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Abstract We present the implementation of several color-
singlet final-state processes at Next-to-Next-to Leading
Order (NNLO) accuracy in QCD to the publicly available
parton-level Monte Carlo program MCFM. Specifically we
discuss the processes pp → H , pp → Z , pp → W ,
pp → HZ , pp → HW and pp → γ γ . Decays of the
unstable bosons are fully included, resulting in a flexible
fully differential Monte Carlo code. The NNLO corrections
have been calculated using the non-local N -jettiness sub-
traction approach. Special attention is given to the numerical
aspects of running MCFM for these processes at this order.
We pay particular attention to the systematic uncertainties
due to the power corrections induced by the N -jettiness reg-
ularization scheme and the evaluation time needed to run the
hybrid openMP/MPI version of MCFM at NNLO on multi-
processor systems.

1 Introduction

The second run of the LHC (Run II) which is currently under
way, will result in the accumulation of an unprecedented
amount of high-quality data in a new high energy regime.

Version 8.0 of MCFM can be downloaded from the
mcfm.fnal.gov website.
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In tandem with the well-understood and carefully calibrated
detectors, this will lead to experimental uncertainties that are
at the level of a few percent or smaller for many of the most
important processes. These include various Higgs boson pro-
duction channels, as well as standard candle processes such as
vector boson production. Studies of diboson production will
allow for stringent tests of the Electroweak sector of the Stan-
dard Model (SM) and constraints on possible new physics
scenarios. In order to make best use of the precise experi-
mental observations it is crucial to have access to accurate
theoretical calculations of the same quantities. At the LHC
this requires the calculation of QCD corrections to inclusive
and differential cross sections at increasingly higher order.
For the most efficient comparison between theoretical pre-
dictions and experimental data it is extremely beneficial for
theoretical results to be released in the form of a public code,
allowing users full flexibility in obtaining theoretical predic-
tions relevant for their analysis.

While calculations at next-to-leading order (NLO) in the
strong coupling constant are by now quite standard, only
about 20 processes have been calculated through to next-to-
next-to-leading order (NNLO). Recent publications on these
processes are shown in Table 1.

All such calculations require a means by which to regulate
the soft and collinear radiation that appears in the calcula-
tion of the higher-order contributions. At NLO local subtrac-
tion schemes, such as FKS [41] or Catani–Seymour dipole
subtraction [42], are typically preferred. In these local sub-
traction formalisms, the singular unresolved infrared limits
are cancelled point-wise by local counterterms. These local
counterterms, after analytic integration over the unresolved
partons, are added to the virtual corrections yielding a finite
result.
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Table 1 Publications on
processes evaluated
differentially at NNLO

H + 0 jet [1–4] H + 1 jet [5–9] Higgs WBF [10] H → bb̄ [11,12]

W + 0 jet [13,14] Z/γ ∗ + 0 jet [4,14,15] W + 1 jet [16] Z + 1 jet [17–20]

ZH [21,22] WH [22,23] WZ [24]

Z Z [25–27] WW [28–30] W + γ, Z + γ [31] γ γ [32,33]

t t̄ [34,35] Single top [36] Top decay [37,38] dijets [39,40]

The construction of a local subtraction scheme for a
NNLO calculation is a daunting task, given the complex-
ities of the multiple infrared limits and differing dimen-
sionality of phase space for the component parts. How-
ever, progress has been made, with significant advances over
the last decade. The first local subtraction scheme used at
NNLO was based on the sector decomposition approach that
had previously been applied to multi-loop integrals [43,44]
and was later adapted to the case of phase-space inte-
grals [45,46]. This scheme separates the overlapping sin-
gularities by using a plus-prescription to isolate the singu-
lar contributions, thereby avoiding any analytic integrations
over regions of phase space. The antenna subtraction method
was extended to NNLO in Refs. [47,48], and has been used
to obtain predictions for 2 → 2 processes in which both
final-state particles are colored [40]. Antenna subtraction
resembles the NLO subtraction formalisms in that the dou-
bly unresolved limits are cancelled point-by-point in phase
space by counterterms which require analytic integration to
cancel infrared poles in the real-virtual and double virtual
phase spaces. Finally in Refs. [49–51] the sector decompo-
sition approach was generalized to arbitrary processes. By
partitioning the phase space into appropriate sectors in which
each singularity can be made manifest, and then performing
a Laurent series expansion to extract the poles. This method
has been applied to various processes at the LHC [5,7,34,38].

In addition to the local subtraction schemes discussed
above, there is an alternate form of regulation, which is
inherently non-local. Indeed one of the first NLO regular-
ization techniques developed was one such method, phase-
space slicing, introduced in Refs. [52–54]. In these methods
a parameter is used to separate the resolved and unresolved
phase spaces. The resolved region of phase space corresponds
to a calculation of the process with one additional final-state
parton, and if a suitable resolution parameter is chosen, the
unresolved region can be directly calculated. At NLO non-
local methods have generally fallen out of favor. This is due
to the large cancellation between the resolved and unresolved
contributions at small values of the resolution parameter,
which can induce large Monte Carlo uncertainties.

However, non-local subtraction schemes have made a
resurgence for NNLO calculations. Although they have the
disadvantages discussed above they also have several advan-
tages which make them attractive for NNLO calculations.
First, they are conceptually simple to implement. Once a

suitable resolution parameter is selected, the singly unre-
solved part of the calculation can be obtained with exist-
ing NLO event generators, such as MCFM [55–57]. Second,
with recent advances in computing, the drawback associated
with the large numerical cancellations can be mitigated by
running with a large number of computer cores. Finally by
using a resolution parameter motivated by a physical factor-
ization theorem, the approximations inherent in the method
can be systematically improved, e.g. by analytic calculations
of power-suppressed contributions [58].

The first non-local subtraction developed for NNLO cal-
culation was the so-called qT subtraction method [3]. This
method uses the transverse momentum of the final-state color
neutral particle, qT , as the cut variable. For qT < qcut

T the
factorization theorem of Collins, Soper and Sterman [59],
can be used to compute the cross section, while above the
cutoff the NLO calculation of the color singlet plus jet can
be utilized. An obvious drawback is that it is only appli-
cable to color neutral final states. Inspired by a factoriza-
tion formula [60] from soft collinear effective field theory
(SCET) [61–65] the first steps toward extending these ideas
to calculations containing colored final states were taken in
a calculation of top-quark decay at NNLO [37]. However,
no initial collinear singularities appear in this calculation. A
powerful generalization of this idea applicable to general ini-
tial and final states was introduced in [4,16]. It is obtained
by replacing the qT variable with the event-shape N -jettiness
variable [66]. Below the N -jettiness (τN ) cutoff, SCET pro-
vides the relevant factorization theorem [66]. For the below-
cut region the necessary SCET ingredients, corresponding to
the final-state and initial-state collinear radiation functions
are already known, and are represented by the two-loop jet-
functions of Refs. [67,68] and the two-loop beam function
of Ref. [69,70]. The corresponding two-loop soft functions
are also known for zero-jettiness [71,72] and for general N -
jettiness [73]. The first process calculated at NNLO using this
method was pp → W+jet [16], followed by calculations of
the pp → Higgs+jet [8] and pp → Z+jet [18] processes,
and by detailed phenomenological studies of these processes
at this order [74–76]. pp → H and pp → Z were also cal-
culated using this method [4]. Additional processes of phe-
nomenological interest, pp → V H [22] and pp → γ γ [33]
have been calculated using the same approach.

As mentioned before, an important advantage of the N -
jettiness subtraction method is that it meshes well with the
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existing NLO calculations, such as those included in MCFM.
Included in MCFM are the NLO corrections to W + n jet
production, Z + n jets production [77], Higgs +n jets pro-
duction [78,79] for (n = 0, 1, 2), making the implementation
of W , Z , H + 0,1 jet at NNLO possible.

The recent advances in NNLO technologies allows for
the exciting possibility of releasing a public code capable of
computing many 2 → 2 processes at NNLO accuracy. This
paper presents a first step in this journey by summarizing the
implementation of the N -jettiness subtraction procedure in
MCFM, and presenting a detailed breakdown of the method
for the processes released in the initial version of the NNLO
code. An important consideration in making the code public
is computational speed. In Ref. [57] MCFM was upgraded
to use a parallel version of the VEGAS adaptive integra-
tion method using openMP. For NNLO calculations, this was
expanded by using a hybrid g/MPI version of MCFM for use
on computing clusters to facilitate the numerical NNLO cal-
culations of Ref. [18]. Using the hybrid version of MCFM
we can calculate NNLO distributions efficiently within a rea-
sonable timescale.

In summary, this paper describes the implementation of
the N -jettiness subtraction procedure in MCFM and presents
results for the processes available in MCFM v8.0. Specifi-
cally these processes are pp → H,W, Z , V H, γ γ . Where
present, the decays of unstable particles are included, allow-
ing for a fully flexible MC code. In Sect. 2 we will give a
schematic overview of the non-local N -jettiness subtraction
scheme. Section 3 will present details of the calculational
set-up and Sects. 4 and 5 will look at the N -jettiness subtrac-
tion at NLO and NNLO, respectively. The more numerical
aspects are studied in Sect. 6. Finally in Sect. 7 the main
results are summarized.

2 SCET-based non-local subtraction

A collision of partons a and b with momentum fractions xa,b,
originating from the incoming beam protons with momenta
pa,b, produces a final state including N jets with momenta
{qi }. The jettiness of parton j with momentum p j is defined
as

T N (p j ) = min
i=a,b,1,...,N

{
2 qi · p j

Qi

}
, (2.1)

where for notational simplicity we have set qa,b = pa,b. We
denote the jet or beam energy by Ei . Qi is a measure of the
jet/beam hardness. In our numerical results we set this equal
to twice the jet/beam energy, Qi = 2Ei [66]. We can now
define the event jettiness, or N -jettiness, as the sum over all
the M final-state parton jettiness values

TN =
M∑
k=1

TN (pk) =
M∑
k=1

min
i=a,b,1,...,N

{
2 qi · pk

Qi

}
. (2.2)

For Leading Order (LO) events we have {pi } = {qi } and the
event jettiness is zero. Beyond LO (M > N ), only in the
soft/collinear limit will the event jettiness necessarily go to
zero. Therefore the event N -jettiness can be used in a non-
local subtraction approach where we can isolate the doubly
unresolved region of the phase space by demanding TN <

T cut
N . In this paper we restrict ourselves to color-singlet final-

state events. We can therefore use the event-shape variable
T0 to regulate the initial-state radiation.

By demanding T0 < T cut
0 one isolates the doubly unre-

solved regions of phase space. The matrix elements in the
soft/collinear approximation can be analytically integrated
over this region and added to the virtual contributions. The
regions of phase space where T0 > T cut

0 are integrated over
numerically. In the limit T cut

0 → 0 this will result in the
correct results for the cross section.

To obtain the analytic soft/collinear expressions we use
all-orders resummation results which rely heavily on the
machinery of soft-collinear effective theory (SCET) [61–65].
The all-orders resummation of the T0 event-shape variable in
the limit T0 → 0 was constructed in Ref. [66]:

dσ

dT0
=

∑
ab

∫
dxadxb

∫
d�B(pa, pb; psinglet)�(psinglet)

×Hab(�B, μ)
d�ab

dT0
+ · · ·, (2.3)

where the indices a, b run over all initial-state partons
involved in the scattering. The initial-state momenta pa,b are
given by the momenta fractions xa,b, while �B denotes the
Born-level color-singlet phase space pa pb → psinglet. The
composite �(psinglet) denotes any phase-space restrictions
on the color-singlet phase space. The soft/collinear function
�ab is given by

d�ab

dT0
= Ba ⊗ Bb ⊗ Sab

≡
∫

dtBadtBbdtS δ
(
T0 − tBa − tBb − tS

)
×Ba(tBa , xa, μ) Bb(tBb , xb, μ) Sab(tS, μ). (2.4)

A summary of the various components which appear in these
expressions is given below:

• The hard function H encodes the effect of hard vir-
tual corrections. At leading order in the αs-expansion
it reduces to the leading-order partonic cross section. At
higher orders it also contains the finite contributions of
the pure virtual corrections, renormalized at scale μ using
the MS scheme. It depends on the Born-level kinematics
and the scale choice.
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• The beam function Ba contains the effects of initial-state
collinear radiation. It depends on tBa , the contribution
of initial-state collinear radiation to T0. The beam func-
tion is non-perturbative; however, up to corrections sup-
pressed by 
QCD/tB , it can be written as a convolution of
perturbative matching coefficients and the usual parton
density functions, fi/H ,

Ba(tBa , x, μ) =
∑
i

∫ 1

x

dξ

ξ
Iai (tBa , x/ξ, μ) fi/H (ξ),

(2.5)

where we have suppressed the scale dependence of the
parton density functions, and i runs over all partons.
The two-loop beam functions have been computed in
Refs. [69,70].

• The soft function S collects the jettiness contributions
of soft radiation. It depends on tS , the contribution of
soft radiation to T0. The expansion of the soft function
for zero-jettiness up to two-loop order can be found in
Refs. [71,72].

The delta function appearing in Eq. (2.4) combines the con-
tribution of each type of radiation to produce the measured
value of T0. The factorization formula is correct up to power
corrections, indicated by the ellipsis in Eq. (2.3). These power
corrections can in principle be calculated in the same way as
one derives the leading power components in Eq. (2.4). How-
ever, they can be neglected as long as we restrict ourselves
to the phase-space region T0 � Q, where Q denotes the
hard scale in the process (for the zero-jet processes consid-
ered here, Q is of the order of the invariant mass of the final
state). Integrating Eq. (2.3) over the region T0 < T cut

0 will
give the analytic result for the below-cut cross section:

dσ(T cut
0 )

=
∑
ab

∫
dxadxb

∫
d�B(pa, pb; psinglet)�(psinglet)

×Hab(�B, μ)�ab(T cut
0 ) + · · · , (2.6)

with

�ab(T0 < T cut
0 ) =

∫ T cut
0

0
dT0 (Ba ⊗ Bb ⊗ Sab) . (2.7)

Next we expand the functions order by order in αS using a
superscript to denote the power of αs appearing in each term.
That is, we expand any perturbative function F as

F = F (0) + αSF (1) + α2
SF (2) + · · · . (2.8)

This results in

dσ (n)(T cut
0 )=

∑
ab

∫
dxadxb

∫
d�B(pa, pb; psinglet)�(psinglet)

×
n∑

k=0

H (n−k)
ab (�B, μ)�

(k)
ab (T cut

0 ) ,

�
(n)
ab (T cut

0 ) =
∑

k+l+m=n

∫ T cut
0

0
dT0

(
B(k)
a ⊗ B(l)

b ⊗ S(m)
ab

)
.

(2.9)

To obtain the O(α2
s ) correction to the soft/collinear cross

section below the T cut
0 we need

�
(0)
ab (T cut

0 ) =
∫ T cut

0

0
dT0 B(0)

a ⊗ B(0)
b ⊗ S(0)

ab

= fa/H (xa) fb/H (xb) ,

�
(1)
ab (T cut

0 ) =
∫ T cut

0

0
dT0

(
B(1)
a ⊗ B(0)

b ⊗ S(0)
ab

+ B(0)
a ⊗ B(1)

b ⊗ S(0)
ab +B(0)

a ⊗ B(0)
b ⊗S(1)

ab

)
,

�
(2)
ab (T cut

0 ) =
∫ T cut

0

0
dT0

(
B(2)
a ⊗ B(0)

b ⊗ S(0)
ab

+ B(0)
a ⊗ B(2)

b ⊗ S(0)
ab + B(0)

a ⊗ B(0)
b ⊗ S(2)

ab

+ B(1)
a ⊗ B(1)

b ⊗ S(0)
ab + B(1)

a ⊗ B(0)
b ⊗ S(1)

ab

+ B(0)
a ⊗ B(1)

b ⊗ S(1)
ab

)
. (2.10)

Note that the leading-order expressions for the subtraction
functions are proportional to delta functions in their respec-
tive hadronic variable:

B(0)
a (tBa , xa, μ) = δ(tBa ) fa/H (xa); S(0)

ab (ts, μ) = δ(ts) .

(2.11)

The soft and beam function have the generic forms

S(n)(ts, μ) = s(n)
−1δ(ts) +

2n−1∑
k=0

s(n)
k Lk(ts, μ) ,

I(n)
i j (ta, z, μ) = i (n)

−1,i j (z)δ(ta) +
2n−1∑
k=0

i (n)
k,i j (z)Lk(ta, μ) ,

Ln(t, μ) = 1

μ

[
μ lnn(t)

t

]
+

. (2.12)

For example, the following contributions to the NNLO SCET
function become∫ T cut

0

0
dT0 S(2) ⊗ I(0)

ai ⊗ I(0)
bj

= δai δbj

{
s(2)
−1 +

3∑
n=0

1

n + 1
s(2)
n Ln+1

}
,
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∫ T cut
0

0
dT0 S(1) ⊗ I(1)

ai ⊗ I(0)
bj

= δbj

{
s(1)
−1i

(1)
−1,ai (z) + s(1)

−1

1∑
n=0

1

n + 1
i (1)
n,ai (z) L

n+1

+i (1)
−1,ai (z)

1∑
n=0

1

n + 1
s(1)
n Ln+1

+
1∑

m,n=0

s(1)
m i (1)

n,ai (z)�m,n

⎫⎬
⎭ , (2.13)

where

L = ln

(T cut
0

μ

)
. (2.14)

and

�0,0 = L2 − ζ2

�1,0 = �0,1 = L3

2
− ζ2L + ζ3

�1,1 = L4

4
− ζ2L

2 + 2ζ3L − ζ 2
2

10
.

(2.15)

Using these results it is possible to analytically compute all
of the necessary hadronic integrals in Eq. (2.10). The remain-
ing integrals are over the Born phase space and parton dis-
tribution functions, and are simple to perform numerically.
This completes the calculation of the T0 < T cut

0 phase-space
region. We note that the cross section below T cut

0 will con-
tain terms of the form lnn(T cut

0 ), where n ranges from 0
to 4 at NNLO. An important check of our framework is
the cancellation of these terms against the identical loga-
rithms that appear for T0 > T cut

0 . We must also choose T cut
0

small enough to suppress the power corrections in Eq. (2.3).
Both of these issues will be addressed in the subsequent sec-
tions.

3 Process overview

For all of the studies performed in this paper we perform cal-
culations for the LHC operating at a center-of-mass energy
of

√
s = 13 TeV. The parameters that are used through-

out this paper are shown in Table 2. Finally, we use the
NNLO MSTW2008 PDF set (MSTW8nn) that corresponds
to αs(MZ ) = 0.11707.

An overview of the processes that will be studied in detail
in this paper is shown in Table 3.1 As well as detailing the
default choice of renormalization and factorization scales
(μR and μF ), this table also shows the corresponding cross

1 In addition, we include a more limited study of the diphoton process.

Table 2 Masses, widths, couplings, and scales used in the calculation of
all processes. Note that the value of α(mZ ) corresponds to 1/α(mZ ) =
132.3384323

mZ 91.1876 GeV α(mZ ) 0.0075563839

mW 80.398 GeV sin2 θw 0.2226459

mH 125 GeV mt 172 GeV

�Z 2.4952 GeV g2
w 0.4264904

�W 2.1054 GeV e2 0.0949563

GF 0.116639×10−4

section up to NNLO. The NNLO cross sections are written
in the form

σNNLO = σLO ×
(

1 + �σNLO

σLO
+ �σNNLO

σLO

)
, (3.1)

so that, for instance, the corresponding NLO result is
obtained by simply omitting the final term in this equation.
The cross sections have been obtained by running the read-
ily available public codes referenced in the final column of
Table 3.

We now describe the calculational setup that we use for
these processes, which corresponds to the default behavior
of the above codes. This behavior has been matched in the
MCFM code and, in order to establish the equivalence of the
parameters for MCFM and the other publicly available codes,
we compare results up to NLO in Table 4. The agreement
is excellent for all processes, so that we can be sure that
MCFM should produce the same results as the other codes
when computing the NLO and NNLO predictions using the
N -jettiness subtraction method.

3.1 Higgs production through gluon fusion

We work in a theory in which only the top quark has a non-
zero Yukawa coupling. Taking the large mt limit we obtain
an effective Lagrangian that expresses the coupling of gluons
to the Higgs field [84],

Lint
H = C(m2

t , μ
2)

2
H

∑
a

Ga
μν G

μν
a . (3.2)

where the sum is over the color degrees of freedom of the
gluon. At the order required in this paper, the coefficient
C(m2

t , μ
2) is given in the MS scheme by [85,86],

C(m2
t , μ

2)

= αS

6πv

{
1 + αs

4π
(5CA − 3CF )

+
( αs

4π

)2
[

27

2
C2
F +

(
11 ln

m2
t

μ2 − 100

3

)
CFCA
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Table 3 Inclusive results from validation codes (listed in the final column) for processes considered in this paper. NLO and NNLO corrections are
shown as relative enhancements to the LO cross section. q2 is the overall invariant mass squared of the vector boson and the Higgs boson

Process μR μF Cross section to NNLO Reference

gg → H MH MH 12.937 × (1 + 1.28 + 0.77) pb ggh@nnlo [80]

Z 2MZ MZ/2 44.303 × (1 + 0.22 + 0.05) nb ZWMS [81]

W+ 2MW MW /2 81.561 × (1 + 0.23 + 0.06) nb ZWMS [81]

ZH
√
q2

√
q2 0.68255 × (1 + 0.16 + 0.10) pb vh@nnlo [82,83]

W+H + W−H
√
q2

√
q2 1.2593 × (1 + 0.16 + 0.02) pb vh@nnlo [82,83]

Table 4 Comparison of LO and
NLO cross sections computed
using the standard MCFM
subtraction method with the
codes used for cross-checking in
this paper

Process Order MCFM cross section Cross-check

H production LO 12.937 ± 0.001 pb 12.937 pb

NLO 29.520 ± 0.001 pb 29.521 ± 0.001 pb

Z LO 44.303 ± 0.001 nb 44.303 nb

NLO 53.958 ± 0.002 nb 53.957 ± 0.001 nb

W+ LO 81.559 ± 0.002 nb 81.561 nb

NLO 100.298 ± 0.003 nb 100.299 ± 0.001 nb

ZH LO 0.68254 ± 0.00001 pb 0.68255 pb

NLO 0.79073 ± 0.00003 pb 0.79079 ± 0.00006 pb

W+H + W−H LO 1.2592 ± 0.00001 pb 1.2593 pb

NLO 1.4629 ± 0.00001 pb 1.4630 ± 0.0001 pb

−
(

7 ln
m2

t

μ2 − 1063

36

)
C2

A

−4

3
CFTF− 5

6
CATF−

(
8 ln

m2
t

μ2 +5

)
CFTFn f

−47

9
CATFn f

]}
. (3.3)

Herev is the vacuum expectation value of the Higgs field, v =
246 GeV. The only remaining mt -dependence at this order
is the one shown in the O(α2

s ) contribution to the coefficient
of the effective operator.

The validation cross section for this process is obtained
using ggh@nnlo [80]. As can be seen from Table 3, at
13 TeV the higher-order corrections to this cross section are
quite large.

3.2 W and Z production

To establish the correct values of the higher-order cross
sections for W+ and Z production we use the program
ZWMS [81]. For the sake of illustration we have chosen to
perform the comparison for only one charge of the W -boson.
We note that for the canonical scale choice μR = μF = MV

(where V = W, Z ) the NNLO corrections are very small.
Although this is ultimately an advantage in terms of the accu-
racy required for phenomenological applications, it prohibits
a careful study of the behavior of the N -jettiness calculation.
To enhance the size of the NNLO correction we therefore

use an asymmetric choice, μR = 2MV , μF = MV /2. This
results in NNLO corrections of approximately 5% relative to
the LO cross section at 13 TeV (cf. Table 3).

Note that by default MCFM includes the decay of the
vector bosons, Z/γ ∗ to a lepton pair. For comparison with
the rate for production of on-shell Z -bosons, we remove the
(small) contribution mediated by a virtual photon and divide
out the overall branching ratio of the Z -boson to leptons.

3.3 Associated Higgs production: W±H and ZH processes

To establish target NLO and NNLO values for the total cross
section for W±H and ZH production we use the program
vh@nnlo [82,83]. In order to facilitate an easy comparison
with this program, we use the scale choice μR = μF =√
q2 ≡ √

(pV + pH )2, with V = W± or V = Z as appro-
priate. We also sum over both charges of the W boson, i.e. we
include both W+ and W− contributions—which can differ
substantially at a pp collider such as the LHC—in all of the
results below. For the diagrams in which the Higgs boson
couples directly to a top-quark loop we work in the effec-
tive theory, valid in the large mt limit given by Eq. (3.2). A
detailed phenomenological study of the NNLO implemen-
tation of these processes in MCFM has been presented in
Ref. [22].

For both W±H and ZH processes the correction origi-
nating from diagrams with the Higgs boson coupling to a
top-quark loop is approximately 1.5%. The ZH process also
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includes a substantial finite component due to gg → ZH
loops at NNLO. The NNLO corrections that correspond to
simple dressings of the LO diagrams are very small, of order
1%, for both W±H and ZH production. The net effect of
all these contributions is shown in Table 3, where the NNLO
corrections to the ZH process are at the level of 10%. In
contrast, the total NNLO correction to the W±H process is
about 2% of the LO result.

3.4 Diphoton production

NNLO predictions for the diphoton process, obtained using
MCFM, have been presented in Ref. [33]. Therein the results
have been validated using the same procedure as we will
adopt later; we do not repeat that analysis here. However, we
will later on summarize the size of the power corrections and
timing results for this process.

4 N-Jettiness subtraction at NLO

Although the calculation of NLO corrections for the pro-
cesses considered here is straightforward, a detailed exami-
nation of the corresponding N -jettiness subtraction calcula-
tion is extremely useful. It provides a stringent check of the
accuracy of this approach, namely a direct probe of the size of
the power corrections that have been neglected in Eq. (2.3).
This can be tested with exquisite accuracy, due to the relative
simplicity of the calculation compared to the corresponding
exercise at NNLO. This comparison can also illuminate the
limitations of this approach when moving beyond an inclu-
sive calculation, by using MCFM to compare calculations of
differential distributions at NLO.

The calculation of NLO corrections using the N -jettiness
subtraction method is straightforward in MCFM. The below-
cut contribution is easily computed, while the above-cut con-
tribution corresponds to a LO calculation of the process that
contains an additional parton. In order to avoid numerical
instability in calculations using MCFM, previous versions of
the code have applied a small cutoff on all invariant masses
present in the problem,

√
si j > cutoff. In this version this

has been changed so as to enforce a small cutoff on the par-
tonic jettiness of every parton present in a given calculation,
TN (p j ) > cutoff. Since the above-cut region involves
a standard LO calculation, for which there are no numerical
instabilities, we are able to choose a value for this cutoff close
to the limit of double precision, cutoff = 10−12 GeV.

4.1 Inclusive cross sections

The benchmark cross sections that form the basis for this
comparison can be extracted from Table 4 and, for con-
venience, have been summarized in Table 5. As is well-

Table 5 NLO corrections to the processes computed in this paper using
the N -jettiness method

Process �σNLO �σNLO/σ LO

H 16.58 pb 1.282

Z 9.655 nb 0.218

W+ 18.74 nb 0.230

ZH 0.1082 pb 0.158

W+H + W−H 0.2037 pb 0.162

known, the NLO corrections to Higgs production through
gluon fusion are very large, while all of the other processes
receive corrections of order 20%.

A comparison of the N -jettiness calculations of these coef-
ficients, with the results shown in Table 5, is shown in Fig. 1.
The ratio of the calculations is shown as a function of T cut

0 ,
for a range of suitable values of T cut

0 . The approach of the
N -jettiness calculation to the correct result as T cut

0 → 0 is
clear for each process. However, the manner in which the
correct result is reached varies considerably. For instance,
Higgs production through gluon fusion approaches the cor-
rect result from above, while the other processes approach
it from below. The approach is much slower for W+ and Z
production than for any of the Higgs production processes,
with percent level accuracy only reached for T cut

0 � 0.01
GeV.

The approach of the N -jettiness subtraction result to the
correct answer is determined by the behavior of power cor-
rections that are not accounted for at present. At the NLO
level after integration over the final-state phase space this
can be modeled by the following functional form:

�σNLO
jettiness(T

cut
0 )

= �σNLO + c ×
(T cut

0

Q

)
× log

(T cut
0

Q

)
, (4.1)

where Q is the appropriate scale for the process at hand and
c is an unknown constant. For single boson production Q is
taken to be the mass of the produced particle (MH , MW or
MZ ) while for the associated production processes we use
Q = MW + MH and Q = MZ + MH . Figure 1 also shows
a fit of the results to Eq. (4.1), with the values of �σNLO

and c determined in the fit. The difference of the fit value for
�σNLO with the known result given in Table 5 is no larger
than one per mille for all processes.

Since the speed of the approach to the correct result is qual-
itatively much worse for W and Z production it is instructive
to examine the processes in more detail in order to uncover
the origin of the difference. To that end we now turn to a
comparison of more differential results.

123



7 Page 8 of 18 Eur. Phys. J. C (2017) 77 :7

Fig. 1 The ratio of the NLO correction calculated using N -jettiness
subtraction as implemented in MCFM to the standard MCFM subtrac-
tion result (as presented in Table 5). The ratios are plotted as a function
of the N -jettiness resolution parameter T cut

0 in GeV. The comparison
is performed for gg → H , Z , W+, ZH , and W±H production and
the lines represent fits to the individual points using the form given in
Eq. (4.1)

4.2 Rapidity distributions at NLO

The simplest distribution to study is the rapidity of the pro-
duced system, which is intimately related to the momentum
fractions carried by the incident partons. We will compare
the prediction for the NLO contribution to this distribution
(i.e. corresponding to �σNLO) computed using dipole sub-
traction and jettiness subtraction with T cut

0 = 0.01 GeV and

T cut
0 = 0.04 GeV. The difference between the true result and

the jettiness calculation for T cut
0 = 0.04 GeV is about 0.4%

for gg → H , 1.5% for Z production and 0.3% for ZH .
These processes are sufficient to illustrate the issue, since
W+ and W±H production show very similar behavior to the
Z and ZH processes, respectively.

Results are shown in Fig. 2. The agreement of the jetti-
ness calculations with the normal MCFM result is excellent
overall, particularly for central production |y| � 3. How-
ever, there is evidence for an increase in the size of the power
corrections at larger absolute rapidities.2 The reason for the
qualitative difference in the behavior is thus two-fold. First,
the onset of power corrections with increased rapidity occurs
sooner for Z production. Second, and critically, the shape of
the rapidity distribution is much broader for Z production so
that the effect of the high-rapidity tails is more apparent in the
inclusive rates presented in the previous section. It suggests
that a restriction to more central rapidities would decrease
the effect of power corrections and speed the convergence to
the correct result.

4.3 Cross sections under cuts

As an explicit demonstration of this behavior we will con-
trast the effect of the power corrections on the inclusive cross
section with the behavior under a more realistic set of exper-
imental cuts. Rather than cutting directly on the rapidity of
the W or Z boson, we instead apply a minimal set of cuts
on the W and Z boson decay products that might be applied
in an experimental analysis. We consider a Z boson decay
to an electron–positron pair and demand that both leptons be
observed in the central region, |y(e±)| < 2.5. For the W+
boson case we consider the decay into a positron and a neu-
trino, imposing a rapidity constraint on the charged lepton
|y(e+)| < 2.5 and a minimum missing transverse energy
(MET) of 30 GeV. Note that the application of these cuts
means that a comparison with the code ZWMS can no longer
be made. Although DYNNLO [14] or FEWZ [87,88] could
be used to provide a reference cross section under these cuts
we do not pursue that here. Instead we simply normalize to
the (fitted) asymptotic result.

The results of this study are shown in Fig. 3. As antici-
pated, the effect of the cuts is to significantly decrease the
T cut

0 -dependence of the cross section. For instance, rather
than a difference of approximately 1% with the asymptotic
result for T cut

0 = 0.02 GeV in the inclusive case, the fiducial
cross section differs by a few per mille or less for the same
value of T cut

0 . The inability to restrict the rapidity of the
unobserved neutrino in the case of W+ → e+ν production,

2 This can be expected as τ0 ∼ pT exp(−|η|) and therefore at large
rapidity the transverse momentum cutoff is larger, increasing the
expected power corrections.
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Fig. 2 MCFM calculation using N -jettiness subtraction of the NLO
contribution to the rapidity distributions of the Higgs boson (left), Z
boson (center) and ZH system (right), in the gg → H , Z , and ZH
production processes, respectively. Results are shown for two values

of T cut
0 (in GeV) and are compared with the normal MCFM calcula-

tion (solid histogram). The lower panel shows the ratio of the jettiness
results to the normal MCFM calculation.

Fig. 3 The ratio of the MCFM N -jettiness calculation of the NLO coef-
ficient to the (fitted) asymptotic result, as a function of the N -jettiness
resolution parameter T cut

0 in GeV. The comparison is performed for
Z (top) and W+ production (bottom) and for both the inclusive case
and for a minimal set of fiducial cuts (detailed in the text). The lines
represent fits to the individual points using the form given in Eq. (4.1)

compared to Z → e−e+, leads to a slightly slower approach
to the correct result.

Of course the opposite behavior is also possible. The study
of some observables necessitates the application of experi-
mental cuts that may increase the sensitivity to power correc-
tions and thus slow the convergence to the correct result. In
the context of this study it is most clear if rapidity cuts on the
boson decay products are relaxed further. The choice of T cut

0
in the N -jettiness subtraction method should therefore be
examined carefully when probing phase-space regions that
may be susceptible to such effects.

5 N-Jettiness subtraction at NNLO

At NNLO, the N -jettiness subtraction method involves an
above-cut contribution that corresponds to a NLO calcula-
tion of the process containing an additional parton. In con-
trast to the previous order, this results in genuine numerical
instabilities that primarily arise from the cancellation of sub-
traction terms in the real radiation contribution. As a result we
must use a larger value of the safety-cutoff parameter, namely
cutoff = 10−8 GeV. This is appropriate for computations
in double precision, such as the ones presented in this paper.
Although we do not include any quadruple precision results
here, we note that this cut may be relaxed significantly in that
case. We note the caveat that the running time of the code
increases significantly in quadruple precision, by about an
order of magnitude.

5.1 Inclusive cross sections

The expected NNLO cross sections in the inclusive case,
obtained using the already-available public codes listed pre-
viously, are shown in Table 6. The corrections to the gg → H
process are again large at this order, while all of the other pro-
cesses have corrections in the 2–10% range. Of these other
processes ZH production has the largest correction, but this
is largely due to the effect of finite gg → ZH and top-
Yukawa contributions, as discussed previously.

The calculation of the NNLO coefficients by jettiness sub-
traction are compared with results from the literature in Fig. 4.
Note that all of the plots use a common scale for the ordinates,
which display the ratio, except for the one representing the
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Table 6 NNLO corrections to the processes computed in this paper

Process �σNNLO �σNNLO/σ LO

H 10.01 pb 0.774

Z 2.200 nb 0.050

W+ 4.702 nb 0.058

ZH 0.06562 pb 0.096

W+H + W−H 0.0294 pb 0.023

gg → H calculation, for which the power corrections are
much smaller. It is clear from this figure that there is a slower
approach to the asymptotic result than at NLO, but that excel-
lent agreement is still obtained for smaller values of T cut

0 .
The relatively poorer approach to the true result is expected
from the behavior of the power corrections at NNLO, whose
leading two terms can be modeled after integration over the
final-state phase space as

�σNNLO
jettiness(T

cut
0 )

= �σNNLO + c3 ×
(T cut

0

Q

)
× log3

(T cut
0

Q

)

+c2 ×
(T cut

0

Q

)
× log2

(T cut
0

Q

)
, (5.1)

where Q is the appropriate scale as before and c2,3 are
unknown constants. Also shown in Fig. 4 are fits of the results
to Eq. (5.1), with the values of �σNNLO and c2,3 determined
in the fit. The subleading term is only important in the case
of the gg → H process, in order to capture the observed
turn-over for larger values of T cut

0 . For gg → H , ZH , and
W±H production the fit value of �σNNLO differs from the
known result given in Table 6 by less than one per mille. For
the Z and W+ processes the agreement is not as good, at the
level of approximately 4%.

5.2 Rapidity distributions at NNLO

Given the effect of the power corrections on the rapidity
distribution at NLO, we expect to see a similar pattern at
NNLO. We compare predictions for T cut

0 = 0.01 GeV and
T cut

0 = 0.004 GeV. For the gg → H and ZH processes
that we study here, the predictions for T cut

0 = 0.004 GeV
should be a good proxy for the exact distribution given the
small deviations from the inclusive cross section to which
they correspond (around 0.8% for both). For Z production,
this value of T cut

0 yields a total cross section that differs by
10% from the known result. To obtain an actual phenomeno-
logical result one must run with a lower T cut

0 . Nevertheless it
is sufficient to demonstrate the pattern of the power correc-
tions.

The dependence on T cut
0 of the NNLO contributions to

the rapidity distributions is illustrated in Fig. 5. As observed

Fig. 4 The ratio of the MCFM calculation of the NNLO coefficient to
the known result presented in Table 6, as a function of the N -jettiness
resolution parameter T cut

0 (in GeV). The comparison is performed for
gg → H , Z , W+, ZH , and W±H production and the lines represent
fits to the individual points using the form given in Eq. (5.1)

at NLO, all three distributions are much less sensitive to the
choice of T cut

0 in the central region than at large rapidities.
The quality of the independence from T cut

0 deteriorates sub-
stantially for |y| � 2. However, even in the central region,
the Z process is far more affected by the choice of T cut

0
than the other two calculations. In the more forward regions,
which still contribute to the cross section at an appreciable
level, the T cut

0 dependence rises to the level of a few tens of
percent. For this reason it is crucial to apply the basic fidu-
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Fig. 5 MCFM calculation of the NNLO contribution to the rapidity
distributions of the Higgs boson (left), Z boson (center) and ZH system
(right), in the gg → H , Z , and ZH production processes, respectively.

Results are shown for two values of T cut
0 , with the lower panel showing

the ratio of the T cut
0 = 0.01 GeV result to the T cut

0 = 0.004 GeV one

Fig. 6 MCFM calculation of the full NNLO result for the rapidity dis-
tributions of the Higgs boson (left), Z boson (center) and ZH system
(right), in the gg → H , Z , and ZH production processes respectively.

Results are shown for two values of T cut
0 , with the lower panel showing

the ratio of the T cut
0 = 0.01 GeV result to the T cut

0 = 0.004 GeV one

cial cuts introduced earlier in order to obtain a percent level
agreement with the NNLO coefficient.

In contrast, for phenomenology it is sufficient to study the
effect of the value of T cut

0 not on the effect of the NNLO
correction itself, but on the total prediction at that level of
accuracy. In that case the smallness of the NNLO coefficient
in the case of Z production is an advantage as it suppresses the
relative size of the power corrections in the total. On the other
hand the gg → H process, which receives a very large cor-
rection at NNLO, is more easily subject to power corrections.

In order to provide a full NNLO prediction for the rapidity
distributions discussed in this section we sum the results of
a standard MCFM calculation at NLO and a computation of
only the NNLO correction using jettiness subtraction. The
resulting distributions are shown in Fig. 6. The gg → H and
Z production processes differ by a couple of percent in the
tails of the distribution, for these two values of T cut

0 , but are
otherwise in excellent agreement. The dependence on T cut

0
is even smaller for the case of ZH production.
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Fig. 7 The ratio of the MCFM N -jettiness calculation of the NNLO
coefficient to the (fitted) asymptotic result, as a function of the N -
jettiness resolution parameter T cut

0 (in GeV). The comparison is per-
formed for Z , W+, ZH , and W±H production and for both the inclu-
sive case and for a minimal set of fiducial cuts (detailed in the text).
The lines represent fits to the individual points using the form given in
Eq. (5.1)

5.3 Cross sections under cuts

Although the W and Z production cases are the most sen-
sitive to T cut

0 at NNLO, at this order both ZH and W±H
production also display a non-negligible dependence on
T cut

0 . We therefore consider all four processes in this sec-
tion. For W and Z production we apply the same cuts as
before. For the other processes we consider the final states
W±(→ e±ν)H(→ γ γ ) and Z(→ e+e−)H(→ bb̄) but do
not apply any cuts to the Higgs boson decay products in either
case. In this way the results remain valid for any decay chan-
nel of the Higgs boson. The W± and Z decay products are
subject to the same cuts as in the corresponding inclusive W
and Z production processes.

Table 7 NNLO corrections under the basic fiducial cuts described in
the text

Process σLO,fid �σNNLO,fid �σNNLO,fid/σLO,fid

Z 708.6 pb 44.8 pb 0.063

W+ 3.259 nb 270 pb 0.083

ZH 9.606 fb 1.126 fb 0.12

W±H 0.1337 fb 0.00353 fb 0.026

The results of this study are shown in Fig. 7. For the W
and Z cases, the improvement is dramatic; for T cut

0 = 0.02
GeV the difference from the asymptotic result improves from
approximately 35% in the inclusive case to 8% under cuts.
A similar level of improvement applies in the case of W
production. For ZH production the gain is less pronounced
due to the fact that only the Z decay products are restricted
in rapidity, which results in a less stringent constraint on the
combined ZH system. Nevertheless, the agreement with the
asymptotic result improves by about a factor of 2 relative
to the case of no cuts. The asymptotic value of each NNLO
N -jettiness calculation, together with the LO cross sections
under the fiducial cuts used in this study, are shown in Table 7.

6 Numerics

In this section we discuss the numerical performance
of MCFM. As an illustration we will run the hybrid
openMP/MPI version of MCFM on a modest sized cluster.
This cluster consists of 24 nodes, each node having of a moth-
erboard with two Intel X5650 chips (2.67 GHz) using an uni-
fied memory. Each of the Intel chips has 6 cores, resulting in
a total of 24 × 2 × 6 = 288 computing cores for the cluster.
The nodes are connected using InfiniBand NFS mounts.

We will use 4×100, 000+10×1,000,000 VEGAS events
in the remainder of this section. It is straightforward to scale
the results obtained for this particular cluster to other cluster
configurations. Specifically we examine two important per-
formance issues. First, we will look at the time required to
calculate the cross section as a function of the number of
cores used. Second, we will look at the obtained statistical
precision due to the Monte Carlo integration as a function of
the T cut

0 parameter. For all the runs in this section we use, in
addition to the input parameters of Table 2, a collision energy
of 14 TeV and an inclusive anti-kT jet algorithm with a cone
size of 0.4. We apply, where applicable, the following cut on
the transverse momenta of the final-state objects: pJET

T > 20

GeV, pl
±
T > 25 GeV, pMISS

T > 40 GeV, pγ1
T > 40 GeV

and pγ2
T > 20 GeV. The rapidity of all final-state objects

is required to be less than 2.5 and we require a separation
between the observable final-state objects of �R > 0.4.
When a Z -boson is produced we apply the additional cut
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Table 8 The time required (in
seconds) to evaluate the
pp → W+ → l+ν total cross
section using the given number
of cores for the node openMP
texture of one MPI job per
processor (2 × 6) and a single
MPI job per node (1 × 12).
Results are given for LO, NLO,
and NNLO total cross sections

Cores LO NLO NNLO

W+ (2 × 6) W+ (1 × 12) W+ (2 × 6) W+ (1 × 12) W+ (2 × 6) W+ (1 × 12)

6 11.15 308.9 10022

12 5.99 8.97 159.1 171.6 5068 5214

24 3.45 5.44 82.2 89.5 2559 2645

48 2.25 3.81 44.8 48.3 1326 1368

72 2.01 3.21 32.1 36.9 911 922

96 1.96 2.81 26.4 33.8 702 715

144 1.95 2.47 23.7 29.4 505 506

216 1.93 2.28 22.9 26.7 381 386

288 2.20 2.32 23.3 25.4 328 358

on the di-lepton invariant mass of 40 GeV with no separation
requirement between the two charged leptons.

Calculating cross sections at higher order requires a sig-
nificant amount of computing power. In Ref. [57] sev-
eral of us extended MCFM to use openMP by modifying
VEGAS in such a manner that it distributes the event gen-
eration and evaluation over the computing cores of a sin-
gle node/motherboard. By using multiple computing cores
openMP makes the evaluation of NLO cross sections on desk-
tops efficient, while still using a single VEGAS grid for the
optimization of the numerical integration. For a timely evalu-
ation of cross sections at NNLO it is desirable to use a cluster
combining many processors. As the processors in a cluster do
not share the same physical memory one has to use MPI. We
extend VEGAS to use MPI to distribute the event generation
and evaluation further over all processors, while openMP still
distributes the events per processor over its computing cores.
Again a single VEGAS grid is used to optimize the numerical
integration. It is important to use openMP to distribute the
events on a single processor as it keeps only one version of
shared variables, while MPI would keep a separate copy of
those variables for each MPI process thereby using the lim-
ited cache memory in an inefficient manner. This is particu-
larly important as MCFM use large shared arrays such as for
example the VEGAS grid, PDF grids, histograms, etc. which
are common for all computing cores. It is therefore beneficial
to maintain a hybrid openMP/MPI version of VEGAS, espe-
cially given the continuing increase of the number of cores
per processor.

There are two limits which come into play when executing
parallel code. The first limit is the memory bound limit. Here
the evaluation time is determined by memory transfers and
not by computations. In this limit the evaluation time will not
scale well when adding more computing cores and improving
the scaling behavior will be difficult, necessitating a better
management of cache memory by the openMP code and/or
more efficient message passing by the MPI code. In the other
limit the evaluation time is determined by the computations
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Fig. 8 The evaluation time (in seconds) to calculate the total cross
section for the process pp → W+ → l+ν at LO, NLO, and NNLO as
a function of the number of cores used for both the 1×12 and the 2 ×6
node texture

and time used for memory management is negligible. In this
limit the execution time will scale perfectly with the number
of processors, i.e. doubling the number of processors will
half the execution time. These limits are important in order
to understand the scaling behavior seen in MCFM.

The scaling of the computing time with the number of
processing cores for the process pp → W+ → l+ν is given
in Table 8, with a visible representation in Fig. 8. We have
the option to run one MPI process per node and let openMP
distribute the events over the 12 cores of the two processors
(indicated by the 1 × 12 column). This in general is not a
preferred mode of operating because the cache memory is
divided over the two processors, requiring openMP to make
sure the two cache memories are synchronized, unduly invok-
ing a memory management overhead on the time needed for
the evaluation. Alternatively, by running two MPI jobs per
node openMP is used on a single processor thereby optimiz-
ing the cache usage and minimizing memory management
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Table 9 The time required (in seconds) to evaluate the pp → W+ →
l+ν, pp → Z → l+l−, pp → H → γ γ , pp → H + W+ →
γ γ + l+ν, pp → H + Z → γ γ + l+l− and pp → γ γ cross sections
at NNLO using a given number of MPI processes for the node openMP
texture of one MPI job per 6-core processor (2 × 6)

MPI jobs W+ Z H HW+ HZ γ γ

1 10022 20283 9079 9128 14357 27274

2 5068 10173 4530 4639 7222 13704

4 2559 5109 2339 2349 3655 6922

8 1326 2581 1196 1211 1846 3492

12 911 1752 821 823 1276 2352

16 702 1336 637 634 954 1773

24 585 915 466 452 662 1219

36 381 643 360 340 473 839

48 328 505 323 283 378 657
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Fig. 9 The evaluation time (in seconds) needed to calculate the total
cross section for the processes pp → W+ → l+ν, pp → Z → l+l−,
pp → H → γ γ , pp → H + W+ → γ γ + l+ν, pp → H + Z →
γ γ ++ l− and pp → γ γ at NNLO as a function of the number of MPI
processes used (each MPI process uses openMP on 6 cores)

overhead (2 × 6 column). This is clearly demonstrated in
Table 8. For example using all 288 processors on the cluster
we can use of 48 MPI jobs (2 MPI jobs per node) to evaluate

Table 11 Values of T cut
0 (in GeV) required to perform the NNLO N -

jettiness calculation to a given accuracy, for the processes studied in
this paper. At larger T cut

0 the accuracy deteriorates because of increased
power corrections

Process σNNLO

1% accuracy 0.2% accuracy

gg → H Inclusive 0.03 0.002

Z Inclusive 0.01 0.002

lep. cuts 0.07 0.005

W+ Inclusive 0.005 0.001

lep. cuts 0.03 0.003

ZH Inclusive 0.3 0.02

lep. cuts 0.8 0.04

W±H Inclusive 0.2 0.01

lep. cuts 0.8 0.08

γ γ Cuts [33] 0.01 0.001

the NNLO cross section in 328 seconds, or use 24 MPI jobs
(1 MPI job per node) requiring 358 seconds to evaluate the
NNLO cross section. The time difference is due to the frac-
tured cache memory caused by forcing openMP to use two
processors in the case of running with 24 MPI jobs. There-
fore in the remainder of this section we will use 2 MPI jobs
per node, allowing openMP to operate on a single processor.

Especially at LO, and to some extent at NLO, the com-
putation effort to evaluate this process is minimal, making
the execution time operate close to the memory bound limit.
This behavior is exhibited in Table 8 and Fig. 8 where for
LO the evaluation time no longer improves when using more
than 12 MPI jobs (and for NLO more than 18 MPI jobs). At
NNLO using more cores still improves the evaluation time,
as a consequence of the need to evaluate a large number of the
more computational intensive double parton bremsstrahlung
events. It is worth noting that the execution time on a single
processor using openMP executes in under 3 h making the
evaluation of this process on desktops very feasible. Run-
ning on the full cluster using the 48 processors results in an
execution time of less than 4 min. This means one can easily

Table 10 The relative statistical precision (in percentages) on the
pp → W+ → l+ν, pp → Z → l+l−, pp → H → γ γ ,
pp → H + W+ → γ γ + l+ν pp → H + Z → γ γ + l+l− and

pp → γ γ cross sections at NNLO as a function of T cut
0 (in GeV) using

4×2×6 cores. Also given in brackets is the evaluation time (in seconds)

T cut
0 W+ Z H HW+ HZ γ γ

0.001 2% (1397) 0.9% (2770) 0.05% (1256) 10% (1263) 6% (1939) 0.4% (3706)

0.005 0.7% (1358) 0.4% (2701) 0.04% (1234) 3% (1238) 2% (1906) 0.2% (3661)

0.01 0.5% (1356) 0.2% (2677) 0.04% (1214) 2% (1222) 1% (1847) 0.15% (3585)

0.05 0.2% (1315) 0.08% (2572) 0.04% (1197) 0.6% (1206) 0.4% (1841) 0.09% (3492)

0.1 0.09% (1307) 0.05% (2526) 0.04% (1186) 0.3% (1186) 0.2% (1847) 0.08% (3427)

0.5 0.04% (1266) 0.04% (2356) 0.04% (1176) 0.1% (1150) 0.09% (1768) 0.07% (3376)
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Fig. 10 The NLO T cut
0

dependence for gg → H of
Fig. 1 is shown as the red line in
the upper pane. The purple line
gives the remaining T cut

0
dependence when the
analytically calculated
expression for the leading power
correction is added to MCFM.
The lower pane gives the same
at NNLO for gg → H where
the red line is taken from Fig. 4
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increase the number of events and lower the tau cut value to
obtain better statistics.

Next we look at all the new NNLO processes added to
MCFM in Table 9 and Fig. 9 where the time in seconds is
given as a function of the number of MPI jobs (= number of
processors) used. As can be seen, the processes scale well all
the way up to the 288 processors. Some indication of a less
than perfect scaling can be seen in the simplest of the NNLO
processes pp → H → γ γ when we get to a high number
of processors indicating there is some memory overhead. All
other processors still are computing dominated, which will
allow easy speed up by invoking even more processors. The
most complicated NNLO process pp → γ γ takes just under
11 min to evaluate using 48 processors. Therefore obtaining
higher statistics is rather easy. This process would still only
take a bit less than 8 h on a single processor desktop.

Finally, the statistical integration error obtained for the
inclusive cross section given the cuts using the 10,000,000
VEGAS events as a function of the T cut

0 is given in Table 10.
The evaluation times are given for using 8 processors. As can
be seen there is a small dependence of the evaluation time
on the choice of the T cut

0 . As we choose the T0 cut smaller
the Monte Carlo becomes more “efficient” because it will

generate more soft/collinear events. That is, less events will
be rejected by the cuts hence the evaluation time will grow.

As can be seen from Table 10, the acquired statistical
uncertainty is quite process dependent. However, the value
of the T cut

0 will also determine the systematic error due to the
power corrections. Looking at Table 11 we see the required
value of T cut

0 to reduce the power corrections to a 1% or a
0.2% level.3 First, focusing on the 1% uncertainty we see
that in all cases statistical error obtained with the 10,000,000
events is smaller than 1%. The worst case is the inclusive
W+ production with a statistical uncertainty of 0.7%. For all
other cases the statistical error is more than on order of mag-
nitude smaller. To achieve a systematic error of about 0.2%
we see that we need to reduce the statistical uncertainty sig-
nificantly in order to be smaller than the systematic error. The
reduction for some processes is about an order of magnitude,
requiring of the order of 100 times more events. This means
that an overall uncertainty of order 1% is easily obtainable
using a desktop, however, going to the per-mille level will
require a modest computer cluster such as the one used for
the numerical results in this section.

3 The size of the power corrections for the diphoton process is obtained
from the results of Ref. [33].
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7 Summary

In this paper we presented details of the performance of
the first NNLO version of MCFM. Using the non-local N -
jettiness subtraction method, we included the NNLO cor-
rections for six final states: pp → W±, pp → Z/γ ∗,
pp → H , pp → W±H , pp → ZH and pp → γ γ .
For each process decays of the unstable vector bosons are
included where appropriate. The method was checked at
NLO against existing calculations and excellent agreement
was found. At NNLO the dependence on the jettiness cut was
studied in great detail and some guidelines on the choice of
the jettiness cut were given for all NNLO processes added to
MCFM.

Another addition to MCFM is the ability to run in a hybrid
openMP/MPI mode, enabling the Monte Carlo to use clusters
efficiently while still maintaining a single VEGAS grid. The
evaluation time for NNLO inclusive cross sections with an
overall precision better than 1% on a single 8-core processor
using openMP ranges from 3–8 h depending on the specific
process. It was shown all processes scaled well on a multi-
processor cluster using MPI in addition to openMP, giving
an evaluation time of 5–11 min on a 48 8-core processor
cluster. A small cluster of 50+ cores will give good statistics
for distributions at NNLO in a short time-frame.

The N -jettiness subtraction method in MCFM is now
well tested. Combined with the hybrid openMP/MPI option,
MCFM is now ready to include in the near future more com-
plicated processes including jet final states. Going forward, it
would be highly beneficial if one could calculate some of the
power corrections analytically in order to operate at higher
values of T cut

0 and thus speed up the code. Results obtained
from a preliminary calculation of the dominant power correc-
tion for the total gg → H cross section at NLO and NNLO
are shown in Fig. 10. This calculation has been performed
as a function of the rapidity of the Higgs boson, the details
of which will be presented (including also other Drell–Yan
like processes) in a separate publication [58]. As can be seen
from Fig. 10 the effect of including the dominant power cor-
rection term in MCFM is substantial and one can choose T cut

0
an order of magnitude larger, while still retaining the same
distance from the asymptotic result. This could have a large
impact on the ultimate achievable precision of the jettiness
method implemented in MCFM.
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