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We study the thermal transport properties of general conformal field theories (CFTs) on curved
spacetimes in the leading order viscous hydrodynamic limit. At the level of linear response, we show that
the thermal transport is governed by a system of forced linearized Navier-Stokes equations on a curved
space. Our setup includes CFTs in flat spacetime that have been deformed by spatially dependent and
periodic local temperature variations or strains that have been applied to the CFT, and hence is relevant to
CFTs arising in condensed matter systems at zero charge density. We provide specific examples of
deformations which lead to thermal backflow driven by a dc source: that is, the thermal currents locally
flow in the opposite direction to the applied dc thermal source. We also consider thermal transport for
relativistic quantum field theories that are not conformally invariant.
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I. INTRODUCTION

Awide variety of strongly correlated states of matter are
expected to display collective behavior described by
viscous hydrodynamics. This occurs on time scales when
the momentum preserving self-interactions of the strongly
coupled matter dominate over momentum dissipating
processes such as the scattering with phonons. For some
further discussion, including some experimental realiza-
tions in graphene and other materials, we refer to [1–13]. It
is has recently been emphasized that for matter at finite
charge density, a directly verifiable macroscopic signature
of viscous flows is provided by the phenomenon of electric
current backflow [7,8]. That is, for suitable setups the
application of an external electric field leads to a fluid flow
that produces an electric current which flows, locally, in the
opposite direction to the applied field.
Here we want to discuss thermal backflow. In this case a

local heat current flows in the opposite direction to that of
an applied external temperature gradient and in principle
can occur in the absence of charge carriers. While electric
backflow can be caused both by viscous effects and by
spatially modulated regions of charge density (“charge
puddles”), thermal backflow would be caused purely by
viscous effects of the fluid. For matter at finite charge
density, both are special cases of the more general phe-
nomenon of thermoelectric current backflow.
In this paper we initiate a study of thermoelectric current

backflow for relativistic quantum field theories, focusing
on conformal field theories (CFTs). More specifically, we
will investigate the possibility of thermal backflow by
applying an external dc thermal gradient to CFTs at finite
temperature and vanishing charge density. We then calcu-
late the local currents that are produced at the level of linear

response by solving leading order viscous hydrodynamic
equations. We are interested in studying this phenomenon
for infinite systems. Thus, in order to get a finite dc
response we will need a setup in which the total momentum
is a not a conserved quantity, or phrased differently,
momentum dissipates in the bulk of the CFT. This should
be contrasted with other setups where a finite dc response
arises because one imposes no-slip or other momentum
dissipating boundary conditions on the electronic fluid in a
finite volume, as in some of the discussion in [7,8], for
example. A natural way to achieve this is to consider CFTs
in Minkowski spacetime that are then deformed by mar-
ginal or relevant operators that explicitly break the trans-
lation invariance of the CFT. Interestingly, this is precisely
the setup that has received much attention in the AdS/CFT
correspondence via the construction of black holes called
“holographic lattices” [14–19].
Here we will focus on the universal class of deformations

that arise from placing the CFT on a curved geometry with
the spacetime metric gμνðxÞ. We assume that the metric is
time independent, i.e. it has a timelike Killing vector ∂t,
corresponding to a CFT in local thermal equilibrium. The
metric gμνðxÞ can also be viewed as parametrizing spatially
dependent sources for the stress tensor of the CFT. These
deformations include applying strains, thermal gradients
as well as sources for local rotations to a CFT in flat
spacetime, for example. In thinking of potential applica-
tions to real materials we can envisage applying such
deformations to a plasma that has arisen from some
underlying collective behavior. For example, we note that
there has been extensive work on studying the behavior of
strained graphene, e.g. [20–22] and it is also worth high-
lighting the exceptional thermal conductivity properties of
graphene [23].
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We will study the linear response of the deformed CFTs
at vanishing charge density after applying an external
thermal gradient source, possibly time dependent, in the
hydrodynamic limit, ϵ ¼ k=T ≪ 1, where k is the largest
wave number associated with the deformations. For the
special case of CFTs with holographic duals it has been
shown that there is a universal connection between thermal
dc conductivity and Navier-Stokes equations on black hole
horizons [24]. Using these results, it was recently shown for
holographic lattices in the hydrodynamic limit that the local
heat current that is produced by a thermal source can be
obtained by solving a system of linearized, forced Navier-
Stokes equations on a curved manifold fixed by the metric
gμν [25]. In this paper we will show that this result is much
more general, applying also to general CFTs without
holographic duals. We will also show how it also arises
for nonconformally invariant relativistic field theories.
To illustrate thermal backflow for a dc source we will

study static metrics with spatial sections that are confor-
mally flat, with the conformal factor a periodic function of
the spatial coordinates. This corresponds to applying an
isotropic periodic strain to the CFT. After applying a Weyl
transformation it also corresponds to deforming by a
spatially modulated energy distribution, or equivalently
a spatially modulated local temperature variation. For
suitably chosen conformal factors, by solving the time-
independent Navier-Stokes equations numerically, we are
able to find explicit examples that do indeed exhibit thermal
backflow for this setup. We emphasize that this thermal
backflow arises at the level of the linear response to the
application of an external dc thermal gradient, and is thus
associated with specific two point functions of the stress
tensor in the strained CFT. Moreover, the backflow is due to
the spatial inhomogeneities of the metric on which the CFT
lives and this should be contrasted with fluid backflow in
ordinary fluids at the level of linear response, that is caused
by momentum dissipating processes at the boundaries.
We will focus on CFTs in the bulk of the text because

their hydrodynamic description depends on fewer param-
eters. However, much of our analysis can be straightfor-
wardly generalized to arbitrary relativistic quantum field
theories and we present some details in Appendix A. It is
interesting that for static metric backgrounds with the
timelike Killing vector having a constant norm, we also
find that the response to a thermal source, possibly time
dependent, is again governed by linearized Navier-Stokes
equations. For a nonconstant norm, we obtain more general
equations.

II. THERMAL TRANSPORT FOR CFTS IN THE
HYDRODYNAMIC LIMIT

We consider general CFTs on curved manifolds in d ≥ 2
spacetime dimensions with metric gμν. Using the general
results of [26] (see also [27]), we will derive the leading

order viscous hydrodynamic equations relevant for study-
ing thermal transport after applying an external thermal
gradient source, possibly time dependent, at the level of
linear response.
For a general CFT we must impose the Ward identities

DμTμν ¼ 0; Tμ
μ ¼ 0: ð2:1Þ

When d is even we have set the conformal anomaly to zero
as it will be higher order in the derivative expansion than
we wish to consider. In order to obtain a closed set of
hydrodynamical equations we need constitutive relations
for the stress tensor. We let T denote the local temperature
and introduce the fluid velocity uμ, satisfying uμuμ ¼ −1.
Both T and uμ can depend on all of the spacetime
coordinates, xμ. Including the leading order viscous terms
we have

Tμν ¼ Pðgμν þ duμuνÞ − 2ησμν; ð2:2Þ

where the shear tensor is given by

σμν ¼ DðμuνÞ þ uðμuρDρuνÞ − ðgμν þ uμuνÞ
Dρuρ

d − 1
: ð2:3Þ

Conformal invariance fixes the equation of state to be P ¼
c0Td and the viscosity to be η ¼ c1Td−1, where c0 and c1
are dimensionless numbers fixed by the CFT.1

Notice that the equations are covariant under Weyl
transformations, in which the metric and fluid velocity
transform as gμν → e2ωgμν, uμ → eωuμ, where ω is an
arbitrary function of spacetime coordinates, while the
scalars T, P, η transform as T → e−ωT, P → e−dωP
and η → eð−dþ1Þωη. We also notice that uμTμν ¼
−ðd − 1ÞPuν ¼ −εuν, where ε is the energy density and
we also have εþ P ¼ sT.
Introducing a time coordinate via xμ ¼ ðt; xiÞ, then the

heat current density, or equivalently, momentum current
density, of the CFT is given by the components

Qi ¼ −
ffiffiffiffiffiffi
−g

p
Ti

t: ð2:4Þ

Notice that Qi is invariant under Weyl transformations.
Also, in stationary spacetimes, for which ∂t is a Killing
vector, we deduce that this current is conserved ∂iQi ¼ 0.
To simplify the presentation, we now consider the

background metric to be static with the line element given
by ds2 ¼ −gttdt2 þ gijdxidxj, and ∂tgtt ¼ ∂tgij ¼ 0. This
corresponds to studying the CFT in thermal equilibrium,
with gtt and gij parametrizing sources for the stress tensor
components Ttt and Tij, respectively. It will be convenient
to set gtt ¼ 1 and consider the background metric

1In holography we have c0 ¼ 4π
d c1.
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ds2 ¼ −dt2 þ gijðxkÞdxidxj; ð2:5Þ

since a nonvanishing gtt can be reinstated by simply
performing a Weyl transformation. We next consider the
spatial metric ds2 ¼ gijðxkÞdxidxj as a harmonic expansion
about some fiducial metric. If k is the largest wave number
in this expansion, then the hydrodynamic limit has
ϵ ¼ k=T ≪ 1. A concrete example, and one we will focus
on, is to take the fiducial metric to be flat space and
consider gij to be periodic in the spatial directions. In this
case, focusing on a fundamental domain, gij also defines a
curved metric on a torus.
We now consider perturbing the CFT by an external

thermal gradient source parametrized by a closed one-form
ζ ¼ ζμdxμ. To study the linear response of the CFT to this
source, similar to [25], we consider the following linearized
perturbation about the equilibrium configuration. For the
metric we take2

ds2 ¼ −ð1 − 2ϕÞdt2 þ gijðxÞdxidxj; ð2:6Þ

where ζμ ¼ ∂μϕ. We now highlight an important aspect
of the choice of ζ and ϕ. To illustrate, we focus on the
planar case with gijðxÞ periodic in the spatial directions.
In this case we can write ζ ¼ ζ̄iðtÞdxi þ dzðt; xÞ, or
ϕ ¼ ζ̄iðtÞxi þ zðt; xÞ, where zðt; xÞ are periodic functions
of the xi. The ζ̄i parametrize the thermal source of most
interest. For example, for the dc case, the choice ϕðxÞ ¼
zðxÞ would just correspond to considering the CFT on a
deformed metric still in thermal equilibrium (we return to
this at the end of the section). On the other hand ϕ ¼ ζ̄ixi,
with constant ζ̄i corresponds to a constant external thermal
gradient source, of strength ζ̄i, in the xi direction.3

We consider the perturbed fluid velocity to be

ut ¼ −ð1 − ϕÞ; uj ¼ δuj: ð2:7Þ

We vary the local temperature via T ¼ T0 þ δT, where T0

is the equilibrium temperature of the CFT. Note that ϕ, δui
and δT all depend on ðt; xiÞ; in the planar case they are
taken to be periodic functions of the xi. If ω is a character-
istic frequency then we should demand that ω=T0 ≪ 1 in

addition to k=T0 ≪ 1, in order to stay in the hydro-
dynamic limit.
After substituting into (2.2) we find that the stress tensor

takes the form

Ttt ¼ c0ðd − 1ÞTd
0ð1 − 2ϕÞ þ c0dðd − 1ÞTd−1

0 δT;

Tti ¼ −c0dTd
0δui;

Tij ¼ c0Td
0gij þ c0dTd−1

0 δTgij

− 2c1Td−1
0

�
∇ðiδujÞ −

gij
d − 1

∇kδuk
�
; ð2:8Þ

where here, and below, the covariant derivative ∇ is now
with respect to gij. The Ward identities (2.1) then give the
following linearized, forced Navier-Stokes equations for
δui and δT:

T0∂tδui − 2
c1
dc0

�
∇j∇ðjδuiÞ −

1

d − 1
∇i∇jδuj

�

þ∇iδT ¼ T0ζi;

ðd − 1ÞT−1
0 ∂tδT þ∇iδui ¼ 0: ð2:9Þ

Furthermore, the heat current (2.4) now reads

Qi ¼ c0dTd
0

ffiffiffi
g

p
δui ¼ T0s0

ffiffiffi
g

p
δui: ð2:10Þ

The system of Eqs. (2.9) is the key result of this section.
Observe that they only depend on the one-parameter of the
CFT, c1=ðdc0Þ, which is just η0=s0. We also note that ζt
does not enter these equations. When we set all time
derivatives to zero, which is appropriate for studying
thermal dc response, we have an incompressible fluid
∇iδui ¼ 0. We will refer to the time-independent equations
as Stokes equations.
We conclude this section with a few general comments.

We first make some observations about conserved currents
for general relativistic field theories satisfying the Ward
identityDμTμν ¼ 0 on curved manifolds, setting to zero the
thermal sources (i.e. ϕ ¼ 0). Contracting with an arbitrary
vector kμ we obtain

DμðTμ
νkνÞ ¼

1

2
LkgμνTμν; ð2:11Þ

where L is the Lie derivative. We immediately see that if k
is a Killing vector then Tμ

νkν is a conserved current. For a
CFT this is also true if k is a conformal Killing vector,
satisfying Lkgμν ∝ gμν. Thus, in order to have momentum
dissipation in the spatial directions, we should only con-
sider background metrics without (conformal) Killing
vectors, apart from ∂t. Equivalently, for a CFT, the metric
should not be related by a Weyl transformation to a metric
with additional Killing vectors. If we let k ¼ ∂i and assume
that it is not a (conformal) Killing vector, then there is no

2Employing the coordinate transformation t ¼ ð1þ ϕÞt̄ im-
plies that the linearized perturbed metric is given by
ds2 ¼ −dt̄2 þ gijðxÞdxidxj − 2t̄ζμdxμdt̄, which has been used
in related contexts [24].

3Note that ϕðxÞ ¼ zðxÞ is globally defined and bounded both
on the plane and on the torus (i.e. associated with a fundamental
domain of the background). On the other hand ϕ ¼ ζ̄ixi is
globally defined on the plane, but not bounded, and is not a well-
defined function on the torus. Furthermore, the one-forms dzðxÞ
and ζ̄idxi are cohomologically trivial and nontrivial on the torus,
respectively.
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conserved momentum in the xi direction. In this case, if we
consider perturbing around thermal equilibrium, (2.11)
might be viewed as saying that momentum is being
dissipated by the nonvanishing of ∂igμνδTμν. This can be
contrasted with the work of [28] who, instead, modify the
Ward identities in order to achieve momentum dissipation.
We now consider a stationary metric gμν and assume that

kμ is a Killing vector (or conformal Killing vector if we
have a CFT), in addition to ∂t. After considering a dc
perturbation (2.6), with all time derivatives vanishing, from
the Ward identity we deduce that

1ffiffiffi
g

p ∂ið
ffiffiffi
g

p
Ti

μkμÞ ¼ −ðkiζiÞTt
t: ð2:12Þ

After integrating over the spatial directions, the left-hand
side vanishes4 and hence so does the right-hand side. Thus,
we have deduced, just from the Ward identity (i.e. inde-
pendent of the constitutive relations), that if there are any
(conformal) Killing vectors over and above ∂t, then the dc
response is not well defined in the direction kiζi. More
physically, there will be a delta function at zero frequency
in the ac response.
In studying dc response for background metrics as in

(2.5), we are thus only interested in spatial metrics
gijdxidxj without Killing vectors. The solutions to the
Stokes equations i.e. (2.9) with ∂t ¼ 0] are then unique
[24,29] up to an undetermined constant, the zero mode of
δT. Physically, this zero mode can be fixed by demanding
that when ζi ¼ δui ¼ 0 the full stress tensor of the CFT is
not modified. In any event, this zero mode does not affect
the local heat current response given in (2.10).
The final comment relates to the closed one-form source

ζ in the dc context. For the periodic, planar case we again
write ζ ¼ ζ̄idxi þ dzðxÞ, where ζ̄idxi, with constant ζ̄i,
parametrize the dc thermal source of most interest, and zðxÞ
is an arbitrary periodic function which can be dealt with
exactly. Indeed as noted in [24,29] if ζ ¼ dzðxÞ, associated
with ϕ ¼ zðxÞ, we can solve the Stokes equations with
δui ¼ 0 and δT ¼ T0z, giving rise to a simple response to
the full stress tensor with no heat flow. Note that we cannot
take the solution δui ¼ 0 and δT ¼ T0ϕ when ϕðxÞ ¼ ζ̄ixi

since we have demanded that δui and δT are periodic
functions.5

III. THERMAL BACKFLOW

We now consider specific background static metric
deformations of the form (2.5), parametrized by gijðxkÞ,

that lead to thermal backflows driven by external dc thermal
gradients, in the hydrodynamic limit. We will assume that
we have a planar spatial topology with gij a periodic
function of the spatial coordinates. For a given gij we want
to numerically solve the Stokes equations [i.e. (2.9) with
∂t ¼ 0], effectively on a torus, and then obtain the local
heat current density, QiðxÞ, at leading order in k=T,
using (2.10).
For simplicity we will assume that the deformation is

periodic in each of the spatial directions with the same
period, L≡ 2π=k, with ϵ ¼ k=T ≪ 1. For the numerics we
eliminate the dimensionful quantity L by defining new
coordinates via xi ¼ Lx̂i with the x̂i having unit period. It is
convenient to introduce dimensionless variables via6

vi ¼ δui; p ¼ dc0
c1

LδT; ζ̂i ¼
dc0
c1

L2T0ζi: ð3:1Þ

Then in the hatted coordinates the linear Stokes equations
coming from (2.9) take the dimensionless form

−2∇i∇ðivjÞ ¼ ζ̂j − ∂jp; ∇ivi ¼ 0; ð3:2Þ

where here we are raising indices with respect to the metric
gij and ∇ is the associated covariant derivative. In the new
variables it is natural to define the heat current density

Q̂i ≡ ffiffiffi
g

p
gijvj ¼

1

c0dTd
0

Qi: ð3:3Þ

Writing Qi ¼ T0κ
ijζj, where κ is the thermal conductivity

matrix, then we have Q̂i ¼ ðc1=c0dÞðT0κ
ij=s0Þϵ2ζj, where

FIG. 1. A plot of the function Φ which determines the static
metric deformation of the CFTwith gtt ¼ 1 and gij ¼ Φδij. Note
that we have plotted twice the period in both spatial directions.
This specific choice of Φ is as in (3.5) with α ¼ 0.98 and β ¼ 0.3
and gives rise to thermal backflow as shown in Fig. 3.

4With appropriate boundary conditions imposed for noncom-
pact spaces.

5Note that an alternative approach, in this dc context, would
have been to allow nonperiodic perturbations δT instead of
nonperiodic functions ϕðxÞ.

6Note that p here should not be confused with the pressure, P,
of the background CFT appearing in (2.2).
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s0 is the entropy density. This displays the fact that
(T0κ

ij=s0) is of order ϵ−2 as pointed out in [25].
To illustrate examples of backflow, we now restrict our

discussion to CFTs with metric deformations given by7

gij ¼ Φδij; Φ > 0: ð3:4Þ

By solving the Stokes equations (3.2) numerically, we find
that various choices of Φ lead to thermal backflow. To be
specific we discuss the special case of CFTs in two spatial
dimensions and set d ¼ 3. We present some results for the
specific choice

Φ ¼ αþ β

N

XN
a;b¼−N

ei2πðaðx̂−1=2Þþbðŷ−1=2ÞÞ: ð3:5Þ

Moreover, we restrict our discussion to the specific case of
N ¼ 2 and consider varying α and β. We have plotted Φ for
the specific case of α ¼ 0.98 and β ¼ 0.3 in Fig. 1. We
apply a constant dc thermal gradient just in the x̂ direction
with ζ̂ ¼ dx̂. For various choices of α, β we then numeri-
cally solve the Stokes equations (3.2), as described in
Appendix B, to extract Q̂iðx̂Þ and pðx̂Þ.
For small values of 1 − α and β, we are not only in the

hydrodynamic limit, we are also in the perturbative limit
that is associated with small amplitudes as discussed in

[24,29]. In this limit, at leading order in a perturbative
expansion in the amplitude of the metric deformation
around flat spacetime, the solutions to the Stokes equations
are homogenous, i.e. constant [24,29]. In Fig. 2 we have
plotted the solutions to the Stokes equations for α ¼ 1 and
β ¼ 6.6 × 10−4. As expected we find nearly homogeneous
flows. There are various ways of quantifying this: for
example the approximate range of components of the
current are Q̂1 ∈ ð4565;4595Þ and Q̂2 ∈ ð−8.498; 8.498Þ.
The background color in Fig. 2 depicts the norm of the
vector field. The maximum value of the norm (red) has
components ð4595; <10−6Þ while the minimum (purple)
has components8 ð4565; <10−6Þ. To compare with the
perturbative lattice analysis of [24,29] we let the perturba-
tive parameter, λ, be equal to the difference between the
maximum and the minimum values of Φ within one period
and we find λ ¼ 0.01. From the above data we see that,
roughly, Q̂1 scales like λ−2=2 while p scales like 2λ−1. In
any event, there is no thermal backflow for these lattices.
By increasing the overall amplitude, by varying α, β,

we find that solving the Stokes equations gives rise to
sharper peaks in p, which are associated with larger
internal fluid forces. We find that for an amplitude fixed
by α ¼ 0.98 and β ¼ 0.3, that thermal backflow does
indeed occur as shown in Fig. 3. In particular, we see that
there is a distinct region of thermal backflow with ŷ ∼ 0.5
and 0.8 < x̂ < 1.2

FIG. 2. Plot of Q̂i and p corresponding to the metric deformation Φ as in (3.5) with α ¼ 1 and β ¼ 6.6 × 10−4 and thermal gradient
just in the x̂ direction given by ζ̂ ¼ dx̂. The left plot displays the vector heat current density Q̂i, for twice the period in both spatial
directions. The background color depicts the norm of the vector, ðQ̂iQ̂jδijÞ1=2, and we note that it is nearly uniform with the maximum
and minimum varying by about 1%. The right plot shows p for a single period in the spatial directions. The variation in p is uniform
enough to lead to a roughly homogenous response.

7Note that for this choice of metric, (2.11) with k ¼ ∂i gives∇μδTμ
i ¼ − 1

2
ð∂i lnΦÞδTt

t, revealing the origin of momentum
nonconservation in this setting.

8The second component, in both cases, converges to zero
within our numerical accuracy.
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Finally, it is worth revisiting the original assumptions
concerning our hydrodynamic expansion with ϵ ≪ 1.
Recall that throughout this paper we have been assuming
the constitutive relation given in (2.2). This will receive
corrections at higher order in ϵ and will include terms
involving the curvature of the background metric. For the
specific example with α ¼ 0.98 and β ¼ 0.3 we can
estimate that the next order curvature contributions will
be of the order ϵ2 times Φ−1∇2 lnΦ. Since the latter has
spikes of the order 105, in order to ensure that these terms
are indeed subleading we should impose not just ϵ ≪ 1 but
the stricter bound ϵ ≪ 10−3. It would be interesting to
determine by how much this can be weakened for other
examples exhibiting backflow.

IV. DISCUSSION

By solving a system of Stokes equations we have shown
that thermal backflow driven by an applied external dc
thermal source is possible for CFTs in the leading order

viscous hydrodynamic limit. We explicitly demonstrated
this for CFTs defined on static spacetime metrics with a
conformally flat spatial metric, with the conformal factor
depending periodically on the spatial coordinates. We did
not have to make any assumption concerning the strength
of the viscosity η in (2.2); we only demanded that it is
nonzero. The thermal backflow occurs at the level of linear
response, and is associated with specific two point func-
tions of the stress tensor in the CFT. The thermal backflow
solutions are steady state solutions to the linearized
equations. If one was interested in going beyond linear
response, then one would have to take into account Joule
heating and there would not be such steady state solutions.
It would be interesting to understand the time scale for
when the linearized approximation breaks down.
We have discussed in Sec. II how thermal transport

properties of CFTs are invariant under Weyl transforma-
tions. This means, for example, that since backflow occurs
if suitable isotropic strains are applied to a CFT, associated
with a conformally flat metricΦdxidxi, then we should also

FIG. 3. Thermal backflow corresponding to the metric deformation in Fig. 1, with Φ as in (3.5) with α ¼ 0.98, β ¼ 0.3, and thermal
gradient just in the x̂ direction given by ζ̂ ¼ dx̂. The upper plots display the vector heat current density Q̂i, with the background color
emphasising the norm of the vector ðQ̂iQ̂jδijÞ1=2. The upper left plot shows Q̂i for twice the period in both spatial directions. Thermal
backflow occurs in the elongated purple regions: the upper right plot is an enlargement of the green dashed rectangle. The bottom plot
displays p for a single period in the spatial directions.
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see exactly the same backflow by applying a periodic local
temperature profile parametrized by Φ−1 with a flat spatial
metric dxidxi. Thus, if one were able to experimentally
engineer such isotropic strains and local temperature
profiles for some strongly coupled matter and one found
the same thermal response, this would provide a sharp
diagnostic that the matter was described by a conformal
field theory in the hydrodynamic limit. Perhaps it is
possible to investigate this with graphene, which is known
to be described as a relativistic fluid at the Dirac point.
For general CFTs it is straightforward to generalize our

analysis from static to stationary metrics. This corresponds
to allowing for deformations of the CFT which have
sources for local rotations in thermal equilibrium as
discussed in [30]. The linear response to applying a thermal
source can then be examined in the leading order viscous
hydrodynamic limit by studying Navier-Stokes equations
that contain Coriolis terms which are determined by the
nonvanishing vorticity tensor of the background fluid in a
thermal equilibrium. In the case of dc thermal sources the
relevant time-independent Stokes equations were given in
[30]. In general it is necessary to focus on the transport
currents, which are obtained by subtracting off certain
magnetization currents that depend on the applied thermal
source [28,30–32].
In this paper we have discussed the dc response of

general CFTs in the leading order viscous hydrodynamic
limit, by solving a system of Stokes equations. For the
special class of CFTs that have holographic duals we can
also study dc response for deformed CFTs far from the
hydrodynamic limit, by analyzing suitable black hole
solutions. It is a remarkable fact that the total thermoelectric
current fluxes, and hence the thermoelectric dc conductiv-
ities, can be obtained by solving the same system of Stokes
equations for an auxiliary fluid on the horizon of the black
holes [24,29,30]. The connection with hydrodynamic limit
was explained in [25]. Another interesting direction would
be to use holography to examine what happens to the
backflow as a function of ϵ ¼ k=T.
We can also generalize the analysis in this paper to CFTs

that have additional conserved currents. From the work on
holography [25] we can conclude that we will need to solve
the Stokes equations presented in [24,29,30]. There is a
range of possibilities to examine, including the role of
charge puddles and magnetic fields, and we aim to report
on some of this soon.
We have also presented the equations needed to be

solved to examine the thermal response for a general
relativistic quantum field theory in Appendix A. For the
special case of dc response, for background spacetimes in
which the norm of the timelike Killing vector is constant,
the relevant equations are, up to constants, the same Stokes
equations that need to be solved for the case of CFTs. In
particular, the examples of thermal backflow that we
showed in Sec. III are applicable to a much more general

class of quantum field theories. When the norm of the
Killing vector is not constant, the equations that need to
be solved are given in (A9) and (A10) and it would be
interesting to explore them in more detail.
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APPENDIX A: GENERAL QUANTUM
FIELD THEORIES

We now consider a general relativistic quantum field
theory, relaxing the constraint of conformal invariance. The
setup is very similar to that in Sec. II and we again use the
material in [26]. We now just impose the Ward identity
DμTμ

ν ¼ 0. For the constitutive relation we write

Tμν ¼ Pgμν þ ðεþ PÞuμuν þ τμν; ðA1Þ

where

τμν ¼ −2ησμν − ζbðgμν þ uμuνÞDρuρ: ðA2Þ

Here σμν is the same as in (2.3) and ζb is the bulk viscosity
and should not be confused with the external thermal
source one-form ζ ¼ ζμdxμ ¼ dϕ. For CFTs we have
ζb ¼ 0. We also have the local thermodynamic relation
and first law, which take the form

εþ P ¼ Ts; dP ¼ sdT: ðA3Þ

To simplify the presentation, we will again just consider
static backgrounds with Killing vector ∂t. As we will see,
background metrics with ∂t having nonconstant norm, i.e.
gtt ≡ −f2 nonconstant, will play an interesting role. In
considering the perturbation about the background we note
that P, ε, S, η and ζb are all functions of the local
temperature. They can depend on other dimensionful
parameters, but these will all be held fixed in the perturba-
tions we are interested in. Thus, we can write ε0 ≡ εðT0Þ,
δε≡ ð∂TεÞ0δT etc. For the perturbed metric and fluid
velocity we write

ds2 ¼ −f2ðxÞð1 − 2ϕÞdt2 þ gijðxÞdxidxj;
ut ¼ −fðxÞð1 − ϕÞ; uj ¼ δuj; ðA4Þ
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where ϕ and δui are both functions of ðt; xÞ as before.
A calculation then gives the stress tensor

Ttt ¼ ε0f2ð1 − 2ϕÞ þ δεf2;

Tti ¼ −fðε0 þ P0Þδui;
Tij ¼ ðP0 þ δPÞgij − 2η0f−1∇ðiðfδujÞÞ

þ
�

2η0
ðd − 1Þ − ζb0

�
gijf−1∇kðfδukÞ: ðA5Þ

The heat current, defined in (2.4) is given by

Qi ¼ ffiffiffi
g

p
f2ðε0 þ P0Þδui ¼

ffiffiffi
g

p
f2T0s0δui: ðA6Þ

We next note that in order to ensure that the Ward
identity is satisfied for the unperturbed background we
must have

f−1∂ifðε0 þ P0Þ þ∇iP0 ¼ 0: ðA7Þ

Using the equation of state and the first law in (A3) for the
background we can then integrate (A7) to find

T0 ¼ T̄0f−1; ðA8Þ

where T̄0 is a constant. In particular, we see that in general
T0 depends on the spatial coordinates.
Returning now to the perturbed stress tensor, for the time

component of the Ward identity we obtain

f∂tδεþ∇iðf2ðε0 þ P0ÞδuiÞ ¼ 0: ðA9Þ

For the spatial component, and using (A7), we find

f−1ðε0 þ P0Þ∂tδui þ f−1∂ifðδεþ δPÞ − ðε0 þ P0Þζi
þ ∂iδP − 2f−1∇jðη0∇ðjðfδuiÞÞÞ

þ f−1∇i

��
2η0
d − 1

− ζb0

�
∇kðfδukÞ

�
¼ 0: ðA10Þ

Notice that the time component of the four-vector ζt again
does not appear. The perturbations δε and δP can both be
expressed in terms of δT since we are holding all other
dimensionful parameters fixed. In fact, using (A3) we have
δP ¼ s0δT and δε ¼ T0ð∂TsÞ0δT. Thus these equations
should again be solved for δT and δui.
When f ¼ 1, from (A8) we have that T0 is a constant. As

a consequence P0, ε0, s0, η0 and ζb0 are then also constants.
In this case the Ward identities simplify to the following
linearized Navier-Stokes equations

T−1
0 ∂tδT þ c2s∇iδui ¼ 0;

T0s0∂tδui þ s0∂iδT − 2η0∇j∇ðjδuiÞ

þ
�

2η0
d − 1

− ζb0

�
∇i∇kδuk ¼ T0s0ζi: ðA11Þ

In the first equation we have introduced the speed of sound
squared, c2s ¼ ð∂ϵPÞ0 ¼ s0=ðT0ð∂TsÞ0Þ. For a CFT we
have c2s ¼ 1=ðd − 1Þ. Moreover, to study dc response
we can set the time derivatives to zero and we obtain
the Stokes equations for an incompressible fluid

∇iδui ¼ 0; ∂iδT − 2
η0
s0

∇j∇ðjδuiÞ ¼ T0ζi: ðA12Þ

APPENDIX B: NUMERICAL INTEGRATION

We want to solve the system of equations (3.2) for the
variables vi, p for a specified constant ζ̂i on a torus with
unit periods and metric gij. In order to numerically solve
this boundary value problem for a two dimensional
horizon, we will discretize our domain on Nx × Ny points.
Given the periodicity of the problem and the fact that we
expect to find smooth solutions, we use Fourier pseudo-
spectral methods to approximate the derivatives of our
functions on our computational grid. The problem then
reduces to a ð3NxNyÞ × ð3NxNyÞ inhomogeneous linear
system which we can write in matrix form as

M · v ¼ s: ðB1Þ

The 3NxNy dimensional vector v is used to store the values
of the functions p, vx and vy on the grid. In more detail

vi ¼

8>>><
>>>:

pi mod Nx;½ i
Nx�; 1 ≤ i ≤ NxNy

ðvxÞði−NxNyÞ mod Nx;½i−NxNy
Nx �; NxNy < i ≤ 2NxNy

ðvyÞði−2NxNyÞ mod Nx;½i−2NxNy
Nx �; 2NxNy < i ≤ 3NxNy

ðB2Þ

where ½ab� denotes the integer part of the division between a
and b. The vector s is reserved for the inhomogeneous part
of system (3.2) and it does depend on the direction of the
temperature gradient. For example, when the temperature
gradient is just along the x direction, and unit valued, we
have

ðsxÞi ¼
�
1; NxNy < i ≤ 2NxNy:

0; otherwise
ðB3Þ

It is easy to see that we only have to do a single inversion of
the matrix M and the solution for sources in different
directions can simply be found by a matrix multiplication
of M−1 with the corresponding source vector sx or sy.
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We have implemented the method outlined above in C++
taking advantage of the language’s templates to write code
which can be used with various data types. However, we
found that double precision was enough to obtain accurate
solutions for our purposes. We did find though that we
had to use quite large resolutions of the order of
Nx ¼ Ny ∼ 181. This need is becoming obvious from

our plots since there are small scale features we have to
resolve. One example is the sharp peaks in the plots of p.
The linear solver we used was the version of PARDISO

included with Intel’s MKL BLAS suite. The specific solver
can take advantage of OpenMP at several stages of the
solution of the linear system which proved useful when we
ran our code on multicore systems.
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