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1 INTRODUCTION

Siegel-Jacobi modular forms - called here after [15] - are higher dimensional
generalizations of classical Jacobi forms. As in the one-dimensional case they
are very closely related to Siegel modular forms. Indeed, many examples may
be naturally obtained from Fourier-Jacobi expansion of Siegel modular forms,
but it is known (see for example [34]) that not all of them can be obtained as
Fourier-Jacobi coefficients of Siegel modular forms.

The standard L-function attached to a Siegel modular form is perhaps one of
the most well-studied automorphic L-functions. Indeed, its analytic proper-
ties have been extensively studied by many authors such as Andrianov and
Kalinin [1], Bocherer [4, 5, 6], Garrett [11], Piatetski-Shapiro and Rallis [12],
and Shimura [24, 26]. Moreover, if one assumes that the Siegel modular form is
algebraic, in the sense that the Fourier coefficients at infinity are algebraic, then
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the values of the L-function at specific points (usually called special L-values),
after dividing by appropriate powers of 7 and the Petersson self inner product,
are algebraic. Results of this kind have been obtained first by Sturm [32], then
extended by Bocherer and Schmidt [7] and Shimura [28].

The central object of study of this paper and its continuation [9] is a standard L-
function attached to a Siegel-Jacobi form. In particular, we investigate whether
some of the properties mentioned in the previous paragraph (i.e. analytic
continuation, algebraicity of special values) hold also for such an L-function. It
is perhaps worth to note here that the underlying algebraic group, the Jacobi
group, is not reductive, which means in particular that Siegel-Jacobi modular
forms cannot be associated to Shimura varieties. However it is known (see
[15, 17]) that they can be associated to mixed Shimura varieties.

We now introduce some notation in order to give a brief account of the main
theorems proved in this paper. For simplicity we describe them here only for
Siegel-Jacobi modular forms over the rational numbers, even though our results
are more general and are proved over a totally real field.

Let S € M;;(Q) be a positive definite half-integral symmetric matrix, and f
a Siegel-Jacobi modular form of weight k& and index S for the congruence sub-
group T'o(NN). We give the detailed definition in section 3 but for the purposes
of this introduction it is enough to say that f is a holomorphic function on the
space Hp,; := Hp, x M, 1(C), where H,, is the Siegel upper half space, satisfying a
particular modular property with respect to the group T'o(N) := H(Z)xTy(N),
a congruence subgroup of the Jacobi group G"’Z(Q) := H(Q) x Sp,,(Q). Here
H(Z) denotes the Z-points of the Heisenberg group of degree n and index I,
and T'g(V) the classical congruence subgroup of level N in the theory of Siegel
modular forms.

A study of Siegel-Jacobi modular forms of higher index and their L-functions
was initiated by Shintani (unpublished), and then continued by Murase [19]
and Murase and Sugano [21]. However, the only known results concern trivial
level (N = 1). In this paper we generalize their work in various directions,
one of them is that we consider a rather general congruence subgroup. Then,
assuming that f is an eigenform for all Hecke operators T'(m) with eigenvalues
A(m) and x is a Dirichlet character of a conductor M, we consider a Dirichlet
series D(s, f,x) = >_ro_; A(m)x(m)m™*. This series is absolutely convergent
for Re(s) > 2n + 1+ 1 and - as we show in section 7 - after multiplying by an
appropriate factor it possesses an Euler product representation. More precisely,
we prove the following:

THEOREM 1.1. Assume that the matriz S satisfies the condition M, (see sec-

tion 7 for a definition) for every prime ideal p with (p, N) = 1. Then
£(x8)D(s +n+1/2, f,x) = L(s, f,x) == [ [ Lo(x@)p™*) 7,
P
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where for every prime number p

L (X): H?Zl ((17HP11X)(17H;7%X))’ Hpi G(va Zf (paN)::lv
b [T, (1= ppiX), ppi €C, otherwise.

Moreover, £(x, s) = H(p7N):1 £o(x,s), where

[T, Lp(2s 4+ 2n — 2i, x?) ifl € 2Z

£ =G
P(Xa 5) p(X7S) {H?_l Lp(23+2n—2i+1,x2) Zfl ¢2Z,

and G,(x, s) is a ratio of Euler factors which for almost all p is one.

The above theorem was originally shown by Murase and Sugano in the case
of N=1,x=1and |l = 1. We extended it to any N, any character y and
any [. Together with generalization to any [ certain new phenomena appear,
such as for example the presence of the factor G(x, s), which is equal to one in
the case of [ = 1. We defer a more detailed discussion to section 7.

The theorem above establishes that the function L(s, f,x) is absolutely con-
vergent for Re(s) > n + % + 1 and hence holomorphic. A suitable adjustment
of the doubling method allows us to prove much more:

THEOREM 1.2. With notation as above, assuming that x(—1) = (—1)*, the
function L(s, f,x) has a meromorphic continuation to the whole complez plane.

Actually in the full version of the theorem (Theorem 9.3), after introducing an
extra factor depending on the parity of [ and some Gamma factors, we also
provide information on the location of the poles of the function. Our theorem
vastly extends previous work of Murase [19, 20]: we consider the case of totally
real fields, non-trivial level and twisting by characters. We should mention
here that, contrary to us, Murase establishes also a functional equation for the
L-function. Our methods allow us to obtain such a functional equation once it
is known for Jacobi-Eisenstein series of Siegel type, as for example in the recent
work of Mizumoto [18] in the case of trivial level and F = Q. We discuss this
in more detail in Remark 9.5.

The most notable difference with the work of Murase is the completely different
method that we use. Indeed, the work of Murase has as its prototype the
approach of Piatetski-Shapiro and Rallis [12] and their theory of zeta integrals.
Murase uses a homomorphism of the form

G™(Q) x G™(Q) — Spy,(Q),

and computes an adelic zeta integral & la Piatetski-Shapiro and Rallis of a
Siegel-type Eisenstein series of Sp,,,,; restricted to the image of the product

G™'(Ag) x G™'(Ag) against two copies of the adelic counterpart f of .
We use instead a homomorphism of Arakawa, [3],

G"(Q) x G™HQ) —» G™THQ).
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This is a starting point in order to obtain a doubling method type identity: for
a Dirichlet character y with x(—1) = (—=1)¥ and m > n, we obtain

< fw), E"™(diag[z, w], s; x, k, N) >= L(s, f, x, $)E™ (2,5 f,x, N), (%)

where E"T™(diag[z,w], s; X, k, N) is the restriction under the diagonal embed-
ding Hn, X Hm,1 < Hn+m, of a Siegel-type Jacobi Eisenstein series of degree
n + m associated to the character y, and E™(z,s; f,x, N) is a Klingen-type
Jacobi Eisenstein series of degree m associated to the cuspidal form f through
parabolic induction.

It is important to note here that contrary to Murase, we have the option to
take n # m. And, indeed, we will make use of this in order to obtain results
towards the analytic properties of Klingen-type Jacobi Eisenstein series (see
Theorem 9.6).

The identity (*) above was first obtained by Arakawa in [3] in the case of N =1
and trivial x (and hence k even), and in this paper is extended to the situation
of totally real fields, arbitrary level as well as non-trivial characters x. It
should be stressed though that these generalizations are by all means not trivial
and demand a different approach than the one taken by Arakawa. Indeed,
Arakawa’s approach is modeled on the work of Garrett in [11] who invented
the doubling method and applied it to the case of Siegel modular forms over Q
of trivial level and without twists by Dirichlet characters. Our approach follows
techniques introduced by Shimura [26], where he massively extended Garrett’s
approach to the case of totally real field, arbitrary level as well as twisting by
Hecke characters. However, as it will become clear in section 5 and especially
Lemma 5.3, (see also the Remark 5.4) many new technical difficulties need to
be addressed in the Jacobi setting.

It is worth to point out here that even though in some cases one can identify
the standard L-function associated to a Siegel-Jacobi form with the standard
L-function associated to a Siegel modular form (see for example the remark
on page 252 in [20]), this is possible under some quite restrictive conditions on
both index and level of the Siegel-Jacobi form. Actually, even in the situation
of classical Jacobi forms this correspondence becomes quite complicated when
one counsiders an index different than 1 and/or non-trivial level, which is very
clear for example in the work of [30].

We would also like to emphasize that in this work not only we establish results
for the standard L-function attached to a Siegel-Jacobi modular form, but
also for the analytic properties of Klingen-type Eisenstein series of the Jacobi
groups, something of interest on its own. Furthermore, the results presented in
this paper are used in another work of ours ([9]) to establish algebraicity results
for some critical values of the standard L-function attached to a Siegel-Jacobi
modular form in the spirit of Deligne’s period conjecture. Actually, an earlier
version of this paper ([8]) included this application, but due to the considerable
length of the paper we decided to separate the two. We have also shortened
some computations, and therefore refer the interested reader to [8] for a more
detailed account.
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The reader will notice that in all the theorems we assume a particular parity
condition between the sign of the twisting character x and the weight k£ of the
Siegel-Jacobi modular form. It is, of course, very important to be able to relax
this condition and obtain the theorems for any finite character x, independent
of the weight k. This is the subject of a forthcoming work.

BRIEF DESCRIPTION OF EACH SECTION: We finish this introduction by giving
a short description of each section. In the second section we set most common
notation used throughout this paper. In section three we introduce the notion
of Siegel-Jacobi modular forms over a totally real field F', as well as the notion
of adelic or automorphic Siegel-Jacobi forms. To the best of our knowledge
their systematic study has not appeared before in the literature, notably
Proposition 3.4 on the adelic Fourier expansion. In section four we develop
the theory of Klingen-type Jacobi Eisenstein series. We do this in greatest
generality possible. Again, to the best of our knowledge, a systematic study of
the adelized Klingen-type Jacobi Eisenstein series has not appeared before in
the literature. In sections five and six we employ the doubling method in the
way described above and compute the Petersson inner product of a restricted
Siegel-type Jacobi Eisenstein series against a cuspidal Siegel-Jacobi form. In
section seven we introduce the theory of Hecke operators in the Jacobi setting
and extend previous results of Murase and Sugano. In the next section we turn
our attention to the analytic properties of Siegel-type Jacobi Eisenstein series.
We build on an idea going back to a work of Bocherer [4] and more recently
of Heim [13]. After establishing the analytic properties of these Eisenstein
series we use the results established in section 6 to obtain Theorem 9.3 on the
analytic properties of the standard L-function. Moreover, we also establish
Theorem 9.6 on the analytic continuation of Klingen-type Jacobi Eisenstein
series, and in the last section we discuss its near holomorphy for specific values
of s.

ACKNOWLEDGMENTS: The authors acknowledge support from EPSRC through
the grant EP/N009266/1, Arithmetic of automorphic forms and special L-
values.

2 NOTATION

Throughout the paper we use the following notation:

e [ denotes a totally real algebraic number field of degree d, 0 the different
of F', and o its ring of integers;

e A stands for the adeles of F'; we write a and h for the sets of archimedean
and non-archimedean places of F respectively, so that e.g. Ay, := H; cn Fo
(restricted product) and A, := [],c, F denote the finite and infinite
adeles of F'; for x € A we will write zp, 2, meaning the finite and infinite
part of x, respectively; for a ring R we use the superscript R* to denote
the invertible elements in R;
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A finite adele a € Ay corresponds to a fractional ideal a of F' via a :=

[I,cn by, where a, = mjvo)S, ny € Z, T, a uniformiser at v and p, the

corresponding prime ideal at the finite place v. We will call a the ideal
corresponding to a.

We define Z2 := Z¢, where a typical element k € Z? is of the form
k = (ky)vea with k, € Z. Moreover for an integer u € Z we write

paci= (p .oy 1) € 22

For an adelic Hecke character xy : A*/F* — C*, we will write x* for
the corresponding ideal Hecke character obtained by class field theory.
Furthermore, if x is finite, then its infinite part is of the form xa(za) =

ky
[Ioca (ﬁ) , for k, € Z. We then write sgn,(za)* for Ya(za) where
ko= (k) € Z2.

M, ,, denotes the set of I x n matrices, and we set M, := M, ,. We
write Sym, C M, for the subset of symmetric matrices; if A € M, , and
B € M; , then (AB) € M p4m denotes concatenation of the matrices
A, B;if S € Symy,x € M, ,,, we set S[z] := xSx;

For an invertible matrix  we define 7 := " _1;
For two matrices a € M,, and b € M,,, we define
. a 0
dlag[aab] T (0 b) € Mn-i—ma
We set eq(x) =[], ca €(@0) :=[[,ca €™ for @ = [],c, z» € C.

G"™ stands for the algebraic group Sp,, whose F-points are defined as
follows:

Sp,(F) = {g € SLon(F): g (1, ") g= (1, ') };

. b
For g € Sp,, we write g = <ng dg)’ where ag,bg, g, dg € M,y;
g Gg

For a fixed positive integer [, G™! = H™! x Sp,, denotes the Jacobi
group with H™! denoting the Heisenberg subgroup, whose global points
are defined as

G" (F):={g=(\pk)g: \p€ M,(F),x € Symi(F),g € G"(F)},

H" (F) = {(\, 1, 8)120 € G™(F)};
the group law is given by

A B)gN 1 KD g = NN it fi i+ K 4+ N+ N+ N =N ) gy,
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where (A1) := (N p)g~t = (N d—p' e 1/ 'a— N '), the identity element
of G™'(F) is 1y1a,, where 15 := (0,0,0) denotes the identity element
of H™!(F), i.e. we always suppress the indices n,[ in 1g as its size will
be clear from the context;
whenever it does not lead to any confusion, we omit superscripts and
write G, G, G" or H;
following the convention described above, G(A) = H;tha G(F,) =
GnGa, where G = [[ o, G(F,), Ga = [I,ca G(F);

Hpy = MH, x M;,(C))?, where H, = {r € Sym,(C)
Im(7) positive definite}; an element z € H,,; will be written as
z = (2y)vea = (T, w), where 7 = (Ty)vea € HE, w = (Wy)vea € My n(C)?;
we distinguish an element 4y := (¢,0) € H,,;, where 4 := (i1,,)?;
for z = (1,w) € Hn, we define §(z) := det(Im(7)) := [, c, det(Im(7y)));
For a fractional ideal b and an integral ideal ¢ we define the following
subgroups of G(A):

K[b,c] := K"[b,¢| := Knlb, (|Ga,

Kylb, ] := Kb, ¢] := Kn[b, ] x Ko,
K := K" := Ky[b, c|(H™! x D)),
where K., ~ Sym;(R)® x D2 c H™!(R)2 x Sp,,(R)? is the stabilizer of

the point ip, and D is the maximal compact subgroup of Sp,,(R),

Kn[b,¢] := Cplo,b71, 671 x Dy[b™!, bc] C G,

g . )\ EMy n(0v), #ueMln(b ),
Ch[ﬂ,b ,b ] *{ >\ y oy K 61}1 H : Ko €SYymy (b B }7
b 1 bc HD b 1 bc
vEh

-1 I _ Qg bm . az €My (0y), meMn(bgl), .
D,[67",bc] := {:z: = (Cx dm) €qG,: M (b, dnein(on) [

For r € {0,1,...,n} we define parabolic subgroups of G and G" as
follows:

a1 0 bl bQ
n,r L a3 a4 b3 b4 n .
P (F) = o 0 d dy eG (F).al,bl,cl,dleMT(F) ,
0 0 0 dy

n,r — A€ MLT(F), e Ml,n(F)a .
P = {0 mia: € OB |

additionally, we set P" := P™°,
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3 SIEGEL-JACOBI MODULAR FORMS OF HIGHER INDEX

In this section we introduce the notion of Siegel-Jacobi modular form, both from
a classical and an adelic point of view, and then explain the relation between the
two notions. The content of this section is well-known to researchers working
on Jacobi forms, but to the best of our knowledge it has not been written
elsewhere in such detail and generality. Our exposition follows mainly [19, 34].

3.1 SIEGEL-JACOBI MODULAR FORMS

For two natural numbers [, n, we consider the Jacobi group G := G™of degree
n and index [ over a totally real algebraic number field F'. Note that the global
points G(F) may be viewed as a subgroup of G (F) := Sp,,, (F) via the
embedding

1, A fi—tptt)\ o 1;
g:(AvﬁLa’i)g'—> In 17 < a11b>7 g:(gg) (1)

— 1n d

We write {0, : F — R, v € a} for the set of real embeddings of F. Each o,
induces an embedding G(F) — G(R); we will write (Ay, by, K )go for o,(g).
The group G(R)? acts on H,,; := (H,, x M;,,(C))* component-wise via

gz = g(Ta ’LU) = ()\a 1y K)g(Ta ’LU) = H(gvTv; wv)‘(gva Tv)_l + )‘UgvTv + ,uv)a
vea
where g,7, = (ay7y + by)(coTy + dy) ™ and X(gy, 70) = (cuTo + dy) for g, =
ay by
( Cy dy )
For k € Z® and a matrix S € Sym;(0~!) we define the factor of automorphy
of weight k and index S by

Jrs: GPHF) x Hpy — C

Jk,S(gaz) = Jk,S(ga (Ta ’U_))) = Hj(g’vaT’U)kvjsu(g’vaT’va’U)a

vea

where g = (>‘a 12 H)g, j(gvav) = det(chv + dv) = det(/\(gm"—v)) and
jSv (gva To, wv) = e(_tr (Svﬁv) + tr (Sv[wv])\(gv, Tv)_lcv)
—2t1 (N SpwuA(go, To) ) =t (Su[No]guTs))

with e(z) := e*™@ and we recall that S[z] = Sz. A rather long but straight-
forward calculation shows that Jj s satisfies the usual cocycle relation:

Jr,s(99',2) = Jis(9,9" 2)Jr,s(g’, 2). (2)

For a function f: H,; — C we define
(flk,s 9)(2) = Ji,s(9,2) " f(g 2).
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The property (2) implies that

(fle.s 99")(2) = (flk.5 glr,s §')(2)-

A subgroup T of G(F) will be called a congruence subgroup if there exist a
fractional ideal b and an integral ideal ¢ of F' such that I" is a subgroup of finite
index of the group G(F)NgK]|b,cg~! for some g € Gy.
Of particular interest will be the congruence subgroup,
To(b,¢):= T (b, ¢):={(\ 1, k)(25)EG(F): Ne My, (0), pEMyn(b™1),

k€ Symy(b™1Y),a,d € M, (0),b € M,(b™"),c € M,(bc)}.
Often we will be given a congruence subgroup I' equipped with a homomor-

phism y : I' — C*. For example, given a Hecke character x of F' of conductor
fyx dividing ¢, we can extend it to a homomorphism

x:To(b,c) = C, y ((/\,u, ) <‘CL Z)) — x(det d).

We now consider an S € b60~17; where
Ti:={z € Symy(F) : tr (xy) € o for all y € Symy(o)}. (3)

Moreover we assume that S is positive definite in the sense that if we write
Sy = 0,(5) € Sym(R) for v € a, then all S, are positive definite.

DEFINITION 3.1. Let k£ and S be as above, and I' a congruence subgroup
equipped with a homomorphism y. A Siegel-Jacobi modular form of weight
k € Z*, index S, level I', Nebentypus x is a holomorphic function f: H,; — C
such that

1. fle.sg = x(g)f for every g € T,

2. for each g € G™(F), flk,s g admits a Fourier expansion of the form

fle,s g(T,w) = Z Z c(g;t,r)ea(tr (t7))ea(tr (rw)) (¥)

teL reM
t>0

for some appropriate lattices L C Symy,(F) and M C M, (F), where
t > 0 means that ¢, is semi-positive definite for each v € a.

We will denote the space of such functions by M ¢(T', x).

The second property is really needed only in the case of n = 1 and F' = Q
thanks to the Kocher principle for Siegel-Jacobi forms, as it is explained for
example in [34, Lemma 1.6].
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We note that if f € M ¢(To(b,c), x), then

frw)y = Y > clt,r)ea(tr (tr))ea(tr (rw)),

tebd 17, rebd T,
t>0

where Ty, :={x € M, ,(F) : tr ('zy) € o for all y € M; ,(0)} .

We say that f is a cusp form if in the expansion () above for every g € G™(F),
Tv
125
space of cusp forms will be denoted by S} 5(I', x).

We now introduce the notion of Petersson inner product for Jacobi forms,
following [34]. Let f and g be Jacobi forms of weight k, one of which is a
cusp form. Moreover, assume that both f and g are of level I'. For z =
(T,w) € Hp,y we write 7 = x + iy with z,y € Sym,(Fa) and w = u + v
with u,v € M, (Fa). Let dz := d(r,w) := det(y)~ """tV dzdydudv and set
Ag k() = det(y)kea(—4mtr (vSvy~1)). Then we define

we have ¢(g;t,r) = 0 unless (tiv is positive definite for every v € a. The
v

<f.g >F;=/Af(z)ﬁAS,k(z)dz, A:=T\Hn,

and
< f,g>:= vol(A)_l/Af(z)@As,k(z)dz,

so that the latter is independent of the group I' as long as both f and g are in
M o(T, x). As it is explained in [34], the volume differential dz is selected in
such a way that vol(A) = vol(I' \ H2) where T is the symplectic part of T'.

3.2 ADELIC SIEGEL-JACOBI MODULAR FORMS

We keep writing G := G™! for the Jacobi group of degree n and index [. For
two ideals b and ¢ of F', of which c¢ is integral, we recall that we have defined
the open subgroups Kn[b,¢] C Gn, Dn[b™!, bc] C G} in Section 2.

LEMMA 3.2. The strong approximation theorem holds for the algebraic group G.
In particular,
G(A) = G(F)Knlb, (|Ga.

Proof. We give a sketch of the proof. We first observe that the strong approx-
imation holds for the Heisenberg group. Indeed, its center is isomorphic to the
group Sym; of symmetric matrices, and we have H”vl/Syml = My X M.
Furthermore, the strong approximation holds for the symmetric matrices (as
an additive group) and the same holds also for M), ; x M, ;. From this it is easy
to see that the strong approximation holds for H™!. Then, for the whole Jacobi
group, it is enough to observe that the strong approximation holds for Sp,, with
respect to the subgroup D[b~!, bc] (see [26]), and hence the statement follows

by observing that the Heisenberg group is, by definition, a normal subgroup
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We now fix once and for all an additive character ¥ : A/F — C* as follows.
We write ¥ = [[,cp Yo [I,ca Yo and define

veEa

U, (20) = {e(yv), vE€h

e(zy), vEa,

where y, € Q is such that Trp, /g, (24)—yv € Zy, for p := vNQ. Given a symmet-
ric matrix S € Sym;(F) we define a character ¢g : Sym;(A)/Symi(F) — C*
by taking g (k) := U(tr (Sk)).

We consider an adelic Hecke character x : Aj/F* — C* of F of finite order
such that y,(z) =1 for all € 0 with  — 1 € ¢,. We extend this character
to a character of the group Ko[b, ¢] by setting x(w) := ][, xo(det(agy))~t for
w = hg € Kylb, ¢].

Now, let k € Z2 and S € Sym,(F) be such that S € b0~17; with T; as in (3).
Moreover, let K be an open subgroup of Kb, ¢| for some b and c.

DEFINITION 3.3. An adelic Siegel-Jacobi modular form of degree n, weight
k, index S and character x, with respect to the congruence subgroup K is a
function f : G(A) — C such that

L £((0,0, k)ygw) = x(w)Jy,s(w, i0) " s(k)E(g), for all k € Symy(A),
v € G(F), g€ G(A) and w € KN Ky[b,c;

2. for every g € G, the function fg; on H,; defined by the relation

(fglr,sy)(io) := f(gy) forally e Ga

is a Siegel-Jacobi modular form for the congruence group I'Y := G(F) N

gKg~'.
Note that the relation (1) is well defined. Indeed, thanks to the strong ap-
proximation for Sym; we may write kK = Kpknka with kp € Sym(F),

kh € [Tpen Symu(by!) and ka € [],ca Symu(R). Furthermore, observe that
Vs(k) = [lpea ¥sw(ko) = Ji,s((0,0,K),ig) ~" since 1hgn(kn) = 1 by our choice
of the matrix S.
We denote the space of adelic Siegel-Jacobi modular forms by M} (K, x). As
in the case of Siegel modular forms (see for example [27, Lemma 10.8]) we
can use Lemma 3.2 to establish a bijection between adelic Siegel-Jacobi forms
and Siegel-Jacobi modular forms. Indeed, for any given g € Gy, we have the
bijective map

55, ) = M 5(T9, ) (4)

given by f — fg4, with notation as in the Definition 3.3 and x4 the character on
I'Y defined as x(7) := x(g~'vg). Furthermore, we say that f is a cusp form,
and we denote this space by Sj,(XK, x) if in the above notation fg is a cusp
form for all g € Gy,. We will often use the bijection above with g = 1. In this
case, if we start with an adelic Siegel-Jacobi form f, we will write f for the
Siegel-Jacobi modular form corresponding to f.
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We finish this section with a formula for Fourier expansion of adelic Siegel-
Jacobi forms.

PROPOSITION 3.4. Every Siegel-Jacobi form f € My o(K[b,c],x) admits
Fourier expansion of the form

(00 (7 7)) = 3 5 et Nea(ur e (i (a0t ), ()
q teLreM
t>0
where 0 € Symy,(A), ¢ € GL,(A), \,u € M;,(A) are such that A\,q, €
M, (b1 for all v € h; the lattices L, M are described in the proof. Moreover,
the coeﬁ?czents c(t,r;q, )\) satisfy the following properties:

1) c(t,riq,\) = Wa(tr (S[No))ea(tr (S[N(iqg)))(det q)zealitr (‘gtq +
qtr)\q))co(t,r;q, A), where co(t,r;q, ) is a complex number that depends
only on £,t,7,qn and \p.

2) c(t,r;aq, \a=t) = x(det a)c(tata,ra; q, \) for every a € GL,(F).

3) c(t,r;q,\) # 0 only if (qtq), € (00 ' T)y and e, (tr (g, iy (M), (b51))) =1
for every v € h.

Proof. First of all, note that it is enough to provide a formula for f at (A, u, k)g
with kK = 0 (thanks to the relation (1)) and g of the form as in the hypothesis.
Let X1 = {v € Mi,(A) : v, € My ,(b;1) forallv € h} and X = {z €
Xnon: = "z}. Asit was observed in [27, Lemma 9.6], we can write 0 = s+qxq
and A\s + u = m + vlq with s € Sym,(F),z € X,m € M; ,(F) and v € X, ,,.
Then:

£((\, 1, 0) <q "qq>)f(< f) (A, As + 11, As'A) <q q;)>

= f£((0,m,0)(\, v g, A\s]\)a(X, 0,0)1(0, v g, K)n (q q;
x

)
= f((\, v g, As]\)a(A, 0,0)pdiag|q, G](0, v, K)n (1" 1n)a)
= 15 (n) <fp|k,s(x, v, AsN)a (q qj) > (d0),

where we take r 1= As'A — (A\¢'v + v g \), p := (A, 0,0)ndiag[q, ¢ln and fp is as
in Definition 3.3.

Since fp € M} o(G(F) NpKIb, cJp~t, x), it is invariant under the translations
T+ 7+band w — w+ pu for every b € L := Sym,(F) N gunX ‘gn and
p € Lyyn =M n,(F)N (X, %n). Indeed, for each such b and u the finite parts
of the adelic elements

(0,0, Ab™A) <0 l;)
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. ~ - 1 q_lb(j . 1 ¢
= (A,0,0)diag[g, g](0, =Abg,0) { , * | ) diaglg™ ", q](=,0,0)

and

(0, 1, Aqug + p'A) = (X, 0,0)diag[q, §)(0, ug, 0)diaglg~", ‘g(=A, 0,0)

are in the finite part of the group pK b, ¢Jp~!. Hence, f;, has a Fourier expan-

sion
fP(Tv ’LU) = Z Z C(p, ta T)ea(tr (tT + trw))v
teLreM
t>0
where

L ={x € Sym,(F) : ea(tr (xL)) = 1},
M = {x € Mi,(F) : ealtr ("zL;,)) = 1}.

In particular, ¢(p;t,r) # 0 only if at every v € h and for every z € X,, 21, €
(X1.n)v we have e(tr (gytyq,z)) = 1 and e(tr (g, 'ry(21,,))) = 1. Further, if we
put 7 := (A, g, As'\)a (* qg)a, we have

£((\, 1, 0) (q Jg))z s (kn)Jr,s(r, d0) ™ fp(rio)
— Wy (tr (Sk))ea(tr (S[N]s)+tr (SN (iq ' + g g)))(det ¢)
- fplig'q + qz'q,iNg 'q + Mgz g + v'q)
= Wn(tr (Sk))ea(tr (SN (iq'q + 0)))(det ¢)x
- fplia'q + gz g, iMg ‘g + Mgz 'q + v'g),
Now note that
Uy, (tr (Sk)) = Up(tr (S(AsA — (Mg + v 7g"N)))) = Up(tr (S(As™N))
= Uy (tr (S(ATN)) Up(—tr (S(Agz'g'\)) = Ty (tr (S(Aa'N))).

Moreover, since ey, (tr (tgxlq)) = 1 = en(rAgzlq+ rviq)) for t € L,r € M, we
have

en(tr (to)) = ea(tr (ts + tqz'q)) = ea(tr (tqz 'q)) = ea(tr (tqz'q))
and

ea(tr (r(Ao+p))) = ea(tr (r(m +v') + rAqr'q)) = ealtr (rvig + rAqz'q)).

Hence,

Fo(rio) = > clpit,r)ealitr (tg'q + rAq'q))ea(tr (to))ea(tr (rAo + fru)).
teLreM
>0

In this way we obtain Fourier expansion (5) that satisfies properties 1) and 3).
The second property follows from the fact that f|x sdiag[a, @] = x(det a)~*f for
a € GL,(F). O
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4  JACOBI EISENSTEIN SERIES

In this section we introduce Klingen-type Jacobi Eisenstein series. We do
this both from a classical and adelic point of view, and also explore the
relation between the two in the spirit of the bijection (4) between classical
and adelic Siegel-Jacobi forms, which was established in the previous section.
First systematic study of Eisenstein series from a classical point of view was
undertaken by Ziegler in [34]. Here we extend his results to totally real fields,
include non-trivial level and non-trivial nebentype. Furthermore, we introduce
the adelic point of view, which, to the best of our knowledge, has not appeared
before in the literature in such detail in the Jacobi setting.

For an integer r € {0,1,...,n}, we let P™", P™" be Klingen parabolic sub-
groups of G™ and el respectively, as defined in Section 2. We define the map
ATt G F by

ALi((As s k)g) = A(g),
where AP : Sp,, — F' is the map defined as in [26] by

ar  ag b1 bQ
az Qa4 bg b4
r C1 Co d1 d2

c3 ¢y dg dy

= det(d4),

where the matrices aq, b1, c1,d; are of size r and the matrices aq, by, cq,dy of
size n — r; we set A'(g) := 1. We extend this map to the adeles so that
A?GMHA) = A

Furthermore for > 0 we define the map

Wy Hn,l — Hr,l

by w,(r,w) := (71, w1), where 71 denotes the r X r upper left corner of the
matrix 7 and w; is the [ x » matrix obtained from the first » columns of w.
Note that 7 = w,(7) for w, as in [26]; we extend this and write w,(w) := w;.
Finally, we define a (set theoretic) map

s HY X Moy, — H™V X Moy, 70,.((O\ i, 5), 9) i= (M1, g, ), 7(9)),
where Ay (resp p1) is the I x r matrix obtained by taking the first 7 columns of A
(resp. p), and 7,.(g) := (283 Zigzg) is the map defined in [26] with mo(g) := 1.
As we pointed out above, the maps A}, w,, 7, generalize the maps defined

in [26]. In a similar manner their properties generalize the ones of the symplec-
tic setting.

LEMMA 4.1. Assume r > 0. Then for all g € P™" (A)we have
wr(gz) = mr(g)wr(2) (6)
and

Ti,s(9:2) = (\L1(9)a)" Jus(mr(9), wir(2)). (7)
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Proof. Write z = (1,w) and g = hg = (A, u,k)g. Then, by [26, (1.24)],
wr(g7) = 7 (g)wr (1) and j(g,7) = Ar(9)aj (7 (g), wr(7)). Thus, to show (6) it
suffices to establish the equality

(w(cgT +dg) ™ +Ag7 + 1)1 = Wi (Cr (g wr(T) + dur, () ™+ N (g)wr () + pua
or, after using the fact that 7.(g)w,(7) = w,(g7) for g € P™",
(w(ch + dg>_1)1 = w1 (er(g)wT(T) + dwr(g))_lv (AgT)1 = Mwr(g7).
Set ¢ := ¢4, d := dy and observe that for g € P™"(A),
G5 )6 - D)
where ¢y, 7,d; are r X r matrices. Hence,

C1T1 +d1)71 *

(w(er +d)™ )1 = ((wy wo) <( 0 le>)1 = (wi(c1m +d1) 7" )

=wi(em +dy) "' = W1 (Cr,(g)T1 + dm(g)>_1
Similarly,
AgT = (A1 0) (wr(*gT) :) = (Mwr(gT) *).
We will now sketch a proof of the equality (7). Because A}';(g)a = Ar(g)a and
(g, 7) = M (9)ad(mr(9), wr (7)), it is enough to show that
Ts(g,2) = Ts(m(g), wr(2)),
that is,
L tr (S[wl(eg7 + dg)~leg) = tr (S[wr](Cr, (9)T1 + da,(9)) " Cx,(9));
2. tr (]ASw(cgr +dg) ™) = tr (A1 Swi(cr, ()71 + dr, () ") and
3. tr (S[\|g7) = tr (S[A1]m-(g)71).

Write w = (w1 ws), so that

Stul = (121 Sty wa) = (1225 (wy wa) = <S[w1] ) .

* *
-1
Moreover, as we have seen before, (c,7 + dg)~! = ((Cﬂr<a>“’r(73+dm<9>) *),
*
— (Crr( 0
c= ( A 0)’ so that

1
- )

0 0

Hence

oe (e
e (Slel(cr 5 ) <<S > <(cm<g>ﬁ + (@) nrt0) 8))
1 (S

(S[wi)(cr, ()71 + da, () Crrig))-

Similar calculations with A = (A; 0) prove the remaining equalities. O

DOCUMENTA MATHEMATICA 24 (2019) 2613-2684



2628 THANASIS BOUGANIS AND JOLANTA MARZEC

4.1 ADELIC JACOBI EISENSTEIN SERIES OF KLINGEN TYPE

We are now ready to define adelic Jacobi Eisenstein series of Klingen type. Fix
a weight k € Z? and consider a Hecke character y such that for a fixed integral
ideal ¢ of F' we have

1. xp(x)=1forallz € o} withz —1€¢,, v €h,

kv
2. Xa(ra) = sgn(za)* := [Toca (ﬁ) , for x, € Ay

we will also write x. := Hv‘c Xv- We fix a fractional ideal b and an integral
ideal ¢ such that ¢ C ¢ and ¢ is prime to e~!c. Further, for r € {1,...,n} we
set

K = Kun[b, c|(H x D),

K" i={x =\ pk)z e K : (a(x) — 1)y € My, (ey),
(a2(2))v € Mrpn—r(ev), (b1(2))v € Mr,r(bgleﬁ for every vle},

) (Lo
where z = (C: dZ) = cf(x) c;l(x) d?;(x) dz(:v) , and
c3(x) ca(w) ds(w) da(x)

K" :={x c K"[b"'e¢,bq]: (az — 1), € M,..(¢,) for every vle}.

If r =0, we put K™% := K.

For a cusp form f € S o(K",x7 "), f := 1if » = 0, we define a C-valued
function ¢(z,s;f) with z € G"(A) and s € C as follows. We set ¢(z, s;f) :==0
if x ¢ P""(A)K™" and otherwise, if = pw with p € P™"(A) and w € K™",
we set

¢, 5:£) == x(A%,(P)) ™ xe(det(dw))) ™ s (w, o) ™ (e (p)) AT ()1

(
where w = hw with w € Sp,,(A). We recall here that if we write p for the
symplectic part of p, then A\?;(p) = A*(p). Moreover, since at archimedean
places zo € PP K™ = PPTKMT if and only if 2, € PLK™" | where P :=
ﬂ’:;ol P™7 ([26], Lemma 3.1), we always choose p € P™"(A) so that p, = pa €
P.. We now check that ¢(x,s;f) is well-defined, i.e. that it is independent of
the choice of p and w.
Let 2 = pyw; = pyws, set 7 := p, 'p; = wow] ' € P™"(A)NK™" and assume
that (p1)a, (p2)a € Pi. Observe that \?;(7), = (detdy, 1), " (detdy, 4), € 0F
for every v € h, and A} (r),], = 1 for all v € a. Hence, |)\?J(p)|g25 is indepen-
dent of the choice of p and w, and x(A",(p)) ™! = xc(A\%,(p)) "L (A\",(p)a) ~*.
Because 7 7 1

f(mr(p1)) = £(mr (Po1)) = £ (p2) 70 (7))
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= £((P2))xc(det ar, (r)) Jh,s (7 (1), 0) 1
we have to prove that
Xe(AR (1) THR 1 (r)a) T xe(det(du, ) ™ xe(det(du, ) e (det an, ()
= Ji,s(m(r), 30) .5 (w1, 10) ks (w2,1i0) ™
First of all, since r, € Py,
A2 (P)a) " T, s (m (1), d0) T, s (w1, i0) Jr, s (w2, §0) "
= Jk75(7',’l:0)<]k15(7',w1 . io)il = 1
Moreover, it is easy to check that
Xe( ;},l(r))_lxc(det(dwl))_1X£(det(dwz))XC(detam(r))
= Xc(det dﬂ'r(IUQ))XC(det dm(wl))flxc(det aﬂ.r(,,,)) =1.

This proves the statement above.
We define the Eisenstein series of Klingen type by

E(z,s;f,x) == E(,s;: £, x, K™") = > p(vz,s:f), Re(s) > 0.
vEP™T(F)\G™(F)
(8)

If r =0 and f = 1, then we say that E(z,s) := E(x, s;1) is an Eisenstein series
of Siegel type.

It is clear from the above calculations that this is well defined, and that for
ye P"(F), we K" x K,

d(yrw, s;f) = xc(det(dw))_le,s(w,io)_lqﬁ(x,s;f).
In particular, for k € Sym;(A), v € G"(F), x € G"(A) and w € K]'" x K,
E((0,0, 5)yzw, s; f) = s (r)xc(det(dw)) " Tr,s (w, i0) " E(z, s; ).

We will show in Proposition 4.3 below that the series above, evaluated at
s=k/2for k€ Z,k>n+r+1+1,is absolutely convergent and hence defines
an adelic Siegel-Jacobi modular form of parallel weight ka := (k, k, ..., k) € Z2.

We now investigate the relation of the adelic Eisenstein series (8) with the
classical one.

Write K" = Chlo,b71, 67 x D""[671, be]. Then it follows from [26, Lemma
3.2] and [23, Lemma 1.3] that

Pr(A) = || PPT(R)e(P™T(A) N D[, b)) PP (Aa),
reX

DOCUMENTA MATHEMATICA 24 (2019) 2613-2684



2630 THANASIS BOUGANIS AND JOLANTA MARZEC

where X is a finite subset of P™"(A) such that {a.(x) : z € X} forms a set
of representatives for the ideal class group of F', where a,.(z) is the ideal of F’
defined in [26, page 551] as the ideal corresponding to the idele A,(x). In par-
ticular one may pick s of a very specific form, namely diag[l,_1,t7 1, 1,_1,1]
with ¢t € A}, Since P™" = H™! x P™" and the strong approximation holds
for H™! by the same argument as in Lemma 3.2,

Prr(a) = [ | P™(F) (P (A) N KL (o, )P (Aa),
r'eX’

where X’ is the set X extended trivially to G™ by the canonical embedding
Sp,, = G". We can now establish that

PUTAK™ = || P (F) K b, (P (Aa) K (ba)
z'eX’

|| P (F)2' K} (b, c|G™ (Aa).
z'eX’

Indeed, we only need to establish that the union is disjoint. Assume that the
cosets determined by x1, 22 € X' are not disjoint, that is x1 = axsbc for some
a € PV (F), b € Kn[b,¢] and ¢ € P""(Aa)K™"(Aa). Since z1,z2 € Gy,
X1 = anx2b. Moreover, since a € P™"(F) and z1,z2 are diagonal,
b e P"(A)n K "[b,c] and ¢ca € P™"(R). This implies that z; €
P (F)zo(P™"(A) N Kb, ¢])P™"(Aa), and thus 2y = z2. We can now
conclude the analogue of [26, Lemma 3.3] in the Jacobi setting:

LEMMA 4.2. Set Y := e x diag[ln—1, t=1 L1, t]Kn[b, | P (Aa) K™ (Ag).
Then there exists a finite subset Z of G™(F)NY such that

PP (MK = | | P (F)CER b, P (R)K™ (Aa)
ez
= || PP (F)CK (b, GM(R)
ez

and

G"(F)N P (A)K™" = | | P (F)¢ (K" [b, P (Aa) K (Aa) N G™ (F))
cez
= || P""(F)C (K5[0, JG" (Aa) N G™(F)) .

ez

Proof. Take the set X’ to be of the particular form indicated above, that is
let 2 € X’ be of the form diag[l,—1,t71,1,,1,t] € Sp,(A) — G"(A) with
t € A, Observe that for any such 2/, 2/ K" [b, (|G" (Aa) NG" (F) # 0. Indeed,
this follows from the fact that diag[l,—1,¢7*, 1,,—1,¢] Dy [671, be]Sp, (R) N
Sp,, (F) # (. Moreover we note that by the discussion above the double coset
PV(F)\ P (A)K™"/G™(R) is finite as so is the set Z. O
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4.2 (CLASSICAL JACOBI EISENSTEIN SERIES OF KLINGEN TYPE

We now associate a Siegel-Jacobi modular form to an adelic Eisenstein series
defined in (8). Weset I' := G" (F)NK}'"[b, c]G"(Aa), and with Z as in Lemma
4.2 we define R¢ := (P™"(F) N ¢T¢™1) \ (T, for ¢ € Z. Then, again by the
same lemma, it follows that a set of representatives for P™"(F) \ (G"(F) N
P™"(A)K™") is given by R :=J;c, R¢. In particular, we may write

B(z,5:f,x) = Y ¢(yz, ).

YER

For any given z € H,; there is an y € G} such that y - iy = z. Moreover, we
can always pick y such that the symmetric matrix in the Heisenberg part of y is
zero, i.e. ky = 0. A Siegel-Jacobi modular form that corresponds to E(z, s;f)
via the bijection (4) with g = 1 is the Eisenstein series,

E(z,5£,X) = Jis(y,i0) Y ¢(vy, ;).
YER

We will write it down in terms of f and z using the bijection (4) again. For some
¢ € Z and v € R; we may write vy = 7w, where 7, = diag[l,,—1,t7 !, 1,_1,1]
as in Lemma 4.2, 7, € ﬂf;&P;” and w € K™". This is because H»! C K"
and, by [26, Lemma 3.1], G™(A) = N"Zy P™" (A)D2 Dy[b~', b]. Therefore

p(rw, s;£) = xu(t) " xa(A7(T)a) " xe(det(dw)) ™! Jp,s(w, i) ™
(7)) AT ()]

Observe further that, in case r > 0,

L f(m(7a)) = Ji.s (0 (7a),50) ™' f (70 (7a)

(0L i (Tas 30) T (A (T)a) " fwr (72));

L N 1/2 1/2
n _ (Taa _ 3 WT(TB s ) _ 5( T Z)) .
2. N (Malr = sty lr = (7(5@,3)’ ) = (7‘3’(7(3) ) ’
30N (1) |4 = [tE A (T)al F3
4. Jk,s(7,2)Jk,5 (Y, %0) = Jr,5 (VY5 0) = Jk,s(T, wig) Jr,s(w, o)
= Ji,5(7,40) Jx,s(w, %0).

Moreover, since the product xn(t) !x.(det(d,))~! depends only on the sym-
plectic part of v, we can follow the reasoning in [26, Lemma 3.6] and denote
it by x[v], which agrees with the definition of x[y] in [26, (3.11)]. Taking all
these into account we obtain

. s—k/2
Besiton) = S0l (s ) f(wr2) st )

YER (wr(v2
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5(2) S—k/Q
— PN 2s r .
S QI 3 1b) (fooks)  fwrGllsr. ©
<

We also introduce the notation E(z,s; f,x) := E(z,s;f,x). Finally if r = 0
(and f = 1), we obtain the Siegel-type Jacobi Eisenstein series,

E(z,8) = E(z,5) = »_ IN(QIF D xD16G) ™ lsy

ez YER:
=Y N@(@)* > xh16() sy (10)
ez ’YER(

We finish this section with a result regarding the absolute convergence of the
series.

PROPOSITION 4.3. The Eisenstein series E(z,s; f,x) is absolutely convergent
for Re(2s) > n+r+ 1+ 1. In particular, for ka € Z* with k >n+r+1+1
the series E(z,k/2; f,x) is a Siegel-Jacobi form of parallel weight k.

Proof. This follows from the calculations of Ziegler in [34, pages 204-207]. The
difference with his Theorem 2.5 is the different normalisation of our Eisentein
series as well as the introduction of the complex parameter s, but it is easy

to see that his calculations lead to the range of absolute convergence stated
above. (]

In the last two sections of the paper we will explore analytic properties of
the Klingen-type Eisenstein series E(z, s; f, x), such as analytic continuation
and possible poles regarding the parameter s. Furthermore, we will investigate
whether this series, even if it fails to be holomorphic in z, is still nearly holo-
morphic with respect to this variable, a notion which will be introduced in the
last section.

5 THE DOUBLING METHOD

As it was discussed in the introduction of this paper one of the most fruitful
methods for studying various L-functions attached to (classical, i.e. Siegel,
Hermitian, orthogonal) automorphic forms is, what is often called, the doubling
method. It is perhaps not surprising that the same method can be used to study
also L-functions attached to Siegel-Jacobi forms. We will introduce the latter a
bit later in the paper, after developing necessary background for the doubling
method. Actually there are two, rather different, ways to use this method.

1. METHOD I. This is the original approach of Murase [19, 20], where he
used a homomorphism

G"' x G™' — Sp; ..
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One of the main advantages of this approach is the fact that analytic
properties of the L-function can be read off from analytic properties of
(classical) Siegel Eisenstein series of Sp,,, ,;, which are well-understood.
On the other hand, it is not quite clear how one could translate the
picture classically, i.e. pulling back the Siegel Eisenstein series to the
Jacobi symmetric space, which makes the method less attractive for other
applications (differential operators, algebraicity, study of Klingen-type
Eisenstein series and others).

2. METHOD II. The second approach, which we follow in this paper, was
first employed by Arakawa [3]. It uses a homomorphism (shortly to be
made explicit)

Gm,l % Gn,l N Gner,l-

This seems to be a more natural approach and closer to the spirit of
the doubling method, since one “doubles” the same “kind” of a group.
Moreover, it is quite clear what happens on the corresponding symmetric
spaces. However, this method calls for a study of analytic and algebraic
properties of Siegel-type Jacobi Eisenstein series introduced in the previ-
ous section, a task that will be taken upon later in this paper.

In this section we will develop technical results which will be necessary to apply
the doubling method. The main result here is Lemma 5.3, which will be used
in the next section to study a particular pullback of a Siegel-type Eisenstein
series. Our approach is modeled on the work [26] of Shimura concerning the
symplectic case; we generalize his results to the Jacobi setting.

We define first the map mentioned above. Let

LA: Gm,l ~ Gn,l N G"H‘",l,
La((\ s k)g) x (N1 87)g") = (AN), ('), 5+ w'50s(g % g')),
where

b
s TG X G s G s (28) x (48)) = (db)

In what follows we will often write g x g’ for 14(g x g’). Sometimes it will be
useful to view elements of G™ ™! as elements of G via the embedding
in equation (1). Denote by H™! the Heisenberg subgroup of P™", that is, put

HM(F) == {((AOn—r), 1, k) € H™'(F)}.

We will now adapt a method presented in [26] to find good coset representatives
for P (F)\G™ "™ (F). Let n < m and define 7, := 17, € G™"(F), where

1m
Ty = ( i: 1, ) , ey = (1T 0) € My n(F).
1n
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LEMMA 5.1. If n < m,

G" M (F) = |_| P (F)104(G™(F) x G™(F)).

0<r<n

Proof. Let G™"™(F) = ||, P"*"(F)g;ta(G™(F) x G"(F)) be a double coset
decomposition. There exist unique g; € G™*"(F) and h; € H™T™!(F) such
that g, = gih;. Note also that 14 (G™(F)xG™(F)) = H™ " (F) x4 (G™(F)x
G"(F)). We have

G"N(F) = |__|Pm*”(F)gihiHm+"’l(F)LA(Gm(F) x G"(F))
= L|H8"+"’l(F)P”””(F)Hm+"’l(F)giLs(Gm(F) x G"(F)))

= | E T ) P () gins (G (F) X GT(F)).

Since G™T(F) = H™tY(F)G™*+"(F) and by [26, Lemma 4.2] G™*"(F) =
Uo<rcn P (F)7ris(G™(F) x G™(F)), we can take {g;}; = {7, : 0 <r <n}
and thus {g,;}; = {7 : 0 <r < n}. O

LEMMA 5.2.

P (F), (G™(F) x G™(F)) = | | P™™(F)7((& X L lam—2,)B8 X ),
£€.8,y

where & runs over Symi(F)\G"(F), B over P™"(F)\G™(F), and v over
P (F)\G"(F).

Proof. By previous lemma and Lemma 4.3 from [26],

P ()7 4(G™(F) x G™(F))

= || BN E) ETHE) P ) s (s (€ X Lom—20)B X 7)),
£,8,y

where £, 8,y run over G"(F), P™"(F)\G™(F), P™"(F)\G"(F') respectively.
Note that

Hy M ) EH™ N E) = () HEPTHE) (X 0,0)10m x (X,0,0)1a,),
XEM; 1 (F)
NeM; ,(F)
and for g = (4 B) € P"(F),
((X,0,0) 120 x (N, 0,0)19,)15g € H ™ (F)P™ " (F)((AX')A,0,0) 101 0)-
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Indeed, if we view it as an element of G'+™+"  we obtain

AN
1m 1;
Ln A_ B
1 1;
=\ 1y D
-0 In
1, 1, K (AN)B L (AM)A
_ A B Timtn BIAN) Lmtn
1; 1, 1;
D Linn —tAYAN) Lonin
1 K (AN)B'A 1 1 AN)A
_ Lintn ABIAN) A B Lmtn
11 1l 11 )
lmtn D —TAYAN) Imgn
where k£ = (AN)B!AYAN).  Moreover, because 7, commutes with

((A,0,0)12., x (N,0,0)12,), we have

P (F)ra(GM(F) x G'(F) = | | U HE P,
€87 XMy, m (F)N €My n (F)
LA(()\, O, 0)12m X ()\/, 0, O)lgn)bs(bs(f X 12m—2r)6 X ’7).

Write A= (A1 A2) and X = (A} \}) as concatenation of matrices Ay € M ,.(F),
Xo € Mym—r(F), Ny € M (F), Xy € Myp_r(F). Because HJ'""™!(F) and
P™t(F) commute (as follows from the above computation) and

HglJrn’l(F)TT =7 {(1 fer, pt, K)1am X (per, ', K)oy :
p€ Myn(F), 1 € Myn(F), 6,6 € Symi(F)},

we can include (0, (N} 0),0)12,, x ((A] 0),0,0)12, in the set above for each X,
and so we are left with

(A, (=A10),0)e5(€ X Lam—2r)B % ((0A3),0,0)7.
In fact,
(A, (=A10),0)e5(€ X Lam—2,)8 = (A1, =A1,0)€ X 1 l2m—2,)((0A2),0,0)8.
Therefore we can exchange the representatives
Trea(ta((Ar, =1, 0)6 X 1 lam—2,)((0X2),0,0)8 x ((03),0,0)7)

with 704((¢a(€ X 1glam—2)8 X ), where &, 3, are as in the hypothesis.
Reversing the process described above, it is easy to see that the cosets are
distinct. O

We are now ready to prove the main result of this section. The following lemma
is the generalization of [26, Lemma 4.4].
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LEMMA 5.3. Let ¢,b, ¢ be as in Section 4.1, and o an element of Gy given
by

| 1pdiag[l,, 05115, 10, 60,1,)] ifvfe,
7"\ gdiagllo, 05 1, L, O 1] if 0le,

where 0 is an element of Fy such that @0 = b. Let D" := K™*"[b,¢] C
G T"(A). Assume that n < m. Then

P (P71, (G™(F) x G"(F)) N (Pt (A) D™ ")

= || P"TE)Ta((Las(€ X 1am)B X 1alan),
¢eX ,BeB

where m’ = m —n, B is a subset of G™(F) NY as in Lemma 4.2, which
represents P™" (F)\(G™(F)NP"™"(A)D™), and X = G"(F)NGy [],cn, X0
with

{\ p, )z € Cylo, b= 67 Db ¢, bc] tay — 1 € My pn(en)}, vle,
X,={ Cylo,6=1, 6= D" b~ ¢, b]W,Cy o, b=, b= 1D [, bel, vle L,
Cylo, 671, 671G (F,)Cyfo, 071, 671, v1c,

W, = {diag[q, q] : ¢ € GLy(F,) N My, n(c0)};
if m=n, we take B ={l1glan}.

Remark 5.4. Before we proceed to the proof of the lemma we should stress
a significant difference between this result and the symplectic case. In [26,
Lemma 4.4], at the places v which do not divide ¢, one obtains that the set
X, (with the notation there) is the entire symplectic group G™(F,) = Sp,,(F%).
However, this is not the case here as the set X, above is not equal to the
group G"(F,). This is one of the main differences between the Jacobi and
the symplectic group regarding their Hecke theory at the “good places”. It
will become even more apparent later in this paper when we will consider the
theory of Hecke operators.

Proof of Lemma 5.3. We will divide the proof into two parts: the case where
v does not divide ¢ (a good place) and when it does (a bad place). We first
consider the case of v being good.

We first obtain a description of the set C,[o,b71, 671G"(F,)C,[0, b1 b7 1.
First note that a set of representatives for G™(F,)/D,[b~!,b] consists of

“1h g loth !
m(g7 h” J) = <g 0 g tgth—l )

where (g,h) € GLn(00)\W/(GLn(00) x 1n), 0 € Symn(Fy)/gSyma(b;")'g
and W = {(g,h) € Bx B: gL+ hL = L} with B = GL,(F,) N M,(o,) and
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L = M, 1(0,). In particular, if we write D;”Jr” = CyD,, then

C,G"(F,)Cy = | J Com(g,h,0)D,C, = | ] Comig, h,0)C,D,

g,h,o g,h,o0

= U C’v(/\iflg,f)\hflatg_1 +uthtg_1,*)m(g,h,a)Dv. (11)
g,h,o
Ap

Consider now P™™(F,)D7"*™™ and write P"""(F,) = HY(F,)P™"(F,).
Since

ap bp _ —1 -1 —1 -1 ap bp
(0 dp> (Avﬂa *) - (Aap ﬂ/\ap bpdp + Mdp ﬂ*) <0 dp) )

we can conclude that

A€ M, (0p)ayt, p € M (F,)
Pern Fv Dern { )\7 K . L,n+m\Uv )y ,n+m\Lv ), )
(Fv) Dy (A 1, £)g 4= pkeSp, .. (F)

Note that this is well defined. Indeed, if we write ¢ = p1k1 = poks then
py 'p2 € D, and in particular aljllap2 € My ym(0,) NGLy, 4 (Fy), and similarly
aptap, € Myym(0y) N GLym(F,); that is, ayap, € GLpgm(0y).

Consider now a = 14(€ X 1gloy)B with € € Sym(F)\G"(F) and
B e P™MF)\G™(F), and write § = (A1, p1,0)§,8 = ((0X2),0,0)5, where
As € My p—n(F). Then

o= 14((A1, 11, 0)€ X 1o )((0A2),0,0)3
= (()‘1 0)’ (Ml 0)’0)(6 X 12m’)((0 )‘2)’()’0)6
= (()‘1 0)’ (Ml 0)’0)((0 )‘2)’0a0)(€ X 12m’)5 = (()‘1 )‘Q)a (:ul 0)’0)(6 X 12m’)ﬁa

and so

LA(a X 1H12n) = (()\1 )\2 O), (Ml 00),0)((6 X 12m’)6 X 12n)-

Now we see that

TnLA(a X 1H12n)0'_1 = (()\1 Ao (—/Ll)), (Ml 00),0)Tn((§ X 12m/)ﬁ X 12n)0'_1
= (M A2 (—=p1)), (11 00),0) 7 (€ X Lognr)B X 12n)o
Put g := 7,((§ X 1n_n)B X la,)o ! and write ¢ = pk € Pm™tnpmn,

Then by [26, Lemma 4.4] we may take § to be of the form hw, where
h = diag[l;—1,t7 1, 1,,_1,t] and w is in the congruence subgroup D™. More-

over, we may take
“h gloth !
€ = g g t t1.—1 da
0 q'h
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where g, h, o are in the sets as above, and d € D™. In particular,

A 0 B 0
o 1, 0 O

(& X o) X 1oy = 0 0 D 0 dy,
00 0 1,

where d; is some element in D",

-1 _ 1 -1
_(g7h O (g loth 0  (gh 0
A.(O h>,B.< N o= (Y0

and h = diag[l,,_,_1,t]. In this way we obtain

A 0 B 0
o 0o 61, o0 0
Tn((f X 12m/>ﬂ X 12n)0' = 0 even D 0

fenA 0 fe,B 071,
for some d' in the congruence subgroup D™. Furthermore, if we write

A 0 B 0

0 0,1, 0 0

0 Oyen D 0
fenA 0 fe,B 071,

k1 ko

for some p € P"™™(F,) and k =
ks ky

) € Db ~1, be], then we can

conclude that

t —1 _ 0 even t —1 . D 0
a, ks = (tenA 0 > and a, ky = <tenB Gv_lln .

Since the matrix [k3 k4] extends to an element in the congruence subgroup
D™ [b1 b, it follows that

O, ks A + kgA = A,

where now A = M4, 1(0). That is, for any given ¢ € A there exist ¢1,0 € A
such that 0, ksly + kala = €. Write A = A1, Ag, A3] with Aj, A3 € M, and
A2 € Mj yp—p. Then the relation tazjlt?;lkg/\ + ta;1k4A = taglA, which can be

also written as
0 en D 0 -1
(GUUenA 0) A+ (tenB 97111") A=, A,

means that the set ta; 'A can be described as

0 en D 0
<9—1tenA 0) t[€1;£27£3] + (tenB 9—11n> t[g/lvgl%gg]v
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where 01,0 € Ay, l3,05 € As, 05,0, € Ay and, recall, e, = (1) € M, ,.
1 3 2 0 5

Therefore, since e, A = (g7 *h 0) and ‘e, B = (gflatl”L_1 0), we get

< 0 e )t s
1t i [61562763] = 0
0, e, A O 019 1hit,
and .
t th_ t[/
D 0 / E’ g Tt !
t B 9711 [ ] h£2
n voon —1tp —Lepr —1tpr
g oh Wi+ 91; V'3
Hence,

tp tath~ Lpr
t —1 ’ +~£{f / !
a, A= h'ts
g ROy 4 gL oth T 01

)

and after taking a transposition

oyt = (6 + 0079 R 07 0T+ R oty 00 )
In particular, we see that the element
Tuta(e X 1lzn)o ™! = (A A2 (=), (1100),0)7((€ X Lin—n)B X 12n)0~
belongs to P"t™(F,)D™*" if and only if /\1 is of the form f3+¢1h~1g, and
is of the form —(6; ' 01hlg™" + ¢4h='o'g”" + 6;1¢4). This together with (11)
concludes the proof of the lemma in the case of good places.

Now assume that v is a place in the support of ¢. First we consider the case
when v|e~!c. As above, we start with a description of the set

Cylo, 67567 D6~ ¢, b]W,Cylo, b7, 671D 6™, be],

where W,, = {diaglq,q] : ¢ € GL,(Fy) N My n(cy)}. As it was shown in [26,
page 567,

Do~ vldiglan oy o0 = U (§ ) Dpio, vl
Ig

where f € GLy (o, \GL (0,)qGL,,(0,) and g € Sym, (b, tc,)/tf Sym, (b 1) f.
Set C, := Cyfo, 671,67, Then:

C,Db~ ¢, o)W, C, D[, bc] = C, D™ [~ ¢, b]W, D" [, be]C,

-UlUe (fq gqfq) Dy[b~, belC,
q Jq,9q
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-Jya ({)q gj;fq) C,D?[b™, be] (12)
4 fq:9q a

U U Gy g+ e (T 929) oot v
a4 fq:9a:M 1 T v v 0 fa ! T

where f; € GLy(0,)\GLy,(0,)qGLy(00), 94 € Symn(b;1cv)/tquymn(bgl)fq.
Further we argue as in the case of good places. In particular, we may write as
before

TnLA((l X 1H12n)0'71 = (()\1 )\2 (7#1)), (,LL1 00),0)7}1((5 X 1m7n>ﬂ X 12n)0—71

with &€ = (A,p1,0)§ € Sym(F)\G"(F) and 8 = ((0X2),0,0)3 €

Pm’”(F)\Gm’l(F). Moreover, using [26, Lemma 4.4] again, we may

take & = {;1 g}fq)d for some ¢ € M,(c,) N GL,(F,), fq €
q

GL(04)\GLn(04)¢GLy(04), g4 €  Symn(b;'c,)/'f,Symn(b;1)f, and

d € D,[b71, bc]. Then we obtain

A 0 B 0

4 | o 61, o0 0 )

Tn((f X 12m’)ﬂ X 12n)0' = 0 even D 0 d
1

for some d’ € D™*" where this time

_(fa O (a0 _ (40
A._(O‘Z fq),B._(qdl 0),D.—<8 iﬂ)

0 B 0

3122 107 8 ) as a product of an element in P™t"
enA 0 ‘e, B 9;1171
and D™'", Then, after the same computations and with notation as above,
we obtain

As before, write <

Na, ' = (G + 0 f70 O 07 0+ O f g + 0,15)
In particular, we see that the element
Tnia(o X lyloy)o™t = (A1 A2 (—11)), (11 00),0)7n((€ X 1p—n)fB X 12n)o_1
belongs to P (F,)D**" if and only if A; is of the form f3 + ¢} f7!, and p

is of the form — (6, '41"f, + ¢4 f; g4 + 0, ¢5). This requirement matches the
decomposition (12), and thus finishes the proof of the second case.
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Finally, we consider the case of v|e. In this situation we also argue as before,
but note that now

A 0 B 0

o | 0o 6,1, o0 0 :

Tn((f X 12m’)ﬂ X 12n>0' = 0 Gven D 0 d,
1

e, A 0 lenB 0

where

1 0 0 0 1 0
/ m4+n . n . . L
d € D" ,A.(O 1n>,B.<O 0),D.<0 h—l)'

Hence, doing exactly the same computations as before, we see that the element

TnLA((l X 1H12n)0'_1 = ((/\1 AQ (7#1)), (,LL1 00),0)Tn((§ X 1m7n)ﬂ X 12n)0'_1

belongs to P™"t™(F,)D™*" if and only if A; is of the form #3 + ¢}, and p
is of the form — (6,101 + ¢4 + 0;1¢%), which gives the set we claimed in the
lemma. O

6 DIAGONAL RESTRICTION OF EISENSTEIN SERIES

The map G™! x G™' — G™*™! introduced in the previous section induces an
embedding
Honi X Hug <> Hoam,i, 21 X 22 — diag[z1, z2),

defined by
(7'1,101) X (TQ,’LUQ) — (diag[Tl,TQ], (’LU1 ’w2))

The aim of this section is to obtain the main identity (20), that is, to compute
the Petersson inner product of a cuspidal Siegel-Jacobi modular form against
a pull-backed Siegel-type Eisenstein series. This identity should be seen as a
generalization of the identity [26, equation (4.11)] from the Siegel to the Jacobi
setting.

6.1 THE FACTOR OF AUTOMORPHY

We start with a study of the behavior of the factor of automorphy under diag-
onal restriction. First we compute Ji g(7,,2) for 0 <r <mn.

LEMMA 6.1. Let z = diag[z1, 22] be as above, and T, as in the previous section.
Then

Ti,5(Tr, 2) = ea(—tr (Slwy (wa)wr(72) ™" — wy (w1)](wr (12) 7 = wr(m1)) 7))

s (1, wr(22))) det(wp (1) — wr(m2)7H)",

where, recall, we write w,(2;) = w, (15, w;) = (wr (1), wr(w;)) fori=1,2.
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Proof. Similar calculations have been done in [3, page 191]; a difference in the
formulae comes from a difference between 7, and t*, ,, .(D). First we find that

m,n,r

)\(Tra (Tl T2 ))_1 (te er)

™

—wr(m2)(Lr —wr(M)wr(12)) 710 (I —wp(r)wr(n) T 0

_ 0 0 0 0
a (1 —wr(m)wr(r2)) ™" 0 —wr(71)(1r = wr(T2)wr(71)) 7" 0
0 0 0 0

Then we compute the trace, so that

Ti,s (T, 2) = ea(—tr (Swr (wa)wr (2) ™ — wy (w1))(wr(72) ™ = wr(m1)) 7))

- ea(tr (Slwr (w2)wr (12) " wy (72)))5 (77, diag[r1, 7))

Finally, since

j(7, diaglry, 1)) = det(1, — w,.(11)wr(12))
= det(wy(11) + N,wr(72)) det(—wr(72)),

where 0, = 1 (4 —i ), the second factor is equal to
.5 (1 (wr(72), wr (w2))) det(wn (1) — wr(72) 7"
O

Now, with the notation of Lemma 5.3, we compute Jg g(7r((€ X lom—2,)08 X
v), diag[z1 22]).

LEMMA 6.2. With notation as above,
Ir,s (70 ((§ X 12m—2r)B x 7), diag[z 22]) (13)
= Ji,s(& wr(B21))Jk,s(B, 21) Jr,s (7, 22) Jr,s (0, wr (V22))
- €a(—tr (S[wr (wy)wr (75) ™" — wr(w))(wr(15) ™! = wi(11)) 1)

~det(w, (1]) — wy(m5)™Hk

and

5(71’((5 X 12m—2r)ﬂ X 'y),di&g[Zl z2]) = 5(7}((5 X 12m—2r)6 X 7),diag[71 72])

= 6(B71)8(v72) i (§, wr (B71))5 (1, wr (Y72)) det(§wr (BT1) — wr(Wz)l)IEM)

Proof. By the cocycle relation,

Jk,S(Tr((ﬁ X 12m—2r)ﬁ X 'Y)adiag[zl 22]) =
Jie,s (Tr, (€ X 1om—2r) B x7y)-diag[z1 22])- Ji,5 ((§ X Lam—2r)B X 7y), diag[21 22]).
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Note that

((€ X Lom—2r)B x ) - diag[z; 2z2] = diag[(§ x lam—2r)B21,v22),

and thus we find that

Jr,5((§ X lam—2,)B x ), diag(z1 22])
= Jr,5((€ X Lom—2r),B21)Jk,5(B, 21) Jr,5 (7, 22)-

Since & X 1oy, € P™7,

o5 (€ % Tam—20), 821) 2 (L€ X Lom—0)) T s (700 (€ X Tam—s1), wr(B21))
= Jk,S(éa wr(ﬁzl))

Moreover, by Lemma 6.1,

i, s (T, diag[(€ X lom—2,)B21,722]) =
= ea(—tr (Swr(wh)w,(15) ™" — wp(w))(wr (1)~ = wr(r])) 1))
< Ti,s (M5 (Wi (75), wr(wh))) et (wr (1]) — wr(15) 71,

where we have set (€ X lopm—2.)B21 = (71, w}) and vzo = (75, w}). Putting
everything together gives the equality (13).
The second formula follows from the identity

d(gr) = 8(n)lj(g,7)I7*  for g € G", 7 € Hy.
(]

6.2 DECOMPOSING THE EISENSTEIN SERIES I: THE NON-FULL RANK PART

Thanks to the strong approximation (Lemma 3.2) we can pick an element
p=1gpc G (F)NK™"[b,c]o such that Ay, pt — 1 € Minpp min(€)y for
all v|c. If we now write p = wo with w € K™1"[b, ¢], then for y € G, such
that yig = z,
E(yo™") = E(p~'wy) = E(wy) = E(waway) = x(det(duw,)) ™" E(way)
= X(det(dw, ) ™" (Blk,sway) (io).
But since o, is trivial, w, = p, and, by the condition on p, x(det(d ))

x(det(dg, )~t. In particular, we see that the adelic Eisenstein series E(zo 1, s)
corresponds to the classical series (E|, sp)(z, s).

Let y, p be as above and put

S) = Z Pa(Z;S), pa(zas) = ¢(0490_1,3)Jk,s(y,i0),
a€A,
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where A, = Pm+”(F)\Pm+”(F)nLA(Gm(F) x G"(F)). Then
(E|k,SP)(Za3) = Z ET(ZaS)a
0<r<n

and for a fixed r each o € A, is of the form «(§, B,7) := 7, ((§ X 1r12(m—r))B %
~) for some &, 3, as in Lemma 5.2.

The following Lemma is a straightforward generalization of Lemma 2.2 in [26]
to the Jacobi case; we omit the proof.

LEMMA 6.3. Let f be a cuspidal Siegel-Jacobi form on H,,; of weight k € Z2 and
9(z) a function on H,,; depending only on w,(z) and Im(z) := (Im(7), Im(w))
for some r € N with 0 < r < n. If for a congruence subgroup T' we have
Glr.sy = g for every vy € P™"(F) N7~ ! with 7 € G™'(F), then

<> glesy, f>=0

YER
for any set R of representatives for P™"(F)NrL7= 1\ 7.

PROPOSITION 6.4. Let n < m, 21 € Hm, and z9 € Hy. For a cusp form f
on Hy, of weight k, 0 < r < n and for s large enough, we have

< er(diag[z1, 22, 8), f(22) >=0.
Proof. Let z = diag[z1, 22] € Hmyn, and fix r € {0,1,...,n — 1}. Put
D' = {zx € K™""[b,¢] : det(dy), — 1 € ¢, for every v]c}.

Let T be a congruence subgroup of G™(F') such that 14 (1512, xT) C 0! D0
By the definition of ¢, for any d' € K™t"[b, (]

p(ad', s) = xc(det(da ) Tr.s(d' o)~ p(z, 5),

and thus pa |k’ = paas for o/ € G (F)No~1D'o. Further, write G™(F) =
Ll,cr P™"(F)TT, so that

Er = Z pa(E,IB,ﬂ/) = Z Z Z pa(E,ﬁ,T)lkLA(lH:lQm X T_l)lkLA(lH:lQm X’y)a

€8y €8 TET YERL
where R, := (P™"(F)Nn7l7~1)\7[. We will check that for each T € T,
9r =D Pa(e,srlrta(lalom x 771
£.8

satisfies the conditions of Lemma 6.3.
Fix 7 € T and take n € P™"(F)N7l7~!. We will show that

Zpa(g,ﬁ,-r)'kLA(lHl%n x T InT) = Zpa(g,ﬁ,‘r)a (15)
£.8 £.8
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which in turn immediately implies

> Paesmliallalom x 77'0) =Y paepnleta(lilom x 770).
P £.8

First of all, because 77'nT € T, poe.gr)lkta(lalom x 77inT) = Da(eBinr)s
where

O‘(ﬁa Ba 777) :Tr((£>< 1H12(m77"))/3><777-) :TT(1H12m X’I’])((ﬁ X 1H12(mfr))BXT)'

Because p, depends only on P™""(F)a, in order to prove (15) it suffices to
show that there exists ¢ € G"(F) such that

a(€,B,n7) € P"T(Fa(CE, B, 7). (16)

Write n = ((\] 0), i/, k’)n. By the same calculation as in the proof of Lemma
5.2,

Tr(Lulam x 1) € P"(F) 70 (=4 fer, (=11 0),0) 120 X 11m)
=P (F)Tr(Ladam X Lum) (=4 fer, (=11 0),0)12m X 1rlan).
On the other hand, by [26, Lemma 4.3], there is ( € G"(F) such that
Trts(lam X 1) € P (F)705(ts(C X 1ogmn_r)) X l2,). Hence, (16) holds for
¢ = C(—u'(lor), —M1,0). This proves (15), and thus also an invariance property
for g,.
It remains to show that g, (diag[z1, 22],s) depends only on s, z1,Im(22) and

w,(22). Observe that whenever aye~' = pw for some p € P™°(A),w € K™°,
then

P(ayo ™", 5)Jk,s(y,do)
= x(det dy) ™" xe(det(dw)e) ™" T,s(w, d0) | det dp| ;i s (y, o)
= p(ano Y xal(det(dy)a) " k.5 (D, 0) Jr.s (a, 2) 7| det d,y | 2,

where we put p(ano ™) := yn(det(dp)n) " xc(det(dy)c) ™. Moreover, because
Ir,5(ps30) = xa(det(dy)a)| det dply, | det ;> = (aaz)*N(ag(ao ™))%,

we get

(Elksp)(z,8) = Y > ¢layo™",s)Jis(y,i0) (17)
0<r<n a€A,
k

_ZZN ao(ao ™)) u(ano ™) Ik s (qa, diag[z1, 22]) 16 (aadiag[z1, 29])*~ 2

From this and the formulas (13), (14) we see that g, depends only on
8, 21,Im(z2) and w,(z2). This finishes the proof. O
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6.3 DECOMPOSING THE EISENSTEIN SERIES II: THE FULL RANK PART

LEMMA 6.5 (Reproducing Kernel). Let f be a holomorphic function on H,; of
weight k € 72 such that Ag (2)f(2)? is bounded. Then for s € C? satisfying
Re(sy) > 0, Re(s,) + kv — /2 > 2n for each v € a, and for (¢,p) € Hn, we
have

Es.k(s) det(Im(C)) ™" f(C, p) =
/H f(r w)ea(—tr (Slw = p](r = ¢)=1)) det(r — ¢)~*|det(r — ()|

~det(Im(7))°Ag x(2)d(T, w),

where
éS,k(S) — H det(QSu)fn(_1)n(l+k,//2)2n(n+3)/274s,,7nk,/7_rn(n+1)/2
vea
Ln(sy +ky = 5 = 251)

Fn(sv + kl/ - %)

and T, (s) := gn(n=1)/4 H?;ol I(s— ).

Proof. We remark that a very similar integral was computed in the proof of
[3, Lemma 2.8]. The main difference in the formula comes from a choice of
parametrization for w.

The proof is based on the identity:

/ exp(atr (—S[X]A+ RXA))dX

nl/2
(det §)~"/2 exp (%tr (S*l[tR]A)) ,

= (det A)~1/2 (i)
(det )
where S € Sym;(R) is a symmetric positive definite matrix, X € M;,(R),
A € Sym,,(C) and a € C*.
For f(r,w) = > 1 g ¢(T, R)ea(tr (T'T + Rw)), we obtain

/H F (7 w)ea(—tr(S[w — 7(r — 0)-1)) det(r — O)F| det(r — &)|~2* det(Im())*
- Ag p(2)d(T,w)

1
= 2—nl/2 det(2S)_” ; ea(tr (Rp + ZS_l[tR]C) )
. / det(¢ — 7)/27F(—1)M k24D | det (¢ — 7)| 20 det(Im(7))TH—H/?2
H

en (3t (57D ) X el R (1) ()

T
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By the “classical” reproducing kernel formula for holomorphic functions on
the Siegel upper half space as stated for example in [26, Lemma 4.7], the last
integral equals

0 L .
2_"1/221;(25‘)—”63 (Ztr(s 1[tR]§)> det(Im(¢ ;c (T, R)ea(tr (TC)),

where g () is as in the hypothesis. This concludes the proof. O

In order to proceed further we introduce the following notation, taken from
[26, equation (4.5)]. We have that G"(A) = D"[b~1, bW D"[b~!,b] with

W = {diag[q,t}] : ¢ € GL,(Ap) N H GLn(au)} ,

v€h

that is, any element 2 € G™(A) may be written as = ~;diag|q, ¢ly2 with
1,72 € D*[b71 b] and ¢ € W. We define £y(z) to be the ideal associated to
det(q), £1(z) := ][ fo(x)» and set £(z) for the norm of the ideal £o(x). With
this notation we have,

LEMMA 6.6. For z1 € Hy, and 20 € Hyy,

en(diag[z1, 22, 5)
= > N(b6) 2" N(ao(B))** (&) > xu (0" )X[BIX" (1(£))xc (det(dg)) "

BeBEeX

s (€ wn(B21)) " ks (B, 21) " ks (0 22) T det(wn(r]) — 5 1)
1 wn(T{))—l))((g(ﬁﬁ)5(72))5—1@/2

3 (€ wn(B11))j (1, 72) det(wp (1) — 5 1) 72,

cea(tr (Sfwary ! — wi (w))] (15

where we have set (€ X loy—2n)Bz1 = (71, w)).

Proof. The statement follows from the explicit computation of the factors oc-
curring in the formula (17). Recall that we have already computed the values of
the automorphy factor and § in (13), (14). Therefore it suffices to find ag(ao 1)
and p(ano ™) for o = Tpea(ta(€ X 1glagm_n))B x ) with £ € X, 8 € B as
in Lemma 5.3. Observe though that neither ap nor p depends on the elements
from Heisenberg group. Moreover, because for any symplectic matrix g we
have gH = Hg, the symplectic factors of the representatives given in Lemma
5.3 are exactly the same as the representatives provided in [26, Lemma 4.4].
Hence, it is clear that the formulas for ap and u have to be the same as the
ones computed in [26, Lemma 4.6]. That is:

ap(ao™!)=b""ao(8)0o(€) ", plane ™) =xn(0")x[B1x" (¢1(€))xc(det(de)) ™!
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We now consider an f € Si(T', x 1) where T := G™ N D with
D :={(\p,k)x € Clo,b~ 1,67 D[b e, be] : Yole (@z — 1n)v € My n(ey)}.

We set v, = 2 if ¢|2, and 1 otherwise. Then by using the standard unfolding
trick regarding the zo variable and setting A := T'\ H,,;, we obtain

<sn(diag[21,22] s), f(z2) >

= vevol(A)™1 YD N(B) 72" N (ag(8))** (&)~ xn (0™ )X [BIX" (41(€))

BeB X
“Xe(det(de)) ™ i, s (€, wn(B21) ks (B, 21) T8 (BT) T 215(€, wi(Brr)) T2
/Hdet(wn(T{) — 73 ) Pea(tr (S[wary ' —wn (w))](r3 "t —wn(r]))71))d(72) 72

s (M 22) i (s 72) det(wn (1) = 757 D72 F (22) A i (72, wa)d(72, w2).

It is easy to show that the integral on the right of the above formula is equal
to

/ Flesmm(22) det(ra - wn (7))~ ea(—tr (S[w +wn (w))] (72 +wn(r]) 1)
(1) 2 5y )R2) det (7 + (7)) 2D A (72, 12)d(7a, w2),

and by Lemma 6.5, this further equals

(—1)" TR Eg (5 — k/2)6(Ewn (Br1)) = HF/2 flj M, (—€w,, (B21)).  (18)

Put 6,1 := Hvea Ov,n,k, Where 0y, p, 1 is equal to 1 if nk, even and —1 otherwise,
and let ¢g x($) := 0n,kCs k(s). Then, because I'(5) = I'(s), the quantity (18)
equals

(=)™ g 4 (s — k/2)8(Ewn (B71)) " T2 i, s, (—€w,, (B21)).-

Hence, if we set f¢(z) := f(—Z), where —z := (-7, —w) for z = (7, w), then

N (O xu(0) ()" (s — 5)~ vol(A) <o (dinglz1, 2], ), £ (22) >

=ve Y Y N(ao(B)* (&) > x[BIx* ((r(&))xe (det(de)) ™" Tr.s (B, 21) "
BeBEeX
< Tr,s (& wn(B21) 768 M2 (€ wa (BT))| T2 RS (Ewn (B )) o/
((flrsm)  |k,58) (Wi (B21)) .5 (&, wn(Bz1))
5(ﬁ7-1) s—k/2
g (225

BeB wn(ﬂTl
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D UE) X)) xe(det(de) T (Flr,sT0) Lk 56) (Wi (B21)).

geX

It is not hard to see that n;,'X = Yn,', where Y = G"(F) NG, [[,c, Y
with

{(\ p,k)y € Cy[b71 0,67 1D [be, b7 ] s ay — 1 € My n(en)}, vle,
Y, ={ Cyo~", 0,6 1D (b, b1 Z,Cy 6L, 0, b 1]D"[bc b-1], vlele,
Colb=1, 0,6-1G" (F,)Cul6-1, 0,6-1], vic,

7, = {diag[q, q] : ¢ € GLy(F,) N My 5 (c0)}

Moreover, it follows from Proposition 7.10 which we prove later that
(fli,sM0)¢ = Félr,smyt. Set

D(z,5.9) = > L)X (14 (€))xe(det(ae) " (gle.s€)(2).  (19)

ey

where £/(€) = (nnén; 1Y), 04(€) == U(nnén;t). Then, using Proposition 6.4,
formula (9) and the fact that N(a(8)) = |A}};(8)|F, we obtain

N(b)2nSXh(9)_n(_1)n(s_k/2)cs,k(3 _ k/2)_1vol(A)
< (E|g,sp)(diaglz1, z2], s), f(z2) >

7_1 s—k/2
= v Y N(ao(8)*x[8)Jk.5 (8, 21) " <%)

BeB 0 wn(ﬁTl
D(wn(Bz1),25, f)|k,sm;, " (20)

7 SHINTANI’S HECKE ALGEBRAS AND THE STANDARD L-FUNCTION
ATTACHED TO SIEGEL-JACOBI MODULAR FORMS

In this section we define Hecke operators acting on the space of Siegel-Jacobi
modular forms. These operators were studied in the higher index case first by
Shintani (unpublished), Murase [19, 20] and Murase and Sugano [21]. As we
have indicated in the introduction, this was done in the case of trivial level,
and one of our contributions in this section is to define such operators also
for non-trivial level. Furthermore, in this section we introduce the standard
Dirichlet series which can be attached to a Hecke eigenform. Our main result
here is an Euler product representation for this series, which extends previous
results in [21] from index one to higher indices.

We start by fixing some notation. For the usual fractional ideals b, ¢, ¢ let

D :={(\ p,k)z € Clo,b™ 67" |D[b e, bc] : Ve (az — 1n)y € Mp(ew)},
I':=G"(F)ND,
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Qe) :={r e GL,(An)N H M, (0y) : 1y = 1, for every v|e},
vEh
R(e) := {diag[r,r] : r € Q(e)}.
For r € Q(¢) and f € M g(T',¢)) we define a linear operator Ty
M (T, ¢) = My o(T',¢) by

fITry =" te(det(an)e) " flr.scr, (21)
acA
where A C G"(F) is such that G"(F') N Ddiag[r,7|D = [[,c 4 T'ce. Further,

for an integral ideal a of F' we put

fITs(@) = Y fITvw.
reQ(e)
det(r)o=a

where we sum over all those r for which the cosets ErE are distinct, where
E:=[],cn GLn(0y).

We also note here that if we let |7}, ,, be the adelic Siegel-Jacobi form associated
to f|T, by the bijection given in (4) with g = 1, then

(FIT ) (@) = Y ve(det(an)e) f(za™t),  z€ G"(A),
acA
where Ddiag[,7]D = [[,c 4 Do with A C Gy. As above we may also define

£| Ty (a).
We now consider a nonzero f € Sj (D, ) such that f|Ty(a) = A(a)f for all
integral ideals a of F'. For a Hecke character x of F' we define the series

(s,£,%) Z)\ N(a)™®, Re(s) >0,

where for a Hecke character x we write x* for the corresponding ideal character.
Of course, for a prime ideal q that divides the conductor f, we set x*(q) =0. A
similar argument to [3, Lemma 2.2] extended to the totally real field case shows
that the function D(s, £, x) is absolutely convergent for Re(s) > 2n + 1+ 1.
We now impose a condition on the matrix S. We follow [19, page 142]. Consider
any prime ideal p of F' such that (p,c¢) = 1 and write v for the corresponding
finite place of F. We say that the lattice L := o}, C F! is an 0,-maximal lattice
with respect to a symmetric matrix 25 if for every o, lattice M of F! that
contains L and satisfies S[z] € o, for all z € M, we have M = L. For any
uniformiser 7 of F, we now set

L' :={zx e (28)"'L: nS[z] € 0,} C F..

We say that the matrix S satisfies the condition M; if L is an o0,-maximal
lattice with respect to the symmetric matrix 25 and L = L’. The main aim of
this section is to prove the following theorem.
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THEOREM T7.1. Let 0 # f € S 5(D, %) be such that £|Ty(a) = Aa)f for all

integral ideals a of F'. Assume that the matriz S satisfies the condition M,;" for
every prime ideal p with (p,c) = 1. Then

£(x,s)D(s +n+1/2,f x) = L(s,f, x) HLp N(p)~*)~*,

where for every prime ideal p of F

Ty (1= ppi X)(1 = g 1 X)), ppi € C*if (pye) = 1,
Ly(X) =S TT7q (1 — pp,iX) ppi €C if (poete) #1
1 if (p,e) # 1.

Moreover, £(x,s) = H(p,c):l £o(x, s), where

[T, Lp(2s 4+ 2n — 2i, x?) if l € 27

£ =G .
P(Xa 5) P(X; 5) {Hi_l Lp(23+2n—22+1,x2) Zfl€2Z

and Gp(x,s) is a ratio of Euler factors which for almost all p is equal to one.
(Below, in Theorem 7.6 we make Gp(x,s) very precise.) In particular, the
function L(s,f,x) is absolutely convergent for Re(s) > n+1/2+ 1.

Remark 7.2. Tt is worth to notice that the factor Gy(x,s) does not appear in
the works of [21] and [3]. It is because in the case of | = 1 considered there, the
condition MJ is equivalent to the condition that the matrix S is regular (see
for example [19, Remark 4.3]), which implies that the factor G, (), s) is equal
to one for all good primes. We should also mention here that Sugano in [33],
in the case of n = 1, obtained an Euler product expression working under a
weaker assumption on S.

Before we proceed to the proof of the above theorem, we state an immediate
corollary regarding the vanishing of the L-function defined above.

COROLLARY 7.3. With notation and assumptions as in Theorem 7.1,
L(s,£,X) # 0
whenever Re(s) >n+1/2+ 1.

Proof. This follows from the fact that the function L(s, f, x) is absolutely con-
vergent for Re(s) > n +1/2+ 1 and has an Euler product representation. For
the formal argument see [28, Lemma 22.7]. O

The rest of this section is devoted to a proof of Theorem 7.1. Note that if we
fix a prime ideal p of F' and consider the series

(s, £, %) Z)\ p)x 'N(p)~™7%, Re(s) >0,
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then

D(s,f,x) = HDpst HDpst
pr

which means that it suffices to prove the theorem locally place by place.

LocAL NOTATION. For the rest of this section we fix the following notation.
We fix a finite place v € h of F. We abuse the notation and write F' for F,,
o for 0,, and just p for the corresponding maximal ideal in 0,. Moreover, we
denote by 7 € p any uniformiser of this place. We further set ¢ := [0 : p] and
denote by | - | the absolute value of F normalised so that |r| = ¢~!. We also
write G,G, D, D for G(F,),G(F,), D, and D,. Finally, in this part of the
paper we denote by g the v-component of the additive adelic character g
introduced in section 3.

7.1 THE GOOD PLACES

We consider first a finite place v which is not in the support of ¢f,. We
assume that the matrix S, satisfies condition M;r . As we have indicated at
the beginning of this section we will extend the results of [21] from the case
[ =1 to any [, and also introduce the twisting by a finite character x. Here we
use (more or less) the notation from [19, 20, 21].

We define a local Hecke algebra X as in [19, page 142]. That is, let X be the
C-module consisting of C-valued functions ¢ on G which satisfy

$((00, k)dgd') = ¥s(r)¢(g), d.d € D,gec G, € Symy(F)

and have compact support modulo Z := Sym;(F) C G. As it is explained
n [19], one can give to this module the structure of an algebra by defining
multiplication through convolution of functions. Moreover, it is shown in [19,
Lemma 4.4] that the assumption M; implies that a function ¢ € X has support

in
U Dd,, (7,
aeAt
where AT := {(a1,a2,...,a,) €EZ" a1 > a3 > ... > ap > 0},

d, : GL, = G C G, dn(a) := diagla,'a” '],
and 7, := diag[r®, w2 ... 7] € GL,(F).

Let
T :=T(F):= {d,(diag[t1,...,t,]) : t; € F*} € G
and

Xo(T) :={, € Hom(T,C*) : € is trivial on T'(0)}.
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For a character £ € Xo(T') and ¢ € X set

Ae(9) = Z fil(dn(ﬂa))g’(dn(ﬂa))v

aEeZmn

where for a function ¢ € X, qg(t) is defined as in [19, equation (4.8)], that is,

(1) == o, ()72 | ¢(not)dn,

Ny
where Ny := Vi Ny C G, Ny is the unipotent radical of the Siegel parabolic P,
of Sp,,, Vo := {(0,1,0) : u € M;,}, and N, and the Haar measure dng are
normalized as in [19, page 144].
For an a € AT we define ¢, € X by

Ys(k) if g = (0,0, k)dd,(7s)d € ZDd, (1,)D,
¢a(g) = .
0 otherwise,

and for a finite unramified character x of F'* we define the function v, , on G,
s € C, by the conditions

V57X((0,0, K)dgd/) = ’I/JS(*K,)I/&X(Q), g € Ga dad/ S D

and
Vs,x(ﬂ-oz) = X(ﬂ_v)l(a)qfé(a)s’

where ¢(a) = Y| a;. It is shown in [21] that these two conditions uniquely
determine the function v, ,. Now, given a character { € Xo(7') and an unram-
ified character x of F'*, we introduce the series

B(Ex8) = 3 Ae(a)x(m) g~
a€eA}

Given a & € Xo(T) we define the function ¢ on G following [19, equation
(4.11)] by

¢f((05 07 K,)not(A, 05 O)d) = 1/)5(5)(55111é2)(t)@L(/\), de Da te Ta nyp € NO;

where @, is the characteristic function of L := M, (0). The following
lemma ([3], Lemma 5.2) gives an important integral representation of the series

B(£,x, s).

LEMMA 7.4 (Murase). For & € Xo(T) and a finite unramified character x of
F* we have

Blexs) = [ nao)oclods
Z\G
Remark 7.5. The original lemma in [3] is stated without a twist by x, but it is
easy to see that the arguments there extend easily to include also the case of

twisting by an unramified character.
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For a finite unramified character xy and a character £ = (&1,...,&,) € Xo(T),
where §; are unramified characters of F'*, we define the local L-function

L& xo5) = [ [(1 = &(m)x(ma™*) 7" (1 = & (m)x(m)g ) "

i=1

In order to state the main theorem of this section we need to introduce a bit
more notation. We write ag(s, x) for the Siegel series attached to the symmetric
matrix S and to the character x, as defined for example in [27, Chapter III].
Moreover, by [27, Theorem 13.6], we have

/2] -

as(s,x) = | L(s,x) H L(2s - 2i,x%) | gs(s.x) (22)

for some analytic function gs(s,x) of the form gs(s,x) = P(x(w)qg—*) for
some polynomial P(X) € Z[X] of constant term one. Moreover if S is regular,
that is, det(2S) = 0 for [ even and det(2S5) = 20 for [ odd, then gs(s,x) = 1.

The following theorem generalizes a result due to Murase and Sugano [21],
where the case of [ = 1 and x trivial is considered.

THEOREM 7.6. With the notation as above,

gs(s+n+1/2,x) /
L = A A
(gaXaS) gS(S+l/27X> (X,S) Z\ny,s+n+l/2(g)¢§(g)dg (Xas)a
where
" L(2s+2n — 24, x? ] 27,
A(X,S) = H:}:l ( s + n Zax ) Zfl € )
[T L(2s+2n =20+ 1,x%) if | ¢ 2.

In particular,

gs(s+n+1/2,x)
gs(s +1/2,x)

L&, x,8) = B x,8 +n+1/2) A(x, s).

. - (s+n+1/2,x)
Remark 7.7. In the notation of Theorem 7.1 we have Gy (x, s) = W,

where p is the prime ideal corresponding to the place v.

The rest of this subsection is devoted to a proof of this theorem. First we
extend some calculations of Murase and Sugano [21]. Denote by o, n, the
characteristic function of My, n,(0) and let

F(s,x,9) == F(s,x, hg) =

1 0 STn *
/ O2n+1,4n+21 <<y <0l > ,ya(h))) x(det(y))| det(y)|** /2 g0
GLapt1(Fy) g
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where for h = (A, u, k) € H we set

K—Xu =X —pu

Define also
Flooxg) = [ Flsix (0.0.0)9) s ().
z
We now recall a theorem of Murase in [20, Theorem 2.12].

THEOREM 7.8 (Murase). We have the equality:

)1 [T, L(2s +2n +1— 2i,x?)

I\ ! !
L(f,X,S)O[S<S+—,X) L<S+_ax nl—
[ Ls+n+1/2—1i,x)

2 2

F(s,x,9)0¢(g)dg.
2\G

The following lemma extends a result of Murase and Sugano in [21, Lemma
6.8] from the case of index one (I = 1) to any index.

LEMMA 7.9. We have the following equality:

!
F(s,x,9) = <HL(s+n+l/2—i+1,x)> as(s+n+1/2,x)

i=1

2n
: <HL(S +n— l/2 —1 + 15X)> Vs+n+l/2,x(g)'

i=1

Proof. We recall first a result of Shimura. By [27, Lemma 3.13], for any
g € M, (F),

/ Tm.2m (g, y)x(det(y))| det(y)[*d*y = [ [ L(s—i+1, x)x(vo(9))v(9)~*,
GLom(F) Py

(23)
where 14(g) and v(g) denote the denominator ideal of ¢ and its norm respec-
tively, as defined for example in [27, page 19].
By [20, Proposition 2.3 |,

]:(Sa e (Oa 0, H>dgd/) = 1/15(7“)‘7(57 X g)

for all k € Z and d,d’ € D. That is, thanks to [19, Lemma 4.4], for a fixed s
the function F(s, x, g) is supported on UmeAI ZD7,, D. Hence, it is enough
to prove the equality of the Lemma for g = 7, for an m € A}. We have

]:(S,X,ﬂ'm)Z/Z’L/Js(H)d/i
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1 s+n *
/ Oantlant2l (y( g )y(ﬁ 1 )) x(det(y))| det(y) |+ 2d"y
GL2n+l(F) m 2n

Write y = k(*}), where k € GLaypti(0), a € GLy(F), d € GL2,(F) and
b € Mo, (F). Then F(s,x,mm) = I1 - Iz - I3, where

I :/ 1/)5(/1)/ Ul,l(a)gl,l(aH>X(det(a>>|det(a)|5+"+l/2d*a,
Zz GL,(F)

L = / 01,20 (b ) 01,20, (b)db
My 20 (F)

and
Iy = / Oon.2n (d) T2 on (dmm ) x (det(d))| det(d) s T2 | det(d)|~'d*d.
GLay, (F)

We compute first the integral I;. By the equation (23),

/GLl(F) ovi(a)or(ar)x(det(a))] det(a)| ™"/ 2d"a
= ﬁ L(s+n +1/2— i+ 1L)x(mo(s)v(s) "2,
i=1
and hence
= l_illL(S tntl/2-i+1x) /Z Vs (k) x(vo(k))p(k) =" 2d.

But the last integral is nothing else than the Siegel series ag(s +n +1/2,x),
and thus

l
I = HL(s+n+l/2—i+1,X)a5(s+n+l/2,x).
i=1
Finally, it is easy to see that Iy = g~ (™1 +--+mn)l and that by the equation
(23) again,

2n

Iy = H L(s+n—1/2—i+1,x)xwo(mm))v(my,) " "V2,

i=1

Proof of Theorem 7.6. By Lemma 7.9,
-1

2n+1—1
L(f,x,s)a5(5+l/2,x)1L(s+l/2,x)1< H L(s+n+l/2i,x)>

i=1
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!
-HL(s+n+l/2—i+1,X)as(s—|—n+l/2,x)
i=1
2n
JIr@s+2n+1—2i ) [[L(s+n—1/2—i+1,%)

i=1 =1

. / Vs+n+l/2,x(g)¢f(g)dg
Z\G

n

= as(s+1/2,%) " L(s +1/2,0) " ] L(2s + 2n+ 1 2i,x°)
=1

. L(S +n+ 1/25 X)O‘S(S +n+ l/2a X) / \@ Vs+n+l/2,x(g)¢§(g)dg
zZ

as(s+n+1/2,x) L(s +n+1/2,%) 14 2
= L(2 2 -2
as(s+1/2,%x) L(s+1/2,%x) };[1 (22 +2n+ )

: / Vs+n+l/2,x(g)¢f(g)dg'
Z\G

If we now plug in the expression (22) for the Siegel series, we obtain

Cgs(stn1/2,0) TV LEs+1-2i,x%)

L(év X S) -

9s(s+1/2,%) IV L(2s + 2n+1— 2i,x?)

‘ H L(2s+2n +1 — 2i, X2)/ Vsinti/2,x(9)0¢(g)dg

i=1 zZ\G
[n+1/2]
1/2
_gslstntl/2x) [T L@s+2n+1-2ix%

gs(s +1/2%)

] versipaloéela)ds.
Z\G

which finishes the proof. O

Given a cusp form 0 # f € S}/ (D, 1)) we can define an action of an element ¢
in the Hecke algebra X by

(fxo)(g) :/Z\G f(gz 1) o(x)dx.

If now f is a common eigenform for all ¢ € X, that is, £ x ¢ = Ag(¢)f for
all ¢, then we obtain a C-algebra homomorphism Af : X — C. Thanks to [19,
Theorem 4.15] we know that this homomorphism is of the form

Af(0) = Aee (9)
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for some character & € Xo(T'), and thus, as it is explained in [3, Lemma 5.4],
fx o =f£|T, -1, foreveryae At
Note here that since Dd,,(7,)D = Dd,, (7, ') D, we obtain

B(fvaa S) = Dp(sv fa X)

In this way we can conclude Theorem 7.1 in the case when v is a good prime
by taking pp; =& (m) if & = (&1,....&).

7.2 'THE BAD PLACES

We now consider the case of (p,c¢) # 1. If (p,e) # 1, then there is nothing to
show, because in this case each Hecke operator is just the identity. Hence we
consider the case of (p,e~'c) # 1. In this section we set E := GL,(0) and
§:=8(b71) := Sym,(F) N M (b, h).

First we work out the decomposition of the double cosets Ddiag[g ,€]D. Recall
that we write D =CD with C=C,[0,b71,671|C H and D=D,[b7!,bc] CG.
By [28, Lemma 19.2] we know that

panglé.p = o (* 7).
d.b
where d € E'\ EEE and b € §/%dSd, and thus

Ddiaglé, €] D = CDdiag[é,)DC =| | D <J tib) c
d,b
d db

Observe that for elements (A, i, x) € C and < d

) as above we have

(d Cfib) (st ) = N, (=X )™ s N (=2 + p1) = Np) (d Cizb> .

In particular, o
"~ d db
Ddiag[¢,§]D = | | D(0,1,0) (" /') (24)
d,b,u
whered € E\E(E, b € §/dSd and p € My, (b, 1)d= /M, (b, 1). We will show
that the set DX D, with X = {diag({,§) : £ € My (0,) N GL,(Fy)} is closed

under multiplication. For Ddiaglé;, &]D = U b0 (05 12, 0) (di dglbz),
i = 1,2, we have
Ddiagl¢,, &) Ddiag[&, £]D
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dy dib dy dab
|_| D(Oa,ulao) ( ! éll) (03/1/230) ( 2 222)

d17b11H1,d27b2,H2

N 1 by + 'dabid
= | | D(O,ul,O)dlag[dldg,dldg]< S 2> (0, pada, 0)

d1,b1,p1,d2,b2,p12

Ca s 1 by + 'dobid
- Ddlag[dldg,dldg](O,,uldldg,0)( 2R 2) (0, pi2ds, 0).

d17b11H1,d27b2,H2

1 b+ td2()1d2

Hence, because (0,pu1dids,0), (0, uade,0) € C, ( 1

) € D and
d~1JQ = dflvdg, we have shown that
Ddiagl¢;, &) Ddiag[és, &]D ¢ DX D.

We define the Hecke algebra X := X, for v|e~!c to be the algebra generated
by the double cosets DX D.

In order to define the Satake parameters associated to an eigenform of this alge-
bra we need to define an injective algebra homomorphism w : X — Q[t1,. .., t,].
We will do this by reducing everything to the theory of GL,,, very much in the
spirit of Shimura in [28, Theorem 19.8].

Given an element

Daiag€. 0 = || 0,00 (1 ©).

d,b,u

where d € B\ EEE, b e §/%dSd and p € My, (b, 1) d= /M, (b, 1), we set

wo ((O,M,O) (J %b)) 1= wo(Ed),

where wy is the classical map of the spherical Hecke algebra of GL,, defined as

wo(Ed) := T[], (§7%,;)% if an upper triangular representative of Ed has the

diagonal entries ¢, 72 ... 7w with e; € Z. Further, let
oz d db
w(Ddiagl¢, €] D) := C; wo (<o,u, 0) ( d)) :
bop

An identical argument to the one in [27, Proposition 16.14] shows that
w: X = Q[[tf,t5,. .., t5]] is an injective algebra homomorphism.
For a finite unramified character y and for s € C consider the formal series

B(x,s):= Y (Ddiagl¢,¢]D)x(det(&))N(det(£)) ™",

(EE\B/E
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where B := GL,,(F) N M, (0). Then, if we define
w(B(x,s)) = Y w(Ddiag[¢,D)x(det(&))N (det(£)) ™",
E€EE\B/E
we have that
W(B(x,5)) = Y wo(Ed)|det(d)| ™" "x(det(d))N(det(d))*.
dEE\B

Hence, by an argument similar to the one in [28, Theorem 19.8], we get

n

w(B(x,5)) = [[(1 = " tix(m)g*) " € Qllta, - .-, .

i=1

Now [28, Lemma 19.9] states that if a Q-linear homomorphism A: X — C maps
the identity element to 1, then there exist Satake parameters py,...,u, € C
such that

n

A(Ddiaglé, & D)x(det())N (det(€)~* = [[(1 = ¢"*puix(m)a ™) !
2 11

¢€E\B/E i=1
or, equivalently,

> ADdiagl¢, {|D)x(det(€)) N (det(¢)) = H?)
¢€E\B/E

=TI —a " pix(m)g)™"
i=1

as an equality of formal series in C[[¢~*]]. Hence, if we take as A the homomor-
phism obtained from the eigenform f and let p, ; := piqg~"?, we establish the
rest of Theorem 7.1, as in this case

Dy(s,f,x) = > A(Ddiagl¢, £ D)x(det(€)) N (det(£)) .
§EE\B/E

7.3 A Y-TWISTED L-FUNCTION

To an eigenform f € S} ¢(D, ) we can associate yet another L-function. It
appears naturally in the doubling method when the form f has a non-trivial
nebentype. For a character x of conductor § we define

Ly(s.£,x) = [T Lo(x™ () (4 /%) ()N (p) )
p

= II Ze(x) @N®)™) | [ [T Le&x* )N~ | .

(p,0)=1 plc
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where 1. = HU‘[ Yy, Tp € 0p is a uniformizer of the ring of integers oy, and the
factors L,(X) are as in Theorem 7.1. We also define the series

(s,f,%) Z)\ (a")N(a)~%,

where for an ideal a with prime decomposition Hp p™ we put o =
H(p,c):l p™r. Then:

Dy(s,f,x) = HDpsfwaDpsfx)
(p,e)=1 ple

In particular, by Theorem 7.1,
Ly(x,8)Dy(s+n+1/2,£,x) = Ly(s, £, x),
where £y (X, 8) = [ o)=1 £p(x¥, 5), and

[T7, Lp(2s + 2n — 2i, (xv)?) ifl €27

Lo (x¥h, 5) = Gp(x¥, ){H Ly(2s+2n—2i+1,(xy)?) iflg2Z

Finally, for any given integral ideal ¢ we define the function

Ly(s,£, %) : H Lp(xX*(0) (W /1) ()N (p) %),

(p,r)=

that is, we remove the Euler factors at the primes which divide t.

7.4 'THE GLOBAL HECKE ALGEBRA

Now let X := @, X, be the global Hecke algebra. Since every local Hecke
algebra X, can be embedded in a power series ring (for the good places this
has been established in [19, Theorem 4.14] and for the bad places above), and
thus is commutative, we can conclude that the global Hecke algebra X is also
commutative. Moreover, if T, is the Hecke operator where r, = 1,, at v]c,
then

< ey g >=< f,9|Trp > .

Indeed, this follows from the fact that < f|sro,glsre >=< f,g > for any
«a € G™ and that for any r as above we have

Ddiag[F, r)D = CDdiag[F,r]|DC = CDdiag['r,r~'|CD = Ddiag[’r,r ]| D,

where the second equality follows from [27, Remark on page 89]. In particular,
it follows that the Hecke operators T'(a) with (a,c) = 1 are normal, and thus
can be simultaneously diagonalized.
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We finish this section with a result which will be useful for our later con-
siderations. First recall that we have defined f¢(z) = f(—%). Now set
e := diag[l,, —1,] and define

e((\, iy k)Y)e == (A, —p, —K)eve. (25)
It is easy to check that this map is an automorphism of the Jacobi group G".

PROPOSITION 7.10. Let v = (A, pu, k)y € G. Then

(fle,57)¢ = flk,s€7€E.

Moreover, if f is an eigenform with f|Ty(a) = A(a)f for all fractional ideals a
prime to ¢, then so is f°. In particular, f°|Ty(a) = Xa)f® and Ly (s, f,x) =
Ld},t(sa fcv X)

Proof. The first equality easily follows from a direct computation.

Now assume that f is an eigenform of T'(a) with eigenvalues A(a) for all integral
ideals a. Because the map (25) is a group automorphism, we see that for any
r € Q(e) if G"(F)N Ddiag[F,r|D = [, I'y, then also G" (F')N Ddiag[#', 7] D =
[1, Teye. This means that f¢|T;,y = (f|1},4)°. In particular,

FITy(a) = (f|Ty(a)) = (Ma) £)° = Aa)f*

for all integral ideals a. However, since 0 # f, then < f, f > 0 and thus the
equality

Ma) < f, f>=< f|Ty(a), f >=< [, f|Ty(a) >=< f, f > A a)

implies that the eigenvalues A(a) are totally real. The last statement regarding
the L-functions is now obvious. O

8 ANALYTIC PROPERTIES OF SIEGEL-TYPE JACOBI EISENSTEIN SERIES

In the previous section we introduced the standard L-function attached to a
Siegel-Jacobi eigenfunction. Our first aim is to study its analytic properties
using the identity (20). However, in order to do this we need to establish first
the analytic properties of the Siegel-type Jacobi Eisenstein series with respect
to the parameter s. This is the subject of this section. More precisely, we will
establish the analytic continuation and detect possible poles of this Eisenstein
series. The main idea of our method goes back to Bocherer [4], which was
further extended by Heim in [13], and its aim is to relate Jacobi Eisenstein
series of Siegel type to symplectic Eisenstein series (of Siegel type). We extend
their results to include level, character and - more importantly - we deal also
with the case of totally real field. This last generalization requires development
of some new techniques in case the class number is not trivial. In this section
the letter F is used for both Jacobi and symplectic Eisentein series, but the
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distinction is always clear from the argument: z = (1, w) € H,,; is reserved for
Jacobi forms, whereas a single 7 € H is used for Siegel modular forms.

We start with the following lemma, which gives us good representatives for the
sets (P" N(¢T¢1) \ (T, where ¢ € Sp,,(F), and T is a congruence subgroup of
the form H x Ty(b, ¢).

LEMMA 8.1. A set of representatives for the left cosets (P™ N (T¢™Y) \ (T is
given by

()‘a Oa 0)/7) A€ Ml,n(o)a v eprPn gro(ba C)C71 \ Cro(b’ C)-

Proof. First note that ¢(I' = ((H x Ty(b,¢)) = H % (Ty(b,c) and, similarly,
P N(T¢t = P" N (H x ¢To(b,c)¢1), which is nothing else than the set
(HP N H) x (PN¢To(b,c)¢™1). Now, since

(ngro(b’c)gil)H:H(Pmcro(bac)cil)a

a set of representatives for the cosets is given by a product of representatives
for (Hf N H)\ H and for (P N ¢To(b,c)¢™1) \ ¢To(b,c). This is precisely the
statement of the lemma. O

Now recall the expression (10) for a Jacobi Eisenstein series of Siegel type:

E(z,s:x) = Y N(@(C))** > x[16(2)* |57,

ez YEQ¢

where Q¢ = (PN (¢To(b,c)¢71)\ ¢To(b,c).

We set E¢(z,8) = Z’YGQc x[716(2)*~*/2|; 7. Clearly, the analytic continua-
tion of F(z,s; x) and its set of possible poles would follow by establishing such
a result for all the E¢(z,s), as ( € Z.

If we write v = hg and z = (7, w), then

Be(z,8) = Y x0()* ksy = x[Mks(y,2) " 6(gr) 2.
YEQ: YEQ:
Further, by Lemma 8.1,

Ec(zs) = Y Xlali(g,7)"0(g7) ™ 2ea(—tx (Sw](coT + dg) ~cy)
gEQC

Z ea(2tr (ASw(cym +dg) ") +tr (S[Ng - 7).
AEM; 1, (0)

For a lattice L in M; ,(F) we define the Jacobi theta series

Os.0(2) = Os.L(rw) =Y _ ea(2tr ("ASw) + tr (S[A]7)). (26)
AEL
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Recall (Lemma 4.2) that the elements ¢ may be selected in the form
diag[ln,l,ac,ln,l,agl]. In particular, for an element g € Q¢ of the form

9 =G,
ln—l
&g +dy = (ec(g17) +d)eq 7 +dyy) = (71 1 ) (eq 7+ dy)

and
gr=Con-m=(""0) (17 (" M a)

That is, we may write

D ea2tr (ASw(cgm+dy) ) +tr (SNg-7) =Os.a, (91-T, w(cgm+dg, ) ),
AEMlyn,(O)

where A, = M; (o) (1"71 a<) and g = (g1.

1n—1

Moreover, because ¢4 = ( ast ) Cors

ea(tr (S[w](cyT + dg>_1cg>> = ea(tr (S[w](cg, 7 + dgl)_lcgl))-
Hence, E¢(z, s) is equal to
> xlglig,7)7Fo(gm)* T ea(—tr (S[w](cgy T + dgy) T e4,))Os 0, (912)-
gEQ:

We now set 'Y := Sp,,(F) N D?, where DY := D[b~!,b] if | is even, and
D? := D[b=1,b] N D[207*,20] if [ is odd. For v € T, 7 € H2 let j(v,7)"/? :=
h(~,T), where h is the half-integral factor of automorphy as defined for example
in [28, page 180]. Then for [ odd and vy € T'Y we have

()% = Ry, 1), )V
Therefore it makes sense to define
O5.8u, (2)|s1/27 = P(7,7) " s 12 (7, 2) O, (72), v €T

In fact, for a sufficiently deep subgroup I',, of finite index in T'o(b, ¢)) N DY we

have that (see [28])

ag

O5.04, (2517201 = ¥s(91)Osa,, (2), forall g1 €Ty,
where g is the Hecke character of F corresponding to the extension
F(det(25)Y/?)/F if 1 is odd, and to the extension F((—1)/*det(25)Y/?)/F

if [ is even.
Moreover, for every g € Q¢ such that g = (g1, g1 € I'o(b, ¢), we have

X[gli(g, )~ 6(g7)* "M 2 ea(—tr (S[w](cg, 7+ dgy ) ' eg1)) @50, (912)
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= Npjolac)'*¢s(ac)elgli(g, )~ 2 6(g7)**2(Os a,, (2)l5.17201)5

where ¢ := x1g, and we have used the fact that

39, 7) = 3(C1,7) = § (¢, 91 - 1) (g1, 7) = Npjglag) ™ jgr, 7).

In particular, if we set Q¢ := (T'q., we obtain

Ec(z,5) = Nrjg(a)Pvs(ac) Y xBI(Ee(r,s —1/4)Os . (2))]s 47,
¥ETa \Lo(b,c)

where E¢(71,s) = ZgEQ’C Blg)i (g, 7)~ k=2 §(gr)s=k/2+1/4 ig the symplectic
Eisenstein series of Siegel type of weight k& — [/2. Since the above sum is
finite, it follows that the series E¢(z,s) has poles at most at the same places
where E¢(1,s —1/4) may have.

Hence our focus now moves to detect the poles of the series E¢(7,s). Series of
this form appear as summands of the classical (i.e. symplectic) Siegel Eisenstein
series of some (perhaps half-integral) weight k and character x, namely

E(r,sx) = E(r,s) = Y N(a(0))* Y x[116(7)* "2y,

ez YER:

where

Ee(7,8x) = E¢(T,5) = Z x[]6(7)5 k/2|k7
’YGR(

The analytic properties of E(7,s) are well known, and thus we may use them
to derive similar properties for E¢(7, s).

We will use discrete Fourier analysis on the class group CI(F') of F. Recall
that CI(F) = Aj/F*U, where U = FX [, 0. Moreover, we may pick the
representatives a(¢) for CI(F) in such a way that the (’s form the set of repre-
sentatives for the set Z (see [26, Lemma 3.2]).

Note that for any character x and any character ¢ of CI(F),

E(r,sx¢) = Y w(ON(a(¢)* > x[Mo(r) 2|y

Cez 'VERg
= Zq/) Q))* E¢(r,s),
ez

that is, for every character ; of CI(F),

(1,8, x%i) = Zﬂh O)*Ec(r,s), i=1,2,...,cl(F),

ez

where cl(F') denotes the cardinality of CI(F'). Since the characters 1; are
linearly independent over the group CI(F'), we can solve the linear system of
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equations with respect to the unknowns N(a(¢))?**E¢(r,s). In particular, the
analytic properties of E¢(7,s) can be read off from the ones of E(7,s; x%;),
i=1,2,...,cl(F). Hence, since

Ec(z,8) = Nejo(@)? Y (Bc(r,s = 1/4)Os, (2)|s7s
€L \To(b.6))

we see that the analytic properties of E(z,s) can be obtained from those of
E(T, xti, s) for the various ;’s. To do that we will employ the following
theorem of Shimura [28] on the analytic properties of symplectic Siegel-type
Eisenstein series, where

n—1
Tp(s) i= "= DA T (s = 5/2).
j=0

THEOREM 8.2 (Shimura, Theorem 16.11 in [28]). For a weight k € 172 we
define

Gon(s) = [ A(s: o),

vea
where
I‘(s—f—%—[mﬂ#})f‘n(s—i—%), n/2<hezZ, ne?2Z,
Iy(s+24), n/2<he€Z, ne2Z+1,
s ) i Dongi(s + B [IM2 T(2s — i), 0<h<n/2, hel,
’ D (s+ 22— [2En=2]\D (s + h/2), n/2<h€Z, ne22L+]1,
(s +h/2), n/2<héez, ne2l,
Ponga(s+ 5) TV A7 T@s —i—4), 0<h<n/2, h¢

We also set £(s) := G(s)A} (s, x)E(T, 53 x), where

P (5% Le(28, ) TIM2 Le(4s — 2i,x2)  if k € 72,
S, = n . )
he HE(:;_”M Lc(4s—2i+1,x%) ifk ¢ 72

The function E(s) has a meromorphic continuation to the whole of C and is
entire if x> # 1. If x* = 1, we distinguish two cases:

1. if x> = 1 and ¢ # o. Set m := maxyea{ky}. Then if m > n/2, the
function E(s) has no poles except for a possible simple pole at s = ”12,
which occurs only if 2|k,| —n € 4Z for every v such that 2|k,| > n. If

m < n/2, then £ has possible poles, which are all simple, in the set

W _ Ji/2:€Z[(n+3)/2] <j<n+1-m} if k € 72,
U@+ 1) /4 e+ nj2)<j<n+1/2—m} ifkd72
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2. if x> =1,c=o0, and k € Z®. In this case each pole, which is simple,
belongs to the set of poles described in (1) or to

S =1j/2:j € 2,0 < j < [n/2]},
where j = 0 is unnecessary if x # 1.

We can now state a theorem regarding the analytic properties of the Eisenstein
series F(z, s;x), which extends a previous theorem due to Heim [13, Theorem
4.1]. Recall that vg is the Hecke character of F' corresponding to the extension
F(det(25)1/2)/F if I is odd, and to the extension F((—1)"/*det(25)/?)/F if |

is even.

THEOREM 8.3. With notation as above, let

E(5) = Gr—t2,n(s = l/AN_y 5 (5 = 1/4,x0¥s) E(2, 5, X).

The function € has a meromorphic continuation to the whole of C, and its
poles are caused by the functions

NG, (s = 1/4,x2bs)
N2 (5 — U4, x¥s0)

L i=1,...,c(F).

These poles may appear only when F has class number larger than one and
supp(c) # supp(cond(xs)). More precisely:

1. Assume that x*y? # 1 for all i = 1,...,cl(F). Then E(s) has no extra
poles.

2. Assume that there exist 1; such that x*1? = 1. Then we consider the
following cases.

(a) ¢ # 0. Set m := maxyeal{ky — 1/2}. If m > n/2, then the function
. . n+2

E(s) has no extra poles except for a possible simple pole at s = %,

which occurs only if 2|k, — /2| — n € 47 for every v such that

2|k, — 1/2| > n. If m < n/2, then all possible poles of £ are simple

and belong to the set Sl(cljl/2‘

(b) c=o0, and k —1/2 € Z*. In this case each extra pole is simple and
belongs to the set described in (a) or to

SPe =12 iez,0<5 < 3]},
where j = 0 is unnecessary if x # 1.
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Before we proceed to the proof of the theorem we recall the following fact
regarding zeros of Dirichlet series. For a Hecke character 1 of F' and an integral
ideal ¢ we consider the series

Le(s,¢) := [ (1 = () N(a)~*)L(s,¥)

qle

with functional equation

TIT((s +t0)/2)L(s, ) = W(wp, s) [ T((1 = s+ t0)/2)L(1 = 5, 4),

vea veEa

where W (v, s) is a non-vanishing holomorphic function, and ¢, € {0,1} is the
infinite type of the character. It is well known that if ¢ # 1, then L(s, 1) # 0
for Re(s) > 1, and [],c. I'((s + ky)/2)L(s,%) is entire. If ¢ = 1, then this
function is meromorphic with simple poles at s = 0 and s = 1, and L(s,v¢) # 0
for Re(s) > 1.

The absolute convergence and the functional equation imply that if two non-
trivial characters 1; and w5 have the same infinite type, then the zeros of
L(s,11) and L(s,2) as well as their orders are the same at the integers of the
real axis. Namely, for any 0 < m € Z, L(—m, 1) = L(—m,¢2) = 0 if and only
if there exists v € a such that ¢ (x,) = ¥2(x,) = sgn(z,)™. Moreover, the
order of the zero equals precisely the number of places where this is happening.
In particular, the function

may have poles only at the integers where []| ale % has poles.

If the characters 1, = 1 and 9 have trivial type at infinity, then the same
argument as above shows that the function

L[(S, 1/11)

LC(S, 1/}2)

(=41 (a)N(q)~")
qale (1—v2(a)N(a)~*)
poles. However, this time there may be an additional zero also at s = 0. This

is because at this point the order of vanishing of L(s, 1) is smaller by one from
the order of vanishing of L(s, ).

may have poles at the integers where the function [] has

Proof of Theorem 8.3. First note that since ;s are the characters of CI(F) =
A% /F*U, where U = FY [], o, their signature is trivial, that is, ¢; () = 1
for all z € F). In particular, the characters xvg and xvgst;, i =1,...,cl(F),
have the same signature at infinity. The discussion above implies that the
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functions AZ—1/2,c(S —1/2,x¥s) and AZ—1/2,c(S —1/2, x¥s;) have the same
zeros on the integers at the real line, and the ratio

A’Z?l/zc(s - l/4a st)
R0 (5 — 0 xUs7)

may have poles in cases indicated in the theorem. However, then (Theorem
8.2) the series

AZ—Z/Z:(S - 1/45 st)
ARy e (s = 1/2,xbs1s)

Gr—1/2.,n(8 = L/AN_1)9 (s — 1/4, xsi)

“E(1,5 = 1/4; x¢ivs)

does not have any more poles unless x?1? = 1 for some i, in which case the
poles are as described in the theorem. O

Remark 8.4. The analytic properties of Jacobi Eisenstein series presented in
Theorem 8.3 were obtained from the well-studied symplectic Eisenstein series
via establishing the link between these two kinds of Eisenstein series. However,
perhaps one could also try to use the results of Arakawa in [2] on the Fourier
coeflicients of Jacobi Eisenstein series.

9 ANALYTIC CONTINUATION OF THE STANDARD L-FUNCTION

We are now ready to establish two main theorems regarding the analytic prop-
erties of the standard L-function and the Klingen-type Jacobi Eisenstein series.
The approach taken here can be regarded as an extension from the symplectic
to the Jacobi setting of the method utilized in [26].

We keep the notation introduced at the beginning of section 7 and additionally
we define groups

D' :={(\ p,k)z € Clo,b~", b7 D[b~ "¢, be] : Yy (az — 1)y € My(ey)},
I':=G"(F)nD’
and
R(e,c) := {diag[q,q] : ¢ € Q(¢), qv € M,(c,) for every v|e™'c}.

For diag[q, q] € R(e,¢) and f € M} 5(T',¢), in a manner similar to f[T}. y, we
define

flUq =Y weldet(ag)e) ™" flr,sB: (27)

BeEB

where B C G"(F) is such that G"(F) N Ddiag[q,¢|/D’ = [[gcp 8. As in
section 7, if we write f|U,, for the adelic Jacobi form associated to f|Uy,y
(with g = 1) and Ddiag]g,q|D’ = [gep DB with B C G, then

(f|Ug)(x) = Y de(det(ag)) H@B™"), 2 € G"(A),

BeB
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For the rest of this section we assume that 0 # f € Sp 5(I',¢) is an eigenfunc-
tion of Ty (a) for every a with eigenvalues A(a). Note that Ty (a) # 0 only if a
is coprime to e.

We start with a version of [26, Lemma 6.2] for Hecke operators in our Jacobi
setting.

LEMMA 9.1. Let h be an element of A such that its corresponding ideal is
e tcand hy =1 for v{ete. Then Uppy = Ty yUni, ¢ for every r € Q(e).
Moreover, for f € MJ! ¢(T', %) we have f|Thi, .y # 0 only if f|Un1, . # 0.

Proof. To prove the first statement it suffices to show that

D(h*lth)D’:D(ﬂ)D-D(’flln )D’.

hl,

This may be done place by place. As we established in (24), at each place vc,

7 B d db
D’”( TU>D’U|_|D’U(07M50)< d)a
d,b,p
where d € GLy,(04)\GLy(0,)ryGLn(0,), b € Symy(b;1)/dSym,, (b, 1)d and
p € My ,(b;1)d"t /M, (b,1). Using the same argument and a double coset
decomposition for symplectic groups, we get

hy My r_ di diby
Dv( hm)Dv— L Dv(o,v1,0>( 0 )

di,b1,v1

where vy € M, (b;1)d; ! /My (651, di € GLy,(0,)\GLy(04)hy7,GLy(0,,) and
by € Symy,(b;te,)/diSym,(b,;1)d;. In particular, if we take r = 1,, and a
coset decomposition over ds, ba, U2, then we can take do = h, 1, and it is easy
to see that the set

{00, 1,0) (70 (0, v2,0) ("1 1B ) 2 pryvs, b, b, d}

= {0, vad 1 0) (PRSI0 )y b, by, d}

—1~

represents D, \(D (*"'7, ) D), for each vlc.

To prove the second statement we use Proposition 3.4. We recall that the
Siegel-Jacobi modular form f and its adelic counterpart are related by f(y) =
Ji.s5(y,40) "1 f(y - 40), for every y € Ga. Moreover, recall that the symmetric

space M, is contained in {y - 4 : y € Ga of the form (A, i, 0) (q ‘Tq‘j)}.
For an « of the form (0, v, 0) (h711" hhzlb), with va = 0, by = 0, and y € G(A)
such that y, = (0,0,0)12, and y, as above, we have

_ hg k™ (—qb+od
yo ! = ()\,/L,O)(O, _hV tQaO) ( e (h—qll;_ q))
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= O — hwlg,—hAg'y — hwlg ) (Mo ot h )

and thus by the expansion (5),

f(yofl)ZZ c(t,r; hg, Nea(tr (to — tgb'q))ea(tr (r(Ao—Agb'q + p — hr'g)))

= Z t ;5 hq, Hev tI‘ th v qy Hev tI‘ h Uy qv)))

v|c vle

ea(tr (to + r(Ao + p))).

Hence,
f|Thl71 w Z"/’ Z t Ty hg, A Hev tr t‘hbv Qv + T( hovy QU)))
t,r vlc
. ea(tr (to + 'r(\o + p))),
where b € [, Syma(by B/h2Sym.,(6,1), v € Hv‘cMl,n(bqjl)hqjl/Mlm(b;l).

That is, if we write ¢(f|Th1,, ;t,7; ¢, A) for the (¢,7)-coefficient of £|Th1,, v, we
have

C(f|Th1n,w; t,r;q, )‘) = 1/}c(hc)n Z H €y (tl“ (7tQUbv tQU + tr(*hvl/v tQU)))

b, vlc
Therefore, if
eh(tr(tqtqh725ymn(bfl))) =1 and ep(tr(’g tTMlﬁn(bfl))) =1,

then
c(f|Th, it 759, A) = N(flc)”(l+"+1)1/)c(hc)"c(t, r;hg, \),

otherwise ¢(f|Th1, ¢;t, 79, A) = 0.
Arguing exactly in the same way we can also conclude that if both

eh(tr(tqtqh_QSymn(b_lc))) =1 and eh(tr(tq tTMlﬁn(b_l))) =1,
then
c(f|Up1, w3t 15, N) = N(flc)”l+"(”+1)/21/)c(hc)"c(t, r;hg, \),

otherwise ¢(f|Un1,, ¢;t, 79, A) = 0, where we write ¢(f|Up1,,,4;t,7; ¢, A) for the
(t,7)-coefficient of f|Up1,, 4.

Hence, if f|Up1,y = 0, then c(f|Un1,y;t,75¢,A) = 0 for all ¢,r.
In particular, if for a pair ¢,7 both ep(tr (‘gtgh=2Sym,(b=1c))) = 1
and ep(tr (‘grM;,,(671)) = 1, then c(t,r;hg,A\) = 0 and hence also
c(f|Tha, w;t,m5¢,A) = 0. If on the other hand for a pair ¢,r either

en(tr (‘gtgh=2Sym, (b~ 1c))) 7é 1 or en(tr('girM;,,(671))) # 1, then also
either eh(tr( qtqh*QSymn( 1)) # 1 (since Sym,(67c) C Sym,(b~1) ) or
en(tr (‘g'rM;,(b71))) # 1, which also implies that c(f|Th1, ;¢ 759, A) = 0.
Therefore f|Th1, 4 = 0. O
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We now fix uniformizers m, € o0, for every finite place v in the support of e.

Then for a fractional ideal t we pick ¢ € AJ{, such that t is the ideal correspond-

ing to the idele ¢, and at every place v|e we have ¢, = wgrd“(t), where ord, (+)

is the usual valuation at the place v. Further, we set 7 := 1ydiag[t='1,,t1,]
and define an isomorphism

Ii: My 5(D,9) = My (7' D7, 9), f|Li(z) = ¢ (t")f(277") (2 € G"(A)).
LEMMA 9.2. The map I has the following properties:

1. it is independent of the choice of t,

2. it commutes with the operators T,y and Uy y,

3. (f|I)¢ = f€|It, where f is the Siegel-Jacobi form corresponding to f.

Proof. 1. If ' € A} is another idele that corresponds to the ideal t, then
t =1t'l for some I € [],cp, 0.

Pt (xT ) = (1)) f(xdiagt'l,, t' 1, ]diag[l1,, " 1,]1x)
= Y(t"™)f(xdiag[t'l,, t " 1,]1x),

where we have used the fact that diag[i1,,!7'1,] € D since I, = 1 if v]e.
2. This follows from direct computation, e.g. in case of T} y:
7! Ddiag[F,r] D = Ddiag[F,r]| D!,
where

Di:={(\ p, &)z €Ct™H b~ tb™ | D[b™ et bet™2]: V(e (az —15)0 € My (e0)}-

3. By strong approximation we may write 7 = ~yd for some v € G(F) and
d € D. We moreover notice that since 7 has no Heisenberg part we
may take v = v € G(F) — G(F), and d € D — D. Furthermore, for
€ := diag[lp, —1,], eTe ™t = eye lede! as elements of G(F). Note that
ede ' € D and eTe ! = T.

Clearly, without loss of generality we may assume that ¢p = 1. Then
(fII)¢ = (fle,s7)¢ = fClr.seve t = f|I;, where for the second equality
we have used Proposition 7.10.

O

Let x be a Hecke character as in subsection 4.1 and assume that y = i on
Hwe 0, . Then & 4(D,v) = S} (D, x) since the nebentype depends only on
the finite places that divide ¢ and is trivial on places that divide e (det(a,) =1
mod ¢, for hg € D). Moreover, the Hecke operators are related via:

Oc/9)" (@™ () Ty(a) = x* (@) (@), (0/¥) (€71 )" Unty = Unt,xs
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where o = th a,. Put 7 := 1ydiag[0~'1,,01,] with 0 as in Lemma 5.3.
Then the set Y, is equal to the set (t~*DR(e,c)D’'T), at every place v. Put

Ag) == (G"(F)NnT7'DT)\ <G”(F) nG:[["'D(7,) D’T)U> .

veEh
For f € S (T, %) such that f|Ty(a) = A(a)f and for D defined as in (19) we

have:

D(z,s, f[Ts) = D ()X (11(€))xe(det(ag) ™ (F[1o) |56 (2)

ey
= > > N(det(g)o)x"(J [(det(g)o)y)xc(det(as)) "
g€R(e,c) BEA(q) vfe
(fe)|k,58(2)
R ZN o) (f116) | T ()Un1, 1 (2)

= "SZN *(/¥) (@)™ (a)A(@) U1, x T ()
Joining the above formula for D(z, s, f|Ip) together with (20), after setting
f¢|1e for f there, we obtain
N(be™e)*"xn(6) 7" (= 1)" "2 w0l (A)<(E| s p) (diagl21, z2], 8), (FLo) (22)>
=vecs k(s—k/2)E(21, 8(F|Un1 x To) ks X) D N (@) 72 (x/40)"(a) (@) M),
a

where we have used the fact that (f¢|Ip)¢ = f|Ip.

After multiplying both sides of the above equation with the functions

Gr—1/2,n+m (5 — l/4)AZ+l772 (s =1/4, x1bs) with notation as in Theorem 8.3 and

setting £(2,5) := Gr_1/2,n4+m (5_1/4)AZ+Z72 [(s=1/4,xs)E(z, 55 x), we obtain

N(be™te)>"*xn ()" (1)~ Pvol(A)< (s p) (diaglz1, 22, ), (fTo) (22)>
= vees (s = k/2)G—1/2,n4m(s = VA E(21, 8 (flUn1, 5 To) 577 5 X)
AR (s = /4 xbs) ZN (/) () (@) A(a),

where we recall that,

n+m,
ARTm ( - £ st): L ( 2aX¢S H ]LE(4S_Z_2’L"X2)’ S QZ’
k—1/2,c ’ Hg(n;rm+1)/2]L (4s — l —2i+1,%?), 1 ¢ 27.

By the discussion in subsection 7.3, we have that

o025 1 5) SN () 20/ @ @A @ =Ly 2s = Foxo )
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with €4 (xy™1,2s —n—1/2) = [Tp,0=1 Lo (X, 25 = n —1/2), where

" Lp(ds —1— 20,2 if 1 € 27,
20(x.25) = Gy(x.25 —n — 1/2) | L= Dol 2X)
[T, Lp(4s — 1 —2i+1,x?%) ifl & 2Z.

That is, we obtain

N(be™¢)" xn(0) " (—1)" 2ol (A) <(E ks p)(diag[21, 22], 8), (f°|T6)(22)>
= vecs k(s — k/2)Gk—1/2.n+m (s — /D) E(21, 8; (f|Un1nxL6) 6,570 5 X)

“G(x,25 —n—1/2) ' Ly(2s —n —1/2,f,xyp™ 1) (28)
{L (25 — 1/2,x0s) [T\ Lo(as — 1 2i,x2) if € 22,
[T Le(s — 1 - 20 +1,x%) it ¢27,
where we have set
G(x,2s—n—1/2) = H Gp(x,2s —n —1/2). (29)
(p,e)=1

In particular, if m = n, we obtain

N(be™ )2 xn(0) 7" (—1)" 2ol (A) <(E|r, s p)(diag[z1, 22, 5), (f|T6)(22)>
= veCs k(s — k/2)Gr_1y2,20(5 — /D) (fIUn1, 5 o) lk,sm, ' G(x, 25 —n — 1/2) 7"
(30)
L.(2s—1/2,xvs), if | € 2Z,

cLy(2s —n—1/2,f, xy~ 1
T ){1, it 1¢27.

We are now ready to prove our first main theorem regarding the analytic prop-
erties of the function Ly (s, f, x), which should be seen as an extension of the
Theorem 6.1 in [26] to the Siegel-Jacobi setting.

THEOREM 9.3. Let f € S} g(D,v) be a Hecke eigenform of index S which

satisfies the M;r condition for every prime p t ¢c. Moreover, let ¢ be a Hecke
character of F of conductor fs such that ¢a(x) = sgn(za)k. Write ¢ for the
product of all prime ideals p in the support of ¢ 'c such that f|Tr,1,.4 = 0.
Then the function

LC(S—’—nanwwS)a Zf le 2Za

Al/h?(sa f, ¢) = La(sa k)LwJ(Sa f, ¢) ’ {1 if 1 ¢ 27

where

La(s,k) :=csi((s+n—Fk)/2+1/4)Gr_1/2,2n((5 +1)/2)
has a meromorphic continuation to the whole complex plane. More precisely,
the poles are exactly the poles of the Eisenstein series E((s +n +1/2)/2) as

described in Theorem 8.3 plus the poles of the function G(x,s+n) (see Remark
10.8).
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Proof. The theorem follows now from equation (30) and Theorem 8.3 arguing
similarly to the proof of [26, Theorem 6.1]. Assume first that fy|e, which is
equivalent to ¢,(0) =1 (i.e. ¢, is unramified) for all v that do not divide e
and that fs|c. Then we can use the equation (30) with x := ¢1p. We obtain the
statement of the theorem by observing that the function Ly (s, f, $) may be
obtained by changing e to eHle ¢, and employing Lemma 9.1. This guaran-
tees that the equation (30) is not trivial (0=0) and hence we can read off the
analytic properties of Ly (s, f, ¢) from those of £.

We also give the proof of the general case by repeating the idea which was
used to show [26, Theorem 6.1]. Set ¢ := ¢ N f, and decompose ¢ = ¢%!
with (¢%¢!) = 1, such that ¢ = ¢ for every vlerfs, and ¢ = o, oth-
erwise. Then if DY denotes the group D with ¢, ¢ in place of ¢ and e,
f e SQ7S(DO,1/)) = S{;S(Do,x). In particular, we can apply the argument
of the previous paragraph with y := ¢ and the group D° to conclude the
proof. O

Remark 9.4. The proof above indicates the significance of considering in the
whole paper the case of a non-trivial ideal e¢. Indeed, let us consider a cusp
form f ¢ S};S(D[bfl, be, ¢), that is with ¢ = 0, and assume for simplicity that
¢ is trivial. Moreover, consider a Hecke character ¢ whose conductor §4 - again,
for simplicity - is prime to ¢. Then ¢ = ¢f, and ¢ = f,, and thus we need to
consider non-trivial ¢ even if we start with a form of trivial one.

Remark 9.5 (FUNCTIONAL EQUATION OF THE L-FUNCTION). As we saw in the
proof of the above theorem, the identity (30) provides a tool to derive analytic
properties of the L-function Ly(s,f,x) from the corresponding properties of
the Siegel-type Eisenstein series £(z, s). In a similar way, whenever one knows
a functional equation for £(z, s), one can also establish a functional equation
for the L-function. Actually in a recent work [18], Mizumoto establishes such
a functional equation for Jacobi-Eisenstein series of Siegel type in the case of
trivial level and F' = Q. This allows one to derive a functional equation for the
untwisted L(s, f) in case f € S} g(G(Z)). Since this has already been shown
by a different technique in [20] we omit the details. Nevertheless, we would like
to point out that various generalizations of [18], as for example to totally real
fields, combined with our results here will lead to new results concerning the
functional equation of the L-function. On the other hand it is a lot harder to
establish a functional equation in the presence of non-trivial level. In the case
of the standard L-function attached to a Siegel modular form this question has
been tackled by Lapid and Rallis in [16] where they define local epsilon factors
at the bad places. As their work also relies on the doubling method, it would be
interesting to see whether their techniques could be generalized to the Jacobi
setting.

Now we can also prove a theorem regarding the analytic continuation of the
Klingen-type Jacobi Eisenstein series attached to a form f in the case of ¢ = ¢.
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THEOREM 9.6. Let f € S} g(T') be a Hecke eigenform with I' = D NG where

we take ¢ = ¢ (i.e., in particular ¥ = 1) and let x be a Hecke character of F

such that Xq(v) = sgn, (x)*. Then the Klingen-type Eisenstein series
E(Za 53 fa X) = CS,k(S - k/2)gk—l/2,n+m(5 - 1/4)A(55 fa X)E(Za S5 fa X)

for z € Hpy, s € C and with

A(s, f,x) =
Le(2s — 1/2,x0s) [T P Le(ds — 1 - 2i,x%), 1€ 22,
LZs=n=U/2 820 qioems)2l g 9501 2 1 ¢ 27
H'L:n+l c( S 1+ » X )a ¢ ’

has a meromorphic continuation to the entire complex plane.

Proof. We need to rewrite the equation (28). First note that since ¢ = ¢, we
have Up1,,, = 1. Now we extend an argument in [27, page 569] to the Siegel-
Jacobi case.

Observe that for every finite place v we have Y, = n,, D, R, (¢)D,m,;!. Further,
consider the isomorphism

Sk s(D) = Sz?,s(ﬁ)a £ flx,sm,,,

where D := C[b~?

,0,671]D[be, b~ 1¢]. Note that since ¢ = ¢ we do not have
any nebentype (i.e. ¢ =

1). Now note that for any g € R(c)
n,DgDn,' = DyD,

and hence we can conclude that (f|T,)|x,sm,, = (f|k7snn)|?;, where ?; denotes
the Hecke operator defined with respect to the group D. Putting all these
observations together we see that the equation (28) can be also written as

G(x,25 —n — 1/2)N(be1¢) 2™ x, (0) " (—1)"C~F/Dyol(A)
- < (Elr,sp)(diag[z1, 22], 5), (flr,5m,) (22) >
= VcCS,k(S - k/2)gk—l/2,n+m(5 - 1/4)A(Sa fa X)E(Zla 53 fa X)v (31>
where, recall, G(x,2s — n — [/2) is meromorphic on C. In particular, we can
extend the Klingen-type Eisenstein series to the whole of C with respect to

variable s by using the analytic properties of the Siegel-type Eisenstein series.
Moreover, we can read off the various poles from this expression. O

10 NEARLY HOLOMORPHIC JACOBI EISENSTEIN SERIES

In this section we will apply the doubling method identity (31) derived above to
study near holomorphy (definition below) of the Klingen-type Jacobi Eisenstein
series with respect to the variable z for some fixed values of s. Actually, in [9] we
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have already considered the case of Jacobi Eisenstein series of Siegel type, and
even studied their algebraic properties, in order to obtain algebraicity results
for some critical values of the L-function of a Jacobi form.

In order to prove the main result of this section (Theorem 10.7) we will need a
few results from [9] in a slightly simplified form. For convenience of the reader
we also include them here. We start with the definition of nearly holomorphic
Siegel-Jacobi modular forms, which generalizes the familiar notion from the
theory of Siegel modular forms.

DEFINITION 10.1. A C* function f(7r,w) : H,,; — C is said to be a nearly
holomorphic Siegel-Jacobi modular form (of weight k& and index S) for a con-
gruence subgroup I' if

1. f is holomorphic with respect to the variable w and nearly holomorphic
with respect to the variable 7, that is, f as a function on 7 belongs to the
space N"(HZ), r € Z4, where the space N"(H?) is defined in [28, page
99] or in [25, page 153];

2. fle,sy=fforall y€T.

3. (Conditions at the cusps) for each g € G"(F'), f|x,s g admits a Fourier
expansion of the form

flis g(rw) =" elgit,r,m)ea(tr (t7))ea(tr (frw)).

teLreM
t>0

We denote this space by N,"¢(T) and write N;"’g := Up IV, s (T) for the space
of all nearly holomorphic Siegel-Jacobi modular forms of weight k and index S.
Similarly, N,"" stands for the space of all nearly holomorphic Siegel modular
forms as for example is defined in [25, page 153].

THEOREM 10.2 (Theorem 5.2, [9]). Assume that n > 1 or F # Q. Let
A € GLi(F) be such that AS'A = diag[si,...,si], and define the lattices
Ay == AM; . (0) C© Myn(F) and Ag = 2diag[s; ', ..., s, |My,(0) C My, (F).
Then there is an isomorphism

AT, n,r
e:Nis D Ny
heA1 /A2

gwen by f— (fn),, where the fy € N:’jl/Q are defined by the expression

frw)= > fu(")Osa,n(r,w),

heA1 /A2

and © is a Jacobi theta series of characteristic h defined by equation (26).
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Proof. Given an f € N;"'g, the modularity properties with respect to the vari-
able w show that (see for example [22, proof of Proposition 3.5]) we may write

= Y fu(0)Osarn(r,w)

he€A1 /Ao

for some functions f5(7) with the needed modularity properties. In order to
establish that they are actually nearly holomorphic one argues similarly to
the holomorphic case. Indeed, a close look at the proof of [22, Lemma 3.4]
shows that the functions f;, have the same properties (real analytic, holomor-
phic, nearly holomorphic, meromorphic, etc.) with respect to the variable 7 as
f (1, w), since everything is reduced to a linear system of the form

flrwi) = Z fn(T)Osg aptn(T,wi), i=1,...,4A1/As,
hEA1/As

for some {w;} such that det(©g a,+n (T, w;)) # 0. In particular, after solving
the linear system of equations we see that the near holomorphy of f; follows
from that of f since the ©g a,+n(7,w;) are holomorphic with respect to the
variable 7. Moreover, in the case of n > 1 or F' # Q a nearly holomorphic Siegel
cusp form on H, is necessarily finite at the cusps by the Kocher principle (see
for example [25, page 153]). O

Remark 10.3. In the above theorem we assume that either n > 1 or F' # Q.
Without this assumption the image of the map ® may be a priori a larger
space: it is not clear whether the f;(7)’s are finite at all the cusps since now
one cannot apply the Kocher principle. We note that even in the case of
holomorphic Jacobi forms Shimura excludes this case (see [22, Proposition 3.5]
and his remark at the end of [22, page 58]). However, we should mention here
that (still in the case of holomorphic Jacobi forms) Skoruppa and Zagier in
[31, page 172] claim that the f5(7)’s are finite at the cusps but they provide
no explanation. The difficulty seems to be the presence of non-trivial level and
the behavior of the Jacobi theta series at the various cusps; the case of trivial
level, and hence of only one cusp (at infinity), is treated in the book [10] of
Eichler and Zagier.

The above theorem immediately implies the following.

COROLLARY 10.4 (Corollary 5.3, [9]). Assumen > 1 or F # Q. For a congru-
ence subgroup T', N,"5(T) is a finite dimensional C vector space.

Proof. The theorem above states that N;'¢(T') = @, N, TZ/Q( n) for some
congruence subgroups I'y, which are known to be finite dimensional (see [28,

Lemma 14.3]). O

Recall that in section 8 we related the Jacobi Eisenstein series E(z,s,x) to
a sum of symplectic Eisenstein series E(7,s — /4, x1);), where 1;’s vary over
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characters of CI(F'). In the same way as in the proof of Theorem 8.3 we can
read off near holomorphy of a normalized series FE(z, s, x) from the Eisenstein
series E(7,s — 1/4, x¢;). The nearly holomorphic properties of the latter have
been established in [28, Theorem 17.9].

THEOREM 10.5 (Theorem 5.5, [9]). Consider the normalized Siegel-type Jacobi-
Eisenstein series

D(s) = D(z, 81k, x) = Ap_y 0. (s = 1/4, xvs) E(z, 8, ).

Let y € Z be such that

(i) n+1—(ky—1/2) <p—1/2<ky,—1/2 for allv € a, and

(i) |p—1/2 — 2 4 2Lk, +1/2 € 2Z,
but exclude the cases

() p="52 +1/2, F = Q and x*y% = 1 for some ¥,

(b) pw=1/2, c =0 and xs; =1 for some 1;,

(c) 0<pu—1/2<n/2, c=0 and x*y? =1 for some ;.

Then D(p1/2) € Ni''g, where

n(k;wz) p="F2 4L F=0Q,x*=
r={k_L n=1p=2+45F=Qxvps=1,
%(k* % —|p— % - nTH|a* "T'Ha) otherwise.

Proof. In view of the aforementioned relation (between Jacobi and Siegel Eisen-
stein series) and Theorem 17.9 in [28], it remains to exclude the poles caused
by the functions

AG . (s = 1/4,x2bs)
N2 (5 — 14, x¥s0)

, i=1,...,c(F),

which are described in Theorem 8.3. O

LEMMA 10.6 (Lemma 5.6, [9]). Let m > n and assume n > 1 or F # Q.
Consider the embedding

A Mg X Hig = Hpgwmts (T1,w1) X (72, we) — (diag[r, 72], (w1 ws)).
Then we have
A" (NEE™T) € NI © N
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Proof. The proof of this lemma is identical to the Siegel modular form case (see
[28, Lemma 24.11]). Let f € N,ng’r(I‘""’m) for a sufficiently deep congruence
subgroup T™™. Note that the function g(z1,22) := A*f(diag[z1, 22]) is in
N;"§"(T™) as a function in 21 and in N;"g(T'"™) as a function in 2, for appropriate
congruence subgroups I'" and I'". Furthermore, if {h; € N,"¢(T") : i € I} is
a (finite) basis of the space N;"¢(T'"™), then for each fixed 21 we may write

9(z1,22) = Y gilz1)hi(z2),

el

where g;(z1) € C. The general argument used in [28, Lemma 24.11], which
is based on the linear independence of the basis h;, shows that the functions
9i(z1) have the same properties as the function g when viewed as a function of
the variable 1. In particular, g; € N}y, i € I. O

We can now state and prove the main theorem of this section. We use the
notation of Klingen-type Eisenstein series introduced in 4.2. That is, in the
notation below f € S} o(T') is a Hecke eigenform and E(z,u/2; f,x) is the
Jacobi-Eisenstein series of Klingen type with z € H,,; for m > n.

THEOREM 10.7. Assume thatn > 1 or F # Q. Let u € Z be such that
(i) n+m+1—(k,—1/2) <p—-1/2<k,—1/2 for allv € a, and
(i) |p—1/2— "+?+1| + "*’;H —ky,+1/2€2Z,

but exclude the cases
(a) p="2E242 1 1/2 F = Q and x*¢? =1 for some v,
(b) p=1/2, c =0 and xs; =1 for some 1;,
(c) 0<pu—1/2<(n+m)/2, c=o0 and x*y? =1 for some 1;.
(d) G(x,s—n—1/2) has a pole at s = p.

Then
A(u/2, f,X)E(2,1/2; f,x) € N,

where r = w if p= "JFT’”JFQ + %,F = Q,x% = 1, and otherwise

n-gm(ki % o |M7 % o n+72n+1|a7 n+gz+1a>‘

T =

Remark 10.8. Before we give the proof of the above theorem we should remark
that the set of valid values of p is in general not empty. The hardest condition
to check is the last one, i.e. that G(x,s —n — [/2) does not have a pole at
s = p. We recall from section 7 that G(x,s) is a product of finitely many
factors, each one of the form % where gs(s,x) = P(x(m)q™*®)) for

some polynomial P. It is known that the polynomial P is independent of y, has
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constant term 1 and its degree is determined by S (see [27, Proposition 14.9
and Theorem 13.6]). Actually Katsurada [14] has obtained a rather complicated
recursive formula to write these polynomials explicitly. However, here we only
confine ourselves to say that for sufficiently large weights k the set above is
clearly not empty since the condition (d) excludes a finite number of u’s, and
this number does not depend on k.

Proof of Theorem 10.7. We first notice that the equation (31) above can be
written as:

G(x,25 —n —1/2)N(be™2¢) 2™\, (0) " (—1)"~F/Dyol(A)

. . k
-<(Elksp)(diaglzi, 22),8).(flr,5m0)(22) >=vecs (s = 5)Als, £,X) E(z1, 531, X)
where now we have set

E(Za S) = Ak—l/Q,C(S - 1/47X1/)S)E(Zv S,X)

We evaluate it at s = /2 with u satisfying the assumptions of the theorem, so
that €(z,1/2) € N;"£™" (Theorem 10.5). Then by Theorem 10.2,

E(zn/2)= Y En(r) Osan(r,w)
heA1/As

for some Ej, € N:jl%’r. Further, since p = 1gp with p € Sppim(F), we can
write

E(zu/lksp =D Bu()kpOsnsin(m,w)lksp,
heA1 /A2

where Ep|ip € N::TQ’T by [25, page 153]. In this way E(z, 1/2)|k.sp € Nﬁ;m’r.
Invoking now Lemma 10.6 we can write

E(diagz1, 22], 11/2) |k, sp = Z gi(21)hi(22),

where g;(21) € N,'¢, hi(z2) € N;'’g. Hence,

G(x, pt —n —1/2)N(be™ 1) xp (0) 7" (—1)" 1/ 2=k ol (A)
'Zgi(zl) < hi(z2), (fle,sMmn) (22) >

= vecsk (/2 = k/2)A(1/2, f,X)E(21, 11/ 25 f, x)-

Since by the condition (¢) the constant cg (/2 — k/2) is nonzero and since we
exclude the values of u where G(x, u —n —[/2) has a pole, the above equation
states that A(u/2, f, x)E(z1,11/2; f,X) = D1 @igi(21) for some o; € C. Since
gi(21) € Ni'g we can conclude that A(u/2, f,x)E(21,1/2; f,x) € Ng . O
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