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Abstract

Using the Gemini Planet Imager located at Gemini South, we measured the near-infrared (1.0–2.4 μm) spectrum of
the planetary companion to the nearby, young star βPictoris. We compare the spectrum obtained with currently
published model grids and with known substellar objects and present the best matching models as well as the best
matching observed objects. Comparing the empirical measurement of the bolometric luminosity to evolutionary
models, we find a mass of 12.9±0.2Jup, an effective temperature of 1724±15 K, a radius of
1.46±0.01Jup, and a surface gravity of = glog 4.18 0.01 [dex] (cgs). The stated uncertainties are
statistical errors only, and do not incorporate any uncertainty on the evolutionary models. Using atmospheric
models, we find an effective temperature of 1700–1800 K and a surface gravity of =glog 3.5–4.0 [dex] depending
upon the model. These values agree well with other publications and with “hot-start” predictions from planetary
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evolution models. Further, we find that the spectrum of βPicb best matches a low surface gravity L2±1 brown
dwarf. Finally, comparing the spectrum to field brown dwarfs, we find the the spectrum best matches 2MASS
J04062677–381210 and 2MASS J03552337+1133437.

Key words: instrumentation: adaptive optics – planetary systems – stars: individual (beta Pictoris) –
techniques: spectroscopic

1. Introduction

Since the discovery of 51Pegasib in 1995 (Mayor &
Queloz 1995), the search for and discovery of extrasolar
planets has broadly changed our understanding of planetary
systems. Direct imaging allows for the discovery of planets on
solar system-scale orbits, provides new insight into the
formation and characteristics of extrasolar systems, and enables
direct spectroscopic observations of their atmospheres. Despite
decades of efforts to image young Jupiter-mass exoplanets still
luminous as a result of their formation process, only a handful
of extrasolar planets have ever been directly imaged. Examples
of such planets include 2M1207b (Chauvin et al. 2005),
Fomalhaut b (Kalas et al. 2008), the HR 8799 system (Marois
et al. 2008, 2010), βPicb (Lagrange et al. 2010), IRXS J1609
b (Lafrenière et al. 2010), HD 95086 b (Rameau et al. 2013),
51 Eri b (Macintosh et al. 2015), and HD 131399 Ab (Wagner
et al. 2016).

βPictoris (β Pic, HD 39060) is a 24±3Myr (Bell et al. 2015),
A6V star located at a distance of 19.44±0.05 pc (Gray
et al. 2006; van Leeuwen 2007). βPic represents the earliest
example of high-contrast imaging to directly detect a circumstellar
disk (Smith & Terrile 1984). The disk is seen edge-on and shows
an asymmetric structure that has been attributed to planetary
perturbations (Burrows et al. 1995; Kalas & Jewitt 1995; Mouillet
et al. 1997; Heap et al. 2000; Augereau et al. 2001; Golimowski
et al. 2006). The planet βPicb was first detected by VLT/NaCo
(Lagrange et al. 2010). Since then, its orbit has been constrained
via careful astrometric monitoring (Chauvin et al. 2012; Nielsen
et al. 2014; Millar-Blanchaer et al. 2015; Wang et al. 2016). The
atmospheric properties of the planet have been estimated from
photometric and spectroscopic measurements using a number of
adaptive optics (AO) fed instruments such as Gemini/NICI
(Boccaletti et al. 2013), Magellan AO (Males et al. 2014;
Morzinski et al. 2015), Gemini/Gemini Planet Imager (GPI;
Chilcote et al. 2015), and VLT/SPHERE (Baudino et al. 2015).

Because of the presence of a dynamically perturbed debris
disk (Mouillet et al. 1997; Lagrange et al. 2012a;
Millar-Blanchaer et al. 2015), along with well documented
constraints on its age (Bell et al. 2015), the βPic planetary
system is an ideal laboratory to understand the formation and
evolution of substellar objects near the planet/brown dwarf
limit. The luminosity and colors of βPicb are indeed similar
to early-type brown dwarfs (Currie et al. 2013; Bonnefoy
et al. 2014; Males et al. 2014; Morzinski et al. 2015).
However, constraints from radial velocity observations place
its dynamical mass well below the value expected for an
isolated field object of the same luminosity (Lagrange et al.
2012b). The recently identified population of young isolated
brown dwarfs with low surface gravity (Kirkpatrick
et al. 2008; Cruz et al. 2009; Delorme et al. 2012; Allers &
Liu 2013; Faherty et al. 2013; Gagné et al. 2015; Schneider
et al. 2016) is a more appropriate sample to compare to
βPicb. Recent work has provided a preliminary look at
the near-infrared low resolution spectrum of βPicb
(Bonnefoy et al. 2014; Baudino et al. 2015; Chilcote et al.

2015) and has highlighted the similarities between βPicb
and low-gravity brown dwarfs in young associations and
moving groups. Such results naturally lead to questions
regarding the formation mechanisms underlying these two
types of objects that have apparently very different
dynamical origins (isolated versus orbiting another star)
and yet look similar from a spectrophotometric standpoint
(Baudino et al. 2015).
In this paper, we provide the empirical basis for such future

investigations by presenting the most comprehensive spectrum
of the βPicb planet to date. Our data, obtained with the GPI
between 2014 and 2016, cover the Y, J, H, and K bands. In
Section 2, we discuss the observations, data reduction, and
spectral extraction. In Section 3.2, we compare the spectrum of
βPicb to those of a wide array of brown dwarfs, and present
the best-fitting objects along with comparisons to low surface
gravity brown dwarf spectral standards. An analysis of the
spectrum, along with existing photometry, and comparison to
existing models are presented in Section 3. Finally, conclusions
are discussed in Section 4.

2. Observations and Data Reduction

GPI was designed and built to directly image and spectro-
scopically characterize young, Jupiter-sized, self-luminous
extrasolar planets (Macintosh et al. 2006; Graham
et al. 2007). Installed at Gemini South in the fall of 2013,
GPI underwent commissioning from the fall of 2013 to the fall
of 2014 before becoming part of the standard instrument suite
at Gemini South.
βPic was observed by the GPI Verification and Commis-

sioning team on 2013 November 16 and 18, 2013 December 10
and 11, and 2014 March 23. A log of the observations is given
in Table 1. Observations performed during the instrument
commissioning period (2013 November–2014 November) were
not all taken in a stable science environment, and various
operational modes were used during a specific data set to
evaluate the performance of the instrument. For instance,
during the 2013 November 18 observations, 32 individual
59.6 s images were obtained in coronagraphic mode, with the
cryocoolers operating at a reduced power level to reduce the
effects of vibration introduced into the telescope (Chilcote
et al. 2012; Larkin et al. 2014). Observations taken for testing
purposes including changes in the AO performance parameters
and the vibration levels of the IFS cryocoolers affect the shape
and stability of the GPI point-spread function (PSF) on a
shorter timescale than would be expected from typical stable
operations of Gemini.
Y-band data were obtained as part of a Gemini Large and

Long Program focused on the study of debris disks with GPI
(GS-2015B-LP-6). These observations occurred when the
planet had already moved significantly inwards, resulting in a
higher level of noise in the estimated spectrum. The average
seeing measured using a Differential Image Motion Monitor
(DIMM), total exposure times, and instrument configurations
of the observations presented in this paper are listed in Table 1,
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along with the specifics of the data sets that were obtained
during verification and commissioning.

Each of these data sets was individually and independently
reduced using the GPI pipeline, with standard recipes provided
by the GPI Data Reduction Pipeline (Perrin et al. 2014). A
short arc lamp exposure was taken with each science
observation set to account for offsets of the lenslet spectra
due to flexure within the IFS. The GPI data reduction pipeline
was used to reduce all images by applying dark corrections,
fitting and removing vibration-induced microphonics noise
(Chilcote et al. 2012; Ingraham et al. 2014), removing bad
pixels, fitting satellite spot locations (Wang et al. 2014), and
extracting each microspectra to create a 37 channel spectral
cube. For K-band data, sky frames were subtracted, if available,
to remove the thermal background.

High-contrast imaging surveys for faint substellar companions
typically use Angular Differential Imaging (ADI; Marois
et al. 2006) and/or Spectral Differential Imaging (SDI; Sparks
& Ford 2002). These PSF subtraction processes often lead to self-

subtraction of any resolved faint companions, creating systematic
biases in the extracted photometry that need to be corrected for.
Previous studies have used forward modeling approaches, where a
negative version of the PSF is injected into the reduced images
prior to PSF subtraction to estimate the flux and position of faint
companions detected in PSF-subtracted images (e.g., Hinkley
et al. 2013; Oppenheimer et al. 2013; Crepp et al. 2015). For this
study, we use a different forward modeling approach that
analytically models the effect of stellar PSF subtraction on the
PSF of the planet to find the best planet spectrum that matches the
signal of the planet after stellar PSF subtraction. We use the
generalized Karhunen–Loève Image Projection (KLIP)-FM
method, described in Pueyo (2016), which combines the KLIP
algorithm (Soummer et al. 2012) and forward modeling. Pueyo
(2016) demonstrated the effectiveness of KLIP-FM at reducing
the systematic biases inherent in ADI/SDI PSF subtraction by
injecting and recovering point sources with known spectra into
GPI J-band βPic data. KLIP-FM has also been used to measure
the astrometry of βPicb with GPI at milliarcsecond precision

Table 1
GPI Observations of βPic

Date Observing Mode Exposure Time (s) Parallactic Rotation (°) DIMM Seeing (″)

2013 Nov 16a,b K1-Spec. 1789 26 1.09
2013 Nov 16a,b K2-Spec. 1253 18 0.93
2013 Nov 18a,b,c,d,e H-Spec. 2446 32 0.68
2013 Dec 10a,b,h H-Spec. 1312 38 0.77
2013 Dec 10a,b,e,f J-Spec. 1597 18 0.70
2013 Dec 11a,b,h H-Spec. 556 64 0.46
2014 Mar 23a,b K1-Spec. 1133 47 0.47
2014 Mar 26b K2-Spec. 2923 26 0.86
2014 Nov 08a H-Spec. 2147 25 0.77
2015 Dec 05g Y-Spec. 2002 37 1.12

Notes.
a This data set was originally astrometrically published by Millar-Blanchaer et al. (2015).
b Observations taken during GPI verification and commissioning tests.
c This data set was originally astrometrically published by Macintosh et al. (2014).
d This data set for a spectrum was published by Chilcote et al. (2015).
e CCR power state was changed during observations.
f This data set was originally published by Bonnefoy et al. (2014).
g Data part of Gemini’s Large and Long program (GS-2015B-LP-6).
h AO performance parameters adjusted during GPI verification and commissioning tests.

Table 2
Measured βPicb Parameters

Teff glog Radius Mass Init. Spec. Entropy
Reference (K) (cgs) (Jup) (Jup) (kB baryon−1)

Currie et al. (2013) 1575a 3.8±0.2 1.65±0.06 6.9a L
Bonnefoy et al. (2013) 1700±100 4.0±0.5 1.5–1.6a 9–10 9.3
Bonnefoy et al. (2014) 1650±150 <4.7 1.5±0.2 <20 >10.5
Chilcote et al. (2015) 1600−1700 3.5−4.5 L L L
Baudino et al. (2015) 1550±150 3.5±1 1.76±0.24 4.0a L
Morzinski et al. (2015) 1708±23 4.2 1.45±0.02 12.7±0.3 9.75
This work (Bolometric) 1724±15 4.18±0.01 1.46±0.01 12.9±0.2
This work (Spectrophotometry)b 1700 4.0 1.41 15.0 9.75

Notes.
a Value calculated in Morzinski et al. (2015).
b Best fit from the Drift Phoenix and Spiegel & Burrows (2012) models.
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(Wang et al. 2016). The final PSF-subtracted images of βPicb in
each of the five GPI filters are shown in Figure 1.

As described in Wang et al. (2016), we use the four satellite
spots in each spectral channel to estimate the PSF of βPicb.
When using such a PSF-fitting method, biases on the spectrum
can arise due to a mismatch between the FWHM of the planet
and model PSFs. Such a mismatch can occur as a result of the
preliminary high-pass filter step before the KLIP PSF
subtraction, carried out in order to mitigate the impact of the
residual atmospheric halo. We calibrated this effect in an
ad hoc fashion by exploring an increasing sequence of high-
pass filtering cutoff frequencies. Typically, the signal-to-noise
ratio (S/N) of the planet increases with a more aggressive filter
that eliminates the residual AO halo, but such filtering schemes
create spurious slopes in the spectrum since they affect the
morphology of the planet PSF and of the satellite spots
differently. Fortunately, in all data sets considered here the
planet S/N is high enough so that there exist a large range of
high-pass filtering parameters for which the planet spectrum is
stable (between 8 and 15 px, as defined in Wang et al. 2016).
The resulting spectrum that minimizes the residuals at the
location of βPicb was then estimated by forward modeling,
normalized by the average satellite spot intensity in each

wavelength channel. An 8000 K, =glog 4.0 [dex] (Gray
et al. 2006) BT-NEXTGEN37 model (Allard et al. 2012)
convolved to the resolution of GPI, was used to approximate
the A6V stellar spectrum of βPicA. This allows the
instrumental and telluric features under identical conditions to
be estimated for the planet spectrum and then removed. To
exclude low-S/N data at the edges of the filter bandpasses, we
trim the βPicb spectrum to exclude wavelength channels
where the filter transmission is below 80%, excluding 27 of the
185 channels of the full spectrum. The average S/N per
resolution element of the final trimmed spectrum, plotted in
Figure 2, was 3 in Y, 17 in J, 15 in H, 14 in K1, and 19 in K2.

3. Results and Discussion

3.1. Bolometric Luminosity

The bolometric luminosity of βPicb was most recent-
ly estimated to be  = - Llog 3.78 0.03bol [dex]
by Morzinski et al. (2015),38 calculated using GPI J- and

Figure 1. PSF-subtracted images of βPic in each of the five GPI filters, with the location of βPicb highlighted. The images have been rotated such that north is up
and east is to the left, with a linear color scale in units of contrast between ´ -2.5 10 5 (±11.5 mag). The significant orbital motion of the planet between 2013 and
2015 is apparent (Wang et al. 2016). Each data set was processed using the same KLIP parameters (seven annuli, four segments per annulus, one pixel minimum
movement criteria), with a reference PSF constructed from the first 10 KL modes. The final images were created by averaging these PSF-subtracted data cubes along
the wavelength axis.

Figure 2. (Top panel): GPI spectrum of βPicb extending from the Y band to the K band (black points). Photometric measurements of βPicb, as compiled by
Morzinski et al. (2015), are also plotted (color and symbols given in the legend; Lagrange et al. 2009; Quanz et al. 2010; Bonnefoy et al. 2011, 2013; Currie
et al. 2011, 2013; Absil et al. 2013; Males et al. 2014; Morzinski et al. 2015). (Bottom panel): normalized filter transmission curves for the various photometric
measurements of βPicb.

37 https://phoenix.ens-lyon.fr/Grids/BT-NextGen/
38 We adopt the same convention as Morzinski et al. (2015), where script
letters are used to denote nominal solar and Jovian values as defined by IAU
resolutions.
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H-band spectroscopy and a recalibration of optical through
thermal–infrared photometry to remove any systematic bias
introduced in previous studies. The bolometric luminosity of
βPicb was reassessed using the new spectroscopic measure-
ments presented in Section 2, which significantly improves the
sampling of its spectral energy distribution (SED) in the Y
(0.98–1.13 μm) and K (1.91–2.38 μm) bands.

The procedure is similar to that employed by Morzinski et al.
(2015). The GPI spectrum was combined with band-averaged
photometry at 3.31 μm, 3.34 μm, ¢L (3.80 μm), 4.10 μm, and
¢M (4.72 μm), the values for which are given by Morzinski

et al. (2015). The YS (0.985 μm) and K (2.27 μm) photometry
measurements used by Morzinski et al. (2015) were rejected
from this analysis due to the significant overlap with the new
GPI spectrum presented in Figure 2. The measured SED
(0.98–4.72 μm) was extended to shorter and longer wave-
lengths using two blackbody functions. The optical blackbody
(0.01–0.97 μm) was normalized to the integrated flux of
the GPI Y-band spectrum, while the infrared blackbody
(4.73–1000 μm) was normalized to the ¢M photometric point.
The bolometric luminosity was then measured by integrating
the synthetic spectrum formed by the combination of the
measured SED and the two blackbody functions.

The final luminosity and its uncertainty were estimated using a
Monte Carlo approach by repeating the integration 105 times.
Random draws were made for each trial from each of the band-
averaged photometric points. The individual GPI spectra were
varied by drawing from a normal distribution created from a
quadratic sum of the band-averaged uncertainty and the satellite
spot ratio uncertainty. Conservatively, each point within an
individual GPI spectrum was adjusted by the same amount to
account for correlation between the spectral channels. The
temperature of the two blackbody functions was drawn from a
uniform distribution between 1500 and 1900K for each trial, and
were normalized as described previously. Despite the large range
of temperatures, there was no correlation between the choice
of temperature for the blackbody extensions and the resulting
luminosity. Using the median and 1σ range of the 105 trials,
the bolometric luminosity of βPicb was found to be

 = - Llog 3.76 0.02bol [dex], consistent with the value
reported in Morzinski et al. (2015). Although the choice of a
blackbody function is a simplistic one, it only has a small
contribution to the total flux of βPicb, with the short- and long-
wavelength blackbody extensions contributing 3%±1% and
14%±1%, respectively.

The bolometric luminosity of βPicb and the age estimate for
the system of 24±3Myr (Bell et al. 2015) were compared to the
Baraffe et al. (2003) hot-start evolutionary models39 to derive a
model-dependent estimate of the mass (M), temperature (Teff ),
radius (R), and surface gravity (g) of βPicb. A Monte Carlo
procedure was used to propagate the uncertainty of the luminosity
(Lbol) and age (t) to the four derived parameters. At each step, a
random luminosity and age were drawn from two normal
distributions, one in Llog bol and the other in t. The model grid
was linearly interpolated first in tlog to the randomly selected
age, and then in Mlog to an arbitrarily high resolution.
Interpolation was performed in Llog bol, Tlog eff , R, and glog
due to their behavior as a function of tlog and Mlog . The
randomly selected luminosity was then used to select a model
within the interpolated grid. This process was repeated 105 times

yielding = M 12.9 0.2Jup, = T 1724 15eff K, =R
1.46 0.01Jup, and = glog 4.18 0.01 [dex] (Figure 3).

These are consistent with the results of a previous analysis by
Morzinski et al. (2015), who reported a mass, effective
temperature, and radius for βPicb of 12.7±0.3Jup,
1708±23K, and 1.45±0.02Jup, respectively.

3.2. Comparison with Field Objects

The spectrum of βPicb was compared with a library of
1600 M-, L-, and T-dwarf spectra compiled from the SpeX
Prism library40 (Burgasser 2014), the IRTF Spectral Library41

(Cushing et al. 2005), the Montreal Spectral Library42 (e.g.,
Gagné et al. 2015; Robert et al. 2016), and the sample of young
ultracool dwarfs presented in Allers & Liu (2013). The spectral
types for the objects within the library were obtained from a
number of literature sources, and are given for the individual
objects described later in this section. The near-infrared spectral
type was used for objects with both an optical and near-infrared
spectral type. The literature was also searched to obtain the
surface gravity classifications for each object, using either of
the schemes outlined by Kirkpatrick (2005), Kirkpatrick et al.
(2006), Cruz et al. (2009) (α, β, γ, δ, in descending order of
surface gravity), or Allers & Liu (2013) (FLD-G, INT-G, VL-G,
similarly). Briefly, both classification schemes categorize
ultracool dwarfs into three groupings: field surface gravity
consistent with that seen for old field dwarfs (α, FLD-G),
intermediate surface gravity (β, INT-G), and very low surface
gravity consistent with that seen for young brown dwarfs (γ,
VL-G). Kirkpatrick (2005) define a fourth classification, δ, for
objects that exhibit low-gravity features in their spectra even
stronger than those classified as γ.
The spectrum of each object was degraded to the spectral

resolution of GPI (between l dl = 35 at Y and l dl = 79 at
K2) by convolution with a Gaussian function of the appropriate
width. The uncertainties were similarly degraded, normalized
by the effective number of spectral channels within the
convolution window. The spectrum of βPicb was compared
to this library using three different procedures. First, the five
GPI bands were fit independently to explore the sensitivity of
each bandpass to the spectral type and surface gravity of
βPicb. Second, the five bands were fit simultaneously but
were each normalized independently and without constraint to
account for both the dispersion in near-infrared colors of young
low-gravity brown dwarfs (e.g., Leggett et al. 2003) and for the
uncertainty in the photometric calibration of the GPI data.
Third, the five bands were fit simultaneously as before, but the
normalization of each band was restricted by the uncertainty of
the photometric calibration of the GPI data (Maire et al. 2014).
We find that all three methods yield similar results in terms of
the spectral type of βPicb and provide strong evidence for
low surface gravity.

3.2.1. Fits to the Individual Bands

The spectrum of βPicb in each of the four near-infrared
bands (YJHK ) was fit to the corresponding spectrum of each
comparison object within the library. The K-band spectrum of
βPicb was created by combining the GPI K1 and K2 spectra,
discarding the overlapping spectral channels within the K1

39 https://phoenix.ens-lyon.fr/Grids/AMES-Cond/ISOCHRONES/

40 http://pono.ucsd.edu/~adam/browndwarfs/spexprism
41 http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library
42 https://jgagneastro.wordpress.com/the-montreal-spectral-library/
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spectrum due to systematics in the K1 spectrum. The spectrum
of the comparison object was multiplied by a scaling factor to
account for the different distance and radius between that
object and βPicb. The optimal scaling factor was found
analytically for each object and band (e.g., Burgasser
et al. 2016). The uncertainties on the spectrum of βPicb
and the comparison object were added in quadrature. The
number of degrees of freedom was typically 29 for the Y band,
32 for the J band, 34 for the H band, and 56 for the K band. The
minimum cn

2 for each object in each band is plotted as a
function of spectral type in Figure 4.

The sensitivity of the J-, H-, and K-band spectra to surface
gravity is apparent in Figure 4, with the low surface gravity
objects typically providing a better fit to βPicb than field-
gravity objects of the same spectral type. Given the low
resolution of the GPI data, this sensitivity is primarily due to
differences in the shape of the continuum between field and
low-gravity objects (Allers & Liu 2013), rather than differences
in the strengths of gravity-sensitive absorption lines. The
difference between the spectra of field and low-gravity objects
is most pronounced in the H and K bands, where the minimum
cn

2 of the low surface gravity objects is significantly lower than
that of field-gravity objects of the same spectral type (Figure 4).

We estimated the spectral type of βPicb in each band by
comparing to the spectra of field surface gravity standards
(Burgasser et al. 2006; Kirkpatrick et al. 2010) and low surface
gravity standards (Allers & Liu 2013). The weighted average of
the numerical spectral types of the standards, weighted
according to the ratio of their c2 to the minimum c2 of all
the standards (e.g., Burgasser et al. 2010), was adopted as the
spectral type. A systematic uncertainty of one-half subtype was
assumed for the standards. This process was repeated for both
surface gravity subsets, and for each of the five bands. The
adopted spectral type and corresponding uncertainty for
βPicb are given for each band in Figure 4, ranging from L2
to L6.5 for the field surface gravity standards and from L1.5 to
L2.5 for the low surface gravity standards, both rounded to the
nearest half subtype.

3.2.2. Unrestricted Fit to the Full Spectrum

The full GPI spectrum of βPicb was then fit to each object
within the library. Each band of the spectrum was scaled
independently to account for the dispersion in near-infrared
colors seen for brown dwarfs of a given spectral type (Leggett

et al. 2003) and for the uncertainty in the absolute flux
calibration of the GPI data (Maire et al. 2014). This was
achieved by summing the c2 of each object in each band,
equivalent to fitting the five bands simultaneously with five
independent scale factors. The resulting minimum cn

2 values for
each object are plotted in Figure 5 (top panel). The number of
degrees of freedom was typically 152, but was lower for
objects that had limited spectral coverage. As with the previous
fit, the spectral type of βPicb was estimated as L4 2.5
using the field-gravity standards and L2±1 using the low-
gravity standards, consistent with previous estimates based on
fits to the broadband photometry of βPicb (Males et al. 2014).
The significantly lower cn

2 values for the low-gravity objects
within the library provide strong evidence for the low surface
gravity of βPicb, consistent with previous photometric and
spectroscopic analyses (Chilcote et al. 2015; Morzinski
et al. 2015).
Of all the objects within the library, the best-fit object from

the unrestricted fit was found to be 2MASSJ03552337
+1133437 (2M 0355+11, c =n 0.452 ), a nearby (8–9 pc,
Faherty et al. 2013; Liu et al. 2013) and extremely red (Cruz
et al. 2009) brown dwarf with a near-infrared (optical) spectral
type of L3 VL-G (L5γ). The spectrum of 2M0355+11 is
plotted with βPicb in Figure 6 (top panel). Based on a
kinematic analysis and the spectral signatures of youth,
2M0355+11 is a confirmed member of the -

+149 19
51 Myr (Bell

et al. 2015) AB Doradus moving group (Faherty et al. 2016).
Due to the unusual near-infrared spectrum of 2M0355+11,
Gagné et al. (2015) assign it a special spectral classification of
L3–L6γ, and classify objects with similar spectra as J0355
type. These objects are visually similar to L4γ objects but with
a shallower CO band at 2.3 μm (Gagné et al. 2015). The
spectrum of 2M0355+11 exhibits strong indicators of low
surface gravity, and the unusual near- and mid-infrared colors
were explained by flux redistribution to longer wavelengths
due to enhanced dust or thick clouds in the photosphere
(Faherty et al. 2013, 2016).
A good fit to the spectrum of 2MASSJ22351658–3844154

(c =n 0.522 ) was also found, an L1.5γ candidate member of the
45±4Myr (Bell et al. 2015) Tucana-Horologium moving
group (Gagné et al. 2015). Of the low-gravity near-infrared
standards defined by Allers & Liu (2013), the best fit was found
to be the L2 VL-G standard 2MASSIJ0536199–192039
(c =n 0.552 ), a candidate member of both the -

+42 4
6 Myr (Bell

et al. 2015) Columba moving group (Gagné et al. 2014, 2015),
and the 24±3Myr (Bell et al. 2015) βPictoris moving group
(Faherty et al. 2016). This object and the other early- to mid-L
near-infrared spectral standards from Allers & Liu (2013) are
plotted in Figure 7.

3.2.3. Restricted Fit to the Full Spectrum

Finally, we fit the morphology within each band and the
relative flux levels of the different bands by restricting the
range over which the scale factor for each band can vary based
on the expected photometric accuracy of GPI. In order to
restrict this range, the c2 equation was modified with a cost
term based on a comparison of the scale factor for a band and
the uncertainty on the satellite spot ratio in that band (Maire
et al. 2014). The c2 for the k th comparison object was

Figure 3. Histograms of the values of the four parameters from the Monte
Carlo analysis comparing the empirical luminosity and age of βPicb to the
Baraffe et al. (2003) hot-start evolutionary models. This analysis was
performed using the luminosity and age presented in this paper (black
histogram), and using the values presented in Morzinski et al. (2015)
(  = - Llog 3.78 0.03bol [dex] and = t 23 3 Myr; gray histogram).
The asymmetric distribution for mass is caused by the significant increase in
the predicted luminosity due to the onset of deuterium burning.
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where l( )Fj i and s l( )F ij are the flux and uncertainty of βPicb

in the i th wavelength channel of the j th band and l( )Cj k i, and
s l( )C ij k, are the flux and uncertainty of the k th comparison
object in the same channel and band. The spectrum of the
comparison object is multiplied both by a scale factor ak, which

is the same for each band, and by an additional scale factor for
the j th band bj k, . The first term of Equation (1) gives the
standard c2 equation, summed over all nj wavelength channels
in the j th band, and over all five bands. This is modified by a
cost term that compares the band-dependent scaling factor bj k,

to the fractional uncertainty of the satellite spot flux ratio smj for

the j th band (Maire et al. 2014).
The minimum cn

2 for each object is plotted for this restricted
fit in Figure 5 (bottom panel). The number of degrees of
freedom was typically 151, but was lower for objects that had
limited spectral coverage. As with the two previous fits, the
spectral type of βPicb was estimated using the field-gravity
and low-gravity standards to be L3.5±1.0 and L1.5±1.5,
respectively. Although these estimates of the spectral type are
consistent with the results of the unrestricted fit, the minimum
cn

2 values are higher for each object due to the additional cost
term included in the restricted fit, an effect that is most
pronounced for the mid- to late-type M dwarfs within the
library.
For the restricted fit case, the best-fitting result from the

spectral library is 2MASSJ04062677–381210 (2M 0406–38,
c =n 1.042 ), a brown dwarf with an L0γ/L1 VL-G (optical/
near-infrared; Allers & Liu 2013; Faherty et al. 2013) spectral
type (Figure 6, bottom panel). The kinematics of
2M0406–38 are ambiguous in terms of nearby moving group
membership, being a probable member of several nearby

Figure 4. cn
2 as a function of spectral type for the M, L, and T dwarfs within

the spectral library fit to the spectrum of βPicb in each of the GPI bandpasses.
The K1 and K2 spectra were combined to create a single K-band spectrum.
Different markers were used to indicate the different gravity classes using the
scheme described in Allers & Liu (2013), with the legend given at the top of
the figure. The optical and near-infrared gravity classifications have been
grouped together for clarity. Objects without any gravity classification are
plotted as gray circles. Spectral standards for field-gravity (Burgasser
et al. 2006; Kirkpatrick et al. 2010) and low-gravity (Allers & Liu 2013)
objects are highlighted with large red and yellow crosses, respectively.

Figure 5. cn
2 as a function of spectral type for each object within the spectral

library for the unrestricted fit described in Section 3.2.2 (top panel) and for the
restricted fit described in Section 3.2.3 (bottom panel) to the GPI spectrum of
βPicb. The symbols are as in Figure 4. In both cases, the low-gravity objects
typically have lower cn

2 values than field-gravity objects of the same spectral
type. The spectral type of βPicb was estimated for both gravity subsets, with
the estimates being consistent between the two different fitting procedures.
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moving groups as well as having space motion consistent with
old field objects (Faherty et al. 2016). Other objects with a good
fit include 2MASSJ01415823–4633574 (c =n 1.462 ); an L0γ/
L2 (optical/near-infrared; Cruz et al. 2009; Schneider et al. 2014)
high-probability candidate member of the Tucana-Horologium
moving group (Gagné et al. 2014); and the Allers & Liu (2013)
near-infrared low-gravity standards 2MASSWJ2208136
+292121 (L3 VL-G, c =n 1.102 ), a candidate member of the
βPictoris moving group (Liu et al. 2016), and 2MASSI
J0518461–275645 (L1 VL-G, c =n 1.302 ), a probable member
of the Columba moving group (Liu et al. 2016). All of the Allers
& Liu (2013) low-gravity standards are shown in Figure 7 (right
panel).

3.2.4. Spectral Type and Gravity Classification of bPicb

Based on a comparison of the full GPI spectrum of βPicb
to the Allers & Liu (2013) low-gravity standards, the spectral
type of βPicb was estimated using the unrestricted and
restricted procedures to be L2.1±0.7 and L2.2±1.2,
respectively. Although these two estimates are consistent with
one another for βPicb, we would expect the unrestricted fit to
more reliably estimate the spectral type of young low-gravity
objects due to the observed range of their near-infrared
colors. Rounding to the nearest half subtype, we adopt a
spectral type of L2±1 for βPicb, consistent with previous
photometric and spectroscopic estimates of L2–5 (Currie
et al. 2013), g L2 2 (Bonnefoy et al. 2013), L2.5±1.5
(Males et al. 2014), and -

+L1 1.5
1 (Bonnefoy et al. 2014). The

significantly improved fits to the low-gravity objects within the
spectral library (Figures 4 and 5) demonstrate that βPicb has a
near-infrared spectrum consistent with that of a low surface
gravity object, and as such we assign it a surface gravity
classification of γ. We do not assign a classification in the
Allers & Liu (2013) scheme as the bandwidths of the indices

used to define this scheme are smaller than the spectral
resolution of the GPI spectrum.
This spectral type estimate was converted into a bolometric

luminosity using the J- and KS-band empirical spectral type to
bolometric correction relations for young, low-gravity objects
derived by Filippazzo et al. (2015). We estimate an absolute J-
band magnitude in the MKO system (Tokunaga et al. 2002) of
βPicb from the flux-calibrated GPI spectrum of =MJ

12.56 0.08, a bolometric correction of = BC 1.48 0.28J ,
a bolometric magnitude of = M 14.04 0.29bol , and a
bolometric luminosity of  = - Llog 3.72 0.12bol [dex].
Similarly, for the KS band, = M 10.86 0.15K , =BCK

3.26 0.13, = M 14.11 0.20bol ,  = - Llog 3.75bol
0.08 [dex]. Both of these luminosity estimates are consistent
with the empirical bolometric luminosity of βPicb presented
in Section 3.1. We also convert the absolute H-band magnitude
of βPicb ( = M 11.80 0.09H ) into an effective temperature
of 1681±64 K using the relations derived by Filippazzo et al.
(2015). The spectral type was also converted into an effective
temperature using the relations presented in Faherty et al.
(2016). Using the polynomial fit to bona fide and high-
likelihood moving group members, the spectral type of βPicb
corresponds to an effective temperature of 1847±242 K.
Including probable moving group members in the polynomial
fit increases the derived effective temperature to
1888±215 K, while including both probable moving group
members and T-dwarf imaged planetary-mass companions
decreases it to 1787±240 K. These estimates are consistent
with the effective temperature estimated from the evolutionary
models in Section 3.1.

3.3. Comparison with Atmospheric Models

Using the spectral data obtained with GPI, we computed
updated best spectral model fits combining GPI spectral data
with previously published photometry of βPicb (Lagrange
et al. 2009; Quanz et al. 2010; Bonnefoy et al. 2011; Currie

Figure 6. Best-fit object to the spectrum of βPicb within the spectral library for the unrestricted (top panel; Allers & Liu 2013) and restricted (bottom panel;
Kirkpatrick et al. 2010) fits. The optical and near-infrared spectral type and gravity classifications are given for both objects.
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et al. 2011, 2013; Bonnefoy et al. 2013; Absil et al. 2013;
Males et al. 2014; Morzinski et al. 2015). The SED of βPicb
was compared to publicly available grids of model atmospheres:
AMES-DUSTY43 (Chabrier et al. 2000; Allard et al. 2001), BT-
SETTL (2015)44 (Allard et al. 2012), and DRIFT PHOENIX45

(Woitke & Helling 2003; Helling & Woitke 2006; Helling et al.
2008). All of these model grids are calculated using the
PHOENIX atmosphere models. The AMES-DUSTY grid combines
the NASA AMES molecular H2O and TiO line lists and includes
the treatment for the condensation of dust within the atmosphere.
The BT-SETTL (2015) models are part of the BT model family,
using updated line lists and revised solar abundances. BT-SETTL
uses a detailed cloud model to define the distribution of
condensates within the atmosphere. The DRIFT PHOENIX model
grids combine the PHOENIX model with the non-equilibrium
cloud model DRIFT.

The fitting procedure was similar to that described in
Section 3.2 for the individual spectra in each model grid. The
spectra were convolved such that their spectral resolution
matched the spectral resolution in each of the GPI wavelength
bands (Larkin et al. 2014). To compute the synthetic
photometry, the model spectra were integrated over the
bandpass using filter curves published for each individual filter
and instrument. The cn( )2 statistic for each model in comparison
to the spectral data was calculated using the method described
in Section 3.2 and using Equation (1), where l( )Cj k i, is the flux
of model spectrum in the same channel and band. The cn

2

statistic was calculated for each band, and for the spectral bands
a punitive factor to account for the uncertainty on the satellite
spot ratio in that band was used. We compute this best-fit result
using only the existing photometry points and for the
photometry points combined with the GPI spectrum. The
best-fit results span a range of grid models from 1700 to
1800 K, with a glog = 3–4 [dex] and an R=1.17–1.41Jup.
The best fit to the combined photometry and spectroscopy is

Figure 7. Spectrum of βPicb (black points) fit to the L-dwarf near-infrared low-gravity standards from Allers & Liu (2013; solid curves) using the unrestricted fit
described in Section 3.2.2 (left panel) and the restricted fit described in Section 3.2.3 (right panel). The spectrum of each standard is normalized to the flux at 1.65 μm,
and then offset for clarity.

43 https://phoenix.ens-lyon.fr/Grids/AMES-Dusty
44 https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011_2015
45 http://svo2.cab.inta-csic.es/theory/newov
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found in the DRIFT PHOENIX grid ( =T 1700eff K, glog = 4.0
[dex], R=1.41 Jup, c =n 1.812 ). The best-fit spectrum for
each of the different models for both photometry only and GPI
spectrum and photometry are shown in Figure 8 and the results
are shown in Table 3.

This process was repeated on an interpolated version of each
grid, with the points between grid points interpolated using a
quadratic spline in the logarithm of the flux, where the spacing
of Teff and glog was reduced to an arbitrarily high resolution of
1 K and 0.005 [dex], respectively. The grids were also

interpolated using a bilinear interpolation scheme that produced
similar results. We ran the same analysis as above and find
that the best-fit results span a range of grid models from
1651–1815 K, with a glog = 3.00–4.50 [dex] and an
R=1.18–1.58Jup. Again, the best-fit grid is produced by
the DRIFT PHOENIX with =T 1651eff K, glog = 3.00 [dex],
R=1.58 Jup, and c =n 1.212 . The cn

2 surfaces for the
interpolated grids are shown in Figure 9, with confidence
intervals calculated from the probability cµ -( )p exp 22 . As
the c2 does not incorporate any model uncertainties, these

Figure 8. Best-fit models within each of the three atmospheric model grids found using only the photometric measurements (blue dashed curve) and using both the
photometric and spectroscopic measurements (red solid curve) of βPicb. The photometric measurements of βPicb compiled by Morzinski et al. (2015) are plotted
as black points, while the GPI spectra presented in this study are plotted as light gray points. Synthetic photometry (open blue and red squares) was computed for each
model using the filter profiles shown in Figure 2.

Table 3
Best-fit Atmospheric Models

Grid Name Data Used Grid Points Interpolated Grid

Teff glog Radius cn
2 Teff glog Radius cn

2

(K) ([dex]) (Jup) (K) ([dex]) (Jup)

AMES-DUSTY Photometry Only 1700 3.5 1.31 2.66 1704 3.50 1.31 2.66
GPI Spectrum & Photometry 1800 3.5 1.17 3.49 1706 4.50 1.18 3.45

BT-SETTL (2015) Photometry Only 1800 3.0 1.38 2.99 1781 3.26 1.34 2.63
GPI Spectrum & Photometry 1800 3.5 1.22 3.17 1815 3.29 1.25 3.04

DRIFT PHOENIX Photometry Only 1700 3.5 1.41 1.55 1708 3.66 1.41 1.54
GPI Spectrum & Photometry 1700 4.0 1.41 1.81 1651 3.00 1.58 1.21
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confidence intervals only represent the uncertainty on these
parameters for this specific model.

3.4. Comparison with Combined Evolutionary
and Atmospheric Models

The observed SED was also compared with the combined
evolutionary and atmospheric models of Spiegel & Burrows
(2012)46 using the same fitting procedure as with the previous
grids. These models differ from the atmosphere-only models in
that the grid was computed in terms of the mass and initial
entropy of the planet, rather than the effective temperature and
surface gravity. The Spiegel & Burrows (2012) grid is bound

by the canonical low-entropy “cold-start” (8 kB/baryon) and
high-entropy “hot-start” (13 kB/baryon) models (c.f. Marley
et al. 2007), where kB is Boltzmann’s constant. Here, the initial
entropy describes how efficiently heat was radiated away from
the forming planet during accretion; formation through
gravitational instability may result in a significantly higher
initial entropy than formation through core accretion. These
evolutionary models were then coupled with an atmospheric
model (Hubeny et al. 2003; Burrows et al. 2006) to create
synthetic spectra at each grid point. The atmospheric model
used either a solar ( ´1 ) or super-solar ( ´3 ) metallicity, and
either cloud-free or with a linear superposition of cloudy and
cloud-free models (hybrid clouds). In total, four grids of
synthetic spectra, spanning this range of atmospheric proper-
ties, were compared to the SED of βPicb. As the age of

Figure 9. Goodness-of-fit statistic (cn
2) for the AMES-DUSTY, BT-SETTL (2015), and DRIFT PHOENIX model grids as a function of effective temperature and surface

gravity. Grid points are indicated with light gray diamonds. The points between the model grid points were the linearly interpolated version of the grid, with a spacing
of 1 K for Teff and 0.005 [dex] for glog . The best-fit model within the original grid is indicated by a large diamond, with the best-fit model within the interpolated grid
indicated by a circle. The white contours indicate the 68% (solid), 95% (dashed), and 99% (dotted) confidence intervals, calculated using the c2.

Table 4
Best-fit Combined Evolutionary and Atmospheric Models

Grid Name Data Used Grid Points Interpolated Grid

Mass Initial Entropy cn
2 Mass Initial Entropy cn

2

(Jup) (kB/baryon) (Jup) (kB/baryon)

Cloud-free ( ´1 solar) Photometry Only 14.0 9.75 15.39 13.53 13.00 15.18
Spectrum & Photometry 15.0 9.50 68.97 15.00 9.55 68.45

Cloud-free ( ´3 solar) Photometry Only 14.0 9.75 14.46 13.48 12.98 13.91
Spectrum & Photometry 15.0 9.50 54.72 15.00 9.56 53.52

Hybrid clouds ( ´1 solar) Photometry Only 14.0 9.75 7.17 13.56 12.73 7.00
Spectrum & Photometry 15.0 9.75 7.70 14.97 9.77 7.02

Hybrid clouds ( ´3 solar) Photometry Only 14.0 9.75 7.43 13.52 12.94 7.17
Spectrum & Photometry 15.0 9.75 5.96 14.99 9.79 4.87

46 http://www.astro.princeton.edu/~burrows/
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βPicb is well-constrained, the SED of the planet was only fit
to the 25Myr models within each of the four grids.

As with the fits to the atmospheric models in Section 3.3,
two fits of the SED of βPicb were made to each grid, the first
using only the photometry presented in Morzinski et al. (2015),
and the second combining this with the GPI spectrum presented
in this study. The results from these fits are given in Table 4,
and the best-fit spectrum for each of the different models for
both photometry only and GPI spectrum and photometry is
shown in Figure 10. The results of the fit to only the
photometry of βPicb are consistent with that of Morzinski
et al. (2015), with a best-fit model at a mass of 14.0Jup and

an initial entropy of 9.75 kB/baryon for each grid. Including the
GPI spectrum slightly changed the best fit in each case, to a
lower initial entropy for the cloud-free models, and to a higher
mass for both the cloud-free and hybrid cloud models. In
general, the quality of the fit to the spectrum was poor, with a
minimum cn

2 of 6.0 (Figure 10), compared with a minimum cn
2

of 1.8 for the model atmosphere fits presented in Section 3.3.
Including the GPI spectrum in the fit significantly increases the
cn

2 for the cloud-free models, and as such they are not discussed
further.
This process was repeated on an interpolated version of the

grid to explore the effects of the finitely sampled grid on the

Figure 10. Best-fit model within each of the four Spiegel & Burrows (2012) grids found using only the photometric measurements (blue dashed curve) and using both
the photometric and spectroscopic measurements (red solid curve) of βPicb. The photometric measurements of βPicb compiled by Morzinski et al. (2015) are
plotted as black points, while the GPI spectra presented in this study are plotted as light gray points. Synthetic photometry (open blue and red squares) was computed
for each model using the filter profiles shown in Figure 2.
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results. As in Section 3.3, a cn
2 surface was calculated for each

model grid for both of the data sets. These surfaces, shown in
Figure 11, suggest that the global minimum may have been
missed by Morzinski et al. (2015) due to the spacing of the grid
points in mass. Using only the photometry, we find a minimum
at a significantly higher initial entropy of 13 kB/baryon and a
lower mass of 13.5Jup, compared with 9.75 kB/baryon and
14.0Jup reported by Morzinski et al. (2015). The 1σ
confidence interval extends between 10 and 13 kB/baryon,
but is tightly constrained in terms of mass. The fits to the
hybrid cloud models including the GPI spectrum are consistent
with those from the coarse grid described previously; however,
the cn

2 surface is similar to that from the photometry-only fit.
Although the minimum is at an intermediate entropy (9.75 kB/
baryon) and high mass (15Jup), this extends to lower masses
(13.5Jup) at a range of entropies (10–13 kB/baryon). This
complex minimum is also seen when fitting the empirical
luminosity of βPicb given in Section 3.1 to the luminosity of
each model grid calculated by integrating the synthetic spectra
(Figure 11, top row). These higher initial entropies are
consistent with previous comparisons to evolutionary models

showing that the initial entropy is higher than 10.5 kB/baryon at
the 95% confidence level (Bonnefoy et al. 2014).

4. Conclusion

We present the spectrum of βPicb in the Y, J, H, and K
bands as observed with the GPI between 2013 and 2016 using
images that were taken as part of the verification and
commissioning process, as part of an astrometric monitoring
program, and as part of a Gemini Large and Long Program
using GPI. Not all of the presented data were originally
intended to be used for spectral extraction of the planet, but it is
of sufficient quality and is valuable as it improves our
understanding of the emission spectrum of βPicb. Using the
standard GPI data reduction pipeline and KLIP-FM to extract
the spectrum, we recover the planet at a high S/N in the Y, J,
H, and K bands, allowing a nearly full sample across the
near-IR.
We compare the SED of βPicb to that of young, cool, low

surface gravity brown dwarfs, and to several grids of model
atmospheres that are valid over the temperature and surface
gravity range expected for these objects. Compared with the

Figure 11. Goodness-of-fit statistic (cn
2) for the cloud-free and hybrid clouds models with both solar and super-solar metallicity (Spiegel & Burrows 2012) fits to the

luminosity (top row), photometry (middle row), and photometry and spectroscopy (bottom row) of βPicb. Model fluxes were interpolated between the grid points
(small gray diamonds) to a resolution of 0.01Jup in mass and 0.0025 kB/baryon in initial entropy. The best-fit model within the original grid is indicated by a large
diamond, with the best-fit model within the interpolated grid indicated by a circle. The solid, dashed, and dotted contours indicates the 1, 2, and 3σ confidence interval
derived from the c2 surface. The poor quality of the fit of these models to the GPI spectrum (bottom row) leads to extremely small confidence intervals as the c2 does
not incorporate any model uncertainty.
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near-infrared spectra of brown dwarfs in young moving groups
and the field, we find that the best-fit spectra are those of young
low-gravity objects. Of all the objects compared, the spectrum
of βPicb best matches that of 2MASSJ03552337+1133437,
a confirmed member of the -

+149 19
51 Myr AB Doradus moving

group that exhibits strong indicators of low surface gravity
(Faherty et al. 2013; Liu et al. 2013; Gagné et al. 2015). Based
on our fits to the low-gravity standards of Allers & Liu (2013),
we adopt a spectral type and gravity classification of g L2 1
for βPicb.

Combining the GPI spectrum with literature photometry
spanning from YS (0.985μm) to ¢M (4.72μm), we directly
measure the bolometric luminosity of the planet to be

 = - Llog 3.76 0.02bol [dex], consistent with previous
estimates derived from photometry alone (Morzinski et al. 2015).
Comparing to “hot-start” evolutionary models, Baraffe et al.
(2003) yields model-dependent estimates for the physical proper-
ties of βPicb of = M 12.9 0.2 Jup, = T 1724 15eff K,

= R 1.46 0.01Jup, and = glog 4.18 0.01 [dex]. The full
SED of βPicb was also compared to atmospheric and
evolutionary model grids spanning a range of atmospheric
properties and formation scenarios. The best atmospheric fits we
find are to a DRIFT PHOENIX model atmosphere with Teff=
1700 K, glog =4.0 [dex], and R=1.41 Jup (c =n 1.812 ).
These values are consistent with those derived from the
bolometric luminosity and with the empirical spectral type to
effective temperature relations derived for young low-gravity
brown dwarfs (e.g., Faherty et al. 2016).

Comparing to the combined atmospheric and evolutionary
models of Spiegel & Burrows (2012) yielded a best fit at a mass
of 15Jup and an intermediate entropy of 9.75 kB/baryon,
with models including a cloudy atmosphere being strongly
preferred over those with a clear atmosphere. Although the best
fit was found at an initial entropy that is intermediate to the
predictions of the “cold-start” and “hot-start” formation
scenarios, the cn

2 surface for the interpolated version of the
grid has a complex structure with a minimum extending to
lower masses (∼13.5Jup) at a range of initial entropy values
between ∼10 and 13 kB/baryon, the higher value being similar
to that predicted by the “hot-start“ formation scenarios.
Although the points on the finer grid are based on an
interpolation of the coarse grid, this analysis suggests that the
choice of grid-point location and spacing may significantly
impact the resulting best fit. If the grid were sampled more
finely or shifted by 0.5Jup, and assuming the interpolated
points are a reasonable representation of the “true” model with
those parameters, Morzinski et al. (2015) would have reported
a higher entropy as the best-fit model.

The empirical bolometric luminosity presented here com-
bined with the dynamical mass constraints from Lagrange et al.
(2012b) and the comparison to the atmospheric and evolu-
tionary models of Spiegel & Burrows (2012) both suggest a
“hot-start” high-entropy formation scenario for βPicb, and are
consistent with the prediction that “cold-start” low-entropy
formation is an unlikely formation mechanism for wide-orbit
giant planets (e.g., Marleau et al. 2017). As βPicb heads
toward maximum elongation in 2023, it will become separated
enough from its host star to be resolved by the near- and mid-
IR instruments on the upcoming James Webb Space Telescope.
Combining the measurements presented here with mid-IR
spectroscopy would provide further insight into the atmo-
spheric properties and evolutionary history of the planet.

Interpretation of a well-sampled SED spanning over a decade
in wavelength would be extremely well-suited for retrieval
techniques (e.g., Burningham et al. 2017) rather than by fitting
to finitely spaced model grids.
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