

Note that, whenever four vertices induce a claw K1,3 in an interval graph G, then in the interval repre-
sentation I of G at least one of these intervals is necessarily properly included in another one (e.g., Iv2 ⊆ Iu
in Figure 1(b)). However the converse is not always true, as there may exist two vertices u, v in G such that
Iv ⊆ Iu, although u and v do not belong to any induced claw K1,3 in G.

Definition 1 Let G = (V,E) be an interval graph. An interval representation I of G is semi-proper when,
for any u, v ∈ V :

• if Iv ⊆ Iu in I then the vertices u and v belong to an induced claw K1,3 in G, i.e. {u, v, a, b} induces
a claw K1,3 in G for some vertices a, b.

Every interval representation I of a graph G can be efficiently transformed into a semi-proper represen-
tation I ′ of G, as we prove in the next theorem. In the remainder of the paper we always assume that this
preprocessing step has been already applied to I.

Theorem 2 (preprocessing) Given an interval representation I, a semi-proper interval representation I ′
can be computed in O(n+m) time.

Proof. Similarly to the proof of Theorem 1, the algorithm first computes for every vertex u ∈ V the vertices
z1(u), z2(u) ∈ N(u), such that rz1(u) = min{rv : v ∈ N(u)} and lz2(u) = max{lv : v ∈ N(u)}. If N(u) = ∅,
then the algorithm defines z1(u) = z2(u) = u.

The algorithm iterates over all u ∈ V . For each u ∈ V , the algorithm iterates over all v ∈ N(u) such
that Iv ⊆ Iu in the current interval representation. Let these vertices be {v1, v2, . . . , vt}, where lv1 < lv2 <
. . . < lvt . The algorithm processes the vertices {v1, v2, . . . , vt} in this order. For every i ∈ {1, 2, . . . , t}, if
z2(u) ∈ N(vi), then the algorithm increases the right endpoint of Ivi to the point ru+εi, for an appropriately
small εi > 0. The algorithm chooses the values of εi such that ε1 < ε2 < . . . < εt. By performing these
operations no new adjacencies are introduced, and thus the resulting interval representation remains a
representation of the same interval graph G.

We note here that the algorithm can be efficiently implemented (i.e., in O(n+m) time in total) without
explicitly computing the values of these εi, as follows. Since the endpoints of the n intervals of I are assumed
to be given increasingly sorted, we initially scan them from left to right and map them bijectively to the
integers {1, 2, . . . , 2n}. Then, instead of increasing the right endpoint of Ivi to the point ru + εi as described
above, where i ∈ {1, 2, . . . , t}, we just store the vertices {v1, v2, . . . , vt} (in this order) in a linked list after
the endpoint ru. At the end of the whole process (i.e., after dealing with all pairs of vertices u, v such that
v ∈ N(u) and Iv ⊆ Iu in the interval representation I), we scan again all interval endpoints from left to right
and re-map them bijectively to the integers {1, 2, . . . , 2n}, where in this new mapping we place the endpoints
{rv1 , rv2 , . . . , rvt} (in this order) immediately after ru. This can be clearly done in O(n+m) time.

Then the algorithm iterates (again) over all v ∈ N(u) such that Iv ⊆ Iu in the current interval repre-
sentation. Let these vertices be {v1, v2, . . . , vt′}, where rv1 > rv2 > . . . > rvt′ . The algorithm processes the
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vertices {v1, v2, . . . , vt′} in this order. For every i ∈ {1, 2, . . . , t′}, if z2(u) /∈ N(vi) and z1(u) ∈ N(vi), then
the algorithm decreases the left endpoint of Ivi to the point lu − εi, for an appropriately small εi > 0. The
algorithm chooses the values of εi such that ε1 < ε2 < . . . < εt. Similarly to the above, no new adjacencies
are introduced by performing these operations, and thus the resulting interval representation remains a rep-
resentation of the same interval graph G. Furthermore, the algorithm can be efficiently implemented (i.e.,
in O(n + m) time in total) without explicitly computing these values of εi, similarly to the description in
the previous paragraph.

Denote by I ′ the resulting interval representation of G, which is obtained after performing all the above
operations. Furthermore denote by σ′ the right-endpoint ordering of the intervals in I ′. Let u, v ∈ V . It
can be easily checked that, if Iv ⊆ Iu in I ′, then also Iv ⊆ Iu in the initial representation I. Furthermore,
it follows directly by the above construction that, if Iv ⊆ Iu in I ′, then z1(u), z2(u) /∈ N(v), where z1 <σ′

v <σ′ z2, and thus the vertices {u, v, z1(u), z2(u)} induce a K1,3 in G.
The computation of the vertices z1(u), z2(u) for all vertices u ∈ V can be done in O(n + m) time.

Furthermore, for every u ∈ V we can visit all vertices v ∈ N(u) in O(deg(u)) time in the above algorithm,
since the endpoints of the intervals are assumed to be given sorted in increasing order. For every such edge
uv ∈ E, where Iv ⊆ Iu, we can check in O(1) time whether z1(u) ∈ N(v) (resp. whether z2(u) ∈ N(v)) by
checking whether rv < lz2(u) (resp. by checking whether rz1(u) < lv). Therefore, the total running time of
the algorithm is O(n+m).

2.1 Normal paths

All our results on interval graphs rely on the notion of a normal path [35] (also referred to as a straight
path in [21, 37]). This notion has also been extended to the greater class of cocomparability graphs [41].
Normal paths are useful in the analysis of our data reductions in this section, as well as in our algorithm in
Section 4, as they impose certain monotonicity properties of the paths. Informally, the vertices in a normal
path appear in a “left-to-right fashion” in the right-endpoint ordering σ. In the following, given a graph G
and a path P = (v1, v2, . . . , vl) of G, we write vi <P vj if and only if i < j, i.e., whenever vi precedes vj in P .

Definition 2 Let G = (V,E) be an interval graph and σ be a right-endpoint ordering of V . The path
P = (v1, v2, . . . , vk) of G is normal if:

• v1 is the leftmost vertex among {v1, v2, . . . , vk} in σ and

• vi is the leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in σ, for every i = 2, . . . , k.

Lemma 2 ([35]) Let G be an interval graph and I be an interval representation of G. For every path P
of G, there exists a normal path P ′ of G such that V (P ) = V (P ′).

We now provide a few properties of normal paths on interval graphs that we will need later on.

Observation 1 Let G be an interval graph and P be a normal path of G. Let y be the last vertex of P and
z ∈ V (G) \ V (P ) such that yz ∈ E(G) and v <σ z for every vertex v ∈ V (P ). Then (P, z) is a normal path
of G.

Observation 2 Let G be an interval graph, P be a normal path of G, and u,w ∈ V (P ). If u <P w and
w <σ u, then u is not the first vertex of P .

Lemma 3 Let G be an interval graph, P be a normal path of G, and u,w ∈ V (P ). If u <P w and w <σ u,
then wu ∈ E(G).

Proof. The proof is done by contradiction. Let u,w ∈ V (P ), where u <P w and w <σ u. Assume that
wu /∈ E(G). Among all such pairs of vertices, we can assume without loss of generality that distP (u,w)
is maximum, where distP (u,w) denotes the distance between the vertices u and w on the path P . From
Observation 2, u is not the first vertex of P , and therefore u has a predecessor, say z, in P . Note that
distP (z, w) = distP (u,w) + 1. Suppose that wz ∈ E(G). Then, since w <σ u and u <P w, it follows by
the normality of P that u is not the next vertex of z in the path P , which is a contradiction. Therefore
wz /∈ E(G). Suppose now that z <σ w. Then, since in this case z <σ w <σ u and zu ∈ E(G), it follows
by Lemma 1 that wu ∈ E(G), which is a contradiction to our assumption. Therefore w <σ z. Recall that
z <P u <P w, zw /∈ E(G), and distP (z, w) = distP (u,w) + 1. This is a contradiction to our assumption
that distP (u,w) is maximum. Therefore wu ∈ E(G). This completes the proof of the lemma.
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Lemma 4 Let G be an interval graph and P = (P1, u, w, P2) be a normal path of G, u,w ∈ V (G). If w <σ u
then Iw ⊆ Iu.

Proof. Let us assume, to the contrary, that Iw * Iu, that is, lw < lu. From Observation 2, u is not the
first vertex of P and therefore u has a predecessor, say z, in P . Since P is normal, w <σ u, and u <P w,
it follows that w is not a neighbor of z. Notice then that z <P u <P w. Furthermore, as z is a neighbor
of u, w <σ z. Summarizing, z <P w, w <σ z, and wz /∈ G. From Lemma 3, this is a contradiction to the
assumption that P is normal. Therefore, Iw ⊆ Iu.

Lemma 5 Let G be an interval graph and I be an interval representation of G. Let S ⊆ V (G) such that
I[S] is a proper interval representation of G[S]. Let P be a normal path of G and u, v ∈ S∩V (P ). If u <σ v
then u <P v.

Proof. Let P be a normal path of G where u, v ∈ V (P ), u <σ v. If uv /∈ E(G) then from Lemma 3, we
obtain that u <P v. Thus, from now on, we assume that uv ∈ E(G). Towards a contradiction we further
assume that v <P u, that is, P = (P1, v, P2, u, P3). From Observation 2, it follows that v is not the first
vertex of P and thus P1 6= ∅, that is, P = (P ′1, y, v, P2, u, P3), for some y ∈ V (G). Notice also that if P2 = ∅,
then P = (P ′1, y, v, u, P3) and from Lemma 4, Iu ⊆ Iv, a contradiction to the assumption that u, v ∈ S and
I[S] is a proper interval representation of G[S]. Thus, P2 6= ∅. Therefore, P = (P ′1, y, v, z, P

′
2, u, P3), for

some z ∈ V (G). Since P is normal and u <σ v then y /∈ N(u). Notice that if we prove that u <σ y, then we
obtain a contradiction from Lemma 3 and the lemma follows. Thus, it is enough to prove that u <σ y.

To prove that u <σ y we claim towards a contradiction that y <σ u. Notice then, that as y /∈ N(u), it
also holds that ry < lu. However, since v and u are proper intervals and u <σ v, lu < lv. Thus, ry < lv, a
contradiction to the assumption that yv ∈ E(G) as y is the predecessor of v in P . Therefore, u <σ y and
this completes the proof of the lemma.

Lemma 6 Let G be an interval graph and P = (P1, u, u
′, P2) be a normal path of G. For every vertex

v ∈ V (P2), it holds that u <σ v or u′ <σ v.

Proof. Towards a contradiction we assume that v <σ u and v <σ u
′. Then from Lemma 3, we obtain that

uv ∈ E(G). Thus, since u′, v ∈ N(u) and v <σ u
′, it follows by the normality of P that u′ is not the next

vertex of u in P , which is a contradiction. Therefore u <σ v or u′ <σ v.

Lemma 7 Let G be an interval graph and P = (P1, u, v, w, P2) be a normal path of G. If v <σ u then
v <σ w.

Proof. Let us assume that v <σ u and w <σ v. From Lemma 4 it follows that Iv ⊆ Iu and that Iw ⊆ Iv.
Therefore, Iw ⊆ Iu and thus w ∈ N(u). This is a contradiction to the assumption that P is normal as
v, w ∈ N(u), w <σ v, v <P w, and v is the vertex that follows u in P .

Lemma 8 Let G be an interval graph and P = (P1, u, w, P2, v, P3) be a normal path of G where v ∈ N(u).
If u <σ w, then u <σ x <σ v, for every vertex x ∈ V (P2) ∪ {w}.

Proof. As w, v ∈ N(u), w <P v, w follows u in P , and P is normal we obtain that u <σ w <σ v. Thus, it
remains to prove that x <σ v for every x ∈ V (P2). We prove first that u <σ x for every x ∈ V (P2). Assume
to the contrary that x <σ u <σ w. If x ∈ N(u) then we obtain a contradiction to the assumption that P
is normal. Thus, x <σ u, u <P x, and ux /∈ E(G). This is again a contradiction to the assumption that
P is normal (from Lemma 3). Therefore, u <σ x for every x ∈ V (P2) and, since u <σ w, u <σ x for every
x ∈ V (P2) ∪ {w}.

We assume towards a contradiction that there exists a vertex x′ ∈ V (P2) such that v <σ x
′. Without loss

of generality we also assume that x′ is the first such vertex of P2, that is, x <σ v for every vertex x ∈ V (P2)
with x <P x′. We denote by z the predecessor of x′ in P2 or w if x′ is the first vertex of P2. Then, as the
path is normal, x′ <P v, v <σ x

′, and zv /∈ E(G). Then, since z <σ v, rz < lv. However, as uv ∈ E(G) and
u <σ v, we obtain that lv < ru. Thus, rz < lv < ru and, therefore, z <σ u, a contradiction. Thus, x <σ v
for every vertex x ∈ V (P2) ∪ {w}.
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2.2 The first data reduction

Here we present our first data reduction on interval graphs (see Reduction Rule 1). By applying this data
reduction to a given interval graph G, we obtain a weighted interval graph G# with weights on its vertices,
such that the maximum weight of a path in G# equals the greatest number of vertices of a path in G
(cf. Theorem 3). We first introduce the notion of a reducible set of vertices and some related properties,
which are essential for our Reduction Rule 1.

Definition 3 Let G be a (weighted) interval graph and I be an interval representation of G. A set S ⊆ V (G)
is reducible if it satisfies the following conditions:

1. I[S] induces a connected proper interval representation of G[S] and

2. for every v ∈ V (G) such that Iv ⊆ span(S) it holds v ∈ S.

The intuition behind reducible sets is as follows. For every reducible set S, a longest path P contains
either all vertices of S or none of them (cf. Lemma 9). Furthermore, in a certain longest path P which
contains the whole set S, the vertices of S appear consecutively in P (cf. Lemma 10). Thus we can reduce
the number of vertices in a longest path P (without changing its total weight) by replacing all vertices of S
with a single vertex having weight |S|, see Reduction Rule 1.

The next two observations will be useful for various technical lemmas in the remainder of the paper.
Observation 3 follows by the two conditions of Definition 3 for the reducible sets S in a weighted interval
graph G. Furthermore, Observation 4 can be easily verified by considering any proper interval representation.

Observation 3 Let G be a (weighted) interval graph, I be an interval representation of G, and S ⊆ V (G)
be a reducible set. Then, for every u ∈ S and every v ∈ V (G) \ {u}, it holds Iv * Iu.

Observation 4 Let G be a proper interval graph and I be a proper interval representation of G. For every
u, v ∈ V (G):

• If u <σ v, then lu < lv.

• If u and v are consecutive vertices in the ordering σ and G is connected, then uv ∈ E(G).

Lemma 9 Let G be a weighted interval graph with weight function w : V (G) → N and let S be a reducible
set in G. Let also P be a path of maximum weight in G. Then either S ⊆ V (P ) or S ∩ V (P ) = ∅.

Proof. Let P be a path of G of maximum weight and S be a reducible set of G. Without loss of generality
we may assume by Lemma 2 that P is a normal path. Assume that S ∩ V (P ) 6= ∅ and S * V (P ). Then
there exist two consecutive vertices u1, u2 ∈ S in the vertex ordering σ (where u1 <σ u2) such that either
u1 ∈ V (P ) and u2 /∈ V (P ), or u1 /∈ V (P ) and u2 ∈ V (P ). In both cases we will show that we can augment the
path P by adding vertex u2 or u1, respectively, which contradicts our maximality assumption on P . Since,
by Definition 3, I[S] induces a connected proper interval representation of G[S], it follows by Observation 4
that u1u2 ∈ E(G).

First suppose that u1 ∈ V (P ) and u2 /∈ V (P ). Let P = (P1, u1, P2). Notice first that, if P2 = ∅, then the
path P ′ = (P1, u1, u2) = (P, u2) is a path of G with greater weight than P , which is a contradiction to the
maximality assumption on P . Thus, P2 6= ∅. Let w ∈ V (P2) be the first vertex of P2, i.e., P = (P1, u1, w, P

′
2).

We show that u1 <σ w. Assume to the contrary that w <σ u1. Then Iw ⊆ Iu1 by Lemma 4. This is a
contradiction, since u1 ∈ S and S is a reducible set (cf. Definition 3). Therefore u1 <σ w. Then either
u1 <σ u2 <σ w or u1 <σ w <σ u2. Now we show that u2w ∈ E(G). If u1 <σ u2 <σ w, then Lemma 1
implies that u2w ∈ E(G), since u1w ∈ E(G). If u1 <σ w <σ u2 then again Lemma 1 implies that u2w ∈ E(G)
since u1u2 ∈ E(G). Thus, since u2w ∈ E(G), it follows that there exists the path P ′ = (P1, u1, u2, w, P2′)
which has greater weight than P , which is a contradiction to the maximality assumption on P .

Now suppose that u1 /∈ V (P ) and u2 ∈ V (P ). Let then P = (P1, u2, P2). Notice that, if P1 = ∅, then
the path P ′ = (u1, u2, P2) = (u1, P ) is a path of G with greater weight than P , which is a contradiction.
Thus P1 6= ∅. Let z ∈ V (P1) be the last vertex of P1, i.e., P = (P ′1, z, u2, P2). We show that u1z ∈ E(G).
First let u2 <σ z. Then Iu2

⊆ Iz by Lemma 4, and thus N(u2) ⊆ N(z). Therefore, since u1u2 ∈ E(G), it
follows that u1z ∈ E(G) in the case where u2 <σ z. Let now z <σ u2. Suppose that u1z /∈ E(G). Note that
lu2 < ru1 , since u1 <σ u2 and u1u2 ∈ E(G). Furthermore, since S is a reducible set, I[S] induces a proper
interval representation of G[S] by Definition 3. Then, since u1 <σ u2 and u1, u2 ∈ S are consecutive in σ,
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Observation 4 implies that lu1 < lu2 . That is, lu1 < lu2 < ru1 . Hence, since u2z ∈ E(G) and u1z /∈ E(G), it
follows that lu1

< lu2
< ru1

< lz. Finally rz < ru2
, since z <σ u2 by assumption, and thus Iz ⊆ Iu2

. This is
a contradiction since u1 ∈ S and S is a reducible set (cf. Definition 3). Therefore, zu1 ∈ E(G) in the case
where z <σ u2. That is, we always have zu1 ∈ E(G). Therefore there exists the path P ′ = (P1, u1, u2, w, P2′)
which has greater weight than P , which is a contradiction to the maximality assumption on P .

Lemma 10 Let G be a weighted interval graph with weight function w : V (G) → N, and S be a reducible
set in G. Let also P be a path of maximum weight in G and let S ⊆ V (P ). Then there exists a path P ′ of G
such that V (P ′) = V (P ) and the vertices of S appear consecutively in P ′.

Proof. Let P be a path of maximum weight of G such that S ⊆ V (P ). Denote S = {u1, u2, . . . , u|S|},
where u1 <σ u2 <σ · · · <σ u|S|. Without loss of generality we may assume by Lemma 2 that P is normal.
Since I[S] induces a proper interval representation of G[S] (cf. Definition 3) Lemma 5 implies that also
u1 <P u2 <P · · · <P u|S|, i.e., the vertices of S appear in the same order both in the vertex ordering σ
and in the path P . Furthermore, Observation 4 implies that uiui+1 ∈ E(G) for every i ∈ [|S| − 1]. Let
P = (P0, u1, P1, u2, . . . , P|S|−1, u|S|, P|S|), where

V (Pi) ∩ S = ∅, for every i ∈ [|S| − 1]. (1)

For every i ∈ [|S| − 1], we denote

zi =

{
the first vertex of Pi if Pi 6= ∅
ui+1 otherwise

.

Let i ∈ [|S| − 1] and suppose that zi <σ ui. If zi = ui+1 then ui <σ zi = ui+1, which is a contradiction.
Therefore zi 6= ui+1. That is, zi is the first vertex of Pi, i.e., the successor of ui in P . Then, since we assumed
that zi <σ ui, it follows by Lemma 4 that Izi ⊆ Iui

. Thus zi ∈ S, since ui ∈ S and S is a reducible set
(cf. Definition 3). This is a contradiction to Eq. (1). Therefore ui <σ zi, for every i ∈ [|S| − 1].

Recall that I[S] induces a proper interval representation of G[S] and that u1 <σ u2 <σ · · · <σ u|S|.
Thus lu1

= min{lu : u ∈ S} and ru|S| = max{ru u ∈ S}, i.e., span(S) = [lu1
, ru|S| ]. Now let i ∈ [|S| − 1].

Since uiui+1 ∈ E(G) and ui <σ zi, Lemma 8 implies that ui <σ z <σ ui+1 for every z ∈ V (Pi). Therefore
u1 <σ z <σ u|S|, for every z ∈ V (Pi), where i ∈ [|S| − 1]. Suppose that there exists a vertex z ∈ V (Pi)
such that lu1

< lz. Then, since z <σ u|S|, it follows that Iz ⊆ span(S). Thus z ∈ S, since S is a
reducible set by assumption (cf. Definition 3). This is a contradiction to Eq. (1). Thus lz < lu1 for every
z ∈ V (Pi), where i ∈ [|S| − 1]. Since also u1 <σ z as we proved above, it follows that Iu1 ⊆ Iz for every
z ∈ V (Pi), where i ∈ [|S| − 1]. Thus N(u1) ⊆ N(z) for every z ∈ V (Pi), where i ∈ [|S| − 1]. Therefore
P ′ = (P0, P1, . . . , P|S|−1, u1, u2, . . . , u|S|, P|S|) is a path of G, where V (P ′) = V (P ) and the vertices of S
appear consecutively in P ′. This completes the proof of the lemma.

We now present two auxiliary technical lemmas that will be used to prove the correctness of Reduction
Rule 1 in Theorem 3.

Lemma 11 Let G be an interval graph and I be an interval representation of G. Let also S, S′ ⊆ V (G)
be two reducible sets of G such that S ∩ S′ = ∅. Let G′ be the graph obtained from G by replacing I[S] by
span(S). Then S′ remains a reducible set of G′.

Proof. Let u be the vertex of V (G′) \ V (G), i.e., Iu = span(S). Denote by I ′ the interval representation
obtained from I after replacing I[S] by span(S). First note that I ′[S′] = I[S′], and thus I ′[S′] induces a
connected proper interval representation as S′ is a reducible set by assumption. This proves Condition 1 of
Definition 3.

Let now v ∈ V (G′) such that Iv ⊆ span(S′). Assume that v /∈ S′. If v 6= u, then v ∈ V (G) and thus
v ∈ S′, since S′ is a reducible set of G. If v = u, then span(S) = Iu = Iv ⊆ span(S′). That is, for every
u0 ∈ S we have Iu0

⊆ span(S) ⊆ span(S′), and thus also u0 ∈ S′, since S′ is a reducible set. This is a
contradiction, since S ∩ S′ = ∅. Therefore, for every v ∈ V (G′) such that Iv ⊆ span(S′), we have that
v ∈ S′. This proves Condition 2 of Definition 3 and completes the proof of the lemma.

Lemma 12 Let ` be a positive integer. Let G be a weighted interval graph, w : V (G)→ N, I be an interval
representation of G, and S be a reducible set in G. Let also G′ be the graph obtained from G by replacing
I[S] by an interval Iu = span(S) where w(u) =

∑
v∈S w(v). Then the maximum weight of a path in G is `

if and only if the maximum weight of a path in G′ is `.
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Proof. First assume that the maximum weight of a path P in G is `. Without loss of generality, from
Lemma 2, we may also assume that P is normal. Furthermore, either S ⊆ V (P ) or S ∩ V (P ) = ∅ by
Lemma 9. Notice that if S ∩ V (P ) = ∅, then P is also a path of G′. Suppose that S ⊆ V (P ). Then from

Lemma 10, we can obtain a path P̂ such that V (P̂ ) = V (P ) and the vertices of S appear consecutively in P̂ .

Notice then that by replacing the subpath of P̂ consisting of the vertices of S by the single vertex u, we obtain
a path P ′ of G′ such that V (P ′) \ V (P ) = {u} and V (P ′) ∩ V (P ) = V (P ) \ {S}. Since w(u) =

∑
v∈S w(v),

we obtain that
∑
v∈V (P ′) w(v) =

∑
v∈V (P ) w(v). Thus, G′ has a path P ′ of weight at least `.

Now assume that the maximum weight of a path P ′ in G′ is `. If u /∈ V (P ′), then V (P ′) is also a path of G.
Suppose that u ∈ V (P ′). Let P ′ = (P1, v, u, v

′, P2). Our aim is to show that u|S|v
′ ∈ E(G) and vu1 ∈ E(G).

Suppose that v′ <σ u. Then Lemma 4 implies that Iv′ ⊆ Iu = span(S), and thus v′ ∈ S = V (G) \ V (G′).
This is a contradiction, since v′ ∈ V (G′). Thus u <σ v

′, i.e., ru = ru|S| < rv′ . Since uv′ ∈ E(G), it follows
that lv′ < ru = ru|S| . Therefore ru|S| ∈ Iv′ , and thus v′u|S| ∈ E(G). It remains to show that vu1 ∈ E(G).
First let u <σ v. Then Iu ⊆ Iv by Lemma 4. Furthermore, since Iu1 ⊆ Iu = span(S), it follows that
Iu1
⊆ Iv, and thus vu1 ∈ E(G). Let now v <σ u, i.e., rv < ru = ru|S| . Then, since vu ∈ E(G), it follows

that lu1
= lu < rv < ru. If Iv ⊆ Iu = span(S), then v′ ∈ S = V (G) \ V (G′), which is a contradiction since

v ∈ V (G′). Thus Iv * Iu. Therefore, since lu < rv < ru, it follows that lv < lu = lu1
< rv, i.e., lu1

∈ Iv.
Thus, u1v ∈ E(G). This implies that we may obtain a path P of G by replacing the vertex u in P ′ by the
path (u1, u2, . . . , u|S|). As before, since w(u) =

∑
v∈S w(v), the weight of P is equal to the weight of P ′.

Hence, G has a path of weight at least `.

In the next definition we reduce the interval graph G to the weighted interval graph G# which has fewer
vertices than G. Then, as we prove in Theorem 3, the longest paths of G correspond to the maximum-weight
paths of G#.

Reduction Rule 1 (first data reduction) Let G = (V,E) be an interval graph, I be an interval repre-
sentation of G, and D be a proper interval deletion set of G. Let S be a set of vertex disjoint reducible sets
of G, where S ∩ D = ∅, for every S ∈ S. The weighted interval graph G# = (V #, E#) is induced by the
weighted interval representation I#, which is derived from I as follows:

• for every S ∈ S, replace in I the intervals {Iv : v ∈ S} with the single interval IS = span(S) which
has weight |S|; all other intervals receive weight 1.

In the next theorem we prove the correctness of Reduction Rule 1.

Theorem 3 Let ` be a positive integer. Let G be an interval graph and G# be the weighted interval graph
derived by Reduction Rule 1. Then the longest path in G has ` vertices if and only if the maximum weight
of a path in G# is `.

Proof. The construction of the graph G# from G in Reduction Rule 1 can be done sequentially, replacing
each time the intervals of a set S ∈ S with one interval of the appropriate weight. After making this
replacement for such a set S ∈ S, the maximum weight of a path in the resulting graph is by Lemma 12
equal to the maximum weight of a path in the graph before the replacement of S. Furthermore, the vertex
set of every other set S′ ∈ S \ S remains reducible in the resulting graph by Lemma 11. Therefore we can
iteratively replace all sets of S, resulting eventually in the weighted graph G#, in which the maximum weight
of a path is equal to the maximum number of vertices in a path in the original graph G.

In the next lemma we prove that the weighted interval graph G#, which is obtained from an interval
graph G by applying Reduction Rule 1 to it, has some useful properties. These properties will be exploited
in Section 3 (cf. Corollary 2 in Section 3) as they are crucial for deriving a special weighted interval graph
(cf. Definition 5 in Section 3).

Lemma 13 Let G be an interval graph, D be a proper interval deletion set of G, and S be a set of vertex-
disjoint reducible sets of G, where S ∩D = ∅, for every S ∈ S. Suppose that span(S) ∩ span(S′) = ∅ for
every two distinct sets S, S′ ∈ S. Furthermore, let G# be the weighted interval graph obtained from Reduction
Rule 1. Then D is a proper interval deletion set of G#. Furthermore V (G#) \D can be partitioned into two
sets A and U#, where A = V (G#) \ V (G) and:

1. A is an independent set of G#, and

2. for every v ∈ A and every u ∈ V (G#) \ {v}, we have Iu * Iv.
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Proof. Define A = V (G#) \ V (G) and U# = V (G#) \ (D ∪ A). Note that the sets A and U# form a
partition of the set V (G#) \D. First we prove that A is an independent set. Note by Reduction Rule 1 that
every vertex a ∈ A corresponds to a different set Sa ∈ S, which corresponds to the interval Ia = span(S)
in the interval representation I# of the graph G#. Therefore, since span(S) ∩ span(S′) = ∅ for every two
distinct sets S, S′ ∈ S, it follows that Ia∩ Ia′ = ∅ for every two distinct vertices a, a′ ∈ A. That is, A induces
an independent set in G#.

Second we prove that for every v ∈ A and every u ∈ V (G#) \ {v}, we have Iu * Iv. Suppose otherwise
that there exist v ∈ A and u ∈ V (G#) \ {v} such that Iu ⊆ Iv. Then, since A is an independent set, it
follows that u /∈ A, i.e., u ∈ V (G). Recall by the construction that Iv = span(S), for some reducible set S
in G. Thus, since Iu ⊆ Iv = span(S), it follows by Definition 3 that u ∈ S. This is a contradiction since by
construction V (G#) ∩ S = ∅. Therefore, for every v ∈ A and every u ∈ V (G#) \ {v}, we have Iu * Iv.

Now we prove that D is a proper interval deletion set of G#. Suppose otherwise that G# \ D is not a
proper interval graph. Then G# \D contains an induced K1,3 [48]. If this K1,3 contains no vertex of A, then
this K1,3 is also contained as an induced subgraph of G \ D. This is a contradiction, since D is a proper
interval deletion set of G by assumption. Thus this K1,3 contains at least one vertex of A. Let v denote
the vertex of degree 3 in this K1,3. Suppose that v ∈ A. Then, for at least one vertex u of the other three
vertices of this K1,3 we have that Iu ⊆ Iv, which is a contradiction as we proved above. Suppose that v /∈ A,
i.e., v ∈ U#. Denote the leaves of the K1,3 by v1, v2, v3. Let i ∈ [3]. If vi ∈ U#, then vi ∈ V (G). Otherwise,
if vi ∈ A, then there exists a reducible set Si in G such that Ivi = span(Si). Furthermore, since v ∈ U#

and Iv ∩ span(Si) 6= ∅, there exists at least one vertex ui ∈ Si where uiv ∈ E(G). For every i ∈ [3], define

zi =

{
ui if vi ∈ A,
vi otherwise.

.

Observe that v, z1, z2, z3 belong to the original graph G, i.e., v, z1, z2, z3 ∈ V (G) \D. Since Ivi ∩ Ivj = ∅ for
every 1 ≤ i < j ≤ 3 and Izi ⊆ Ivi , i ∈ [3] it follows that Izi ∩ Izj = ∅, for every 1 ≤ i < j ≤ 3. Therefore,
{z1, z2, z3} is an independent set in G \ D. Moreover vzi ∈ E(G), for every i ∈ [3]. Thus, {v, z1, z2, z3}
induces a K1,3 in G\D. This is a contradiction, since D is a proper interval deletion set of G by assumption.
Therefore D is a proper interval deletion set of G#.

2.3 The second data reduction

Here we present our second data reduction, which is applied to an arbitrary weighted interval graph G with
weights on its vertices (cf. Reduction Rule 2). As we prove in Theorem 4, the maximum weight of a path

in the resulting weighted interval graph Ĝ is the same as the maximum weight of a path in G. We first
introduce the notion of a weakly reducible set of vertices and some related properties, which are needed for
our Reduction Rule 2.

Definition 4 Let G be a (weighted) interval graph and I be an interval representation of G. A set S ⊆ V (G)
is weakly reducible if it satisfies the following conditions:

1. I[S] induces a connected proper interval representation of G[S] and

2. for every v ∈ V (G) and every u ∈ S, if Iv ⊆ Iu then S ⊆ N(v).

Note here that Condition 2 of Definition 4 also applies to the case where v = u. Therefore S ⊆ N(u) for
every u ∈ S, i.e., S induces a clique, as the next observation states.

Observation 5 Let G be a (weighted) interval graph, I be an interval representation of G and S be a
weakly reducible set in G. Then G[S] is a clique. Furthermore [max{lv : v ∈ S},min{rv : v ∈ S}] ⊆ Iu, for
every u ∈ S.

The intuition behind weakly reducible sets is as follows. For every weakly reducible set S, a longest
path P contains either all vertices of S or none of them (cf. Lemma 14). Furthermore let D be a given
proper interval deletion set of G. Then, in a certain path P of maximum weight which contains the whole set
S, the appearance of the vertices of S in P is interrupted at most |D|+3 times by vertices outside S. That is,
such a path P has at most min{|S|, |D|+ 4} vertex-maximal subpaths with vertices from S (cf. Lemma 16).
Thus we can reduce the number of vertices in a maximum-weight normal path P (without changing its total
weight) by replacing all vertices of S with min{|S|, |D|+ 4} vertices, cf. the Reduction Rule 2; each of these
new vertices has the same weight and their total weight sums up to |S|.
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Lemma 14 Let G be a weighted interval graph with weight function w : V (G) → N and let S be a weakly
reducible set in G. Let also P be a path of maximum weight in G. Then either S ⊆ V (P ) or S ∩ V (P ) = ∅.

Proof. Let P be a path of G of maximum weight and S be a weakly reducible set in G. Without loss
of generality we also assume that P is a normal path (Lemma 2). Suppose towards a contradiction that
S ∩ V (P ) 6= ∅ and S * V (P ). Then there exist two consecutive vertices u1, u2 ∈ S in the vertex ordering σ
(where u1 <σ u2) such that either u1 ∈ V (P ) and u2 /∈ V (P ), or u1 /∈ V (P ) and u2 ∈ V (P ). In both cases
we will show that we can augment the path P by adding vertex u2 or u1, respectively, which contradicts our
maximality assumption on P . From Observation 5, S induces a clique in G. Hence, u1u2 ∈ E(G).

First suppose that u1 ∈ V (P ) and u2 /∈ V (P ). Let P = (P1, u1, P2). Notice first that, if P2 = ∅, then the
path P ′ = (P1, u1, u2) = (P, u2) is a path of G with greater weight than P , which is a contradiction to the
maximality assumption on P . Thus, P2 6= ∅. Let w ∈ V (P2) be the first vertex of P2, i.e., P = (P1, u1, w, P

′
2).

We prove that u2w ∈ E(G). For this, notice first that either w <σ u1 or u1 <σ w. If w <σ u1, then Iw ⊆ Iu1

by Lemma 4. Since u1, u2 are vertices of the weakly reducible set S and Iw ⊆ Iu1 then u2w ∈ E(G)
(Definition 4). If u1 <σ w, then either u1 <σ u2 <σ w or u1 <σ w <σ u2. If u1 <σ u2 <σ w, then
Lemma 1 implies that u2w ∈ E(G) since u1w ∈ E(G). If u1 <σ w <σ u2, then again Lemma 1 implies
that u2w ∈ E(G), since u1u2 ∈ E(G). This completes the argument that u2w ∈ E(G). Since u2w ∈ E(G),
it follows that there exists the path P ′ = (P1, u1, u2, w, P

′
2) which has greater weight than P , which is a

contradiction to the maximality assumption on P .
Now suppose that u1 /∈ V (P ) and u2 ∈ V (P ). Let then P = (P1, u2, P2). Notice that, if P1 = ∅, then

the path P ′ = (u1, u2, P2) = (u1, P ) is a path of G with greater weight than P , which is a contradiction.
Thus P1 6= ∅. Let z ∈ V (P1) be the last vertex of P1, i.e., P = (P ′1, z, u2, P2). We show that u1z ∈ E(G).
First let u2 <σ z. Then Iu2

⊆ Iz by Lemma 4, and thus N(u2) ⊆ N(z). Therefore, since u1u2 ∈ E(G), it
follows that u1z ∈ E(G) in the case where u2 <σ z. Now let z <σ u2. Suppose that u1z /∈ E(G). Note
that lu2 < ru1 since u1 <σ u2 and u1u2 ∈ E(G). Furthermore, since S is a weakly reducible set, I[S]
induces a proper interval representation of G[S] by Definition 4. Then, since u1 <σ u2 and u1, u2 ∈ S are
consecutive in σ, Observation 4 implies that lu1

< lu2
. That is, lu1

< lu2
< ru1

. Hence, since u2z ∈ E(G)
and u1z /∈ E(G), it follows that lu1

< lu2
< ru1

< lz. Finally rz < ru2
, since z <σ u2 by assumption,

and thus Iz ⊆ Iu2
. Then, since u1, u2 are vertices of the weakly reducible set S and Iz ⊆ Iu2

, it follows by
Definition 4 that u1z ∈ E(G), a contradiction. Therefore u1z ∈ E(G) in the case where z <σ u2. That is,
always zu1 ∈ E(G). Hence, there exists the path P ′ = (P1, u1, u2, w, P2′) which has greater weight than P ,
which is a contradiction to the maximality assumption on P .

We are now ready to present our second data reduction. As we prove in Theorem 4, this data reduction
maintains the maximum weight of a path.

Reduction Rule 2 (second data reduction) Let G be a weighted interval graph with weight function
w : V (G)→ N and I be an interval representation of G. Let D be a proper interval deletion set of G. Finally,
let S = {S1, S2, . . . , S|S|} be a family of pairwise disjoint weakly reducible sets, where Si ∩D = ∅ for every
i ∈ [|S|]. We recursively define the graphs G0, G1, . . . , G|S| with the interval representations I0, I1, . . . , I|S|
as follows:

• G0 = G and I0 = I,

• for 1 ≤ i ≤ |S|, Ii is obtained by replacing in Ii−1 the intervals {Iv : v ∈ Si} with min{|Si|, |D| + 4}
copies of the interval ISi

= span(Si), each having equal weight 1
min{|Si|,|D|+4}

∑
u∈Si

w(u); all other

intervals remain unchanged, and

• finally Ĝ = G|S| and Î = I|S|.

Note that in the construction of the interval representation Ii by Reduction Rule 2, where i ∈ [|S|], we
can always slightly perturb the endpoints of the min{|Si|, |D|+ 4} copies of the interval ISi

= span(Si) such
that all endpoints remain distinct in Ii, and such that these min{|Si|, |D| + 4} newly introduced intervals
induce a proper interval representation in Ii.

Next we prove in Lemma 16 that, for every weakly reducible set S, every maximum-weight path P which
contains the whole set S can be rewritten as a path P ′, where the appearance of the vertices of S in P is
interrupted at most |D|+3 times by vertices outside S. That is, such a path P ′ has at most min{|S|, |D|+4}
vertex-maximal subpaths with vertices from S. Before we prove Lemma 16, we first provide the following
auxiliary lemma.
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Lemma 15 Let G be an interval graph and I be an interval representation of G. Let also S, S′ ⊆ V (G)
such that S is a weakly reducible set of G and S ∩ S′ = ∅. Let G′ be the graph obtained from G by replacing
I[S′] by span(S′). Then S remains a weakly reducible set of G′.

Proof. Let u be the vertex of V (G′) \ V (G), i.e., Iu = span(S′). Denote by I ′ the interval representation
obtained from I after replacing I[S′] by span(S′). First note that I ′[S] = I[S], and thus I ′[S] induces
a connected proper interval representation as S is a weakly reducible set by assumption. This proves
Condition 1 of Definition 4.

Let now x ∈ V (G′) and v ∈ S. Assume that Ix ⊆ Iv. If x 6= u, then x ∈ V (G), and thus Ix ⊆ Iv in I.
Therefore, since S is a weakly reducible set of G by assumption, it follows that S ⊆ N(x). If x = u, then
Ix = Iu ⊆ Iv in I ′. Thus, since Iu = span(S′), it follows that for every vertex x′ ∈ S′, we have Ix′ ⊆ Iu ⊆ Iv.
Thus, since S is a weakly reducible set of G, it follows that S ⊆ N(x′), i.e., Ix′ ∩ Iw 6= ∅ for every w ∈ S.
Therefore, since Ix′ ⊆ Iu, it follows that also Iu ∩ Iw 6= ∅ for every w ∈ S, i.e., S ⊆ N(u) = N(x). This
proves Condition 2 of Definition 4.

The next observation follows directly by the definition of the graphs G0, G1, . . . , G|S| (see the Reduction
Rule 2) and by Lemma 15.

Observation 6 For every i ∈ [|S|], the sets Si, . . . , S|S| are weakly reducible sets of Gi−1.

Lemma 16 Let G be a weighted interval graph with weight function w : V (G) → N and I be an interval
representation of G. Let D be a proper interval deletion set of G and S = {S1, S2, . . . , S|S|} be a family of
pairwise disjoint weakly reducible sets of G such that Si ∩ D = ∅, i ∈ [|S|]. Also, let i ∈ [|S|] and Gi−1
be one of the graphs obtained by Reduction Rule 2. Finally, let P be a path of maximum weight in Gi−1
and let Si ⊆ V (P ). Then there exists a path P ′ in Gi−1 on the same vertices as P , which has at most
min{|Si|, |D|+ 4} vertex-maximal subpaths consisting only of vertices from Si.

Proof. Let P be a path of maximum weight in Gi−1 such that Si ⊆ V (P ). Denote Si = {u1, u2, . . . , u|Si|},
where u1 <σ u2 <σ · · · <σ u|Si|. Without loss of generality we may assume by Lemma 2 that P is normal.
Observation 6 yields that Si is a weakly reducible set of Gi−1. Thus, since I[Si] induces a proper interval
representation of Gi−1[Si] (cf. Definition 4), Lemma 5 implies that u1 <P u2 <P · · · <P u|Si|, i.e., the vertices
of Si appear in the same order both in the vertex ordering σ and in the path P . Furthermore, Observation 5
implies that uwuw+1 ∈ E(Gi−1), for every w ∈ [|Si| − 1]. Let P = (P0, u1, P1, u2, . . . , P|Si|−1, u|Si|, P|Si|).
For every w ∈ [|Si| − 1], we denote

zw =

{
the first vertex of Pw if Pw 6= ∅
uw+1 otherwise

.

Let

Z1 = {zw : zw <σ uw, w ∈ [|Si| − 1]},
Z2 = {zw : uw <σ zw, w ∈ [|Si| − 1]}.

Note that, as uw <σ uw+1, for every w ∈ [|Si| − 1] it follows that Z1 ∩ Si = ∅.
In the first part of the proof we show that |Z1| ≤ |D|+2. First we show that for every z ∈ Z1, Si ⊆ N(z).

Let w ∈ [|Si| − 1], such that zw ∈ Z1, i.e., zw <σ uw. Then from Lemma 4, Izw ⊆ Iuw
. Therefore, since

uw is a vertex of the weakly reducible set of Si in Gi−1, it follows by Definition 4 that Si ⊆ N(zw) in the
graph Gi−1. Thus Si ⊆ N(z) for every z ∈ Z1.

We now prove that Z1 is an independent set. Towards a contradiction we assume that there exist
zw, zj ∈ Z1 with zw <P zj and zwzj ∈ E(Gi−1). Then, since uwzw, uwzj ∈ E(Gi−1) and zw is the successor
of uw in the normal path P , it follows that zw <σ zj , i.e., zw and zj appear in the same order in the vertex
ordering σ and in the path P . Let v be the successor of zw in P . Then since zw <σ uw, Lemma 7 implies
that zw <σ v. Furthermore, as zw <σ zj , from Lemma 8 we obtain that zw <σ u <σ zj , for every u ∈ V (P )
such that zw <P u <P zj . Since uj is the predecessor of zj in P , it follows that zw <P uj <P zj . Therefore
uj <σ zj , a contradiction as zj ∈ Z1. Therefore Z1 is an independent set.

Assume now (towards a contradiction) that |Z1| ≥ |D| + 3. Then |Z1 \ D| ≥ |Z1| − |D| ≥ 3. Hence,
there exist at least 3 vertices z′, z′′, z′′′ ∈ Z1 \ D. Let u ∈ Si. Note that u /∈ D, since Si ∩ D = ∅. Then
u, z′, z′′, z′′′ ∈ V (Gi−1 \ D). Moreover, recall that Si ⊆ N(z), for every z ∈ Z1. Thus uz′, uz′′, uz′′′ ∈
E(Gi−1 \D). Recall also that Z1 is an independent set and thus the vertices z′, z′′, z′′′ form an independent
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set in Gi−1 \ D. Thus, {u, z′, z′′, z′′′} induce a K1,3 in Gi−1 \ D. Notice that by construction of Gi−1
(cf. Reduction Rule 2) each one of the vertices z′, z′′, z′′′ is either a vertex of G, or it appears in Gi−1 as
the replacement of some weakly reducible set S. If z′ /∈ V (G), then denote by S′ the weakly reducible
set corresponding to vertex z′. Otherwise, if z′ ∈ V (G), we define S′ = {z′}. Similarly, if z′′ /∈ V (G)
(resp. if z′′′ /∈ V (G)) then denote by S′′ (resp. by S′′′) the weakly reducible set corresponding to vertex z′′

(resp. z′′′). Otherwise, if z′′ ∈ V (G) (resp. if z′′′ ∈ V (G)), we define S′′ = {z′′} (resp. S′′′ = {z′′′}). Since
z′u ∈ E(Gi−1), observe that there always exists at least one vertex v′ ∈ S′ such that Iv′ ∩ Iu 6= ∅, and
thus uv′ ∈ E(G). Similarly, since z′′u, z′′′u ∈ E(Gi−1), there always exist vertices v′′ ∈ S′′ and v′′′ ∈ S′′′
such that Iv′′ ∩ Iu 6= ∅ and Iv′′′ ∩ Iu 6= ∅, and thus uv′′, uv′′′ ∈ E(G). Note that v′, v′′, v′′′ ∈ V (G) \ D.
Furthermore, by the definition of v′, v′′, v′′′, it follows that Iv′ ⊆ Iz′ , Iv′′ ⊆ Iz′′ , and Iv′′′ ⊆ Iz′′′ . Therefore,
since z′, z′′, z′′′ form an independent set, the vertices v′, v′′, v′′′ also form an independent set. Furthermore,
as uv′, uv′′, uv′′′ ∈ E(G), it follows that {u, v′, v′′, v′′′} induce a K1,3 in G \ D, which is a contradiction to
the assumption that D is a proper interval deletion set of G. Thus |Z1| ≤ |D|+ 2. This completes the first
part of our proof.

Let now zi0 be the vertex of Z2 that appears first in P . In the second part of the proof we show that the
set {x ∈ V (Gi−1) : ui0 <P x <P u|Si|} induces a clique in Gi−1. Note first that, since ui0 <σ zi0 ≤σ u|Si|
and ui0u|Si| ∈ E(Gi−1), Lemma 8 implies that ui0 <σ x <σ u|Si|, for every x ∈ V (Gi−1) such that
ui0 <P x <P u|Si|. Therefore, since ui0u|Si| ∈ E(Gi−1), it follows by Lemma 1 that xu|Si| ∈ E(Gi−1) for
every x ∈ V (Gi−1) such that ui0 <σ x <σ u|Si|.

We now prove that ui0x ∈ E(Gi−1), for every x ∈ V (Gi−1) such that ui0 <σ x <σ u|Si|. Suppose
otherwise that there exists such an x where ui0x /∈ E(Gi−1). Note that lu|Si|

< rui0
, since ui0 <σ u|Si|

and ui0u|Si| ∈ E(Gi−1). Furthermore, since Si is a weakly reducible set, I[Si] induces a proper interval
representation of Gi−1[Si] by Definition 4. Then, since ui0 <σ u|Si|, it follows by Observation 4 that
lui0

< lu|Si|
. That is, lui0

< lu|Si|
< rui0

. Hence, since u|Si|x ∈ E(Gi−1) and ui0x /∈ E(Gi−1) by our
assumption, it follows that rui0

< lx, i.e., lui0
< lu|Si|

< rui0
< lx. Finally rx < ru|Si|

from the choice
of x, and thus Ix ⊆ Iu|Si|

. Therefore, since Si is a weakly reducible set, ux ∈ E(Gi−1) for every u ∈ Si by
Definition 4. This is a contradiction to our assumption that ui0x /∈ E(Gi−1). Therefore xui0 ∈ E(Gi−1) for
every x ∈ V (Gi−1) such that ui0 <P x <P u|Si|.

We finally show that the set {x ∈ V (Gi−1) : ui0 <P x <P u|Si|} induces a clique in Gi−1. Since
ui0x ∈ E(Gi−1) for every vertex x in this set, we obtain that lx < rui0

< rx. Hence, the set {x ∈
V (Gi−1) : ui0 <P x <P u|Si|} induces a clique in Gi−1, as all such intervals Ix contain the point rui0

. This
completes the second part of our proof.

In the third part of our proof we show that there exists a path P ′ which has at
most |D| + 4 vertex-maximal subpaths that consist only of vertices from Si. Define P ′ =
(P0, u1, P1, u2, P2, . . . , Pi0−1, ui0 , Pi0 , Pi0+1, . . . , P|Si|−1, ui0+1, . . . , u|Si|, P|Si|). Notice that V (P ′) = V (P ).

From the second part of our proof the set
⋃|Si|−1
j=i0

V (Pj)
⋃|Si|−1
j=i0+1{uj} induces a clique. Thus, P ′ is

a path of Gi−1 with V (P ′) = V (P ). From the choice of i0, for every w ∈ [i0 − 1], if Pw 6= ∅,
then zw ∈ Z1. Since |Z1| ≤ |D| + 2, from the first part of our proof, there exist at most |D| + 2
paths Pw, w ∈ [i0 − 1], that are not empty. Thus, the subpath P ′1 = (P0, u1, P1, u2, P2, . . . , Pi0−1) con-
tains at most |D| + 2 vertex-maximal subpaths consisting only of vertices of Si. Furthermore, the subpath
P ′2 = (ui0 , Pi0 , Pi0+1, . . . , P|Si|−1, ui0+1, . . . , u|Si|, P|Si|) of P ′ clearly contains two vertex-maximal subpaths
consisting only of vertices of Si, namely the subpaths (ui0) and (ui0 , . . . , u|Si|). Since, P ′ = (P ′1, P

′
2), it

follows that P ′ has at most |D|+4 vertex-maximal subpaths that consist only of vertices from Si. Moreover,
P ′ has clearly at most |Si| such vertex-maximal subpaths from vertices of Si. This completes the proof of
the lemma.

We now present the next auxiliary technical lemma that will be used to prove the correctness of Reduction
Rule 2 in Theorem 4.

Lemma 17 Let ` and k be positive integers. Let G be a weighted interval graph with weight function
w : V (G) → N and I be an interval representation of G. Also, let S be a weakly reducible set of G.
Finally, let G′ be the graph obtained from G by replacing I[S] with min{|S|, k + 4} copies of the interval
Ivj = span(S), each having weight 1

min{|S|,k+4}
∑
u∈S w(u). If the maximum weight of a path in G′ is `,

then the maximum weight of a path in G is at least `.

Proof. Denote S = {u1, u2, . . . , u|S|}, where u1 <σ u2 <σ · · · <σ u|S|. That is, ru1
< ru2

< . . . < ru|S| .
Furthermore, since I[S] induces a proper interval representation, it follows by Observation 4 that also
lu1

< lu2
< . . . < lu|S| . That is, lu|S| = max{lu : u ∈ S} and ru1

= min{ru : u ∈ S}.
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Assume that the maximum weight of a path P ′ in G′ is `. Define V0 = V (G′) \ V (G) and denote
V0 = {vj : j ∈ [min{|S|, k + 4}]}. If V (P ′) ∩ V0 = ∅, then P ′ is also a path in G. Assume now that
V (P ′) ∩ V0 6= ∅. Then we may assume without loss of generality that V0 ⊆ V (P ′). Indeed, otherwise we
can augment P ′ to a path of G′ with greater weight by adding the missing copies of span(S) right after the
last copy of span(S) in P ′, which is a contradiction to the maximality assumption on P ′. Furthermore, by
Lemma 2 we may assume without loss of generality that P ′ is normal.

Let P ′ =
(
P ′0, v1, P

′
1, v2, . . . , v|V0|−1, P

′
|V0|−1, v|V0|, P

′
|V0|

)
. Denote by Z the set of all predecessors and

successors of the vertices of V0 in the path P ′. Consider a vertex z ∈ Z∩
(
V (P ′1) ∪ V (P ′2) ∪ . . . ∪ V (P ′|V0|−1)

)
.

Since z is a predecessor or a successor of a vertex v ∈ V0 in P ′, where Iv = span(S), it follows that N(z)∩S 6=
∅. Assume that S * N(z) in the initial graph G. Recall that [lu|S| , ru1

] = [max{lv : v ∈ S},min{rv : v ∈ S}].
Therefore, since we assumed that S * N(z), Observation 5 implies that Iz ∩ [lu|S| , ru1 ] = ∅, and thus either
rz < lu|S| or ru1

< lz.
Suppose first that rz < lu|S| , i.e., rz < lu|S| < ru1

. Let lu1
< lz, i.e., lu1

< lz < rz < ru1
. Then

Iz ⊆ Iu1
, and thus S ⊆ N(z), since S is a weakly reducible set (cf. Definition 4). This is a contradiction

to our assumption that S * N(z). Let lz < lu1 , i.e., lz < lu1 < rz < ru1 . Then I[{z, span(S)}] induces a
proper interval representation. Therefore, since the path P ′ of G′ is normal, Lemma 5 implies that vertex z
appears in P ′ before the first vertex v1 of V0, i.e., z ∈ P ′0. This is a contradiction to our assumption that

z ∈ Z ∩
(
V (P ′1) ∪ V (P ′2) ∪ . . . ∪ V (P ′|V0|−1)

)
.

Suppose now that ru1 < lz, i.e., lu|S| < ru1 < lz. Let rz < ru|S| , i.e., lu|S| < lz < rz < ru|S| . Then
Iz ⊆ Iu|S| , and thus S ⊆ N(z), since S is a weakly reducible set (cf. Definition 4). This is a contradiction to

our assumption that S * N(z). Let ru|S| < rz, i.e., lu|S| < lz < ru|S| < rz. Then I[{z, span(S)}] induces a
proper interval representation. Therefore, since the path P ′ of G′ is normal, Lemma 5 implies that vertex z
appears in P ′ after the last vertex v|V0| of V0, i.e., z ∈ P ′|V0|. This is a contradiction to our assumption that

z ∈ Z ∩
(
V (P ′1) ∪ V (P ′2) ∪ . . . ∪ V (P ′|V0|−1)

)
.

Summarizing, S ⊆ N(z) in the initial graph G, for every vertex z ∈ V (P ′1) ∪ V (P ′2) ∪
. . . ∪ V (P ′|V0|−1) which is a predecessor or a successor of a vertex of V0 in P ′. Therefore P =(
P ′0, u1, P

′
1, u2, . . . , u|V0|−1, P

′
|V0|−1, u|V0|, u|V0|+1, . . . , u|S|, P

′
|V0|

)
is a path in G, where V (P ) = V (P ′). Fi-

nally, since
∑
i∈[|S|] w(ui) =

∑
j∈[min{|S|,k+4}] w(vj), it follows that

∑
v∈V (P ) w(v) =

∑
v∈V (P ′) w(v). Thus

G has a path P of weight at least `.

Now we are ready to prove the correctness of our Reduction Rule 2.

Theorem 4 Let ` be a positive integer. Let G be a weighted interval graph and Ĝ be the weighted interval
graph obtained by Reduction Rule 2. Then the maximum weight of a path in G is ` if and only if the maximum
weight of a path in Ĝ is `.

Proof. First assume that the maximum weight of a path in Ĝ = G|S| is `. Then, by iteratively applying
Lemma 17 it follows that the maximum weight of a path in G is at least `.

Conversely, assume that the maximum weight of a path in G is `. We show by induction on i ∈
{0, 1, . . . , |S|} that the maximum weight of a path in Gi is at least `. For i = 0 we have G0 = G and the
argument follows by our assumption. This proves the induction basis.

For the induction step, let i ≥ 1 and assume that the weight of a maximum path in Gi−1 is at least
`. Let P be a path of maximum weight in Gi−1, i.e., the weight of P is at least `. Without loss of
generality, from Lemma 2, we may also assume that P is normal. Furthermore, Lemma 14 implies that
either Si ⊆ V (P ) or Si ∩ V (P ) = ∅. Notice that if Si ∩ V (P ) = ∅, then P is also a path of Gi. Suppose

that Si ⊆ V (P ). Then from Lemma 16, we can obtain a path P̂ such that V (P̂ ) = V (P ) and such that

P̂ has q ≤ min{|Si|, |D| + 4} vertex-maximal subpaths consisting only of vertices of Si. Let P̂1, P̂2, . . . , P̂q
be those subpaths. Consider now the path P ′ that is obtained by replacing in the interval representation
of P̂ each of the subpaths P̂1, P̂2, . . . , P̂q−1 with a copy of span(Si), and by replacing the subpath P̂q
with min{|Si|, |D| + 4} − q copies of span(Si). Note that P ′ is a path in the graph Gi. Recall by the
definition of Gi (cf. Reduction Rule 2) that each of the min{|Si|, |D|+ 4} copies of the interval span(Si) has
weight w(vj) = 1

min{|Si|,|D|+4}
∑
u∈Si

w(u). Since the total weight of all these copies of span(Si) is equal to∑
u∈Si

w(u), it follows that
∑
v∈V (P ′) w(v) =

∑
v∈V (P ) w(v). That is, the weight of the path P ′ of Gi is at

least `. Therefore the maximum weight of a path in Gi is at least `. This completes the induction step and
the proof of the theorem.
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3 Special weighted interval graphs

In this section we sequentially apply the two data reductions of Sections 2.2 and 2.3 to a given interval
graph G with a proper interval deletion set D. To do so, we first define a specific family S1 of reducible sets
in G\D and we apply Reduction Rule 1 to G with respect to the family S1, resulting in the weighted interval
graph G#. Then we define a specific family S2 of weakly reducible sets in G# \D and we apply Reduction

Rule 2 to G# with respect to the family S2, resulting in the weighted interval graph Ĝ. As it turns out, the
vertex sets of S1 ∪ S2 are a partition of the graph G \D. The final graph Ĝ is then given as input to our
fixed-parameter algorithm of Section 4.

We now introduce the notion of a special weighted interval graph with parameter κ. As we will prove
at the end of this section, the constructed graph Ĝ is a special weighted interval graph with parameter κ,
where κ depends only on the size of D (cf. Theorem 6). Furthermore Ĝ can be computed in O(k2n) time
(cf. Theorem 7).

Definition 5 (special weighted interval graph with parameter κ) Let G = (V,E) be a weighted in-
terval graph, I = {Iv : v ∈ V } be an interval representation of G, and κ ∈ N, where the vertex set V can be
partitioned into two sets A and B such that:

1. A is an independent set in G,

2. for every v ∈ A and every u ∈ V \ {v}, we have Iu * Iv, and

3. |B| ≤ κ.

Then G (resp. I) is a special weighted interval graph (resp. special interval representation) with param-
eter κ. The partition V = A ∪B is a special vertex partition of G.

3.1 The graph G#

Let D be a proper interval deletion set of G with k vertices d1, d2, . . . , dk, i.e., G \ D is a proper interval
graph. First we add two isolated dummy vertices d0, dk+1 to the set D (together with the corresponding
intervals Id0 , Idk+1

), such that d0 <σ v <σ dk+1 for every vertex v ∈ V (G). Note that I ′ = I ∪{Id0 , Idk+1
} is

the interval representation of an interval graph G′, where V (G′) = V (G)∪{d0, dk+1} and E(G′) = E(G). For
simplicity of the presentation we refer in the following to G′ and I ′ by G and I, respectively. Furthermore we
denote D = {d0, d1, . . . , dk, dk+1}, where d0 <σ d1 <σ . . . <σ dk <σ dk+1 and d0, dk+1 are the two dummy
isolated vertices. Now we define the following four sets:

L = {lv : v ∈ D},
R = {rv : v ∈ D},
U = V (G) \D,
U∗ = {u ∈ U : Iu ∩R = ∅}.

Furthermore, for every i ∈ [k + 1] we define the following set:

Li = {l ∈ L : rdi−1
< l < rdi} ∪ {rdi−1

, rdi}. (2)

For every i ∈ [k + 1] we denote Li = {li,0, li,1, . . . , li,pi}, where li,0 < li,1 < · · · < li,pi . Note that
li,0 = rdi−1

and li,pi = rdi , and thus |Li| ≥ 2 for every i ∈ [k + 1]. Now, for every i ∈ [k + 1] and x ∈ [pi]
define

U∗i,x = {u ∈ U∗ : li,x−1 < ru < li,x}

and

U∗∗i,x =

{
u ∈ U∗i,x : N(u) ∩

(⋃
j∈[x−1]

U∗i,j

)
= ∅
}
.

Note that the set U∗ is partitioned by the sets {U∗i,x : i ∈ [k + 1], x ∈ [pi]}.

Observation 7 Let u ∈ U such that Iu is strictly contained between two consecutive points of R ∪ L. Then
u ∈ U∗∗i,x, for some i ∈ [k + 1] and x ∈ [pi].
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Lemma 18
k+1∑
i=1

pi = 2(k + 1).

Proof. First, note by Eq. (2) that |Li| = 2 + |{l ∈ L : rdi−1
< l < rdi}|. Furthermore, since Li =

{li,0, li,1, . . . , li,pi}, it follows that pi = |Li| − 1, i.e., pi = 1 + |{l ∈ L : rdi−1 < l < rdi}|. Therefore,

k+1∑
i=1

pi = (k + 1) +

k+1∑
i=1

|{l ∈ L : rdi−1
< l < rdi}| = 2(k + 1).

Lemma 19 Let i ∈ [k + 1] and x ∈ [pi]. The interval representation I[U∗i,x] of G[U∗i,x] is a proper interval
representation.

Proof. The proof is done by contradiction. Assume that, for some i ∈ [k + 1] and x ∈ [pi], I[U∗i,x] is not
a proper interval representation of G[U∗i,x]. That is, there exist two vertices u, v ∈ U∗i,x such that Iu ⊆ Iv.
From the preprocessing of Theorem 2 there exist two vertices z, z′ ∈ V (G) such that z <σ u <σ z

′, where
z, z′ ∈ N(v) \N(u).

First suppose that z, z′ /∈ D. Then the vertices {z, z′, v, u} induce a K1,3 in G\D, which is a contradiction
to the assumption that D is a proper interval deletion set of G [48].

Now suppose that z ∈ D. Since zv ∈ E(G) and rz < ru < rv, it follows that lv < rz. Thus rz ∈ Iv.
Therefore, since we assumed that z ∈ D, it follows that Iv ∩R 6= ∅ and thus v /∈ U∗ (cf. the definition of the
set U∗). This is a contradiction to the assumption that v ∈ U∗i,x ⊆ U∗.

Finally suppose that z′ ∈ D. Then, since u <σ z
′ and z′ /∈ N(u), it follows that ru < lz′ . If rv < lz′ ,

then z′ /∈ N(v), which is a contradiction. Thus lz′ < rv, i.e., ru < lz′ < rv. Therefore, since we assumed
that z′ ∈ D, it follows that u, v do not belong to the same set U∗i,x (cf. the definition of U∗i,x), which is a
contradiction to our assumption.

Thus, for every i ∈ [k + 1] and x ∈ [pi], I[U∗i,x] is a proper interval representation of G[U∗i,x].

For every i ∈ [k + 1] and x ∈ [pi] we denote the connected components of U∗∗i,x by C1
i,x, C

2
i,x, . . . , C

q(i,x)
i,x ,

such that V (C1
i,x) <σ V (C2

i,x) <σ · · · <σ V (C
q(i,x)
i,x ). Note that any two distinct components Cti,x and Ct

′

i′,x′

are disjoint, i.e., V (Cti,x)∩V (Ct
′

i′,x′) = ∅. Furthermore we define the family S1 of vertex subsets of V (G) \D
as follows:

S1 = {V (Cti,x) : i ∈ [k + 1], x ∈ [pi], t ∈ [q(i, x)]}. (3)

Lemma 20 Every set S ∈ S1 is reducible.

Proof. Consider a set S ∈ S1. Then S = V (Cti,x), for some i ∈ [k + 1], x ∈ [pi], and t ∈ [q(i, x)]. We
need to prove that the two conditions of Definition 3 are satisfied for the connected component Cti,x of U∗∗i,x.
For Condition 1, recall that V (Cti,x) ⊆ U∗∗i,x ⊆ U∗i,x. Thus, since the interval representation I[U∗i,x] of G[U∗i,x]
is proper by Lemma 19, the interval representation I[V (Cti,x)] of G[V (Cti,x)] is a connected proper interval
representation. This proves Condition 1 of Definition 3.

Now let v ∈ V (G) such that Iv ⊆ span(V (Cti,x)). Recall by the definition of V (Cti,x) that G[V (Cti,x)] is
connected. Therefore, since Iu ∩R = ∅ for every u ∈ V (Cti,x) ⊆ U∗, it follows that span(V (Cti,x)) ∩R = ∅,
and thus also Iv ∩ R = ∅. That is, v ∈ U∗ (cf. the definition of U∗). Let V (Cti,x) = {u1, u2, . . . , ua}, where
u1 <σ u2 <σ . . . <σ ua. Note that rv ≤ rua

, since Iv ⊆ span(V (Cti,x)) by assumption. Furthermore, since
I[V (Cti,x)] is a proper interval representation as we proved above, Observation 4 implies that lu1

< lu2
< . . . <

lua . Suppose that v <σ u1. Then, since Iv ⊆ span(V (Cti,x)), it follows that Iv ⊆ Iu1 . This is a contradiction
to Condition 1 of Definition 3 that we proved above. Thus u1 ≤σ v. That is, li,x−1 < ru1 ≤ rv ≤ rua < li,x.
Therefore v ∈ U∗i,x (cf. the definition of U∗i,x). Moreover, since Iv ⊆ span(V (Cti,x)) by assumption, it follows
that N(v) ⊆

⋃
u∈V (Ct

i,x)
N(u), and thus N(v) ∩

⋃
j∈[x−1] U

∗
i,j = ∅ (cf. the definition of U∗∗i,x). It follows that

v ∈ U∗∗i,x, and thus v ∈ V (Cti,x). This proves Condition 2 of Definition 3.

Lemma 21 If S and S′ are two distinct elements of S1, then span(S) ∩ span(S′) = ∅.
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Proof. Towards a contradiction let S and S′ be two distinct elements of S1. That is, S = V (Cti,x) and

S′ = V (Ct
′

i′,x′), for some i, i′ ∈ [k + 1], x ∈ [pi], x
′ ∈ [pi′ ], and t ∈ [q(i, x)], t′ ∈ [q(i′, x′)]. Assume that

span(S) ∩ span(S′) 6= ∅. Then there exist u ∈ S and u′ ∈ S′ such that Iu ∩ Iu′ 6= ∅.
First suppose that i 6= i′. Without loss of generality we assume that i′ < i. Note that li,x−1 < ru < li,x,

since u ∈ V (Cti,x) ⊆ U∗i,x. Furthermore, since by the definition of the set Li we have rdi−1
≤ li,x−1 and

li,x ≤ rdi , it follows that rdi−1
< ru < rdi . Similarly it follows that rdi′−1

< ru′ < rdi′ . Therefore, ru′ <
rdi′ ≤ rdi−1 < ru. Furthermore, since Iu ∩ Iu′ 6= ∅, it follows that lu < ru′ . That is, lu < ru′ < rdi−1 < ru,
and thus rdi−1 ∈ Iu. This is a contradiction, since u ∈ U∗ (cf. the definition of U∗). Therefore, i′ = i.

Now suppose that x′ 6= x. Without loss of generality we assume that x′ < x. Note that u ∈ V (Cti,x) ⊆ U∗∗i,x
and that u′ ∈ V (Ct

′

i,x′) ⊆ U∗i,x′ ⊆
⋃
j∈[x−1] U

∗
i,j . Therefore, since N(u)∩

(⋃
j∈[x−1] U

∗
i,j

)
= ∅ (cf. the definition

of U∗∗i,x), it follows that u′ /∈ N(u). This is a contradiction, since Iu ∩ Iu′ 6= ∅. Therefore, x′ = x.
Summarizing, the sets S and S′ are two different connected components of U∗∗i,x. Therefore, there are no

vertices u ∈ S and u′ ∈ S′ such that Iu ∩ Iu′ 6= ∅, which is a contradiction to our assumption. It follows that
span(S) ∩ span(S′) 6= ∅, for any two distinct sets S, S′ ∈ S1.

Note that, for every i, x, t, the connected component Cti,x of U∗∗i,x contains no vertices of D, since by
definition U∗∗i,x ⊆ U = V (G) \D. Therefore, since all sets of S1 are reducible (by Lemma 20) and disjoint,
we can apply Reduction Rule 1 to the graph G with respect to the sets of S1, by replacing in the interval
representation I the intervals {Iv : v ∈ S} with the interval IS = span(S) with weight |S|, for every S ∈ S1.
Denote the resulting weighted graph by G# = (V #, E#) and its interval representation by I#. Furthermore
denote by σ# the right-endpoint ordering of I#. Then, the next corollary follows immediately by Theorem 3.

Corollary 1 The maximum number of vertices of a path in G is equal to the maximum weight of a path
in G#.

Define A = V (G#)\V (G), i.e., each vertex v ∈ A corresponds to an interval Iv = span(S) in the interval
representation I# , where S ∈ S1. Recall that for every S ∈ S1, we have that S = V (Cti,x), where i ∈ [k+ 1],
x ∈ [pi], and t ∈ [q(i, x)]. Thus, in the remainder of this section we denote A = {vti,x : i ∈ [k + 1], x ∈
[pi], t ∈ [q(i, x)]}. Furthermore, for every vti,x ∈ A we denote for simplicity the corresponding interval in the

representation I# by Iti,x = Ivti,x . Recall that V (C1
i,x) <σ V (C2

i,x) <σ · · · <σ V (C
q(i,x)
i,x ) in the graph G, and

thus v1i,x <σ# v2i,x <σ# . . . <σ# v
q(i,x)
i,x in the graph G#. Furthermore, since span(S)∩ span(S′) = ∅ for any

two distinct sets S, S′ ∈ S1 by Lemma 21, the next corollary follows immediately by Lemma 13.

Corollary 2 The set D remains a proper interval deletion set of the weighted interval G# = (V #, E#).
Furthermore the set V # \D can be partitioned into the sets A = V (G#) \ V (G) and U# = V # \ (D ∪ A),
such that:

1. A is an independent set of G#, and

2. for every vti,x ∈ A and every u ∈ V # \ {vti,x}, we have Iu * Iti,x.

In the next theorem we prove that the weighted interval graphG# and the vertex subset A (cf. Corollary 2)
can be computed in O(n) time.

Theorem 5 Let G = (V,E) be an interval graph, where |V | = n. Let D be a proper interval deletion set
of G, where D = {d0, d1, . . . , dk, dk+1}. Then the graph G# = (V #, E#) and the independent set A ⊆ V #

can be computed in O(n) time.

Proof. Denote by I the given interval representation of G. Recall that the endpoints of the intervals in I
are given sorted increasingly, e.g., in a linked list M . The sets L and R can be computed in O(k) time, since
they store the left and the right endpoints of the intervals of the set D, where |D| = k. Furthermore, the set
U = V \D can be clearly computed in O(n) time.

The set U∗ and the sets Li, i ∈ [k+1], can be efficiently computed as follows. First we visit all endpoints
of the intervals in I (in increasing order). For every endpoint p ∈ {lu, ru : u ∈ U} ∪ {ld1 , ld2 , . . . , ldk+1

} that
we visit, such that rdi < p < rdi+1

, where rdi , rdi+1
∈ D, we add to p the label label(p) = di. Initially, we

set Li = {rdi−1
, rdi}, for every i ∈ [k + 1]. Then we iterate for every p ∈ {ld1 , ld2 , . . . , ldk+1

}. If label(p) = di
then we add p to the set Li. Note that, during this computation, we can store the elements of each set Li
in increasing order, using a linked list. Furthermore, in the same time we add to every element p of the
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set Li a pointer to the position of p in the linked list M , which keeps the endpoints of the intervals in I in
increasing order. To compute the set U∗ we iterate for every u ∈ U and we compare label(lu) with label(ru).
If label(lu) = label(ru) then we set u ∈ U∗, otherwise we set u /∈ U∗. Similarly, during this computation we
can store the elements of the set U∗ in increasing order (according to the order of their right endpoints in
the linked list M). Since the endpoints in I are assumed to be sorted in increasing order, the computation
of U∗ and of all sets Li, i ∈ [k + 1], can be done in total in O(n) time.

Note that there are in total
∑k+1
i=1 pi = 2(k + 1) different sets U∗i,x, where i ∈ [k + 1] and x ∈ [pi] (cf.

Lemma 18). All these sets U∗i,x can be efficiently computed as follows, using the sets U∗ and L1, L2, . . . , Lk+1,
which we have already computed, as follows. For every i ∈ [k+1] we iterate over the points {li,0, li,1, . . . , li,pi}
of the set Li in increasing order. For every x ∈ [pi] we visit sequentially in the linked list M (which keeps
the endpoints of I in increasing order) from the point li,x−1 until the point li,x. For every point p between
li,x−1 and li,x, we check whether p = ru and u ∈ U∗, and if this is the case then we add vertex u to the
set U∗i,x. This check on point p can be done on O(1) time, e.g., by checking whether label(lu) = label(ru), as
we described above. Thus, as we scan once through the linked list M , the computation of all sets U∗i,x can
be done in O(n) time in total. Note that, during this computation we can store the elements of each of the
sets U∗i,x in increasing order (according to the order of their right endpoints in the linked list M).

The computation of the sets U∗∗i,x, where i ∈ [k+ 1] and x ∈ [pi], can be done efficiently as follows. First,
we scan once through each of the O(k) sets U∗i,x 6= ∅ and, for every such set, we compute its rightmost
right endpoint pi,x in the interval representation I, i.e., pi,x = max{ru : u ∈ U∗i,x}. Furthermore define
pi,0 = rdd−1

, for every i ∈ [k + 1]. The computation of all such points pi,x can be done in O(n) time in
total. Now, for every fixed i ∈ [k+ 1], the computation of the sets U∗∗i,1, U

∗∗
i,2, . . . , U

∗∗
i,pi

can be done as follows.
Initially, set p = pi,0. We iterate for every x = 1, 2, . . . , pi (in this order). For every such x, we first define
p = max{p, pi,x−1}. Then, for every vertex u ∈ U∗i,x we check whether p < lu, and if it is the case then we
add vertex u to the set U∗∗i,x. It can be easily checked that this process eventually correctly computes the sets
U∗∗i,x (cf. the definition of U∗∗i,x). Since every two sets U∗i,x, U

∗
i′,x′ are disjoint, all the sets U∗∗i,x, where i ∈ [k+1]

and x ∈ [pi], can be done by these computations in O(n) time in total. Moreover, in the same time we can
store the elements of each of the sets U∗∗i,x in increasing order (according to the order of their right endpoints
in the linked list M).

Let now i ∈ [k + 1] and x ∈ [pi]. The computation of the connected components C1
i,x, C2

i,x, . . . , C
q(i,x)
i,x

of U∗∗i,x can be done efficiently as follows. We visit all vertices of U∗∗i,x in increasing order. For every such
vertex u, we compare its left endpoint lu with the right endpoint ru′ of the previous vertex u′ of U∗∗i,x. If
lu < ru′ then u belongs to the same connected component Cti,x where u′ belongs, otherwise u belongs to the

next connected component Ct+1
i,x . The correctness of this computation of C1

i,x, C2
i,x, . . . , C

q(i,x)
i,x follows from

the fact that the interval representation I[U∗i,x] of G[U∗i,x] is proper by Lemma 19 and by Observation 4.
Since we visit every vertex of each U∗∗i,x once, where i ∈ [k+ 1] and x ∈ [pi], the computation of all connected
components Cti,x, where i ∈ [k + 1], x ∈ [pi], and t ∈ [q(i, x)], can be done in O(n) time in total. Note
that, in the same time we can also compute the interval span(Cti,x) for every such component Cti,x, by just
keeping track of the left endpoint lu (resp. right endpoint ru′) of the leftmost vertex u (resp. of the rightmost
vertex u′) in Cti,x.

Summarizing, we can compute in O(n) time the family S1 that contains all vertex sets S = V (Cti,x),
where i ∈ [k + 1], x ∈ [pi], and t ∈ [q(i, x)], cf. Eq. (3). Moreover, in the same time we can also compute
the intervals IS = span(S), where S ∈ S1. Then the interval representation I# can be computed from I
in O(n) time, by replacing for every S ∈ S1 the intervals {Iv : v ∈ S} with the interval IS = span(S). Note
that these intervals {span(S) : S ∈ S1} are exactly the intervals of the vertices in the independent set A
of G#. Therefore, the sets A ⊆ V # and U# = V # \ (D ∪A) can be computed in O(n) time.

3.2 The graph Ĝ

Consider the weighted interval graph G# = (V #, E#) with the interval representation I# and the
right-endpoint ordering σ# that we constructed in Section 3.1. Recall that, by Corollary 2, D =
{d0, d1, . . . , dk, dk+1} ⊆ V # is a proper interval deletion set of G# and that the vertices of V # \D are parti-
tioned into the independent set A = {vti,x : i ∈ [k+1], x ∈ [pi], t ∈ [q(i, x)]} and the set U# = V # \(D∪A).

Recall that v1i,x <σ# v2i,x <σ# . . . <σ# v
q(i,x)
i,x . For every vertex vti,x ∈ A, the interval of vti,x in the represen-

tation I# is denoted by Iti,x. We define the set T of endpoints in the representation I# as
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T = R ∪ L ∪
⋃
i,x

{
lI1i,x , rI1i,x , lI2i,x , rI2i,x , lIq(i,x)−1

i,x
, r
I
q(i,x)−1
i,x

, l
I
q(i,x)
i,x

, r
I
q(i,x)
i,x

}
.

Note that |T | ≤ |R| + |L| + 8
∑k+1
i=1 pi, and thus Lemma 18 implies that |T | ≤ 18k + 16. We denote

T = {t1, t2, . . . , t|T |}, where t1 < t2 < · · · < t|T |. For every 1 ≤ j ≤ i ≤ |T | we define

Uji = {u ∈ U# : tj−1 < lu < tj and ti−1 < ru < ti}. (4)

Note that {Uji : 1 ≤ j ≤ i ≤ |T |} provides a partition of U#. As the next lemma shows, it suffices to
consider in the following only the sets Uji such that j 6= i.

Lemma 22 For every i ∈ [k + 1], Uii = ∅.

Proof. Let u ∈ Uii, for some i ∈ |T |. Since Uii ⊆ U# = V # \ (D ∪A), note that vertex u exists also in the
original (unweighted) interval graph G. Furthermore, since Iu is strictly contained between two consecutive
points of T , it is also strictly contained between two consecutive points of R ∪ L ⊆ T . Therefore, for some
i ∈ [k + 1] and x ∈ [pi], u ∈ U∗∗i,x by Observation 7. However, all vertices of

⋃
i,x U

∗∗
i,x in the initial interval

graph G have been replaced by the vertex set A in the weighted interval graph G#. This is a contradiction,
since u ∈ U# = V # \ (D ∪A). Thus Uii = ∅.

We are now ready to define the family S2 of vertex subsets of U# as follows:

S2 = {Uji : 1 ≤ j < i ≤ |T |}. (5)

Lemma 23 Every set S ∈ S2 is weakly reducible in the graph G# = (V #, E#).

Proof. Consider a set S ∈ S2. Then S = Uji, for some 1 ≤ j < i ≤ |T |. In the first part of the proof we show
by contradiction that I#[Uji] is a proper interval representation of G#[Uji]. Assume otherwise that there
exist two vertices v, u ∈ Uji such that Iv ⊆ Iu. Since the intervals for the vertices of Uji are the same in both
interval representations I and I#, it follows that Iv ⊆ Iu in the representation I of the initial (unweighted)
interval graph G. Then, from the preprocessing of Theorem 2 there exist two vertices z, z′ ∈ V (G) such that
z <σ v <σ z

′, where z, z′ ∈ N(u) \N(v) in the graph G.
First suppose that z, z′ /∈ D. Then the vertices {z, z′, u, v} induce a K1,3 in G\D, which is a contradiction

to the assumption that D is a proper interval deletion set of G [48].
Now suppose that z ∈ D. Then rz ∈ R ⊆ T . If rz < lu then zu /∈ E(G), which is a contradiction. Thus

lu < rz. Moreover, since zv /∈ E(G) and z <σ v, it follows that rz < lv. That is, lu < rz < lv, where rz ∈ T .
This is a contradiction to the assumption that both v and u belong to the same set Uji.

Finally suppose that z′ ∈ D. Then lz′ ∈ L ⊆ T . If ru < lz′ then z′u /∈ E(G), which is a contradiction.
Thus lz′ < ru. Moreover, since z′v /∈ E(G) and v <σ z

′, it follows that rv < lz′ . That is, rv < lz′ < ru,
where lz′ ∈ T . This is a contradiction to the assumption that both v and u belong to the same set Uji. This
proves Condition 1 of Definition 4.

In the second part of the proof we show by contradiction that for every u ∈ Uji and every v ∈ V #, if
Iv ⊆ Iu, then Uji ⊆ N(v) in the graph G#. Let u ∈ Uji and v ∈ V # such that Iv ⊆ Iu. Assume that there
exists a vertex u′ ∈ Uji such that u′v /∈ E#. First suppose that Iv ∩ T 6= ∅, i.e., lv ≤ t0 ≤ rv for some
t0 ∈ T . Let v <σ# u′. Then, since u′v /∈ E# by assumption, it follows that rv < lu′ . Furthermore lu < lv,
since Iv ⊆ Iu. Therefore, lu < lv ≤ t0 ≤ rv < lu′ , i.e., lu < t0 < lu′ , where t0 ∈ T . This is a contradiction
to the assumption that both u and u′ belong to the same set Uji. Let u′ <σ# v. Then, since u′v /∈ E# by
assumption, it follows that ru′ < lv. Furthermore rv < ru, since Iv ⊆ Iu. Therefore, ru′ < lv ≤ t0 ≤ rv < ru,
i.e., ru′ < t0 < ru, where t0 ∈ T . This is a contradiction to the assumption that both u and u′ belong to the
same set Uji.

Now suppose that Iv ∩ T = ∅. If v ∈ D then both its endpoints belong to R ∪ T ⊆ T , and thus
Iv ∩ T 6= ∅, which is a contradiction. Thus v ∈ V # \ D = A ∪ U#. Let v ∈ U#, i.e., v ∈ Uj′i′ , for some
1 ≤ j′ ≤ i′ ≤ |T |. Note that j′ 6= i′ by Lemma 22, and thus j′ < i′. Thus, it follows by equation (4) that
lv < tj′ ≤ ti′−1 < rv, i.e., Iv ∩ T 6= ∅, which is a contradiction. Therefore, v ∈ U#, and thus v ∈ A. If

v ∈
⋃
i,x{v1i,x, v2i,x, v

q(i,x)−1
i,x , v

q(i,x)
i,x }, then both its endpoints belong to T (by the definition of the set T ),

i.e., Iv ∩ T 6= ∅, which is a contradiction.
Therefore v = vhi,x, for some i ∈ [k + 1], x ∈ [pi], and 3 ≤ h ≤ q(i, x) − 2. Recall that v1i,x <σ#

v2i,x <σ# vhi,x <σ# v
q(i,x)−1
i,x <σ# v

q(i,x)
i,x . Furthermore recall that the intervals {Iz : z ∈ U∗∗i,x} in the interval
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representation I of the initial graph G have been replaced by the intervals {Ihi,x : 1 ≤ h ≤ q(i, x)} in the

interval representation I# of the graph G#. Suppose that lu < lv1i,x . Then, since Iv = Ivhi,x ⊆ Iu by

assumption, it follows that Iu properly contains in the representation I# all three intervals of the vertices
v1i,x, v2i,x, and v = vhi,x. Therefore the interval Iu properly contains in the initial representation I all triples of

intervals {Iz1 , Iz2 , Izh}, where z1 ∈ C1
i,x, z2 ∈ C2

i,x, and zh ∈ Chi,x. Thus, since zi, z2, z3 induce an independent

set (they belong to different connected components C1
i,x, C

2
i,x, C

h
i,x of U∗∗i,x in the initial graphG), it follows that

the vertices {u, z1, z2, zh} induce a K1,3 in G\D. This is a contradiction to the assumption that D is a proper
interval deletion set of G [48]. Thus lv1i,x < lu. Suppose that r

v
q(i,x)
i,x

< ru. Then it follows similarly that Iu

properly contains in the initial representation I all triples of intervals {Izh , Izq(i,x)−1
, Izq(i,x)

}, where zh ∈ Chi,x,

zq(i,x)−1 ∈ C
q(i,x)−1
i,x , and zq(i,x) ∈ C

q(i,x)
i,x , which is again a contradiction. Therefore, lv1i,x < lu < ru < r

v
q(i,x)
i,x

.

That is, the interval Iu is properly contained in the interval span(U∗∗i,x), and thus u ∈ U∗∗i,x (cf. the definition

of the sets U∗i,x and U∗∗i,x in Section 3.1). Therefore, vertex u has been replaced in the weighted graph G# by

a vertex of A. This is a contradiction, since u ∈ Uji ⊆ U# by assumption.
Thus for every u ∈ Uji and every v ∈ V #, if Iv ⊆ Iu, then Uji ⊆ N(v) in the graph G#. This proves

Condition 2 of Definition 4.

Note that for every 1 ≤ j < i ≤ |T |, the set Uji contains no vertices of D, since by definition Uji ⊆
U# = V # \ (D∪A). Therefore, since all sets of S2 are disjoint, we can apply Reduction Rule 2 to the graph
G# with respect to the sets of S2, by replacing in the interval representation I# the intervals {Iv : v ∈ S}
with min{|S|, |D|+ 4} copies of the interval IS = span(S), for every S ∈ S2. Denote the resulting weighted

graph by Ĝ = (V̂ , Ê) and its interval representation by Î. Then the next corollary follows immediately by
Theorem 4.

Corollary 3 The maximum weight of a path in G# is equal to the maximum weight of a path in Ĝ.

In the next two theorems we provide the main results of this section. In particular, in Theorem 6 we prove
that the constructed weighted interval graph Ĝ is a special weighted interval graph with a parameter κ that
is upper bounded by O(k3) and in Theorem 7 we provide a time bound of O(k2n) for computing Ĝ = (V̂ , Ê)

and a special vertex partition V̂ = A ∪B.

Theorem 6 The weighted interval graph Ĝ = (V̂ , Ê) is a special weighted interval graph with parameter
κ = O(k3).

Proof. Define A = V (G#) \ V (G), i.e., A is the set of vertices that have been introduced in the weighted
interval graph G# by applying Reduction Rule 1 to the initial (unweighted) interval graph G (cf. Section 3.1).

Note that the vertices of A also belong to the weighted graph Ĝ, since they are not affected by the application
of Reduction Rule 2 to the graph G#. Furthermore, we define the vertex set B = V̂ \A, i.e., V̂ is partitioned
into the sets A and B.

We will prove that A and B satisfy the three conditions of Definition 5. Since the vertices of A are not
affected by the application of Reduction Rule 2, Corollary 2 implies that A induces an independent set in Ĝ.
This proves Condition 1 of Definition 5.

Let vti,x ∈ A and u ∈ V̂ \ {vti,x}. Assume that Iu ⊆ Iti,x in the interval representation Î. If u is also

a vertex of the weighted graph G#, then Corollary 2 implies that Iu * Iti,x in the interval representation

I# (and thus also in the representation Î). This is a contradiction to the assumption that Iu ⊆ Iti,x in Î.

Otherwise, if u is a vertex of Ĝ but not a vertex of G#, then Iu = span(S), for some S ∈ S2. Therefore,
for every vertex u′ ∈ S, we have that Iu′ ⊆ span(S) = Iu ⊆ Iti,x in the interval representation I# of the

graph G#. This is a contradiction by Corollary 2. Therefore, for every vti,x ∈ A and every u ∈ V̂ \ {vti,x}, we

have Iu ⊆ Iti,x in the interval representation Î. This proves Condition 2 of Definition 5.

Recall by Corollary 2 that the set V # \ D is partitioned into the sets A and U#. Furthermore, recall
that {Uji : 1 ≤ j < i ≤ |T |} provides a partition of U#, and that each of these vertex sets Uji is replaced in

the graph Ĝ by at most min{|Uji|, |D|+ 4} vertices. Thus the vertex set B contains all vertices of D and at
most |D|+4 vertices for each of the vertex subsets {Uji : 1 ≤ j < i ≤ |T |} of G#. Recall that |T | ≤ 18k+16,

and thus there exist at most
(
18k+16

2

)
different sets Uji. Furthermore, recall that D = {d0, d1, . . . , dk, dk+1},

i.e., |D| = k + 2. Therefore, |B| ≤ |D| +
(
18k+16

2

)
· (|D| + 4) = (k + 2) +

(
18k+16

2

)
· (k + 6) = O(k3). This

proves Condition 3 of Definition 5 and completes the proof of the theorem.
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Theorem 7 Let G = (V,E) be an interval graph, where |V | = n. Let D = {d0, d1, . . . , dk, dk+1} be a proper

interval deletion set of G. Then the special weighted interval graph Ĝ = (V̂ , Ê) and a special vertex partition

V̂ = A ∪B can be computed in O(k2n) time.

Proof. First recall that the graph G# = (V #, E#) and the independent set A ⊆ V # can be computed
in O(n) time by Theorem 5. Furthermore, recall by the proof of Theorem 5 that, during the computation
of the interval representation I# of the graph G#, we also compute the points of R ∪ L and the intervals
Iti,x = span(Cti,x) for the connected components Cti,x of U∗∗i,x, where i ∈ [k + 1], pi ∈ [pi], and t ∈ [q(i, x)].
Thus, since all these computations can be done in O(n) time, we can also compute the set T of endpoints in
the interval representation I# in O(n) time in total.

Now, for every pair {j, i} such that 1 ≤ j < i ≤ |T |, we can compute the set Uji in O(n) time by visiting
each vertex u ∈ U# once and by checking whether tj−1 < lu < tj and ti−1 < ru < ti (cf. the definition of the
sets Uji). Furthermore, we can compute in the same time the interval span(Uji) by keeping the leftmost left

endpoint and the rightmost right endpoint of Uji, respectively. Thus, since there are
(|T |

2

)
≤
(
18k+16

2

)
= O(k2)

such pairs of indices {j, i}, all sets Uj,i and all intervals span(Uji) can be computed in O(k2n) time in total.
Once we have computed all intervals span(Uji), we can iteratively remove from the representation I#

the intervals of the vertices of Uji and replace them with min{|Uji|, |D| + 2} ≤ |Uji| copies of the interval

span(Uji), resulting thus at the interval representation Î of Ĝ. Since the number of vertices in all these
sets Uji is at most n, all these replacements can be done in O(n) time in total. Finally, since the set A

can be computed in O(n) time by Theorem 5, the set B = V̂ \ A can be also computed in O(n) time.

Summarizing, the interval representation Î of Ĝ and the special vertex partition V̂ = A∪B can be computed
in O(k2n) +O(n) = O(k2n) time in total.

Note here that, although Ĝ = (V̂ , Ê) is a special weighted interval graph with a parameter κ that depends

only on the size of D by Theorem 6, Ĝ may still have O(n) vertices, as the independent set A in its special

vertex partition V̂ = A ∪B may be arbitrarily large.

4 Parameterized longest path on interval graphs

In this section, we first present Algorithm 1 (cf. Section 4.1) which computes in O(κ3n) time the maximum
weight of a path in a special weighted interval graph with parameter κ (cf. Definition 5). Then, using
Algorithm 1 and the results of Sections 2 and 3, we conclude in Section 4.2 with our fixed-parameter
algorithm for Longest Path on Interval Graphs, where the parameter k is the size of a minimum
proper interval deletion set D. Since Algorithm 1 can be implemented to run in O(κ3n) time and κ = O(k3)
by Theorem 6, the algorithm of Section 4.2 runs in O(k9n) time.

4.1 The algorithm for special weighted interval graphs

Consider a special weighted interval graph G = (V,E) with parameter κ ∈ N, which is given along with a
special interval representation I and a special vertex partition V = A ∪B. Recall by Definition 5 that A is
an independent set and that |B| ≤ κ. Let w : V → N be the vertex weight function of G. Now we add to the
set B an isolated dummy vertex v0 such that v0 <σ v1 and w(v0) = 0. Thus, after the addition of v0 to G,
we have |B| ≤ κ+ 1. Note that v0 is not contained in any maximum-weight path of this augmented graph.
Thus, every maximum-weight path in the augmented graph is also a maximum weight path in G, and vice
versa. In the following we denote this augmented graph by G. Furthermore, denote by I the augmented
interval representation and by σ = (v0, v1, v2, . . . , vn) its right-endpoint ordering. For every vertex v ∈ B,
we define

ξv =

{
lu if lv ∈ Iu for some u ∈ A,
lv otherwise.

Lemma 24 For every vertex v ∈ B, ξv is well-defined.

Proof. It is enough to prove that if there exists a vertex u ∈ A such that lv ∈ Iu then u is unique. Let us
assume to the contrary that there exist two distinct vertices u and u′ in A such that lv ∈ Iu and lv ∈ Iu′ .
Then Iu ∩ Iu′ 6= ∅ and uu′ ∈ E(G). This is a contradiction, since A is an independent set.

Now we define the set Ξ as
Ξ = {ξv, lv : v ∈ B}. (6)
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Note that |Ξ| ≤ 2|B| ≤ 2(κ + 1). Furthermore, let u, v ∈ V , where u ∈ N(v) and u <σ v. We define the
vertex

πu,v = max
σ
{{u} ∪ {w ∈ B ∩N(u) : u <σ w <σ v}} (7)

Note that, by definition, if πu,v 6= u then πu,v ∈ B. Furthermore, due to the condition that u ∈ N(v) in
the definition of the vertex πu,v, it follows that u ∈ B or v ∈ B, since A is an independent set. That is,
vertex πu,v is defined for at most 2(κ+ 1)(n+ 1) = O(κn) pairs of vertices u, v.

Definition 6 Let ξ ∈ Ξ and i ∈ [n] such that ξ < rvi . We define the induced subgraph
Gξ(vi) = G[{v ∈ V : ξ ≤ lv < rv ≤ rvi}] of G which contains all vertices whose intervals (in the represen-
tation I of G) are entirely contained between the points ξ and rvi .

Note by Definition 6 that, if lvi < ξ, then the vertex vi does not belong to the subgraph Gξ(vi).

Notation 1 Let ξ ∈ Ξ and i ∈ [n] such that ξ < rvi . Furthermore, let y ∈ V (Gξ(vi)) such that y ∈ N(vi).
We denote by Pξ(vi, y) a maximum weight normal path of Gξ(vi), among those normal paths whose last
vertex is y. For every path Pξ(vi, y), we denote its weight w(Pξ(vi, y)) by Wξ(vi, y).

Before we present Algorithm 1, we first present some auxiliary technical lemmas (cf. Lemmas 25-29) that
will be useful in the proof of correctness and the running time analysis of the algorithm (cf. Theorems 8
and 9, respectively).

Lemma 25 Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi , and let y ∈ V (Gξ(vi)) and y ∈ N(vi). Let also P be a
normal path of Gξ(vi) that has y as its last vertex. If vi /∈ V (P ), then P is a path of Gξ(πy,vi).

Proof. Let y′ denote the rightmost vertex of P (in the ordering σ). Since vi /∈ V (P ), we have that y′ 6= vi.
Note also that either y = y′ or y <σ y

′. We claim that y′ ≤σ πy,vi . Notice that the statement trivially holds
if y = y′. Thus, it is enough to prove that y′ ≤σ πy,vi when y <σ y

′. First, as y <σ y
′ and y′ <P y, Lemma 3

implies that y′y ∈ E(G). Furthermore, since P is normal, Lemma 5 implies that I[{y, y′}] does not induce
a proper interval representation. Therefore, since y <σ y

′, it follows that Iy ⊆ Iy′ , and thus y′ ∈ B. Hence,
since also y′ <σ vi and y′y ∈ E(G), it follows that y′ ≤σ πx,vi . Therefore P is a path of Gξ(πy,vi).

Lemma 26 Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi , and let y ∈ V (Gξ(vi)) and y ∈ N(vi). If ly < lvi or
vi /∈ V (Gξ(vi)), then Wξ(vi, y) = Wξ(πy,vi , y).

Proof. Let ly < lvi or vi /∈ V (Gξ(vi)). First we prove that vi /∈ V (Pξ(vi, y)). If vi /∈ V (Gξ(vi)), then
clearly vi /∈ V (Pξ(vi, y)). Suppose now that vi ∈ V (Gξ(vi)) and that ly < lvi . For the sake of contradiction,
assume that vi ∈ V (Pξ(vi, y)). Since ly < lvi and ry < rvi , note that Iy * Ivi and Ivi * Iy. Thus I[{y, vi}]
induces a proper interval representation. Therefore, since y <σ vi and y, vi ∈ V (Pξ(vi, y)) by assumption,
Lemma 5 implies that y <P vi. This is a contradiction to the assumption that y is the last vertex of Pξ(vi, y).
Therefore vi /∈ V (Pξ(vi, y)).

Thus Lemma 25 implies that V (Pξ(vi, y)) is a path of Gξ(πy,vi). Therefore, since Gξ(πy,vi) is a subgraph
of Gξ(vi) (cf. Eq. (7)), it follows that Wξ(vi, y) = Wξ(πy,vi , y).

Lemma 27 Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi , and let vi ∈ V (Gξ(vi)). Then Pξ(vi, vi) = (P1, vi), where

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < rvi} (8)

Proof. Let P = (P1, vi) be a normal path of Gξ(vi) such that w(P ) = Wξ(vi, vi). Denote by x the last vertex
of P1. Then, since P is a normal path of Gξ(vi), P1 is a normal path of Gξ(vi) that does not contain vi.
Lemma 25 implies that P1 is a normal path of Gξ(πx,vi) that has x as its last vertex and hence

w(P1) ≤Wξ(πx,vi , x).

We will now prove that w(P1) = Wξ(πx,vi , x). For this, assume towards a contradiction that w(P1) <
Wξ(πx,vi , x). Recall that Pξ(πx,vi , x) is a normal path ofGξ(πx,vi) ⊆ Gξ(vi) that has x as its last vertex. Since
xvi ∈ E(G), this implies that (Pξ(πx,vi , x), vi) is a path of Gξ(vi) that has vi as its last vertex. Furthermore,
since vi is the rightmost vertex of the path, it follows that (Pξ(πx,vi , x), vi) is normal (Observation 1).
Moreover,

w(P ) = w(P1) + w(vi) < Wξ(πx,vi , x) + w(vi) = w((Pξ(πx,vi , x), vi)),
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a contradiction to the assumption that w(P ) = Wξ(vi, vi). Hence,

w(P1) = Wξ(πx,vi , x).

To conclude, Pξ(vi, vi) = (P1, vi), where

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi ≤ rx ≤ rvi}

and this completes the proof of the lemma.

Lemma 28 Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi , and let vi, y ∈ V (Gξ(vi)) and y ∈ N(vi). Let ζ ∈
{ly} ∪ {ξ ∈ Ξ : lvi < ξ < ly} and x ∈ V (Gξ(vi)) be such that lvi < rx < ζ. Furthermore, let P1 be a normal
path of Gξ(πx,vi) with x as its last vertex and P2 be a normal path of Gζ(πy,vi) with y as its last vertex.
Then P = (P1, vi, P2) is a normal path of Gξ(vi) with y as its last vertex.

Proof. Since V (P2) ⊆ V (Gζ(πy,vi)) = {v ∈ V (G) : ζ ≤ lv ≤ rv ≤ rπy,vi
} it follows that ζ ≤ lv for every

vertex v ∈ V (P2). Therefore, since rx < ζ, it follows that

x <σ v, for every v ∈ V (P2). (9)

Therefore, since P1 is normal, x is the last vertex of P1, and x <σ v, xv /∈ E(G) for every v ∈ V (P2),
it follows that V (P1) ∩ V (P2) = ∅ (Lemma 3). Moreover, since lvi < rx, xvi ∈ E(G) and since ζ ≤ lv ≤
rv ≤ rπy,vi

≤ rvi it follows that viv ∈ E(G) for every vertex in V (P2). Therefore, (P1, vi, P2) is a path that
has y as its last vertex (as y is the last vertex of P2). Moreover, since V (P1) ⊆ V (Gξ(πx,vi)) ⊆ V (Gξ(vi)),
V (P2) ⊆ V (Gζ(πy,vi)) ⊆ V (Gξ(πx,vi)) and vi ∈ V (Gξ(vi)), P is a path of Gξ(vi). It remains to show that P
is normal.

We first show that if v1 is the first vertex of P1, then v1 <σ v for every vertex v ∈ V (P ) \ {v1}. Notice
that v1 <σ v, for every vertex v ∈ V (P1)\{v}, since P1 is a normal path and v1 is its first vertex. Recall also
that x <σ v, for every vertex v ∈ P2 ∪ {vi} (equation (9)). As v1 <σ x <σ v for every vertex v ∈ P2 ∪ {vi},
it indeed follows that v1 <σ v, for every vertex in V (P ) \ {v1}.

We now show that for every vertex v ∈ V (P ), with successor v′ ∈ V (P ) and every vertex u ∈ V (P ) such
that v′ <P u, and vu ∈ E(G) it holds that v′ <σ u. Let us assume to the contrary that for some v ∈ V (P ),
with successor v′ ∈ V (P ) there exists a vertex u ∈ V (P ) such that v′ <P u, vu ∈ E(G), and u <σ v

′. Notice
that if {v, v′, u} ⊆ V (P1) or {v, v′, u} ⊆ V (P2), then we obtain a contradiction to the assumptions that P1

and P2 are normal paths. Similarly, if v = vi we obtain a contradiction to the fact that P2 is a normal path
since the successor of vi in P is the first vertex of P2. Moreover, as the only neighbor of x in V (P ) \ V (P1)
is vi we obtain that v ∈ V (P1) \ {x} and u ∈ V (P2). Notice then that since vu ∈ E(G), it holds that
rv > lu ≥ ζ > rx, and since x <σ v and v <P x, as P1 is normal from Lemma 3, xv ∈ E(G). However, then
x <σ u <σ v

′, a contradiction to the assumption that P1 is normal. Therefore, we conclude that for every
vertex v ∈ V (P ), with successor v′ ∈ V (P ) and every vertex u ∈ V (P ) such that v′ <P u, and vu ∈ E(G) it
holds that v′ <σ u. Thus, we completed the proof that P is a normal path of Gξ(vi) that has y as its last
vertex.

Lemma 29 Let ξ ∈ Ξ and i ∈ [n], where ξ < rvi , and let vi, y ∈ V (Gξ(vi)) and y ∈ N(vi). Let Pξ(vi, y) =
(P1, vi, P2). If P2 6= (y), then there exists some ζ ∈ Ξ, where lvi < ζ ≤ ly, such that

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ζ}, (10)

w(P2) = Wζ(πy,vi , y). (11)

Otherwise, if P2 = (y) then lvi < ly and

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ly}. (12)

Proof. Denote P = Pξ(vi, y). Notice first that, since vi is the rightmost vertex of P , the path P1 is not
empty by Observation 2. Denote by x the last vertex of P1. Then, since P1 is the prefix of the normal
path P , observe that P1 is a normal path of Gξ(vi) that has x as its last vertex and does not contain vi.
Furthermore, P1 is a path of Gξ(πx,vi) by Lemma 25. Therefore P1 is a normal path of Gξ(πx,vi), and thus,

w(P1) ≤Wξ(πx,vi , x).

24



Let v ∈ V (P2). Since vi <P v and v <σ vi, Lemma 3 implies that viv ∈ E(G). Therefore, again
since vi <P v and v <σ vi, Lemma 5 implies that I[v, vi] does not induce a proper interval representation,
i.e., either Iv ⊆ Ivi or Ivi ⊆ Iv. Thus, since v <σ vi, it follows that Iv ⊆ Ivi . That is, Iv ⊆ Ivi for every
v ∈ V (P2).

Therefore, since y ∈ V (P2), it follows that Iy ⊆ Ivi , and thus in particular lvi < ly. Now let

ζ =

{
min{lv ∈ Ξ : v ∈ V (P2)} if P2 6= (y),

ly otherwise.

We show that, if P2 6= (y), then {lv ∈ Ξ : v ∈ V (P2)} 6= ∅, and thus ζ is well-defined. Notice first that,
if y ∈ B, then ly ∈ Ξ. Let y ∈ A, then let y′ be the neighbor of y in P2 (note that y′ always exists since
P2 6= (y)). Then, as A is an independent set, it follows that y′ ∈ B, and thus ly′ ∈ B. Hence, if P2 6= (y),
then in any case {lv ∈ Ξ : v ∈ V (P2)} 6= ∅.

Suppose that ζ < rx. Then, by definition of ζ, there exists some v ∈ V (P2) such that ζ = lv < rx. Let
rx < rv, i.e., lv < rx < rv. Then xv ∈ E(G). Therefore, since v <σ vi for every v ∈ V (P2), it follows by the
normality of P that vi is not the next vertex of x in P , which is a contradiction. Let rv < rx, i.e., v <σ x.
Then, since x <P v, Lemma 3 implies that xv ∈ E(G), which is again a contradiction by the normality of P .
Therefore rx < ζ. Now note that lvi < rx, since xvi ∈ E(G). That is, lvi < rx < ζ. Therefore, since ζ ≤ ly
by the definition of ζ, it follows that

lvi < rx < ζ ≤ ly.

Let now P2 6= (y). We prove that ζ ≤ lv, for every v ∈ V (P2). Assume otherwise that there exists a
vertex v ∈ V (P2) such that lv < ζ. Then, by the definition of ζ, it follows that lv /∈ Ξ. Therefore v /∈ B,
and thus v ∈ A (cf. the definition of the set Ξ). Since P2 6= (y), it follows that v has at least one neighbor u
in P2. Then u ∈ B, since A is an independent set. Furthermore, lv < ζ ≤ lu. Therefore, since uv ∈ E(G)
by assumption, it follows that lu ∈ Iv. That is, ξu = lv ∈ Ξ (cf. the definition of ξu for a vertex u ∈ B).
Therefore ζ ≤ ξu = lv, which is a contradiction to our assumption. Thus ζ ≤ lv, for every v ∈ V (P2).

Now recall that Iv ⊆ Ivi for every v ∈ V (P2), as we proved above, and thus viv ∈ E(G) for every
v ∈ V (P2). Furthermore, recall that all vertices of P2 appear in P after vertex vi. Therefore, since P is a
normal path by assumption, it follows that P2 is also a normal path.

Thus, since ζ ≤ lv for every v ∈ V (P2), as we proved above, it follows that P2 is a normal path of Gζ(vi)
that does not contain vi. Therefore Lemma 25 implies that P2 is a path of Gζ(πy,vi). Thus, since y is the
last vertex of P2, it follows that

w(P2) ≤Wζ(πy,vi , y).

In the remainder of the proof we show that w(P1) = Wξ(πx,vi , x) and w(P2) = Wζ(πy,vi , y). Towards
a contradiction assume that at least one of the equalities does not hold. Notice first that from Lemma 28,
P = (Pξ(πx,vi , x), vi, Pζ(πy,vi , y)) is a normal path of Gξ(vi) that has y as its last vertex. Notice now that

Wξ(vi, y) = w(P1) + w(vi) + w(P2) < Wξ(πx,vi , x) + w(vi) +Wζ(πy,vi , y),

a contradiction. Therefore,
w(P1) = Wξ(πx,vi , x)

and
w(P2) = Wζ(πy,vi , y).

Summarizing, if P2 6= (y) we obtain that

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ζ},
w(P2) = Wζ(πy,vi , y),

and if P2 = (y) we obtain that

w(P1) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ly}.

This completes the proof of the lemma.

We are now ready to present Algorithm 1, which computes the maximum weight of a path in a given
special weighted interval graph G. It is easy to check that Algorithm 1 can be slightly modified such that it
returns the actual path P instead of its weight only.
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First we give a brief overview of the algorithm. Using dynamic programming, it computes a 3-dimensional
table. In this table, for every point ξ ∈ Ξ, every index i ∈ [n], and every vertex y ∈ V (Gξ(vi)), where
ξ < rvi and y ∈ N(vi), the entry Wξ(vi, y) (resp. the entry Wξ(vi, vi)) keeps the weight of a normal path
in the subgraph Gξ(vi) which is the largest among those normal paths whose last vertex is y (resp. vi).
Thus, since w(v0) = 0 for the dummy isolated vertex v0 (cf. line 1 of the algorithm), the maximum weight
of a path in G will be eventually stored in one of the entries

{
Wlv0

(vi, vi) : 1 ≤ i ≤ n
}

or in one of the

entries
{
Wlv0

(vi, y) : 1 ≤ i ≤ n, y <σ vi, y ∈ N(vi)
}

, depending on whether the last vertex y of the desired
maximum-weight path coincides with the rightmost vertex vi of this path in the ordering σ (cf. line 18 of
the algorithm).

Note that for every computed entry Wξ(vi, y) the vertices vi and y are adjacent, and thus vi ∈ B or y ∈ B,
since A is an independent set. Thus, since |B| = O(κ), there are at most O(κn) such eligible pairs of vertices
vi, y. Furthermore, since also |Ξ| = O(κ), the computed 3-dimensional table stores at most O(κ2n) entries
Wξ(vi, vi) and Wξ(vi, y). From the for -loops of lines 2-3 of the algorithm and from the obvious inductive
hypothesis we may assume that during the {i, ξ}th iteration all previous values Wξ′(vi′ , vi′) and Wξ′(vi′ , y

′),
where i′ < i or ξ′ < ξ, have been correctly computed at a previous iteration.

In the initialization phase for a particular pair {i, ξ} (cf. lines 4-6) the algorithm computes some initial
values for Wξ(vi, vi) and Wξ(vi, y). For a path with vi as its last vertex, we are only interested in the case
where vi ∈ V (Gξ(vi)); in this case we initialize Wξ(vi, vi) = w(vi), cf. line 4. For a path with y 6= vi as its
last vertex (cf. lines 5-6), we initialize Wξ(vi, y) = Wξ(πy,vi , y), since the path Pξ(πy,vi , y) is indeed a normal
path of the graph Gξ(πy,vi), which is an induced subgraph of Gξ(vi).

For the induction step phase (cf. lines 7-17) the algorithm updates the initialized entries Wξ(vi, vi) and
Wξ(vi, y) according to Lemmas 26-29. To update the value Wξ(vi, vi) we only need to consider the case
where vi ∈ V (Gξ(vi)); in this case Wξ(vi, vi) is updated in lines 7-9 according to Lemma 27. The values of
Wξ(vi, y), where y 6= vi, are updated in lines 10-17. In particular, in the case where ly < lvi or vi /∈ V (Gξ(vi)),
the value of Wξ(vi, y) is updated in lines 11-12 according to Lemma 26. Otherwise, Wξ(vi, y) is updated in
lines 14-17 according to Lemma 29.

The correctness of the algorithm is proved in Theorem 8 and its running time is proved in Theorem 9.

Algorithm 1 Computing a maximum-weight path of a special weighted interval graph

Input: A special weighted interval graph G = (V,E) with parameter κ ∈ N, along with the special interval
representation I of G and the partition V = A∪B, where σ = (v1, v2, . . . , vn) is a right-endpoint ordering
of V .

Output: The maximum weight of a path in G

1: Add an isolated dummy vertex v0 with w(v0) = 0 to set B, where v0 <σ v1; denote σ = (v0, v1, v2, . . . , vn)

2: for i = 0 to n do
3: for every ξ ∈ Ξ where ξ < rvi do

4: if vi ∈ V (Gξ(vi)) then Wξ(vi, vi)← w(vi) {initialization}
5: for every y ∈ V (Gξ(vi)) where y ∈ N(vi) do
6: Wξ(vi, y)←Wξ(πy,vi , y) {initialization}

7: if vi ∈ V (Gξ(vi)) then
8: W1 ← max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < rvi}
9: Wξ(vi, vi)← max{Wξ(vi, vi),W1 + w(vi)}

10: for every y ∈ V (Gξ(vi)) where y ∈ N(vi) do
11: if ly < lvi or vi /∈ V (Gξ(vi)) then
12: Wξ(vi, y)←Wξ(πy,vi , y)
13: else
14: W ′1 ← max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ly}
15: for every ζ ∈ Ξ with lvi < ζ ≤ ly do
16: W1 ← max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ζ}
17: Wξ(vi, y)← max{Wξ(vi, y),W ′1 + w(vi) + w(y),W1 + w(vi) +Wζ(πy,vi , y)}

18: return max{Wlv0
(vi, vi),Wlv0

(vi, y) : 1 ≤ i ≤ n, y <σ vi, y ∈ N(vi)}
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Theorem 8 Let G = (V,E) be a special weighted interval graph, given along with a special interval repre-
sentation I and a special vertex partition V = A ∪ B. Then Algorithm 1 computes the maximum weight of
a path P in G.

Proof. In lines 2-17, Algorithm 1 iterates for every i ∈ {0, 1, 2, . . . , n} and for every ξ ∈ Ξ such that ξ < rvi .
For every such i and ξ, the algorithm computes the values Wξ(vi, vi) and the values Wξ(vi, y), for every
vertex y ∈ V (Gξ(vi)) such that y ∈ N(vi). We will prove by induction on i that these values are the weights
of the maximum-weight normal paths Pξ(vi, vi) and the values Pξ(vi, y), respectively (cf. Notation 1).

For the induction basis, let i = 0. Then, since v0 is an isolated vertex (cf. line 1 of Algorithm 1), the only
ξ ∈ Ξ, for which ξ < rv0 , is ξ = lv0 . Then line 4 of the algorithm is executed and the algorithm correctly
computes the value Wξ(v0, v0) = w(v0) = 0. Furthermore, since v0 is a dummy vertex by assumption,
the lines 5-6 and the lines 10-17 of the algorithm are not executed at all for i = 0. Finally, in lines 7-
9 the algorithm recomputes the value Wξ(v0, v0) = w(v0) = 0, since there exists no vertex x such that
lvi < rx < rvi (cf. line 8 of the algorithm). This value of Wξ(v0, v0) is clearly correct. This completes the
induction basis.

For the induction step, let i ≥ 1. Consider the iteration of the algorithm for any ξ ∈ Ξ, where ξ < rvi .
First the algorithm initializes in lines 4-6 the values Wξ(vi, vi) and the values Wξ(vi, y), for every vertex
y ∈ V (Gξ(vi)) such that y ∈ N(vi). The initialization of line 4 is correct, since the single-vertex path
P = (vi) is clearly a normal path of the graph Gξ(vi) which has vi as its last vertex. The initialization
of lines 5-6 is correct, since the path Pξ(πy,vi , y) is indeed a normal path of Gξ(πy,vi), which is an induced
subgraph of Gξ(vi) (cf. Definition 6).

In lines 7-9 the algorithm updates the current (initialized) value of Wξ(vi, vi). The correctness of this
update follows directly by Lemma 27. Furthermore, in lines 10-17 the algorithm iterates for every vertex
y ∈ V (Gξ(vi)) such that y ∈ N(vi). For every such value of y, the algorithm updates the current (initialized)
value of Wξ(vi, y).

The correctness of the update in line 12 follows directly by Lemma 26.
During the execution of lines 14-17 the algorithm deals with the case where vi ∈ V (Gξ(vi, y)) and

lvi < ly. If vi does not belong to the desired path Pξ(vi, y), then by Lemma 25 Pξ(vi, y) is also a normal path
of Gξ(πy,vi), which is an induced subgraph of Gξ(vi). Therefore, in this case, Wξ(vi, y) = Wξ(πy,vi , y). The
algorithm does not update the current value of Wξ(vi, y), since Wξ(vi, y) has been initialized to Wξ(πy,vi , y)
in line 6.

For the remainder of the proof, assume that vi belongs to the desired path Pξ(vi, y), i.e., Pξ(vi, y) =
(P1, vi, P2), for some sub-paths P1 and P2 of Pξ(vi, y). In lines 14-16 the algorithm distinguishes between the
cases where P2 = (y) and P2 6= (y). To deal with the case where P2 = (y), i.e., with the case where Pξ(vi, y) =
(P1, vi, y), the algorithm computes in line 14 the value W ′1 = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ly}
of the desired path P1 (cf. Eq. (12) of Lemma 29). Then it compares in line 17 the current value of Wξ(vi, y)
with the value W ′1 + w(vi) + w(y), and it stores the greatest value between them in Wξ(vi, y). This update
is correct by Eq. (12) of Lemma 29.

To deal with the case where P2 6= (y), the algorithm iterates in lines 15-16 for every ζ ∈ Ξ such that lvi <
ζ ≤ ly. For every such value of ζ it computes the value W1 of the desired path P1 (cf. Eq. (10) of Lemma 29).
Then the algorithm compares in line 17 the current value of Wξ(vi, y) with the value W1+w(vi)+Wζ(πy,vi , y)
and it stores the greatest between them in Wξ(vi, y). For every ζ ∈ Ξ, where lvi < ζ ≤ ly, Lemma 28 implies
that the path (Pξ(πx,vi , x), vi, Pζ(πy,vi , y)) is a normal path of Gξ(vi) with y as its last vertex. Therefore
W1 +w(vi) +Wζ(πy,vi , y) ≤Wξ(vi, y), for every such value of ζ. Furthermore Lemma 29 implies that there
exists at least one such value ζ, such that the values W1 = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < ζ}
and Wζ(πy,vi , y) are equal to the weights of the sub-paths P1 and P2 of Pξ(vi, y), respectively. Therefore,
these updates of Wξ(vi, y) for all values of ζ are correct. This completes the induction step.

Therefore, after the execution of lines 2-17, Algorithm 1 has correctly computed all values Wξ(vi, vi)
and Wξ(vi, y), where i ∈ {0, 1, 2, . . . , n}, ξ ∈ Ξ such that ξ < rvi , and y ∈ V (Gξ(vi)) such that y ∈ N(vi).
Thus, since for every i and every ξ the graph Gξ(vi) is an induced subgraph of Glv0 (vi), it follows that the
maximum weight of a path in G is one of the values Wlv0

(vi, vi) and Wlv0
(vi, y). Therefore the algorithm

returns the correct value in line 18.

Theorem 9 Let G = (V,E) be a special weighted interval graph with n vertices and parameter κ. Then
Algorithm 1 can be implemented to run in O(κ3n) time.

Proof. Since G is a special weighted interval graph with V = A∪B as its special vertex partition (cf. Defi-
nition 5), A is an independent set and |B| ≤ κ+ 1 (after the addition of the dummy vertex v0 to the set B).
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Recall that the endpoints of the intervals in I are given sorted increasingly, e.g., in a linked list M . The
points {ξv : v ∈ B} can be efficiently as follows. First we visit all endpoints of the intervals in I (in increasing
order). For every endpoint lv, where v ∈ B, which we visit between the endpoints lu and ru, for some u ∈ A,
we define ξv = lu. Thus the points {ξv : v ∈ B} can be computed in O(n) time. Furthermore the points
{lv : v ∈ B} can be computed in O(κ) time by just enumerating all vertices of B. Therefore the set Ξ can be
computed in O(κ+ n) = O(n) time in total. Furthermore recall that there are O(κn) different vertices πu,v
(cf. Eq. (7)) and note that, given two adjacent vertices u, v, we can compute the vertex πu,v in O(κ) time by
enumerating in worst case all vertices of B. Thus, all vertices πu,v can be computed in total O(κ2n) time.

Now we provide an upper bound on the number of values Wξ(vi, vi) and Wξ(vi, y) that are computed
by Algorithm 1. Since ξ ∈ B and vi ∈ V , there are in total at most O(κn) different values Wξ(vi, vi).
Furthermore, the values Wξ(vi, y), where y 6= vi, are computed for every i ∈ {0, 1, 2, . . . , n}, every ξ ∈ Ξ such
that ξ < rvi , and every y ∈ V (Gξ(vi)) such that y ∈ N(vi). Thus, due to the condition that y ∈ N(vi), it
follows that vi ∈ B or y ∈ B. That is, there are in total at most 2(κ+1)(n+1) = O(κn) pairs of vertices vi, y
for which we compute the values Wξ(vi, y). Therefore, since ξ ∈ B and |B| ≤ κ+1, there are at most O(κ2n)
different values Wξ(vi, y). Summarizing, Algorithm 1 computes at most O(κ2n) different values Wξ(vi, vi)
and Wξ(vi, y).

We now show that all computations performed in the lines 8, 14, and 16 of the algorithm can be imple-
mented to run in total O(κ2n) time. Denote by Q = {lv, rv : v ∈ V } the set of all endpoints of the intervals
in I. Recall that the points of Q are assumed to be already sorted increasingly. Note that, in order to
perform all computations of the lines 8, 14, and 16, it suffices to store at each point q ∈ Q the values

ωξ(q, vi) = max{Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), lvi < rx < q} (13)

for every ξ ∈ Ξ and every i ∈ [n] such that ξ ≤ lvi < q ≤ rvi . Indeed, once we have computed all possible
values ωξ(q, vi), lines 8, 14, and 16 of the algorithm can be executed in O(1) time by just accessing the
stored values ωξ(rvi , vi), ωξ(ly, vi), and ωξ(ζ, vi), respectively. Observe that for every point q ∈ Q such that
lvi < q ≤ rvi , the vertex which has q as an endpoint is adjacent to vertex vi. Thus, since there are at most
O(κn) pairs of adjacent vertices in G, it follows that there are O(κn) such pairs of a point q ∈ Q and a
vertex vi ∈ V .

Given a point ξ ∈ Ξ and a vertex vi, we can compute all values ωξ(q, vi) in O(|N(vi)|) time as follows.
Let q0 > lvi be the first endpoint after lvi in the ordering of the endpoints in Q. As there does not exist
any vertex x such that lvi < rx < q0 (cf. Eq. (13)), we store at point q0 the value ωξ(q0, vi) = 0. Then, we
visit in increasing order all points of q ∈ Q between q0 and rvi . Note that we can visit all these vertices in
O(|N(vi)|) time as the points of Q are already sorted increasingly. Let q ∈ Q be the currently visited point
between q0 and rvi , and let q′ be the predecessor of q in the ordering of Q. Then it follows by the definition
of ωξ(q, vi) in Eq. (13) that

ωξ(q, vi) = max{ωξ(q′, vi), Wξ(πx,vi , x) : x ∈ V (Gξ(vi)), q
′ ≤ rx < q}. (14)

Therefore, since q′ and q are two consecutive points of Q between q0 and rvi , the value ωξ(q, vi) can be
computed in O(1) time using the value of ωξ(q

′, vi), as follows:

ωξ(q, vi) =

{
max{ωξ(q′, vi), Wξ(πx,vi , x0)} if q′ = rx0

, for some x0 ∈ V (Gξ(vi))

ωξ(q
′, vi) otherwise

. (15)

Since the value of ωξ(q, vi) can be computed by Eq. (15) in O(1) time, all these computations of the values
{ωξ(q, vi) : q ∈ Q, lvi < q ≤ rvi} (for a fixed ξ and a fixed vi) can be performed in O(|N(vi)|) time in total.
Thus, since |Ξ| = O(κ) and

∑
i∈[n] |N(vi)| = O(κn), we can compute all values ωξ(q, vi) in total O(κ2n)

time. That is, all computations performed in the lines 8, 14, and 16 of the algorithm can be implemented to
run in total O(κ2n) time.

In the remainder of the proof we assume that each of the lines 8, 14, and 16 is executed in O(1) time.
Each of the lines 4, 8, and 9 is executed for every i ∈ {0, 1, . . . , n} and at most for every ξ ∈ Ξ, i.e., O(κn)
times in total. Furthermore, each of the lines 6, 11, 12, and 14 is executed at most for every ξ ∈ Ξ and for
every pair {vi, y} of adjacent vertices in G, i.e., O(κ2n) times in total. Each of the lines 16-17 is executed at
most for every ξ ∈ Ξ, for every ζ ∈ Ξ, and for every pair {vi, y} of adjacent vertices in G, i.e., O(κ3n) times
in total.

Finally, once we have computed all values Wξ(vi, vi) and Wξ(vi, y) in lines 2-17, the output of line 18 can
be computed in O(κn) time by considering the O(κn) computed values Wlv0

(vi, vi) and Wlv0
(vi, y), for every

vertex vi and for at most each pair of adjacent vertices vi, y. Summarizing, Algorithm 1 can be implemented
to run in total O(κ2n+ κ3n+ κn) = O(κ3n) time.
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4.2 The general algorithm

Here we combine all our results of Sections 2, 3, and 4.1 to present our parameterized linear-time algorithm
for Longest Path on Interval Graphs. The parameter k of this algorithm is the size of a minimum
proper interval deletion set D of the input graph G and its running time has a polynomial dependency on k.

Theorem 10 Let G = (V,E) be an interval graph, where |V | = n and |E| = m, and let k be the minimum
size of a proper interval deletion set of G. Let I be an interval representation of G whose endpoints are
sorted increasingly. Then:

1. a proper interval deletion set D, where |D| ≤ 4k, can be computed in O(n+m) time,

2. a semi-proper interval representation I ′ of G can be constructed in O(n+m) time, and

3. given D and I ′, a longest path of G can be computed in O(k9n) time.

Proof. The first two statements of the theorem follow immediately by Theorems 1 and 2, respectively. For
the remainder of the proof we assume that the proper interval deletion set D and the semi-proper interval
representation I ′ of G have been already computed.

For the third statement of the theorem, we first compute the weighted interval graph G# = (V #, E#)

in O(n) time by Theorem 5. Then, given the graph G#, we compute the weighted interval graph Ĝ = (V̂ , Ê)

in O(k2n) time by Theorem 6. By Theorem 6, this graph Ĝ is a special weighted interval graph with

parameter κ = O(k3), cf. Definition 5. During the computation of the graph Ĝ, we can compute in the

same time (i.e., in O(k2n) time) also a special vertex partition V̂ = A ∪B of its vertex set. Furthermore, it
follows by Corollaries 1 and 3 that the maximum number of vertices of a path in the initial interval graph
G is equal to the maximum weight of a path in the special weighted interval graph Ĝ. Therefore, in order
to compute a longest path in G it suffices to compute a path of maximum weight in Ĝ. Thus, since Ĝ is a
special weighted interval graph with parameter κ = O(k3), we compute the maximum weight of a path in Ĝ

by Algorithm 1. The running time of Algorithm 1 with input Ĝ is O(κ3n) = O(k9n) by Theorem 9.

5 Kernelization of Maximum Matching

For the sake of completeness, in this section we present the details of the algorithm for Maximum Matching*

that we sketched in Section 1. The parameter k is the solution size; for this parameter we show that a kernel
with at most O(k2) vertices and edges can be computed in O(kn) time, thus leading to a total running
time of O(kn+ k3). Hence, Maximum Matching, parameterized by the solution size, belongs to the class
PL-FPT. First we present two simple data reduction rules, very similar in spirit to the data reduction rules
of Buss for Vertex Cover (see e.g., [22, 44]).

Reduction Rule 3 If deg(v) > 2(k−1) for some vertex v ∈ V (G), then return the instance (G\{v}, k−1).

Reduction Rule 4 If deg(v) = 0 for some vertex v ∈ V (G), then return the instance (G \ {v}, k).

An instance of parameterized Maximum Matching is called reduced if none of Reduction Rules 3 and 4
can be applied to this instance. It can be easily checked that Reduction Rule 4 is safe. In the next lemma
we show that Reduction Rule 3 is also safe.

Lemma 30 Let k be a positive integer and G be a graph. If v ∈ V (G) such that deg(v) > 2(k − 1), then
(G \ {v}, k − 1) is a yes-instance if and only if (G, k) is a yes-instance.

Proof. We first show that if (G, k) is a yes-instance then (G \ {v}, k− 1) is a yes-instance. For this, let M
be a matching of G of size at least k. If v /∈ V (M), then V (M) ⊆ V (G \ {v}) and hence M ⊆ E(G \ {v}).
Therefore, M is a matching of G\{v} of size at least k and thus (G\{v}, k−1) is a yes-instance. If v ∈ V (M),
then there exists a unique edge e ∈ M such that e = uv. This implies that V (M \ {e}) ⊆ V (G \ {v}) and
M \ {e} ⊆ E(G \ {v}). Therefore, M ′ = M \ {e} is a matching of G \ {v} and |M ′| = |M | − 1 ≥ k− 1. Thus,
(G \ {v}, k − 1) is again a yes-instance.

*Given a graph G, find a maximum-cardinality matching in G; in its decision version, additionally the desired matching
size k is specified as part of the input.
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We now show that if (G \ {v}, k − 1) is a yes-instance, then (G, k) is also a yes-instance. Let M ′ be a
matching of G \ {v} of size at least k − 1. Note that, since G \ {v} ⊆ G, any matching of G \ {v} is also
a matching of G. If |M ′| ≥ k, then (G, k) is clearly a yes-instance, since M ′ is a matching of G of size at
least k. Suppose now that |M ′| = k − 1, that is, |V (M ′)| = 2(k − 1). Then, since deg(v) > 2(k − 1) in
the graph G by assumption, there exists at least one vertex u ∈ N(v) \ V (M ′). Thus, since also v /∈ M ′
(as M ′ is a matching of G \ {v}), it follows that the edge set M = M ′ ∪ {uv} is a matching of G and
|M | = |M ′ ∪ {uv}| = |M ′|+ 1 = k. Thus, (G, k) is a yes-instance.

In the following, mm(G) denotes the size of a maximum matching of graph G. Furthermore, for every
subset S ⊆ V we denote N(S) =

⋃
v∈S N(v).

Lemma 31 Let G be a graph. If 1 ≤ deg(v) ≤ 2(k − 1) for every v ∈ V (G), then |V (G)|, |E(G)| ≤
(2k − 1) ·mm(G).

Proof. Let m0 = mm(G) and let M = {uivi : i ∈ [m0]} be a maximum matching of G. Then V (M)
is a vertex cover of G, and thus v ∈ N(V (M)) for every vertex v /∈ V (M). Now suppose that there
exists some i ∈ [m0] such that N(ui) \ (N(vi) ∪ V (M)) 6= ∅ and N(vi) \ (N(ui) ∪ V (M)) 6= ∅. Let then
z ∈ N(ui) \ (N(vi) ∪ V (M)) and y ∈ N(vi) \ (N(ui) ∪ V (M)). Then there exists the alternating path
(z, ui, vi, y), and thus the set M ′ = (M \ {uivi}) ∪ {uiz, viy} is a matching of G of size m0 + 1, which is a
contradiction to the maximality of M . Therefore, for every i ∈ [m0] we have that N(ui) ⊆ N(vi)∪ V (M) or
N(vi) ⊆ N(ui)∪V (M). Without loss of generality, we assume in the following that N(vi) ⊆ N(ui)∪V (M),
for every i ∈ [m0].

Let now w ∈ V (G) \ V (M). Then w ∈ N(V (M)), since V (M) is a vertex cover of G. Hence, since
N(vi) ⊆ N(ui) ∪ V (M), for every i ∈ [m0], it follows that there exists at least one i0 ∈ [m0] such that
w ∈ N(ui0). That is, the set {ui : i ∈ [m0]} is also a vertex cover of G. Since deg(ui) ≤ 2k−2 by assumption,
it follows that |V (G) \ V (M)| ≤ (2k − 3)m0. This implies |V (G)| ≤ (2k − 1)m0 since |V (M)| = 2m0.

Finally, since {ui : i ∈ [m0]} is a vertex cover and deg(ui) ≤ 2(k − 1) for every i ∈ [m0], it follows that
|E(G)| ≤ (2k − 1)m0.

Now we are ready to provide our kernelization algorithm for Maximum Matching, together with upper
bounds on its running time and on the size of the resulting kernel.

Theorem 11 Maximum Matching, when parameterized by the solution size k, admits a kernel with at
most O(k2) vertices and at most O(k2) edges. For an n-vertex graph the kernel can be computed in O(kn)
time.

Proof. Let (G, k) be an instance of parameterized Maximum Matching. Our kernelization algorithm
either returns yes, or it computes an equivalent reduced instance (G′, k′).

First, we exhaustively apply Reduction Rule 3 by visiting every vertex once and removing every vertex
of degree greater than 2(k − 1) in the current graph. Notably, since vertex removals can only reduce the
degree of the remaining vertices, the algorithm does not need to visit any vertex twice. If we construct an
instance (G′, 0) during this procedure, that is, if we remove k vertices from G, then we stop and return yes.
The correctness of this decision follows immediately by the facts that (G′, 0) is clearly a yes-instance and
Reduction Rule 3 is safe by Lemma 30.

The exhaustive application of Reduction Rule 3 can be implemented to run in O(nk) time, as follows.
Every time we discover a new vertex v with deg(v) > 2(k−1) in the current graph (and for the current value
of the parameter k), then we do not actually remove v from the current graph but we mark it as “removed”
and we proceed to the next vertex. Furthermore we keep in a counter r the number of vertices that have
been marked so far as “removed”. Note that, to check whether we need to apply Reduction Rule 3 on a
vertex v, we only need to visit at most all marked neighbors of v and at most 2(k− r−1) + 1 < 2k unmarked
neighbors in the initial graph G. Thus, since there exist at every point at most r < k marked vertices, we
only need to check less than 3k neighbors of v in the initial graph G to decide whether we mark v as a new
“removed” vertex. Thus, since there are n vertices in total, the whole procedure runs in O(kn) time. Denote
by r0 the total number of vertices that have been marked as “removed” at the end of this process.

Next, we exhaustively apply Reduction Rule 4 by removing every unmarked vertex v that has only marked
neighbors in G. Since such a vertex v remained unmarked during the exhaustive application of Reduction
Rule 3, v has less than k marked neighbors and less than 2k unmarked neighbors in G, that is, at most 3k
neighbors in total. Thus we can check in O(k) time whether a currently unmarked vertex has only marked
neighbors; in this case we mark v as “removed”. This process can be clearly done in O(nk) time. Let G′ be
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the induced subgraph of G on the unmarked vertices and let k′ = k − r0. Note that every vertex of G′ has
at least one and at most 2(k′ − 1) neighbors in G′.

Finally we count the number of vertices and edges of G′ in O(kn) time. This can be done by visiting again
all unmarked vertices v and their unmarked neighbors in G. If G′ has strictly more than (k′ − 1)(2k′ − 1)
vertices or edges, then we stop and return yes. Otherwise the kernelization algorithm returns the kernel
(G′, k′), which has O(k2) vertices and O(k2) edges. Consequently, the kernelization algorithm runs in O(kn)
time in total. It remains to prove that, if at least one of |V (G′)| or |E(G′)| is greater than (k′ − 1)(2k′ − 1),
then (G′, k′) is a yes-instance. Assume otherwise that (G′, k′) is a no-instance, that is, mm(G′) ≤ k′ − 1.
Then it follows by Lemma 31 that |V (G′)|, |E(G′)| ≤ (k′ − 1)(2k′ − 1), which is a contradiction. This
completes the proof of the theorem.

Applying the matching algorithm due to Micali and Vazirani [43] to the kernel we obtained by Theorem 11,
we achieve the following result.

Corollary 4 Maximum Matching, when parameterized by solution size k, can be solved in O(nk + k3)
time.

Proof. Let (G, k) be an instance of parameterized Maximum Matching, where k is the solution size. First
we apply to (G, k) the kernelization algorithm of Theorem 11, which returns either yes or an equivalent
instance (G′′, k′′) with O(k2) vertices and O(k2) edges. Then we compute a maximum matching mm(G′′) of
the graph G′′ using any of the known algorithms, e.g., the algorithm of Micali and Vazirani [43]. It computes

mm(G′′) in O
(
|E(G′′)| ·

√
|V (G′′)|

)
= O(k3) time. Finally, if mm(G′′) ≥ k′′, then return yes, otherwise

return no. In total, Maximum Matching can be thus solved in O(nk + k3) time.

6 Outlook and Discussion

Our work heads at stimulating a general research program which systematically exploits the concept of
fixed-parameter tractability for polynomially solvable problems. For several fundamental and widely known
problems, the time complexities of the currently fastest algorithms are upper-bounded by polynomials of
large degrees. One of the most prominent examples is arguably the celebrated polynomial-time recognition
algorithm for perfect graphs, whose time complexity still remains O(n9) [19]. Apart from trying to improve
the worst-case time complexity for such problems, which may be a very difficult (if not impossible) task, the
complementary approach that we propose here is to try to spot a parameter that causes these high-degree
polynomial-time algorithms and to separate the dependency of the time complexity from this parameter
such that the dependency on the input size becomes as close to linear as possible. We believe that the
“FPT inside P” field is very rich and offers plenty of research possibilities.

We conclude with three related topics that may lead to further interactions. First, we remark that in
classical parameterized complexity analysis there is a growing awareness concerning the polynomial-time
factors that often have been neglected [9]. Notably, there are some prominent fixed-parameter tractability
results giving linear-time factors in the input size (but quite large exponential factors in the parameter);
these include Bodlaender’s famous “linear-time” algorithm for computing treewidth [11] and the more re-
cent “linear-time” algorithm for computing the crossing number of a graph [36]. Interestingly, these papers
emphasize “linear time” in their titles, instead of “fixed-parameter tractability”. In this spirit, our result
for Longest Path in Interval graphs is a “linear-time” algorithm where the dependency on the pa-
rameter is not exponential [11, 36] but polynomial. In this line of research, Fomin et al. studied graph and
matrix problems on instances with small treewidth. In particular the authors presented, among other re-
sults, an O(k3n log n) randomized algorithm for computing the cardinality of a maximum matching and an
O(k4n log2 n) randomized algorithm for actually constructing a maximum matching, where k is an upper
bound for the treewidth of the given graph [25].

Second, polynomial-time solvability and the corresponding lower bounds have been of long-standing
interest, e.g., it is believed that the famous 3SUM problem is only solvable in quadratic time and this
conjecture has been employed for proving relative lower bounds for other problems [27]. Very recently,
there was a significant push in this research direction with many new relative lower bounds [1, 2, 13]. The
“FPT inside P” approach might help in “breaking” these nonlinear relative lower bounds by introducing
useful parameterizations and striving for PL-FPT results. In this direction an interesting negative result
appeared very recently by Abboud et al. [3] who proved that, unless some plausible complexity assumptions
fail, for any ε > 0 there does not exist any algorithm with running time 2o(k)n2−ε for ( 3

2 − δ)-approximating
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the diameter or the radius of a graph, where k is an upper bound for the treewidth. In contrast, the authors
proved that both the diameter and the radius can be computed in 2O(k log k)n1+o(1) time [3].

Finally, coming back to a practical motivation for “FPT inside P”, it has been very recently observed
that identifying various parameterizations for the same problem may help in designing meta-algorithms that
(dynamically) select the most appropriate solution strategy (also specified by respective parameters)—this
approach is known as “programming by optimization” [34]. Note that so far this line of research is still in
its infancy with only one known study [32] for NP-hard problems; following this approach might also be
promising within our “FPT inside P” framework.

References
[1] A. Abboud, F. Grandoni, and V. V. Williams. Subcubic equivalences between graph centrality problems, APSP and

diameter. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1681–1697,
2015.

[2] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic problems. In Proceedings of
the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 434–443, 2014.

[3] A. Abboud, V. V. Williams, and J. Wang. Approximation and fixed parameter subquadratic algorithms for radius and
diameter. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016.

[4] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. Highway dimension, shortest paths, and provably efficient
algorithms. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 782–793,
2010.

[5] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–856, 1995.

[6] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with k mismatches. Journal of Algorithms,
50(2):257–275, 2004.

[7] J. Bang-Jensen and G. Gutin. Paths and cycles in extended and decomposable digraphs. Discrete Mathematics, 164(1-
3):5–19, 1997.

[8] A. A. Bertossi. Finding Hamiltonian circuits in proper interval graphs. Information Processing Letters, 17(2):97–101,
1983.

[9] R. van Bevern. Fixed-Parameter Linear-Time Algorithms for NP-hard Graph and Hypergraph Problems Arising in Indus-
trial Applications. PhD thesis, Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany, 2014.

[10] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Narrow sieves for parameterized paths and packings. Journal of
Computer and System Sciences, 87:119–139, 2017.

[11] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305–1317, 1996.
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