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The large mass of the η′ meson indicates that a sizeable gluon component is present in the meson 
wave function. However, the χc0 and χc2 decays to η′ mesons, which proceed via a purely gluonic 
intermediate state and we would therefore naïvely expect to be enhanced by such a component, are 
in fact relatively suppressed. We argue that this apparent contradiction may be resolved by a proper 
treatment of interference effects in the decay. In particular, by accounting for the destructive interference 
between the quark and gluon components of the η′ distribution function, in combination with a model 
for strange quark mass effects, we demonstrate that the observed χc(0,2) → η(′)η(′) branching ratios can 
be reproduced for a reasonable gluon component of the η′, η mesons.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The long-standing issue concerning the size of the gluon con-
tent of the η′ and η mesons still remains unsettled, see [1–5] for 
recent discussion. This question is intimately related to important 
issues of non-perturbative physics, such as vacuum topology and 
the U(1) anomaly [6–10] (see e.g. [11–13] for reviews). As flavour 
symmetry is broken, the flavour-singlet and octet quark basis states 
are not degenerate in mass, and a larger η mass than the η′ would 
naively be expected. However, the axial anomaly only contributes 
to the singlet mass, resulting in a larger η′ meson mass compared 
to other pseudoscalar states. A full understanding of this issue cur-
rently presents an interesting challenge for the lattice QCD, see 
for example [14,15]. A variety of processes have been proposed 
in order to constrain the size of the two-gluon Fock state in the 
η and η′ mesons. Examples of particular interest are non-leptonic 
exclusive isosinglet B-decays [16] and central exclusive production 
(CEP) of η, η′ pairs in proton collision [3], as in these processes the 
gluon production amplitude enters at leading order. Other possibil-
ities are discussed in for example [17–20].

In [3] (see also [1,21]) a puzzling issue involving the decays 
of C-even charmonium χc(0,2) to η and η′ mesons was discussed. 
In particular, after accounting for trivial phase space effects no 
enhancement with respect to the pion channels is observed ex-
perimentally [22]. As such decays proceed via a purely gluonic in-
termediate state this could indicate that the two-gluon component 
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is smaller than we might generally expect, see for example [23]. 
Moreover, the branching ratios for the χc decays to ηη mesons are 
in fact observed to be larger than for the corresponding decays to 
η′η′ mesons. This is again somewhat surprising; up to limited mix-
ing effects the η′ meson is mainly a flavour singlet state, with as 
mentioned above a sizeable gluonic admixture required in order 
to explain the larger η′ mass (the solution to the so-called U (1)

problem [9,10]). Thus we would more naturally expect the χc de-
cays to η′η′ mesons to be enhanced in comparison to ηη, where in 
the latter case only a relatively small gluon component is allowed 
by flavour mixing.

One possible solution to these apparent tensions, first suggested 
in [3], is that destructive interference between the quark and gluon 
components of the pseudoscalar mesons may suppress the χc(0,2)

to η and η′ branching ratios below naïve expectations, in par-
ticular in the η′η′ case. In this paper we will apply the ‘hard 
exclusive’ approach developed in [24–28] and the leading order 
χc(0,2) → η(′)η(′) decay amplitudes calculated in [29]. Using this 
approach, we will show that the contribution from purely gluon 
and purely quark final states interfere destructively, naturally lead-
ing to a suppression in the η′η′ mode. We will in addition demon-
strate that for an appropriate choice of the gluon component of the 
η′ meson, the observed branching ratios of the χc(0,2) to η and η′
mesons (or result below the upper limits where the corresponding 
observations are currently lacking) can be reproduced to good ac-
curacy, resolving the apparent contradictions described above. Our 
numerical result is found to be consistent with that of the study 
of [1] where the gluon component of the η(′) meson is extracted 
from an analysis of the meson transition form factors Fη(′)γ (Q 2).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The outline of this paper is as follow. In Section 2 we describe 
of the ‘hard exclusive’ formalism we use. In Section 3 we give ex-
plicit expressions for the corresponding χc → η(′)η(′) amplitudes. 
In Section 4 we present numerical results for the χc branching ra-
tios to η(′) and π mesons, including and excluding suppression 
due to the strange quark mass, and comparing to experimental 
measurements. Finally, in Section 5 we conclude and discuss the 
outlook for further constraining the gluon component of the η(′)
mesons.

2. Calculation details

The leading order contribution to the χc(0,2) → η(′)η(′) process 
can be calculated using the formalism described in [24–28], and is 
written in terms of the parton-level χc → qqqq, qqgg , 4g ampli-
tudes and the distribution amplitudes φ for the corresponding qq
and gg components of the η(′) mesons, see Fig. 1 for representa-
tive Feynman diagrams. In particular we have

M(χc → M1M2) = Mqq +Mqg +Mgg , (1)

where

Mab =
1∫

0

dx dy φa
M1

(x)φb
M2

(y)Tab(x, y) . (2)

Here φa
M is the a = q(g) distribution amplitude for the qq (gg) 

component of the meson M . Each qq and gg pair is collinear and 
has the appropriate colour, spin, and flavour content projected out 
to form the parent meson; x, y are the momentum fractions of the 
parent mesons carried by the quark or gluons. The amplitude Tab
corresponds to the appropriate χc → qqqq, qqgg or 4g transition.

The meson distribution amplitude depends on the (non-per-
turbative) details of hadronic binding and cannot be predicted in 
perturbation theory. However, the overall normalization of the qq
distribution amplitude can be set by the meson decay constant f M

q
via [30]

1∫
0

dxφM(x) = f M
q

2
√

3
. (3)

More precisely, the shape of the distribution amplitude φ(x, μF ) in 
fact depends on the factorization scale μF , which should as usual 
be taken to be of the order of the characteristic hard scale of the 
process under consideration. It was shown in [28] that for very 
large μ2

F the qq meson distribution amplitude evolves towards the 
asymptotic form

φM(x,μ2
F ) →

μ2
F →∞

√
3 f M

q x(1 − x) , (4)

where f M
q is the meson decay constant. However, at the appropri-

ate scale μF ∼ mc for the χc decay we are far from this asymptotic 
region, and an alternative choice that we will make use of later on 
is given by [31]

φCZ
q,M(x,μ2

F = μ2
0) = 5

√
3 f M x(1 − x)(2x − 1)2 , (5)

where the starting scale is roughly μ0 ≈ 1 GeV.
More precisely, the qq flavour-singlet and gg distribution am-

plitudes can be expanded in terms of the Gegenbauer polynomials 
Cn [32,33,28,34,35]

φ
(1,8)
M (x,μ2

F )

= 6 f M
(1,8)

2
√

NC
x(1 − x)

[
1 +

∑
a(1,8)

n (μ2
F )C3/2

n (2x − 1)

]
,

n=2,4,···
φG
M(x,μ2

F )

= f M
1

2
√

NC

√
C F

2n f
x(1 − x)

∑
n=2,4,···

aG
n (μ2

F )C5/2
n−1(2x − 1) , (6)

where we follow the normalization convention described in [3]. 
The f M

1,8 (with M = η, η′ in the present case) are given by (9), 
with the M dependence expressing the difference due to the mix-
ing of the η, η′ states and decay constants. The evolution of the 
distribution amplitude is then dictated by the μ2

F dependence of 
the coefficients an , see [3] for more details. In [1] the contribution 
of the gg Fock state to the transition form factors Fη(′)γ (Q 2) was 
investigated, and it was found that aG

2 = 19 ± 5. However aG
2 = 0

is still not necessarily excluded [2], in particular bearing in mind 
that the gluonic component only enters the transition form fac-
tors as an NLO correction, in contrast to χc → η(′)η(′) decays and 
central exclusive η(′)η(′) production [3].

To make contact with the physical η, η′ states we will be con-
sidering in this paper, we introduce the flavour-singlet and non-
singlet quark basis states

|qq1〉 = 1√
3
|uu + dd + ss〉 ,

|qq8〉 = 1√
6
|uu + dd − 2ss〉 , (7)

and the two-gluon state

|gg〉 . (8)

We then follow [36] (see also [37–39]) in taking a general two-
angle mixing scheme for the η and η′ mesons. That is, the mixing 
of the η, η′ decay constants is not assumed to follow the usual 
(one-angle) mixing of the states. This is most easily expressed in 
terms of the η and η′ decay constants

f η
8 = f8 cos θ8 , f η

1 = − f1 sin θ1 ,

f η′
8 = f8 sin θ8 , f η′

1 = f1 cos θ1 , (9)

with the fit of [40] giving

f8 = 1.26 fπ , θ8 = −21.2◦ ,

f1 = 1.17 fπ , θ1 = −9.2◦ , (10)

where we take fπ = 93 MeV (for another approach see [41]). We 
then take the distribution amplitudes (6) with the decay constants 
given as in (9), for the corresponding Fock components (7) and (8). 
That is, the η and η′ states are given schematically by

|η〉 = f8 cos θ8

[
φ̃8,η(x,μ2

F )|qq8〉
]

− f1 sin θ1

[
φ̃1,η(x,μ2

F )|qq1〉 + φ̃G,η(x,μ2
F )|gg〉

]
,

|η′〉 = f8 sin θ8

[
φ̃8,η′(x,μ2

F )|qq8〉
]

+ f1 cos θ1

[
φ̃1,η′(x,μ2

F )|qq1〉 + φ̃G,η′(x,μ2
F )|gg〉

]
, (11)

where to make things explicit the distribution amplitudes φ̃ are 
defined as in (6), but with the decay constants divided out (i.e. 
φ̃8,η(x, μ2

F ) = φ8,η(x, μ2
F )/ f η

8 . . . ), and these do not represent the 
conventional, normalised expressions for the η′, η Fock states, but 
simply indicate the decay constants and distribution amplitudes 
that should be associated with each qq and gg state in this two-
angle mixing scheme.
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Fig. 1. Representative Feynman diagrams for χc decays to η(′)η(′) mesons, for (a) qqqq (b) qqgg (c) 4g final states.
3. Parton-level amplitudes

Results for the relevant χc(0,2) → qqqq, qqgg , 4g transitions 
were calculated in [29], see Fig. 1 for representative Feynman dia-
grams. To make contact with the experimentally measured branch-
ing ratios, we write

Br(χ → M1M2) = 16π2C2
F

α2
s

M4
χ

b · K 2 , (12)

with b = 8/9 for the case of the χ(0+) and b = 4/3 for the χ(2+). 
The above expression defines K , which is written in terms of the 
contributions

K = Kqq + Kqg + K gg , (13)

from the quark and gluon final states. For the purely qq final state 
we have

Kqq = −
1∫

0

1∫
0

dx1 dx2
c(x1, x2)φ

q
M1

(x1)φ
q
M2

(x2)

x1(1 − x1)x2(1 − x2)(1 + (2x1 − 1)(2x2 − 1))
,

(14)

where

χ0 : c(x1, x2) = 1 + (1 − x1 − x2)
2

1 + (2x1 − 1)(2x2 − 1)
, (15)

χ2 : c(x1, x2) = 1

2
− (1 − x1 − x2)

2

1 + (2x1 − 1)(2x2 − 1)
. (16)

For the mixed qq and gg final state we have1

Kqg = ±1

2

√
Nc

N2
c − 1

(
IG
1

∑
q

Iq
2 + IG

2

∑
q

Iq
1

)
, (17)

where the plus(minus) sign corresponds to the χ2(χ0) decay. The 
values of I g and Iq are

IG,q
M =

1∫
0

φ
G,q
M (x)dx

1 − x
. (18)

For the purely gluonic final state we have

1 We note that the expression in [29] for Kqg in the case of the χc(0+) decay 
contains a misprint: in particular Kqg = −(A1 + A2)/2 and not Kqg = −(A1 − A2)/2. 
We are grateful to Andrey Grozin for confirming this.
K gg = N2
c

N2
c − 1

1∫
0

1∫
0

dx1 dx2

(
g1 + g2

N2
c

)
φ

g
M1

(x1)φ
g
M2

(x2) , (19)

with

g1 = X1 X2β1β2β12[11 − 6(ξ1 + ξ2) + ξ2
1 + ξ2

2 − 8ξ1ξ2

+ 2ξ1ξ2(ξ1 + ξ2) + 3ξ2
1 ξ2

2 ] , (20)

g2 = −X1 X2β12(4 − ξ1 − ξ2 − 2ξ1ξ2) , (21)

for the case of the χ(0+) decay and

g1 = X1 X2β
2
12(2 − ξ1 − ξ2) g2 = −X1 X2β

2
12(1 − ξ1)(1 − ξ2) ,

(22)

for the case of the χ(2+). Here we have defined Xi = 2xi − 1, 
ξi = X2

i , βi = 1/(1 − ξi) and β12 = 1/(1 − ξ1ξ2).
We note that our results differ from those of [29] by overall 

factors due our differing normalization convention for the meson 
distribution amplitudes, although the combined amplitude as in 
(2) is of course consistent. In addition, we have associated an ad-
ditional factor of (−1) to the Kqq term due to the permutation 
of fermionic operators corresponding to this amplitude, see [3] for 
more details.

4. Numerical results

We apply the results of the previous sections to calculate the 
branching ratios of the χc0 and χc2 to η(′)η(′) mesons, checking 
also the χc → ππ case to confirm that the decay to this purely qq
final state is sufficiently well described. For the singlet and octet 
quark distribution amplitudes we will make use of the ‘CZ’ form 
(5), while for the gluonic component we will consider a range of 
values for the first Geigenbaur coefficients aG

2 (as in [3] we can 
safely omit the small corrections from higher n terms). As the scale 
μF ∼ mc is of the same order as the typical input scale μ0 ∼ 1 GeV
for the meson distribution amplitudes, we for simplicity do not in-
clude any wave function evolution, i.e. we fix μF = μ0. We take 
αs = 0.335, which in combination with a reasonable choice for 
the derivative of the χc wave function at the origin provides a 
fairly good NLO description of the total and radiative widths of the 
χc(0+) and the χc(2+) mesons (see e.g. [42]). In order to account 
for the relatively large masses of the η(′) mesons we multiply the 
result by the factor (2p/Mχ )2 J+1, where p is the magnitude of the 
meson 3-momentum in the χc rest frame, and J = 0, 2 is the spin 
of the χc(0,2) meson. This accounts for the available phase space 
and orbital angular momentum of the two final-state meson.
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Table 1
Predicted χc0 → η(′)η(′) branching ratios (in %) for different values of the coeffi-
cient aG

2 from (6), corresponding to the normalization of the gg component for the 
flavour-singlet η1 state.

aG
2 ηη η′η′ ηη′

−32 0.48 0.093 0.22
−16 0.51 0.18 0.087
0 0.52 0.54 0.050
16 0.51 0.38 0.063
32 0.49 0.0047 0.14

Experiment [22] 0.295 0.196 < 0.02

Table 2
Predicted χc2 → η(′)η(′) branching ratios (in %) for different values of the coeffi-
cient aG

2 from (6), corresponding to the normalization of the gg component for the 
flavour-singlet η1 state.

aG
2 ηη η′η′ ηη′

−32 0.088 0.13 0.0023
−16 0.087 0.093 0.0039
0 0.086 0.055 0.0066
16 0.084 0.023 0.011
32 0.082 0.0032 0.017

Experiment [22] 0.057 < 0.01 < 0.006

Firstly, to check that the formalism of the preceding sections 
can be used reliably for a purely qq final state, we can calculate 
the branching ratio for the χc → ππ decays, including both the 
neutral and charged channels. Applying the ‘CZ’ distribution am-
plitude of (5) we find

Br(χc0 → ππ) = 0.82% , (23)

Br(χc2 → ππ) = 0.16% , (24)

to be compared with the experimental values [22] of Br(χc0 →
ππ) = (0.833 ± 0.035)% and Br(χc2 → ππ) = (0.233 ± 0.012)%. 
The description is excellent in the case of the χc0, but is somewhat 
low in the χc2 case. However, given the possibility that higher or-
der QCD (as well as higher twist) corrections may give additional 
∼ 30–50% spin-dependent corrections to these simple lowest or-
der predictions (this is seen in for example the case of the total χc
widths [43–45]), these results can give us confidence in our pre-
dictions for the η(′) final states at this level of accuracy.

In Table 1 we show the predicted χc0 → η(′)η(′) branching ra-
tios for a range of different values of the coefficient aG

2 from (6), 
corresponding to the normalization of the gg component for the 
flavour-singlet η1 state. We can see that as |aG

2 | is increased from 
zero the η′η′ branching ratio in fact decreases in size. This effect is 
driven by the destructive interference between the purely qq and 
purely gg contributions, Kqq and K gg , respectively, as defined in 
Section 2; for |aG

2 | ∼ 30 this interference is almost complete. In ad-
dition, there is some dependence on the sign of aG

2 driven by the 
mixed contribution Kqg . These effects allow the qualitative trend 
in the data, in particular the dominance of the ηη mode, to be de-
scribed for reasonable choices of aG

2 . However, the branching ratios 
in all three channels are in general larger than the observed values, 
in particular for the mixed ηη′ decay. The χc2 case is shown in Ta-
ble 2 and a similar trend is found, with the disagreement being 
even more severe.

The situation is however greatly improved if we consider the 
potential impact of the non-zero strange quark mass. In particular, 
as the mass of the χc is not so large, the strange quark mass may 
not be negligible in comparison to the average virtuality of the 
four quark propagators in Fig. 1 (a). If we take an average virtual-
ity of 〈q2

s 〉 ∼ M2
χ/4 ∼ 0.75 GeV2, and take a strange quark mass of 

ms = 0.25 GeV (somewhere between the constituent and current 
Table 3
As in Table 1, but including strange quark suppression.

aG
2 ηη η′η′ ηη′

−32 0.29 0.24 0.057
−16 0.32 0.056 0.0035
0 0.33 0.28 3.6 × 10−4

16 0.33 0.16 1.8 × 10−5

32 0.31 0.024 0.017

Experiment [22] 0.295 ± 0.019 0.196 ± 0.021 < 0.023

Table 4
As in Table 2, but including strange quark suppression.

a2 ηη η′η′ ηη′

−32 0.058 0.077 0.0025
−16 0.057 0.053 9.1 × 10−4

0 0.055 0.029 4.7 × 10−5

16 0.053 0.0094 4.1 × 10−4

32 0.050 9.1 × 10−5 0.0026

Experiment [22] 0.057 ± 0.005 < 0.01 < 0.006

quark values), then the contribution form each ss pair will be sup-
pressed by a factor Fs = 1 − 2m2

s /〈q2
s 〉 ∼ 0.8. In Tables 3 and 4 we 

show the same results as before, but including this strange quark 
suppression factor. We can see that the impact of this is quite 
significant, and that a good description of all experimental obser-
vations and limits on the χc branching ratios can be achieved for 
aG

2 ∼ 16. Interestingly, this is in seen to be in good agreement with 
the result of [1], which found aG

2 = 19 ± 5 from an analysis of the 
meson transition form factors Fη(′)γ (Q 2).

5. Conclusion

In this paper we have examined the role of interference and 
strange quark mass effects in the decay of χc(0,2) mesons to η(′)
pairs. This was motivated by the apparent tension between the 
general requirement for a sizeable gg component of the η(′) me-
son and the fact that the branching ratios for the χc decays to 
η′η′ mesons, which occurs via a purely gluonic intermediate state, 
is in fact observed to lie below the case of the ηη decays. We 
have in particular demonstrated that the amplitudes for the χc

transitions to purely quark and purely gluon final states interfere 
destructively, naturally leading to a suppression in the η′η′ mode. 
We have then shown explicitly that for a reasonable choice of the 
gg component of the η(′) (and through mixing, the η) the exper-
imentally observed branchings can be reproduced, resolving this 
apparent tension.

Our numerical results have in addition included the impact of 
strange quark mass suppression in the χc decays. That is, for the 
relatively low χc masses, the virtuality carried by strange quark 
propagators in the χc → η(′)η(′) decay may not be significantly 
greater than the strange quark mass. Indeed, including a sim-
ple model for this effect we find the impact on the predicted 
branching ratios can be quite large. Combining these effects, we 
have shown that for a sensible choice of the first Geigenbaur co-
efficient of the gluon component of the flavour singlet η1 wave 
function, aG

2 ∼ 16, we can reproduce all of the experimentally ob-
served χc → η(′)η(′) branching ratios, as well as results below the 
corresponding limits in the absence of current observations. This 
value is consistent with the separate study of [1] where the glu-
onic component of the η(′) meson is extracted from an analysis of 
the meson transition form factors Fη(′)γ (Q 2).

It is worth emphasising that the results of this paper, while en-
couraging, are only calculated at leading order: it is well known for 
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example that the higher order αs corrections for the χc total de-
cay widths are rather large and in fact have different signs for the 
χc(0+) and the χc(2+) cases [43–45]. The inclusion of these cor-
rections, including colour octet contributions which enter at this 
order [46], may therefore have a non-negligible impact on the pre-
cise quantitative results. Moreover, a more complete treatment of 
strange quark mass effects may also have some impact.

Therefore, while the results of this paper demonstrate for the 
first time the role that interference effects play in allowing a re-
alistic gg component for the η′ when considering these χc de-
cays, further study is certainly needed to clarify these issues fur-
ther. A simple test would be to compare against future measure-
ments (rather than the existing upper limits) of the χc0 → ηη′
and χc2 → η′η′ and ηη′ decays. It would in addition be inter-
esting to increase the scale at which the gluon component of the 
η′ is probed. For example, the decay of χb mesons will be sim-
ilarly sensitive to the effects described in this paper, but safely 
in the region where strange quark mass effects will be negligible, 
providing a clearer test. Alternatively, by observing central exclu-
sive η(′)η(′) meson pair production at the LHC for reasonable η(′)
meson transverse momentum p⊥ , a direct and clear probe of the 
gluon component can be provided [3].
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