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Abstract: In a scalar theory which we use as a simplified model for the Higgs sector, we

adopt the semiclassical formalism of Son for computations of n-particle production cross-

sections in the high-multiplicity n → ∞ weak-coupling λ → 0 regime with the value of

λn held fixed and large. The approach relies on the use of singular classical solutions to

a certain boundary value problem. In the past this formalism has been successfully used

and verified in computations of perturbative multi-particle processes at tree-level, and

also at the next-to-leading order level in the small λn expansion near the multi-particle

mass threshold. We apply this singular solutions formalism in the regime of ultra-high

multiplicities where λn � 1, and compute the leading positive ∼ n
√
λn contribution to

the exponent of the multi-particle rate in this large λn limit. The computation is carried

out near the multi-particle mass threshold where the multiplicity n approaches its maximal

value allowed by kinematics. This calculation relies on the idea of Gorsky and Voloshin to

use a thin wall approximation for the singular solutions that resemble critical bubbles. This

approximation is justified in precisely the high-multiplicity
√
λn → ∞ regime of interest.

Based on our results we show that the scalar theory with a spontaneous symmetry breaking

used here as a simplified model for the Higgs sector, is very likely to realise the high-energy

Higgsplosion phenomenon.
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1 Introduction

The discovery of a light Higgs boson at the Large Hadron Collider [1, 2], taken together

with the apparent lack of any evidence for additional beyond the Standard Model degrees

of freedom at energies accessible by current experiments, leaves us with a fundamental

problem of how to stabilise the Higgs mass. With a safe assumption that the Standard

Model does not account for all microscopic interactions in nature and that the more com-

plete theory is likely to include some super-heavy degrees of freedom1 we are led to the

well-known Hierarchy or the fine-tuning problem for the Higgs mass. Quantum corrections

to the Higgs mass induced by the scale of new physics in the UV push the Standard Model

Higgs boson mass parameter into the UV domain, unless there is an underlying symmetry

reason that the quantum effects cancel among each other, or are not present to start with.

One very recent proposal for addressing the Hierarchy problem that does not rely

on supersymmetry or Higgs compositeness, is the Higgsplosion mechanism introduced in

ref. [3]. The main idea of the approach is to destroy all the super-heavy states X by

allowing them to rapidly decay into multiple Higgs bosons X → n × h at energy scales

much below their mass MX . In other words, one aims to have the multi-particle decay

widths ΓX→n×h to exceed MX at energies
√
s? � MX . In this sense, the heavy X states

become unrealised as particle states, they decay faster than they form, and in practical

calculations, the loop integrals involving loops of virtual X fields are effectively cut-off at

the relatively low scale
√
s? �MX .

The aim of the present article is to show that the Higgsplosion mechanism can be

realised in simple quantum field theoretical settings. As in ref. [3] we will concentrate on

a model with a single real scalar degree of freedom h(x),

L =
1

2
∂µh ∂µh −

λ

4

(
h2 − v2

)2
. (1.1)

1These could be for example heavy vectors and scalars of a Grand Unified Theory, heavy sterile neutrinos

responsible for a thermal vanilla leptogenesis, flavons, or states with the Planck or string-scale masses.
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This theory is a reduction of the SM Higgs sector in the unitary gauge to a single scalar

defield h(x) which for our purposes we take to be stable, so there are no decays into

fermions, and we have also decoupled all vector bosons, etc. The vacuum expectation

value v results in a spontaneous symmetry breaking of the h → −h discrete symmetry

and the field ϕ(x) = h(x)− v describes the boson of mass Mh =
√

2λ v. From now on we

will treat (1.1) as the simplified model description of the self-interacting Higgs sector and

will ignore effects of other interactions of the Higgs with the Standard Model vectors and

fermions. Clearly the effects of such interactions will ultimately need to be understood

and estimated for a more realistic phenomenological treatment. Here we will stick with a

simpler goal — which is to demonstrate that the concept of Higgsplosion can be realised

in a concrete simple scalar field theory example. In the Discussion section we will briefly

comment on the more general cases.

The aim of this paper is to compute the multi-boson production rate in the large λn

limit, where λ is the coupling constant and n is the particle number in the final state.

On the technical side, the idea which makes this calculation possible, is to combine the

semiclassical formalism developed by Son in ref. [4] based on singular classical solutions with

the approach of Gorsky and Voloshin [5] which will allow us to search for these solutions

in the form of thin walled singular bubbles.

This paper is organised as follows. In section 2, following a brief recollection of known

results for multi-particle amplitudes, we will summarise the semiclassical approach of [4]

aimed at computing the cross-sections for such processes at very high energies. In section 3

we will continue with this semiclassical technique and will relate it to the problem of

finding extrema of Euclidean actions computed on singular surfaces. This problem will

be addressed and solved in section 4 using the thin-wall approximation in the large final

state multiplicity limit. There we will employ the approach of [5] developed for thin-wall

bubbles. Finally, in section 5 we will provide a detailed discussion of the main results, their

consequence for the Higgsplosion picture [3] and comments on future directions.

2 Semiclassical approach for multi-particle production

In the scattering processes at very high energies, production of large numbers of particles

in the final state becomes possible. We will concentrate on such processes in a scalar field

theory. These processes were studied in some detail in the literature and we refer the reader

to a selection of papers [4–18] and references therein.

To start, we consider the leading order tree-level n-point scattering amplitude com-

puted on the n-particle mass thresholds. This is the kinematics regime where all final state

particles are produced at rest. These amplitudes for all n are conveniently assembled into a

single object — the amplitude generating function — which at tree-level is described by a

particular solution of the Euler-Lagrange equations. The classical solution which provides

the generating function of tree-level amplitudes on multi-particle mass thresholds in the

model (1.1) is given by [9],

hcl(z0; t) = v

(
1 + z0 e

iMht/(2v)

1− z0 eiMht/(2v)

)
, (2.1)
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where z0 is an auxiliary variable. It is easy to check with the direct substitution that

the expression in (2.1) does indeed satisfy the Euler-Lagrange equation resulting from

our theory Lagrangian (1.1) for any value of the z0 parameter. It then follows that all

1 → n tree-level scattering amplitudes on the n-particle mass thresholds are given by the

differentiation of hcl(z0; t) with respect to z0,

A1→n = 〈n|Sφ(0)|0〉 =

(
∂

∂z0

)n
hcl

∣∣∣∣
z0=0

. (2.2)

The classical solution in (2.1) can be thought of as a holomorphic function of the complex

variable z(t) = z0 e
iMht,

hcl(z(t)) = v + 2v
∞∑
n=1

(
z(t)

2v

)n
, (2.3)

so that the amplitudes in (2.2) are given by the coefficients of the Taylor expansion in (2.3)

times n! from differentiating n times over z,

A1→n =

(
∂

∂z

)n
hcl

∣∣∣∣
z=0

= n!

(
1

2v

)n−1

. (2.4)

These formulae and the characteristic factorial growth of n-particle amplitudes,

An ∼ λn/2n!, form the essence of the elegant formalism pioneered by Brown in ref. [9]

that is based on solving classical equations of motion and bypasses the summation over

individual Feynman diagrams. For more detail and derivations we refer the reader to the

original paper [9] or a review in section 2 of ref. [19].

We now perform the Wick rotation from the real Minkowski time t to the Euclidean

time tEucl = it. To use the same notation for the imaginary time variable as in [4] we will

use the variable τ defined as,

τ := −tEucl = − it . (2.5)

Expressed as the function of the Wick-rotated time variable τ , the classical solution (2.1)

reads,

hcl(τ) = v

(
1 + e−Mh(τ−τ∞)

1− e−Mh(τ−τ∞)

)
, (2.6)

where the τ∞ parameter, τ∞ = 1
Mh

log
(
z0
2v

)
, gives the location of the solution in time.

The sign convention in (2.5) where τ is identified with the negative of the Euclidean time,

implies that the early time t → −∞ corresponding to the initial time, i.e. the incoming

states, maps to τ → +∞. In this limit the classical solution approaches the vacuum hcl → v

with exponential accuracy, i.e. the corrections are O(e−Mhτ ).

The expression on the right hand side of (2.6) has an obvious interpretation in terms

of a singular domain wall located at τ = τ∞ that separates two domains of the field h(τ, ~x).

The domain on the right of the wall τ � τ∞ has h ∼ +v, and the domain on the left

of the wall, τ � τ∞, is characterised by h ∼ −v. The field configuration is singular at

the position of the wall, τ = τ∞, for all values of ~x, i.e. the singularity surface is flat (or

uniform in space). The thickness of the wall is set by 1/Mh.

– 3 –
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In ref. [4] Son proposed a semiclassical approach for computing multi-particle cross-

sections in a scalar QFT. This approach is quite general, as it works not only for the leading-

order tree-level processes, but is also capable of computing the higher-order quantum loop-

level effects. Furthermore the method is designed to provide probabilistic quantities, i.e.

the rates or cross-sections, hence it goes beyond just the calculation of the amplitudes near

or on the mass-thresholds by also taking account of the integrations over the n-particle

Lorentz-invariant phase space. The approach of [4] generalised to field theory the Landau

WKB method [20, 21, chapter VII, sections 51–52] for computing matrix elements of certain

generic local operators between the initial and final states with different energy eigenvalues.

In our case, the initial state is a vacuum and the final state is the n-particle final state with

n� 1. It is known that to the leading exponential accuracy the transition rates computed

using the Landau WKB method do not depend on the specific form of the operator O(x)

used to deform the initial state, if this deformation is not exponential. It is then similarly

expected that the choice of the operator does not affect the transition rates in the QFT

settings either, and the approach of [4] generalises the Landau WKB method to a scalar

QFT using the path integral formalism.

The central quantity is the dimensionless probability rate Rn(E) for a local operator

O to create n particles of total energy E from the vacuum. It is given by [4],

Rn(E) =

∫
dΦn 〈0| O† S† PE |n〉〈n|PE SO |0〉 , (2.7)

where the matrix element involves the operator O between the vacuum state |0〉 and the

n-particle state of fixed energy 〈n|PE (here PE is the projection operator on states with

fixed energy E), along with the S matrix to evolve between the initial and finial times.

The matrix element is squared and integrated over the n-particle Lorentz-invariant phase

space Φn ∫
dΦn =

1

n!
(2π)4δ(4)

Pin −
n∑
j=1

pj

 n∏
j=1

∫
d3pj

(2π)3 2p0
j

. (2.8)

Note that in our conventions the bosonic phase-space volume element (2.8) includes the

1/n! symmetry factor for the production of the n equivalent Higgs bosons.2

The local operator O appearing in the matrix elements in (2.7) is usually chosen

to be [4]

O = ej h(0) , (2.9)

where j is a constant, and the limit j → 0 is taken in the computation of the probability

rates,

Rn(E) = lim
j→0

∫
dΦn 〈0| ej h(0)† S† PE |n〉〈n|PE S ej h(0) |0〉 . (2.10)

The cross-sections for few to many particles, σfew→n(E) as well as multi-particle partial

decay rates Γn(E) of a single particle state X → n× h, are determined by the exponential

2Hence the n-particle cross-sections Rn(E) still retains a single factor of n!. Indeed, according to (2.4),

the amplitude squared contributes the factor of (n!)2, and combining with the symmetry factor from the

bosonic n-particle phase space we have Rn(E) ∼ 1
n!
n!n! ∼ n!.

– 4 –
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factor for Rn(E) in (2.10) times a non-exponential pre-factor of appropriate dimensionality

which is of no interest in a semiclassical approximation.

In the construction of [4] the expression on the right hand side of (2.10) is represented as

a functional integral, which is subsequently computed in the steepest descent approximation

for all integration variables. This is achieved and justified in the double-scaling weak-

coupling / large-n semiclassical limit:

λ→ 0 , n→∞ , with λn = fixed , ε = fixed . (2.11)

Here ε denotes the average kinetic energy per particle per mass in the final state,

ε = (E − nMh)/(nMh) . (2.12)

Holding ε fixed implies that in the large-n limit we are raising the total energy linearly

with n.

The semiclassical result for the rate has the characteristic exponential form [4],

Rn(E) ' exp [W (E,n)] , (2.13)

where

W (E,n) =
1

λ
F(λn, ε) = ET − nθ − 2ImS[h] . (2.14)

Let us now examine the structure of this result. The function F(λn, ε) appearing in (2.14),

is a function of two finite-valued arguments while all the integrations in the path integral

representation of Rn(E) in (2.10) were carried out and saturated by their saddle-point

values in the large-n, large-1/λ limit (2.11). At negative values of F(λn, ε) the multi-

particle rate Rn(E) is exponentially suppressed, while if F(λn, ε) crosses zero and becomes

positive above some critical energy or multiplicity, the multi-particle processes enter the

Higgsplosion phase [3].

We now consider the terms appearing in the final expression in (2.14). First, the

combination − 2ImS[h] follows from the e−iS[h]∗eiS[h] factor in the product of the matrix

elements in (2.10). The integration contours and the resulting saddle-points in the steepest

descent integration are complex-valued, hence iS[h]− iS[h]∗ = − 2ImS[h] or equivalently

−2SEucl[h] using the Euclidean notation. Finally, the parameters T and θ appearing on

the right hand side of (2.14) are the consequence of introducing projections onto the final

states with defined values of the energy E and the particle number n in (2.10).

The function W (E,n) in (2.13)–(2.14) is computed on the saddle-point value of the

path integral. Prior to taking the j → 0 limit in (2.10), the saddle-point field configuration

h(x) is given by a particular solution to the classical equation of motion with the singular

source term j(x) = jδ(4)(x) on the right hand side,

δS

δh(x)
= i j δ(4)(x) , (2.15)

where S =
∫
d4xL is the action of the theory and j is a constant. After taking the limit

j → 0, the right hand side of the defining equation (2.15) vanishes but the required solution

– 5 –
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nevertheless remains singular at x = 0 in Minkowski space. The saddle-point solution also

depends on the parameters T and θ, as will be explained below, while the overall expression

W (E,n) is independent of T and θ. Hence,

2
∂ ImS

∂T
= E , 2

∂ ImS

∂θ
= −n , (2.16)

and W (E,n) is the Legendre transformation of the action 2ImS with respect to T and θ.3

Next step is to specify the boundary conditions of the solution h(x) at tin → −∞ and

tfin → +∞. At the initial and final time boundaries h(x) satisfies the free Klein-Gordon

equation, thus

h(~x, t)|t→−∞ → v +

∫
d3k

(2π)3/2

1√
2ωk

ak e
−ikµxµ (2.17)

h(~x, t)|t→+∞ → v +

∫
d3k

(2π)3/2

1√
2ωk

(
ck e

−ikµxµ + b∗k e
ikµxµ

)
, (2.18)

where we used the standard notation k0 = ωk =
√
M2
h + k2. The initial-time boundary

condition (2.17) does not contain the positive frequency component (i.e. the one associated

with the creation operator in the second quantisation operator formalism), this condition

implements the requirement that there are no particles in the initial state. The second

boundary condition (2.18) at t → +∞ contains positive and negative frequency compo-

nents. Following [4] we parameterise its ck coefficient in terms of the complex conjugate of

its b∗k coefficient,

ck = bk e
ωkT−θ . (2.19)

The solution is complex-valued since ck 6= bk, and the corresponding parameters T and θ

are precisely those appearing in (2.16).

In summary, the equations (2.15)–(2.19) specify the boundary value problem for finding

the saddle-point configuration {h(x), E, n} needed to compute the semiclassical rateRn(E):

1. Solve the classical equation without the source-term,

δS

δh(x)
= 0 ,

by finding a complex-valued solution h(x) with a point-like singularity at the origin

xµ = 0 and regular everywhere else in Minkowski space.

2. Impose the initial and final-time boundary conditions,

lim
t→−∞

h(x) = v +

∫
d3k

(2π)3/2

1√
2ωk

ak e
−ikµxµ

lim
t→+∞

h(x) = v +

∫
d3k

(2π)3/2

1√
2ωk

(
bk e

ωkT−θ e−ikµx
µ

+ b∗k e
ikµxµ

)
.

3Indeed, it follows from the definition of W that ∂W
∂E

= T and ∂W
∂n

= − θ. The action S[h] depends on

the parameters T and θ through the classical solution h(x), but in the final expression for W (E,n) these

parameters are traded for E and n.

– 6 –
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3. Compute the energy and the particle number using the t→ +∞ asymptotics of h(x),

E =

∫
d3k ωk b

∗
k bk e

ωkT−θ , n =

∫
d3k b∗k bk e

ωkT−θ .

At t → −∞ the energy and the particle number are vanishing. The energy is con-

served by regular solutions and changes discontinuously from 0 to E at the singularity

at t = 0.

4. Eliminate the T and θ parameters in favour of E and n using the expressions above.

Finally, compute the function W (E,n)

W (E,n) = ET − nθ − 2ImS[h]

on the set {h(x), E, n}, and thus determine the semiclassical rate Rn(E)=exp [W (E,n)].

3 Solving the boundary-value problem by extremizing the Euclidean

action over the singular surfaces

One way to visualise the construction of the solution to the boundary-value problem out-

lined above, is by starting with the specified expressions for h(x) at the t→ ±∞ boundaries

and classically evolving them by numerically solving the equation of motion into the region

of finite t. We thus have two trial functions, one at t < 0 and the second at t > 0 which we

would like to match at t = 0. The field configuration at t < 0 is given by a regular clas-

sical solution h1(t, ~x) which satisfies the initial time boundary condition with the Fourier

coefficient functions ak. The second trial function, h2(t, ~x), is a regular classical solution

on the Minkowski half-plane t > 0 which is evolved from the final-time boundary condition

with the coefficient functions bk. One then contemplates scanning over the space of the

functions ak and bk to achieve the matching at t = 0 between the two branches h1 and h2 of

the solution, h1(~x) = h2(~x), and all of its time derivatives for all values of ~x 6= 0. The only

allowed singularity of the full solution is point-like, and located at the origin t = 0 = ~x.

As was pointed out in [4], the construction of the saddle-point solution above has a more

natural implementation in terms of the complex-valued time coordinate. In Minkowski

space-time xµ = (t, ~x) the solution h(x) contains a point-like singularity at the origin

x = 0 arising from the delta-function source term in (2.15), and is regular everywhere

else. In the Euclidean space-time, (τ, ~x), however, the solution will in general be singular

on a hypersurface τ = τ0(~x). For a particularly simple case of the uniform in space

solution (2.6), the singularity surface is τ0 = τ∞ which is an ~x-independent constant as we

have already seen. This solution describes the generating functional of tree-level amplitudes

on n-particle mass thresholds. In the more non-trivial settings, specifically in the case of

solutions relevant for the processes away from the multi-particle thresholds, or beyond the

tree-level, or both, the relevant fields do depend on the spacial variable and as the result,

the singularity surface τ = τ0(~x) is an O(3) symmetric function of the spacial variable.

Consider the singularity surface τ0(~x) of the form shown in the figure 1a. It is a local

deformation of the flat singularity domain wall at τ∞ with the single maximum touching

– 7 –



J
H
E
P
0
6
(
2
0
1
7
)
1
4
8

~x

~x ~x

t t

t
⌧0(~x)

⌧0(~x) ⌧0(~x)

⌧⌧

⌧ ⌧

⌧0(~x)

⌧∞

⌧∞

⌧∞

0
0

0 0

(a) (b)

(c) (d)

r0

Figure 1. Figure (1a) shows the singularity surface τ = τ0(~x) of the field configuration h on

the imaginary-time hyper-plane (τ, ~x). The tip of the singularity surface is located at τ = 0

so that in Minkowski space-time the solution is singular only at a single point taken to be the

origin (t, ~x) = (0,~0). Away from the local maximum, the singular domain-wall τ0(~x) approaches

the constant space-independent value τ∞. Figure (1b) shows the time-evolution contour on the

complex time plane. The two turning points are the location of the singularity surface, τ0(~x),

and the origin, τ = 0 = t, after which evolution to the final state proceeds along the real t axis.

Figure (1c) shows the same time-evolution contour at a fixed value of ~x along with the singularity

surface of the classical field in the complex-time-space coordinate system (t, τ, ~x). Figure (1d) is

the same as (c), but the singular domain wall τ0(~x) is folded into the real time direction for |x| < r0
where r0 is the critical radius of the domain wall bubble.

the origin (τ, ~x) = 0. As such, in Minkowski space the singularity is point-like at t = iτ = 0

and ~x = 0 as required.

Thus by extending the real time variable into the complex plane we have extended

the point-like singularity of the solution to the singularity hypersurface τ = τ0(~x) or the

singular domain wall. The next step is to define the time evolution contour of the solution

in the complex plane from the initial to the final time boundaries. It is shown in the figure

(1b). At early times the solution evolves along the imaginary-time axis from the initial

time boundary at τ = +∞ down to the singularity surface of the solution at τ0. The

contour then encircles the singularity τ0 at each fixed value of ~x and evolves upwards along

the imaginary-time axis to τ = 0. From there on the third segment the contour evolves

– 8 –
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along the real-time axis from t = 0 to the final-time boundary at t → +∞. The figure

(1c) shows this contour in the (t, τ, ~x) coordinates along with the singularity surface of the

solution at τ = τ0(~x).

We now return to the two branches of the solution h1(τ, ~x) and h2(t, ~x) introduced in

the beginning of this section, but now defined along the time evolution contour in figure 1.

Both these field configurations are finite regular classical solutions on the subspaces defined

by τ > τ0(~x) for h1(τ, ~x), and by t > 0 for h2(t, ~x). They satisfy the boundary conditions

(cf. (2.17)–(2.18)),

lim
τ→+∞

h1(τ, ~x)− v = 0 (3.1)

lim
t→+∞

h2(t, ~x)− v =

∫
d3k

(2π)3/2

1√
2ωk

(
bk e

ωkT−θ e−ikµx
µ

+ b∗k e
ikµxµ

)
. (3.2)

The Euclidean action of the complete solution h(x) along our complex-time contour can be

straightforwardly represented as the appropriate action integrals of the solutions h1(τ, ~x)

and h2(t, ~x) on the parts of the contour,

SEucl =

∫
d3x

[
−
∫ τ0(~x)

+∞
dτ LEucl(h1)−

∫ 0

τ0(~x)
dτ LEucl(h2)− i

∫ ∞
0

dtL(h2)

]
, (3.3)

where we used the standard notation LEucl(h) = 1
2 (∂µh)2 +V (h), SEucl = −i S and recalled

that τ = −tEucl (which explains the minus signs in the first two terms).

Up to this point we have not attempted to impose any matching conditions on the

two trial functions, h1(τ, ~x) and h2(τ, ~x), at the singularity. Without the matching, the

two individual components are some easy-to-obtain classical solutions with the correct

boundary conditions at the initial τ → ∞ and final t → ∞ times, but they do not solve

the required boundary value problem. First one can imagine adjusting the coefficients bk
to match the two profiles on a certain candidate surface A, so we set h1 = h2 = Φ0 on

A. We assume a regularisation procedure which keeps Φ0 finite at intermediate stages of

the calculation to avoid infinities. The approximation to the true saddle-point is still very

crude as the derivatives normal to the surface do not match, and the matching of h1 and

h2 has a cusp on the entire surface A,

∂n(h1 − h2) = J(A) . (3.4)

This defines a function J(A) supported on the surface of A. It then follows that the field

configuration h(x) obtained from this matching satisfies the equation

∂SEucl

∂h
= J(x) , where J(x) =

∫
d3AJ(A) δ(4)(x− x(A)) . (3.5)

This is the classical equation with a source J(x) rather than jδ(4)(x) appearing in the

equation (2.15) we are meant to be solving. The important point emphasised in [4] is that

we can repair this by varying the shape of the candidate surface A, and consider a family

of Euclidean actions of the form (3.3) each computed using a particular surface A. Then
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it is easy to show that once the action SEucl[h] has been extremized with respect to A,

the source J(x) corresponding to the extremal surface becomes of the required δ-function

form, jδ(4)(x).

This concludes our review of the semiclassical method of Son [4]. To summarise our

main conclusion in this section, it was shown that the required saddle-point solution to the

multi-particle boundary-value problem can be obtained by extremizing the real part of the

Euclidean action over all singularity surfaces τ = τ0(~x) containing the point t = 0 = ~x.

There are two equivalent formulations of the problem. One either finds the required

solution with the point-like singularity at the origin by varying the Fourier coefficients of

the solution asymptotics at t→ ±∞, or alternatively, one extremizes the classical action by

varying the singularity surfaces of the solutions in complex time. The second method will

be particularly well suited for using the thin-wall approximation in the following section.

This will allow us to compute the dominant contribution to W (E,n) in the limit λn→∞.

4 Thin wall critical bubbles

The main goal of this section is to use the semiclassical method described above to carry

out a novel computation of the multi-particle rates Rn(E) = eW (E,n) in the large λn limit.

This involves the higher-loop quantum effects, and in order to correctly address them we

first need to normalise on the known tree-level high multiplicity results. Our starting point

is the function W in (4.1) appearing in the exponent of the rate which is evaluated on the

saddle-point solution. In terms of the Euclidean action it is given by,

W (E,n;λ) =
1

λ
F(λn, ε) = ET − nθ − 2SEucl[h] . (4.1)

At tree-level, the function W is of the form,

W (E,n;λ)tree =
λn

λ
(f0(λn) + f(ε)) , (4.2)

and its dependence on λn and on the average kinetic anergy per particle per mass, ε, is

in terms of two individual functions of each argument, f0(λn) and f(ε). These functions

are known,

f0(λn) = log

(
λn

4

)
− 1 , (4.3)

f(ε)|ε→0 → f(ε)asympt =
3

2

(
log
( ε

3π

)
+ 1
)
− 25

12
ε , (4.4)

where the expression (4.4) is valid in the non-relativistic limit ε� 1 near the multi-particle

mass-threshold. These tree-level results (4.2)–(4.4) were computed using both types of

methods: the resummation of Feynman diagrams based on solving the recursion relations

and integrating over the phase-space in [14, 16], and also from using the semiclassical

approach [4] directly. The apparent agreement between the two methods provides a useful

consistency check on the semiclassical formalism.

The above result has also been generalised to the general tree-level kinematics. In

particular, at tree-level the function f0(λn) is fully determined, but the second function,
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f(ε), characterising the energy-dependence of the final state, is determined by eq. (4.4)

only at small ε, i.e. near the multi-particle threshold. This point was addressed in ref. [18]

where the function f(ε) was computed numerically in the entire range 0 ≤ ε <∞.

It is also known how to add the leading-order loop corrections to the tree level expres-

sions in the λn � 1 limit. This has been achieved in ref. [14] by resumming the one-loop

correction to the amplitude on the multi-particle mass threshold originally computed in

refs. [12, 13]. The same result was also reproduced using the semiclassical method [4],

once again providing a valuable justification of this approach. This results in the modified

expression for f0,

f0(λn)1−loop = log

(
λn

4

)
− 1 +

√
3
λn

4π
. (4.5)

To determine whether the bare4 multi-particle rate Rn(E) defined in (2.7) and (2.13)

can become exponentially large above a certain critical particle number n and lead to a re-

alisation Higgsplosion [3] in a given theory, we need to be able to address the large λn limit.

Up to now the loop effects were only computed in the opposite regime of small λn in (4.5).

In the following we will address the large-n limit with the value of the combination λn

taken to be large, λn� 1, while the average particle energy is kept non-relativistic, ε� 1.

This selects the regime of multiplicities n approaching their maximal values allowed by the

fixed energy kinematics, n ∼ nmax = E/Mh where ε ∼ 0 and the final state particles are

non-relativistic.

The tree-level result (4.2)–(4.4) in the non-relativistic limit ε → 0 arises in the semi-

classical calculation from the uniform in space saddle-point solution (2.6). As we have

already discussed, this solution corresponds to a singular domain wall located at a con-

stant value of τ , so that the singularity surface does not depend on ~x. In the large λn

limit one should be able to similarly write down a singular field configuration that serves

as the saddle-point of the path integral representation of the multi-particle rate Rn. The

singularity surface of this configuration is however locally deformed by the source at x = 0,

while at large values of |~x| the singularity surface τ0(~x) rapidly approaches the constant

value τ0(~x)→ τ∞.

In both of these cases we need to fix the translational symmetry of the solutions by

locating the singularity surfaces in such a way that its local maximum is at the point

τ = 0 = ~x. This implies that the flat domain wall used for calculating the tree-level ampli-

tudes on n-particle thresholds should be located at τ = 0. At the same time, the n-particle

amplitudes in the large λn limit arise from the feld configuration with the singularity sur-

face located at τ0(~x), as described above. Each of these amplitudes are determined by

the z(τ)n ∼ e−nMhτ term in the corresponding Taylor expansion of the field configura-

tions, as in (2.3). Now the difference between the singularity surface located at τ = 0

and at τ = τ0(~x) → τ∞ rescales the A1→n amplitude on the n-particle threshold by a

multiplicative factor of e−nMhτ∞ .

4By the bare rate we mean the rate with an external i.e. non-dynamical initial state given by O|0〉. The

Higgsplosion effect of [3] is the result of the exponentially growing bare rate Rn(E). As explained in [3]

the physical cross-sections involve instead the rates corrected by the resummed i.e. dynamical propagator

of the initial state; these physical cross-sections do not explode and are consistent with the unitarity of the

theory. This was called the Higgspersion effect in ref. [3].
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This is not all. We still need to determine the shape of the curved singularity surface

τ = τ0(~x) by requiring that it extremizes the Euclidean action on the corresponding singular

solution, as was discussed in the previous section. Hence we need to add to the exponent of

the rate the factor − 2SEucl[τ0(x)]+2SEucl[0] where the last term removes the contribution of

the flat wall (already accounted in the tree-level result). These simple qualitative arguments

lead to the following form of the W function in the large λn limit (note the factors of 2

arising from squaring the amplitudes),

W (E,n;λ) = W (E,n;λ)tree − 2nMhτ∞ − 2SEucl[τ0(x)]− 2SEucl[0] , (4.6)

where by SEucl we mean the Real part of the Euclidean action (or equivalently the Imaginary

part of the Minkowski action). The expression (4.6) is supposed to be valid in the double-

scaling large-n limit (2.11) where the two scaling quantities λn and ε are such that λn� 1

and ε � 1. The singularity surface τ0(x), its asymptotics τ∞ and the Euclidean action

itself will now need to be determined as functions of λ, λn and ε by extremizing SEucl as

the functional of τ0(x).

Before we proceed with finding the saddle-point singularity surface for the action, it is

worthwhile to note that the same conclusion was also derived in the section 4.1 of ref. [4]

using a more technical direct approach based on solving the boundary-value problem using

a deformation of the flat-wall solution in the form

h(τ, ~x) = v

(
1 + e−Mh(τ−τ∞)

1− e−Mh(τ−τ∞)

)
+ δh(τ, ~x) (4.7)

with the support on the singular surface τ = τ0(x).

The problem of finding the large-λn correction 1
λ g(λn) to the W function has a simple

geometric interpretation. We need to maximise the expression

1

2λ
g(λn) = −nMhτ∞ − Re(SEucl[τ0(x)]− SEucl[0])

= nMh|τ∞| − Re(SEucl[τ0(x)]− SEucl[0]) , (4.8)

where we have used the fact that τ∞ is negative and hence the first term on the right hand

side of (4.8) is positive-valued. This extremization problem corresponds to finding the

shape of the membrane with the surface tension dictated by the action SEucl and located

at the position τ∞ which is pulled at its centre by a constant force.

The main idea on which our calculation will be based is the geometrical interpretation

of the saddle-point field configuration as a domain wall solution separating the vacua with

different VEVs h → ±v on the different sides of the wall. Our scalar theory with the

spontaneous symmetry breaking in (1.1) clearly supports such field configurations.5 The

5We expect that a similar approach will also work in the full weak sector of the Standard Model where

the simplified description (1.1) applies to the single scalar degree of freedom in the unitary gauge. We

imagine first selecting the processes with the multiple production of scalars only in the final state. The

SM vector bosons and fermions would also contribute here as the virtual states in the loops, along with

the self-interactions of the scalars. The calculation in the present paper will account only for the scalar

self-interaction effects in the large λn limit, while the investigation of the role and size of quantum effects

due to virtual vectors and fermions is left for future work.
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solution is singular on the surface of the wall, and the wall thickness is ∼ 1/Mh. The effect

of the ‘force’ nMh applied to the domain wall locally pulls upwards the centre of the wall

and gives it a profile τ0(~x) depicted in figure 1. To find the equilibrium position of the

domain wall one needs to find an extremum of the expression in (4.8). When computing the

Euclidean action on the solution characterised by the domain wall at τ0(~x), it will be repre-

sented by the action of a thin-wall bubble. The shape of the bubble will be straightforward

to determine by extremizing the action in the thin-wall approximation, and the validity of

this approximation will be shown to be justified in the limit λn→∞. Our implementation

of this set-up will follow closely the construction of Gorsky and Voloshin in ref. [5].

The Euclidean action computed along the complex time evolution contour shown in

figure (1b) is given by the sum of three contributions, each of them corresponding to one of

the three segments of the integration contour. This structure SEucl = S
(I)
Eucl +S

(II)
Eucl− iS

(III)

is manifest in the expression on the right hand side of (3.3). But only the first two segments

contribute to the Real part of SEucl appearing in the rate in (4.8).

The real part of the action (3.3) computed on the field h(x) which is characterised by

the surface of singularities τ = τ0(~x) can be written as an integral on the singularity surface

in the thin-wall approximation. This is equivalent to stating that the action is equal to the

surface tension of the domain wall µ times the area A. We have,

SEucl[τ0(~x)] =

∫ 0

τ∞

dτ L(r, ṙ) =

∫ 0

τ∞

dτ 4πµ r2
√

1 + ṙ2 , (4.9)

where r = |~x| and ṙ = dr/dτ . The integral depends on the choice of the domain wall

surface τ0(~x) implicitly via dependence on τ of r(τ) and ṙ(τ) which are computed on the

domain wall. For the surface tension we have [5],

µ =

∫ ∞
−∞

dτ

(
1

2

(
dhcl

dτ

)2

+
λ

4

(
h2

cl − v2
)2)

=
M3
h

3λ
(4.10)

where integral in (4.10) is computed on the flat domain wall solution (2.6).

The contribution to the function − 1
2λ g(λn) computed on its saddle-point can be recast

as follows,

nMhτ∞ + SEucl = (nMh − E) τ∞ +

∫ 0

τ∞

dτ (L− E) (4.11)

= (nMh − E) τ∞ +

∫ 0

τ∞

dτ (L−H) (4.12)

= (nMh − E) τ∞ +

∫ R

r0

p(E, r) dr . (4.13)

On the first line we have subtracted and added the constant E which we take to be the

energy of the domain wall. The extremum of the overall expression above is achieved by

extremizing the action as well as differentiating with respect to τ∞. The former condition

implies that the surface of the wall satisfies the Euler-Lagrange equations of motion cor-

responding to the Lagrangian L. On these solutions their energy is an integral of motion
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and is equal to the Hamiltonian H. On the second line (4.12) we have traded E for H in

the integral. The Hamiltonian is defined in terms of the usual Legendre transformation of

the Lagrangian function L(r, ṙ) = 4πµ r2
√

1 + ṙ2,

H(p, r) = L(r, ṙ)− p ṙ , (4.14)

where the conjugate to r Euclidean momentum p is defined via,

p =
∂L(r, ṙ)

∂ṙ
= 4π µ

r2ṙ√
1 + ṙ2

. (4.15)

Thus we see that the integral
∫

(L−H)dτ on the right hand side of (4.12) is equivalent to

the integral
∫
p dr appearing in (4.13).

The variation of (4.13) with respect to τ∞ imposes the constraint E = nMh, which can

be understood as the fact that in the n-particle threshold limit, the energy of the field is the

energy in the final state which is given by nMh for ε = 0. Thus we have for the extremum,

E = nMh , Eτ∞ + SEucl =

∫ R

r0

p(E, r) dr , (4.16)

where p is the momentum conjugate to r and, as we will see momentarily, for the classical

solution of energy E, it can be written in the form,

p(E) = 4π µ

√
r4 −

(
E

4πµ

)2

. (4.17)

The lower bound of the integral in (4.16) is cut-off at the critical radius r0,

r2
0 =

E

4πµ
, (4.18)

which is the smallest possible radius of the bubble for which the conjugate momentum

in (4.17) is well-defined. The upper bound of the integral (4.16) is at R � 1 which will

be ultimately taken to infinity. To derive the expressions on the right hand sides of (4.16)

and (4.17), it is useful to re-write (4.14) in the form,

E = 4πµ r2
√

1 + ṙ2 − 4π µ
r2ṙ√
1 + ṙ2

= 4π µ
1√

1 + ṙ2
, (4.19)

and then compute the combination using the above expression and (4.15),

E2 + p2 =
(
4πµ r2

)2( 1

1 + ṙ2
+

ṙ2

1 + ṙ2

)
=
(
4πµ r2

)2
. (4.20)

With this we have

p = 4π µ
√
r4 − r4

0 , (4.21)

which of course is equivalent to (4.17).

What is the meaning of the critical radius r0 in (4.21) and (4.18)? It is the minimal

value of the radius of the bubble, r(τ) ≥ r0, formed by the membrane pulled by the force
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∼ E. If one tried to go to smaller values of the radius, the bubble will be torn by the now

excessive force [5] and no stable solution can be found. This is represented in the statement

that the conjugate momentum p(r) becomes complex below r = r0. What this implies for

our construction is that the surface of singularities τ = τ0(~x) gets folded into the real-time

axis for r ≤ r0. This is sketched in the figure (1d). For all practical purposes this simply

implies that the integral in the action in (4.16) has the lower limit at r = r0.

We can now evaluate the correction 1
λ g(λn) to the W tree function in the large λn limit.

In order to proceed with this task, note that we still have to subtract the contribution to

the action of the flat domain wall solution. Hence we have in total

− 1

2λ
g(λn) = Eτ∞ + SEucl[τ0]− SEucl[0] =

∫ R

r0

p(E) dr −
∫ R

0
p(E = 0) dr , (4.22)

where E = nMh as before and p(E) is given by (4.17). This is evaluated as follows. We

use the trick of [5] to introduce the identity 1 =
∫
dE d/(dE) and thus re-write the right

hand side of (4.22) as follows,∫ E

0
dE

(
d

dE

∫ R

r0

p(E) dr

)
= −

∫ E

0
dE

E

4πµ

∫ R

r0

dr√
r4 − r4

0

(4.23)

= −
∫ E

0
dE
√
E

1√
4πµ

∫ ∞
1

dx√
x4 − 1

= −E
3/2

√
µ

1

3

Γ(5/4)

Γ(3/4)
.

In summary, our final result for the quantum correction to the exponent of multi-

particle rate in the large λn limit is given by

1

λ
g(λn) := ∆W (E,n;λ) =

1

λ
(λn)3/2 2√

3

Γ(5/4)

Γ(3/4)
' 0.854n

√
λn . (4.24)

We note that this expression is positive-valued, that it grows in the limit of λn→∞, and

that it has the correct scaling properties for the semiclassical result, i.e. it is of the form

1/λ times a function of λn.

Numerically, our result agrees with the expression derived in ref. [5] for the case of

d = 3 spacial dimensions. It also follows that the thin-wall approximation is fully justified

in our λn � 1 limit. The thin-wall regime corresponds to the radius of the bubble being

much greater than the thickness of the wall, r � 1/Mh. In our case the radius is always

greater than the critical radius,

rMh ≥ r0Mh = Mh

(
E

4πµ

)1/2

∼
(
λE

Mh

)1/2

=
√
λn � 1 . (4.25)

5 Discussion of the results

We have computed the quantum contributions to the exponent of the multi-particle pro-

duction rate that are dominant in the high-particle-number λn→∞ limit in the kinematics

of near-maximal n where the final state particles are produced near their mass thresholds.

This corresponds to the limit

λ→ 0 , n→∞ , with λn = fixed� 1 , ε = fixed� 1 . (5.1)
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The resulting quantum-effects-corrected multi-particle production rate at energy E is one

of the main results of this paper and it is given by a characteristic exponential-form repre-

sentation in the limit (5.1), obtained by combining the previously known tree-level contri-

bution (4.2) with our new result (4.24). We have,

Rn(E) = eW (E,n) = exp

[
λn

λ

(
log

λn

4
+0.85

√
λn−1+

3

2

(
log

ε

3π
+ 1
)
− 25

12
ε

)]
. (5.2)

This expression for the multi-particle rates was used in ref. [3] to motivate and illustrate

the Higgsplosion mechanism. The expression (5.2) was derived in the near-threshold limit

where the parameter ε is treated as a fixed number much smaller than one. The energy in

the initial state and the final state multiplicity are related linearly via

E/Mh = (1 + ε)n , (5.3)

and thus for any fixed non-vanishing value of ε, one can raise the energy to achieve any

desired large value of n and consequentially a large
√
λn. Clearly, at the strictly vanishing

value of ε, the phase-space volume is zero and the entire rate (5.2) vanishes. Then by

increasing ε to a positive but still small values, the rate increases. The competition is

between the negative log ε term and the positive
√
λn term in (5.2), and there is always a

range of sufficiently high multiplicities where
√
λn overtakes the logarithmic term log ε for

any fixed (however small) value of ε. This leads to the exponentially growing multi-particle

rates above a certain critical energy, which in the case described by the expression in (5.2)

is in the regime of Ec ∼ 200Mh.

To illustrate the emergence of Higgsplosion, we plot Rn(E) of (5.2) in figure 2 at

fixed values of E and vary n. The values of the energy are chosen to zoom on the range

where Rn(E) changes from the exponentially small to exponentially large values. The

energy dependence of this transition is very sharp, this fact playing an important role in

effectively cutting off at Ec the loop integrals contributing to the Higgs mass in the solution

to the Hierarchy problem proposed in [3]. It is also easy to understand the peak in the

particle number n for each fixed-energy plot in figure 2. At relatively low values of n the

multi-particle rate is small, as expected, while at the maximal value nmax = E/Mh the rate

is zero again as we have run out of the phase space for the final-state particles; hence the

local maximum in n appears before the edge of the phase-space is reached, and is located

at the values of n parametrically close to the maximal n.

The expression for the multi-particle rate (5.2) should of course not be taken as the full

final result for the physical Higgsplosion rate. We have already emphasised that this result

is an approximation derived in the simplified scalar model (1.1) and in the simplifying

non-relativistic limit. Specifically, our main result (4.24) was derived on the multi-particle

threshold, i.e. at ε = 0. Hence the higher-order corrections in ε will be present in the

expression for the rate in the λn limit. Denote these corrections fλn;ε(λn, ε), so that

∆newW =
λn

λ
fλn;ε(λn, ε) , (5.4)

and the now modified rate becomes,

Rn(E) ∼
∫ εnr

0
dε
( ε

3π

) 3n
2

exp
[
n
(

0.85
√
λn+ log λn+ fλn;ε(λn, ε) + c

)]
(5.5)

– 16 –



J
H
E
P
0
6
(
2
0
1
7
)
1
4
8

0 50 100 150 200

0

1.´10
-6

2.´10
-6

3.´10
-6

4.´10
-6

n

R

E�M=190

0 50 100 150 200

0.00

0.01

0.02

0.03

0.04

n

R

E�M=195

0 50 100 150 200

0

100

200

300

400

n

R

E�M=200

0 50 100 150 200

0

2´10
6

4´10
6

6´10
6

8´10
6

1´10
7

n

R

E�M=205

Figure 2. Multi-particle decay rates eq. (5.2) of a highly-energetic single-particle state into n

scalars plotted as function of n. The four sub-figures show the energy E fixed at 190Mh, 195Mh,

200Mh and 205Mh and we used λ = 1/8. There is a sharp exponential dependence of the peak rate

on the energy. The peak multiplicities n ∼ 150 in these examples are not far from the maximally

allowed values at the edge of the phase space nmax ∼ E/Mh.

where we have included the new correction n ∼ fλn;ε(λn, ε) and have also made explicit

the fact that the 3n/2 log ε/(3π) factor in the exponent of the rate (5.2) originated from

the integration over the non-relativistic n-particle phase-space with a cut-off at εnr < 1.

The constant c absorbs various constant factors appearing in the original rate.

The integral above is of course meant to be computed in the large-n limit by finding

the saddle-point value ε = ε?. The main point of the exercise is to determine (1) whether

there is a regime where ε? � 1 so that our near-the-threshold approach is justified, and

(2) whether the saddle-point value of the rate itself is large. These requirements should

tell us something about the function fλn;ε.

Let us assume that the correction to our result has the form,

fλn;ε(λn, ε) = −a ε (λn)p , (5.6)

where a and p are constants. This function is supposed to represent the higher-order in ε

correction to our result in the small-ε, large-λn limit. The integral we have to compute is,

Rn ∼ en(0.85
√
λn+log λn+c̃)

∫
dε en(

3
2

log ε−a ε (λn)p) . (5.7)
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Denoting the ε-dependent function in the exponent s(ε),

s(ε) =
3

2
log ε− a ε (λn)p , (5.8)

we can compute the saddle-point,

∂s(ε)

∂ε
= 0 ⇒ ε? =

3

2

1

a

1

(λn)p
, (5.9)

and the value of the function s at the saddle-point,

s(ε?) = −3

2

(
p log λn+ 1− log

3

2a

)
. (5.10)

Combining this with the function in the exponent in front of the integral in (5.7) we find

the saddle-point value of the rate,

Rn(ε?) ∼ exp

[
n

(
0.85
√
λn−

(
3p

2
− 1

)
log λn+ const

)]
. (5.11)

This is the value of the rate at the local maximum, and since the factor of
√
λn grows

faster than the − log λn term, the peak value of the rate is exponentially large in the limit

of
√
λn∞. It is also easy to verify that this conclusion is consistent within the validity of

the non-relativistic limit. In fact, the value of ε at the saddle-point is non-relativistic,

ε? =
3

2

1

a

1

(λn)p
→ 0 , as λn→ ∞ . (5.12)

We thus conclude that the appearance of the higher-order in ε corrections to our result in

the form (5.6) do not prevent the eventual Higgsplosion in this model at least in the formal

limit
√
λn→∞ where we have found that

Rn(ε?) � 1 . (5.13)

The growth persists for any constant values of a and p. In fact, if a was negative, the

growth would only be enhanced. In (5.6) we have assumed that the function goes as ε to

the first power. The higher powers would not change the conclusion, while the effect of

∼ ε0 is what is already taken into account in (4.24).

For completeness, we note that only a rather extreme type of corrections would prevent

the Higgsplosion in this theory. They would have to be of the form,

fλn;ε(λn, ε) = − ε e(λn)p , (5.14)

which in terms of Rn would amount to a negative double exponential,

Rn ∼ exp
[
−nε e(λn)p

]
∼ exp

[
−E e(λn)p

]
, (5.15)

which we find to be rather unlikely.

Our discussion up to now concentrated entirely on a simple scalar field model. If more

degrees of freedom were included, for example the W and Z vector bosons and the SM
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fermions, new coupling parameters (such as the gauge coupling αw and the top Yukawa

yt) would appear in the expression for the rate along with the final state particle multi-

plicities. As there are more parameters, the simple scaling properties of Rn in the pure

scalar theory will be modified. If the scaling persists, there will be more to it than the

two variables λn and ε. Understanding of how this works and investigating the appropri-

ate weak-coupling/high-multiplicity semiclassical limit or limits is an important task for

future work.

One can however consider such effects in the leading order in the loop expansion, i.e.

where the λn parameter is considered to be small. Very recently the contributions of

virtual top quarks (more generally, fermions and/or scalars coupled to the Higgs) to the

multi-Higgs amplitudes on the threshold were computed in [23]. Their result for the case

of the top quark is that the threshold amplitude of the pure Higgs theory is multiplied by

an overall factor,

An −→ An

(
1− C n2λ

1

n
6−4

mt
Mh

+O(λ2)

)
, (5.16)

where mt is the top quark mass and the numerical coefficient C for the top-quark

correction is

C = C

(
mt

Mh

)
' (8.0 + i 5.8)

√
3

8π
. (5.17)

What is currently unknown is whether these corrections can exponentiate, and if so, what

their effect might be in the appropriate large λn limit. If there is no effective exponenti-

ation of these effects, in our view it would be extremely unlikely to expect that a precise

cancellation in the prefactor of the multi-particle rate could occur. If the exponentiation of

these effects does occur, as it did for the virtual corrections within the scalar sector itself,

the possible effects of it need yet to be understood. We have written the top-quark correc-

tion in (5.16) in a suggestive form, singling out the factor of n2λ. This was done in order to

compare its effect to the leading order correction to the Rn in the scalar theory (cf. (4.5)),

n2λ

√
3

4π
vs. n2λ

1

n
6−4

mt
Mh

2ReC ' n2λ

n0.48

8
√

3

4π
. (5.18)

Formally, there is a parametric suppression of the top-corrections relative to the leading

order loop correction in the scalar sector. In the asymptotic limit of large n they would

be subleading. The resummation of the loop corrections in the scalar sector is what have

resulted in the large
√
λn effect we have computed. On the other hand, at present little

is known about the prospects of resummation or even the sign of the effect related to the

top quark corrections. Similarly, important effects should also from including the vector

bosons, and these avenues should be pursued in future.

The main conclusion we draw from the results presented in this paper is that we have

demonstrated that the Higgsplosion phenomenon is realised above a critical energy/high-

multiplicity scale in a concrete QFT settings. The theory we used is the scalar QFT (1.1)

with the spontaneous symmetry breaking. The idea of Higgsplosion as a possible solution to

the Higgs mass-induced Hierarchy problem also has direct model-building and phenomeno-

logical consequences. From the phenomenological perspective the idea is also testable,
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for example by studying the feasibility of observing of the muti-Higgs and multi-vector-

boson production cross-sections at future hadron colliders [16, 22]. The Higgsplosion yield

at colliders was recently addressed in ref. [24]. We believe that studies of Higgsplosion

phenomenology offers promising and exciting opportunities for future in particle physics

and cosmology.
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