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Complex hyperbolic triangle groups with

2-fold symmetry

John R. Parker, Li-Jie Sun

Abstract. In this paper we will consider the 2-fold symmetric complex
hyperbolic triangle groups generated by three complex reflections through
angle 2π/p with p > 2. We will mainly concentrate on the groups where
some elements are elliptic of finite order. Then we will classify all such
groups which are candidates for being discrete. There are only 4 types.

1. Introduction

A complex hyperbolic triangle is a triple (C1, C2, C3) of complex geodesics
in H2

C
. If each pair of complex geodesics intersects in H2

C
∪ ∂H2

C
and the

angles between Ck−1 and Ck for k = 1, 2, 3 (the indices are taken mod
3) are π/p1, π/p2, π/p3, where p1, p2, p3 ∈ N ∪ {∞}, we call the triangle
(C1, C2, C3) a (p1, p2, p3)-triangle. The intersection points of pairs of com-
plex geodesics are called the vertices of the complex hyperbolic triangle.
A group Γ is called a (p1, p2, p3)−triangle group, if Γ is generated by three
complex reflections R1, R2, R3 fixing sides C1, C2, C3 of (p1, p2, p3)-triangle.
Note that a complex reflection may have order greater than 2. In what fol-
lows we suppose that R1, R2 and R3 all have order p ∈ Z with p > 2.

Any two real hyperbolic triangle groups with the same intersection angles
are conjugate in Isom+(H2), which is the orientation preserving isometry
group of real hyperbolic plane, see section 10.6 in [1]. If we consider the
groups in PU(2, 1) = Aut(H2

C
), we will get the nontrivial deformations. The
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deformation theory of complex hyperbolic triangle groups was begun in [4]
in which they investigated Γ of type (∞,∞,∞) with p = 2 (complex hyper-
bolic ideal triangle groups). Since then, there have been many developments
referring to other types, such as [15, 6, 13] among which they mainly gave
the necessary conditions of Γ to be discrete. Especially Parker and Pau-
pert in [10] and [11] investigated the equilateral triangle group generated by
three complex reflections with finite order. These include Deraux’s lattice,
Livné’s lattices, Mostow’s lattices. Our starting point is a result given by
Thompson [14] where he investigated the non-equilateral triangle groups
generated by three complex involutions (that is the order of the reflections
is p = 2). He obtained his result using a computer search. Using [11] we
see that Thompson’s results apply to groups with p > 2 as well. In what
follows we will give the specific case about the triangles group with 2-fold
symmetry and we give a rigorous proof.

We will restrict to the complex hyperbolic triangle groups generated by
three complex reflections with finite order p ≥ 2. Suppose that the polar
vector of a complex geodesic C1 is v1 (see Section 2 for a more precise ex-
planation). We consider the complex reflection R1 in the complex geodesic
C1. This map sends v1 to eiφv1 and acts as the identity on the orthogonal
complement of v1, that is on vectors that project to C1. We will always
restrict to the case where φ = 2π/p and so R1 has order p > 2. Then R1 is
given by the following formula:

R1(z) = z+ (eiφ − 1)
〈z,v1〉
〈v1,v1〉

v1. (1.1)

In order to convert R1 into a matrix with determinant 1, we need to multiply
the expression in (1.1) by e−iφ/3. The ambiguity involved in this choice is
precisely the ambiguity involved in lifting an isometry in PU(2, 1) to a
matrix in SU(2, 1).

Here we recall the terminology for braid relations between group elements
(see Section 2.2 of Mostow [8]). Let G be a group and a, b ∈ G. Then a
and b satisfy a braid relation of length l ∈ Z+ if

(ab)l/2 = (ba)l/2,

where powers means that the corresponding alternating product of a and b
should have l factors. For example, (ab)3/2 = aba, (ba)2 = baba. We denote
the braid length l by br(a, b) to be the minimum length of a braid relation
satisfied by a and b.

We define the (l1, l2, l3; l4)-triangle groups to be the triangle groups with
the following braid relations:

br(R2, R3) = l1, br(R1, R3) = l2,
br(R1, R2) = l3, br(R1, R

−1
3 R2R3) = l4,
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where each Rj is of order p.
In this paper we aim to list the candidates of discrete triangle groups

generated by R1, R2, R3 with l1 = l2 and l3 = l4 as stated in Theorem 2.4.

2. The parameter space, traces and main result

Firstly we recall some fundamentals about complex hyperbolic 2-space.
Please refer to [3, 9] for more details about the complex hyperbolic space.
Let C

2,1 denote the vector space C
3 equipped with the Hermitian form

〈z,w〉 = z1w1 + z2w2 − z3w3

of signature (2,1), where z = [z1, z2, z3]
t and w = [w1, w2, w3]

t. The Her-
mitian form divides C

2,1 into three parts V−, V0 and V+, which are

V− = {z ∈ C
2,1|〈z, z〉 < 0},

V0 = {z ∈ C
2,1|〈z, z〉 = 0},

V+ = {z ∈ C
2,1|〈z, z〉 > 0}.

We denote by CP
2 the complex projectivisation of C2,1 and by P : C2,1 \

{0} → CP
2 the natural projectivisation map. The complex hyperbolic 2-

space H2
C

is defined as P(V−). It is called the standard projective model
of the complex hyperbolic space. Correspondingly the boundary of H2

C

is ∂H2
C

= P(V0 \ {0}). One can also consider the unit ball model whose
boundary is the sphere S

3 by taking z3 = 1, which can be simply written
as {(z1, z2) ∈ C

2 : |z1|2 + |z2|2 < 1}.
The complex hyperbolic plane H2

C
is a Kähler manifold of constant holo-

morphic sectional curvature −1. The holomorphic automorphism group of
H2

C
is the projectivisation PU(2, 1) of the group U(2, 1) of complex linear

transformations on C
2,1, which preserve the Hermitian form. Especially

SU(2, 1) is the subgroup of U(2, 1) with the determinant of each element
being 1.

Let x, y ∈ H2
C

be points corresponding to vectors x,y ∈ C
2,1 \ {0}. Then

the Bergman metric ρ on H2
C

is given by

cosh2
(ρ(x, y)

2

)

=
〈x,y〉〈y,x〉
〈x,x〉〈y,y〉 ,

where x, y∈ V− are the lifts of x, y respectively. It is easy to check that
this definition is independent of the choice of lifts.

Given two points x and y in H2
C
∪ ∂H2

C
, with lifts x and y to C

2,1

respectively, the complex span of x and y projects to a complex line in
CP

2 passing through x and y. The intersection of a complex line with H2
C

will be called a complex geodesic C (which is homeomorphic to an open
2-dimensional disk), which can be uniquely determined by a positive vector
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v ∈ V+, i.e. C = P({z ∈ C
2,1 \ {0}|〈z,v〉 = 0}). We call v a polar vector

to C. As stated in Section 1, we will consider (l1, l2, l3; l4)-triangle groups Γ
generated by three complex reflections (see (1.1)) through angle φ in three
complex geodesics.

Throughout this paper, we assume that R1, R2, R3 are three complex
reflections in complex geodesics C1, C2, C3 respectively. We parameterize
the triangle groups generated by R1, R2, R3 by three complex numbers ρ,
σ and τ . Up to the action of PU(2, 1), we can parameterize the collection
of three pairwise distinct complex lines in H2

C
by four real parameters,

see Proposition 1 of [12]. The parameters we choose are |ρ|, |σ|, |τ | and
arg(ρστ). In particular, we can freely choose the argument of two out of
the three parameters.

Write u = eiφ/3 = e2πi/3p. The group Γ has generators given by

R1 =





u2 ρ −uτ̄
0 ū 0
0 0 ū



 , R2 =





ū 0 0
−uρ̄ u2 σ
0 0 ū



 , R3 =





ū 0 0
0 ū 0
τ −uσ̄ u2





(2.2)
which preserve the Hermitian form

H =





α β1 β3
β1 α β2
β3 β2 α



 (2.3)

where α =
√
2− u3 − ū3, β1 = −iū1/2ρ, β2 = −iū1/2σ, β3 = −iū1/2τ (note

that here we take ū1/2 = e−πi/3p).
This Hermitian form has signature (2, 1) if and only if det(H) < 0. That

is,

0 < α|β1|2 + α|β2|2 + α|β3|2 − α3 − β1β2β3 − β̄1β̄2β̄3

= α2|ρ|2 + α2|σ|2 + α2|τ |2 − α3 − iū3/2ρστ + iu3/2ρ̄σ̄τ̄ .

In terms of these parameters

tr(R1R2) = u(2− |ρ|2) + ū2, tr(R2R3) = u(2− |σ|2) + ū2,
tr(R1R3) = u(2− |τ |2) + ū2,
tr(R1R

−1
3 R2R3) = u(2− |στ − ρ̄|2) + ū2.

(2.4)

Lemma 2.1. [11, Corollary 2.5] If |ρ| = 2 cos ζ, then the three eigenvalues
of R1R2 will be ū2, −ue2iζ , −ue−2iζ .

Proof. Each point on C1 is a ū = e−iφ/3 eigenvector of R1 and each point
on C2 is a ū = e−iφ/3 eigenvector of R2, see (1.1). Therefore if z ∈ C1 ∩C2,
then we will get that

R1R2(z) = e−iφ/3R1(z) = e−2iφ/3z
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Hence z is a ū2 = e−2iφ3 eigenvector of R1R2. Hence the sum of the other
two eigenvalues of R1R2 is u(2 − |ρ|2). By the assumption |ρ| = 2 cos ζ,
we know that R1R2 is not loxodromic, see Section 6.2 in [3]. Therefore
each eigenvalue of R1R2 is of modulus one. Then we can get that the three
eigenvalues of R1R2 will be ū2, −ue2iζ , −ue−2iζ from the form of tr(R1R2)
in (2.4). �

Remark 2.2. We suppose that m ∈ N, m > 2. If |ρ| = 2 cos(π/m)
then br(R1, R2) = m, see Section 2.2 in [8] for details or more precisely
[2, Proposition 2.3]. (In fact this is true if |ρ| = 2 cos(kπ/m) where k is co-
prime tom.) In the following Theorem 2.4, we are supposing |ρ| = |στ−ρ̄| =
2 cos(π/m) and |σ| = |τ | = 2 cos(π/n), which implies the statements about
braiding which we give.

If R1, R2 are complex involutions (p = 2), then the order of R1R2 will
be of m.

Assume that

br(R1, R2) = br(R1, R
−1
3 R2R3), br(R2, R3) = br(R1, R3).

From Remark 2.2 and (2.4), our hypothesis on braiding implies that

|ρ| = |στ − ρ̄|, |σ| = |τ |.
Since we are free to choose the argument of two of the three parameters, we
impose the condition that σ and τ should be real and non-negative, which
means that Im(ρ) = Im(στ − ρ̄). So the condition |ρ| = |στ − ρ̄| becomes
either στ = ρ+ ρ̄ or στ = 0. In the latter case the group is reducible, so we
do not consider it. Hence we suppose Re(ρ) > 0 and σ = τ =

√
ρ+ ρ̄.

We suppose that |ρ| = 2 cos(π/m) and σ = τ = 2 cos(π/n), where m, n ∈
N and m, n > 3. Therefore the matrices in (2.2) become:

R1 =





u2 ρ −u√ρ+ ρ̄
0 ū 0
0 0 ū



 , (2.5)

R2 =





ū 0 0
−uρ̄ u2

√
ρ+ ρ̄

0 0 ū



 , (2.6)

R3 =





ū 0 0
0 ū 0√
ρ+ ρ̄ −u√ρ+ ρ̄ u2



 . (2.7)

Furthermore, the Hermitian form H (2.3) has signature (2, 1) if and only if

0 < α|ρ|2 + 2α(ρ+ ρ̄)− α3 − iū3/2(ρ2 + |ρ|2) + iu3/2(ρ̄2 + |ρ|2)
= 2α(ρ+ ρ̄)− α3 − iū3/2ρ2 + iu3/2ρ̄2.

(2.8)
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Proposition 2.3. Let

S =





ρ u(1− ρ− ρ̄) u2
√
ρ+ ρ̄

ū 0 0
0 ū

√
ρ+ ρ̄ −1



 .

Then

(a) S2 = R1R2R3,
(b)

SR1S
−1 = R1R2R

−1
1 ,

SR2S
−1 = R1R3R1R

−1
3 R−1

1 ,

SR3S
−1 = R1R3R

−1
1 .

In particular,

S(R2R3)S
−1 = R1R3, S(R1R

−1
3 R2R3)S

−1 = R1R2.

Moreover, S is the only matrix in SU(2, 1) satisfying (a) and (b).

Proof. Suppose that S satisfies (b). The basis vectors v1 = [1, 0, 0]t,
v2 = [0, 1, 0]t and v3 = [0, 0, 1]t are the polar vectors to the fixed complex
geodesics of R1, R2, R3 respectively. Since SR1S

−1 = R1R2R
−1
1 we see

that S sends v1 to a vector that is polar to the fixed complex geodesic of
R1R2R

−1
1 , which is a non-zero multiple of R1v2. Similarly for the other

complex reflections. Therefore

Sv1 = λR1v2, Sv2 = µR1R3v1, Sv3 = νR1v3.

Hence any matrix S satisfying (b) has the form:

S =





λρ µu(1− ρ− ρ̄) −νu√ρ+ ρ̄
λū 0 0
0 µū

√
ρ+ ρ̄ νū



 ,

where λ, µ, ν ∈ C − {0}. Now squaring S and comparing its entries with
the entries of R1R2R3, we see that if such a matrix S also satifies (a), then
we must have:

λ2 = 1, λµ = 1, µν = −u, λν = −u, ν2 = u2.

Also, since S ∈ SU(2, 1) we have 1 = det(S) = −λµνū. The only solution
to these equations is λ = µ = 1 and ν = −u. Hence S has the form we
claimed.

Finally, it is easy to check directly that the matrix S in the statement of
the proposition lies in SU(2, 1) and satisfies (a) and (b). �
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In the following we will classify all discrete triangle groups generated by
R1, R2, R3 with the 2-fold symmetry given by S satisfying the conditions
(a) and (b) in Proposition 2.3.

Theorem 2.4. Let R1, R2, R3 be three complex reflections of order p (with
p > 2) in SU(2, 1) so that Ri keeps a complex geodesic Ci (i = 1, 2, 3)
invariant. Assume that there is S ∈ SU(2, 1) such that

SR1S
−1 = R1R2R

−1
1 , SR2S

−1 = R1R3R1R
−1
3 R−1

1 , SR3S
−1 = R1R3R

−1
1 ,

S2 = R1R2R3.

Let ρ and σ be as in (2.4). Suppose that |ρ| = 2 cos(π/m) and |σ| =
2 cos(π/n), which implies that br(R1, R3) = n, br(R1, R2) = m (where
m, n ∈ N and m, n > 3). Suppose also that R1R2R3 is of finite order.
Then the the possible values for (n,m) are (3, 4), (3, 5), (4, 3), (5, 4), (8, 6)
and (k, k) (k ∈ N and k > 3).

Moreover, in each case the group preserves a Hermitian form H. When
(n,m) is one of (3, 5) or (k, k) for k > 5 the form H has signature (2, 1)
for all p > 2. For the other values of (n,m) the form H only has signature
(2, 1) for the following values of p:

(3, 4), p > 5; (4, 3), p > 4; (5, 4), p > 3;

(8, 6), p > 3; (3, 3), p > 4; (4, 4), p > 3.

Note that the solutions correspond to the following parameter values, or
their complex conjugates:

(n,m) ρ s = ρ− 1 σ = τ

(3, 4) (1 + i
√
7)/2 e2πi/7 + e4πi/7 + e−6πi/7 1

(3, 5) 2e2πi/5 cos(π/5) e2πi/5 + e7πi/15 + e−13πi/15 1

(4, 3) 1 0
√
2

(5, 4) (1 + i
√
3)(

√
5− i

√
3)/4 e−2πi/3 + e2πi/15 + e8πi/15 (1 +

√
5)/2

(8, 6) (1 + i)(1− i/
√
2) eπi/2 + eπi/12 + e−7πi/12

√

2 +
√
2

(k, k) 2eiπ/k cos(π/k) e2πi/k 2 cos(π/k)

3. The proof

Firstly a direct computation will show that the symmetry S conjugates
R1R2 to R1R

−1
3 R2R3 and conjugates R2R3 to R1R3. It means that

br(R1, R2) = br(R1, R
−1
3 R2R3), br(R2, R3) = br(R1, R3)

by recalling Remark 2.2 and (2.4). By the parameterization of the triangle
groups in Section 2 and the assumption in Theorem 2.4, one could get the
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matrix representation of H, R1, R2, R3 as (2.3), (2.5), (2.6), (2.7), where

|ρ| = 2 cos(π/m), σ = τ = 2 cos(π/n).

Throughout the proof we let ζ = π/m and η = π/n. Then by Proposition
2.3, we can get the unique matrix from of S ∈ SU(2, 1).

Because of S2 = R1R2R3, we can restrict ourselves to S, which is elliptic
of finite order. Equivalently, there exist a and b that are rational multiples
of π for which:

tr(S) = −1 + ρ = eia + eib + e−i(a+b). (3.9)

Observe that there is some ambiguity in the choice of a and b. First, we can
permute the three terms in this expression, and so permute {a, b, −a− b};
secondly we can change the sign of all three terms and, finally, since tr(S)
is only defined up to multiplying by a cube root of unity, we can add the
same integer multiple of 2π/3 to both a and b. We will use these operations
to simplify things in our calculations below.

We denote tr(S) by s, then get that

|s|2 = 1 + |ρ|2 − 2Re (ρ) = |eia + eib + e−i(a+b)|2, (3.10)

Re (s) = −1 + Re (ρ) = cos(a) + cos(b) + cos(a+ b), (3.11)

Recall that

|ρ|2 = 4 cos2 ζ = 2 cos(2ζ) + 2,

Re (ρ) =
στ

2
= 2 cos2 η = cos(2η) + 1.

The above two equations can be simplified to

1 = cos(2ζ)− cos(2η)− cos(a− b)− cos(a+ 2b)− cos(2a+ b), (3.12)

0 = cos(2η)− cos(a)− cos(b)− cos(a+ b). (3.13)

In what follows we will repeatedly use the following result given by A.
Monaghan, which generalises the result of Conway and Jones for vanishing
sums of cosines of rational multiples of π.

Proposition 3.1. [7, Theorem 2.4.3.1] Suppose that we have at most five
distinct rational numbers of π, for which some rational linear combination of
their cosines is rational but no proper subset has this property. If φ ∈ (0, π)
and all other angles are normalised to lie in (0, π2 ), then the appropriate
linear combination is proportional to one of the following:
(a) 0 = cos(φ) + cos(φ+ 2π

3 ) + cos(φ+ 4π
3 ),

(b) 0 = cos(φ) + cos(φ± 2π
5 )− cos(φ± 2π

15 ) + cos(φ± 7π
15 ),

(c) 0 = cos(φ)− cos(φ± π
5 ) + cos(φ± π

15)− cos(φ± 4π
15 ),

(d) 1
2 = cos(π3 ),
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(e) 1
2 = cos(π5 )− cos(2π5 ),

(f) 1
2 = cos(π5 )− cos( π15) + cos(4π15 ),

(g) 1
2 = − cos(2π5 ) + cos(2π15 )− cos(7π15 ),

(h) 1
2 = − cos( π15) + cos(2π15 ) + cos(4π15 )− cos(7π15 ),

(i) 1
2 = cos(π7 )− cos(2π7 ) + cos(3π7 ),

(j) 1
2 = cos(π7 )− cos(2π7 ) + cos(2π21 )− cos(5π21 ),

(k) 1
2 = cos(π7 ) + cos(3π7 )− cos( π21) + cos(8π21 ),

(l) 1
2 = − cos(2π7 ) + cos(3π7 ) + cos(4π21 ) + cos(10π21 ),

(m) 1
2 = cos(π7 )− cos( π21) + cos(2π21 )− cos(5π21 ) + cos(8π21 ),

(n) 1
2 = − cos(2π7 ) + cos(2π21 ) + cos(4π21 )− cos(5π21 ) + cos(10π21 ),

(o) 1
2 = cos(3π7 )− cos( π21) + cos(4π21 ) + cos(8π21 ) + cos(10π21 ).

Since the right hand side of equation (3.12) is 1 (rather than 0 or 1/2),
Monaghan’s theorem implies that it must be a sum of (at least) two similar
sums involving fewer cosines. We begin by showing that at least one of the
cosines must itself be rational.

Proposition 3.2. Suppose that ζ = π/m, η = π/n and a, b are rational
multiples of π so that equations (3.12) and (3.13) hold. Then one of the
cosines in equation (3.12) must be rational.

Proof. Suppose that none of the cosines are rational. Then (3.12) splits
into two rational sums, one of length two and the other of length three,
neither of which has a rational subsum. By inspection from Proposition 3.1
we see that these two sums must have the value 0, ±1/2. Since they sum
to 1, they must both be 1/2. Therefore, the sum of length 2 must be (e)
and the sum of length 3 must be one of (f), (g) or (i).

(1) 1/2 = cos(2ζ)− cos(2η) = − cos(a− b)− cos(a+ 2b)− cos(2a+ b).
Since ζ = π/m and η = π/n the sum (e) implies that 2ζ = π/5 and
2η = 2π/5. For the second equation, there are certain symmetry
operations on a and b described in the paragraph after equation
(3.9) above. Up to these operations, we now list the possible values
of a and b. In the first column we indicate which of the identities
(a) to (o) in Proposition 3.1 we mainly used.

a− b a+ 2b 2a+ b a b
(f) π/15 11π/15 4π/5 13π/45 2π/9
(g) 2π/5 7π/15 13π/15 19π/45 π/45
(i) 2π/7 4π/7 6π/7 −2π/7 −4π/7

Using 2η = 2π/5, we see that none of the values in this table satisfy
(3.13). Therefore we get no solutions.
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(2) 1/2 = cos(2ζ)− cos(a− b) = − cos(2η)− cos(a+ 2b)− cos(2a+ b).
The first equation gives 2ζ = π/5 as in case (1) and so a−b = 2π/5.
Since a− b = (2a+ b)− (a+ 2b) the difference of two of the angles
in the second equation must be 2π/5. By inspection, we see the
only solution is a + 2b = 7π/15 and 2a + b = 13π/15. This means
2η = 2π/5 and we are back in case (1).

(3) 1/2 = − cos(2η)− cos(a− b) = cos(2ζ)− cos(a+ 2b)− cos(2a+ b).
The first equation gives 2η = 2π/5 as in (1) and so a − b = 4π/5.
Substituting in the second equation, we see a + 2b = −π/15 and
2a+ b = 11π/15. Thus 2ζ = π/5 and we are back in case (1) again.

(4) 1/2 = − cos(a− b)− cos(a+ 2b) = cos(2ζ)− cos(2η)− cos(2a+ b).
Up to symmetries of a, b and −a − b, the first sum implies that
a − b = 2π/5 and a + 2b = 4π/5. Hence 2a + b = 6π/5 and so the
second sum must be (f). Thus cos(2ζ) = cos(2π/m) = cos(4π/15)
or cos(2η) = cos(2π/n) = − cos(4π/15) so either m or n is not an
integer. Therefore there are no solutions.

�

As a consequence of this result, we can consider separate cases where each
of the cosines in (3.12) is rational. If either cos(2ζ) or cos(2η) is rational
it must be 0 or ±1/2 since ζ = π/m and η = π/n where m and n are at
least 3. If one of the other three cosines is rational we can use the allowable
symmetries of a and b, we to assume that cos(a − b) is rational. We treat
each of these cases separately below. First we eliminate a simple situation
which gives us many solutions and will recur in the different cases.

Lemma 3.3. Suppose that cos(2ζ) = cos(2η), or equivalently m = n, then

putting s = e±2πi/m gives a solution to equations (3.12) and (3.13) for all
m > 3.

Proof. Substituting cos(2ζ) = cos(2η) into (3.12) gives: Now we obtain
that

0 = 1 + cos(a− b) + cos(a+ 2b) + cos(2a+ b)

= 2 cos2
(

(a− b)/2
)

+ 2 cos
(

(a− b)/2
)

cos
(

3(a+ b)/2
)

= 4 cos
(

(a− b)/2
)

cos
(

(a+ 2b)/2
)

cos
(

(2a+ b)/2
)

.

Therefore one of (a − b), (a + 2b) or (2a + b) is an odd multiple of π.
Without loss of generality, we suppose that a + 2b = (2k + 1)π. Then we
get −a − b = b − (2k + 1)π which yields s = eia, where a is a rational

multiple of π. Because Re (s) = −1+ Re (ρ) = −1+ |σ|2

2 = cos(2η), we see
that cos(a) = cos(2π/m) = cos(2π/n).
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Now we consider the signature of the Hermitian form

Det(H) = ie−
4θ+3φ

2
i(−1 + e(2θ+φ)i)(eiθ + eiφ)2.

Table 3.1. Signature of Hermitian form

s (2, 1) degenerate (3, 0)

e
2πi
3 (m = n = 3) p > 4 p = 3 p = 2

e
2πi
4 (m = n = 4) p > 3 p = 2 none

e
2πi
k (m = n = k > 5) p > 2 none none

In this case, we get the solution n = m.
�

We now consider the cases where cos(2ζ), cos(2η) or cos(a − b) are ra-
tional. We will use the following result proved by Parker when he was
analysing the triangle groups with 3-fold symmetry [10]. In [10] the last
two cases were missed out, but this was corrected in [2].

Proposition 3.4. [10, Proposition 3.2] Let θ, a and b be rational multiples

of π. Write s = eia + eib + e−i(a+b). Then the only possible solutions to the
equation

cos(2θ)− cos(a− b)− cos(a+ 2b)− cos(2a+ b) =
1

2

give rise to the following values of θ and s, up to changing the sign of θ and
up to conjugating s and multiplying it by a power of ω = e2πi/3:

(i) 2θ = 2π/3 and s = −e−iψ/3 for some angle ψ that is a rational
multiple of π;

(ii) 2θ = ψ and s = e2iψ/3+e−iψ/3 = eiψ/62 cos ψ2 for some angle ψ that
is a rational multiple of π;

(iii) 2θ = π/3 and s = eiπ/3 + e−iπ/62 cos π4 ;

(iv) 2θ = π/5 and s = eiπ/3 + e−iπ/62 cos π5 ;

(v) 2θ = 3π/5 and s = eiπ/3 + e−iπ/62 cos 2π
5 ;

(vi) 2θ = π/2 and s = e2πi/7 + e4πi/7 + e−6πi/7;

(vii) 2θ = π/2 and s = e2πi/9 + e−iπ/92 cos 2π
5 ;

(viii) 2θ = π/2 and s = e2πi/9 + e−iπ/92 cos 4π
5 ;

(ix) 2θ = π/7 and s = e2πi/9 + e−iπ/92 cos 2π
7 ;

(x) 2θ = 5π/7 and s = e2πi/9 + e−iπ/92 cos 4π
7 ;
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(xi) 2θ = 3π/7 and s = e2πi/9 + e−iπ/92 cos 6π
7 ;

(xii) 2θ = 2π/5 and s = 1 + 2 cos 2π
5 ;

(xiii) 2θ = 4π/5 and s = 1 + 2 cos 4π
5 .

Note that for the groups Parker was considering s = eia + eib + e−ia−ib

was the trace of R1J , whereas in our case it is the trace of S. In the cases
where cos(2ζ) = 1/2 or cos(2η) = −1/2 then equation (3.12) reduces to the
equation from Proposition 3.4, and we can use that result to find solutions.

Lemma 3.5. Suppose that cos(2η) is rational. Then the only solutions to
(3.12) and (3.13) are cos(2ζ) = cos(2π/m) and cos(2η) = cos(2π/n) where
(n,m) is one of (3, 3), (3, 4), (3, 5), (4, 3), (4, 4) or (6, 6).

Proof. Since cos(2η) is rational and not equal to ±1 it can only be 0 or
±1/2. We treat each case separately.

(1) cos(2η) = −1
2 , which gives n = 3. Note that

1

2
= cos(2η) + 1 = Re (ρ) = Re (s) + 1

and so Re (s) = −1/2. We rewrite (3.12) to give the equation from
Proposition 3.4 with θ = ζ. By direct calculation, we just need to
consider cases (i), (ii) and (vi) because of Re (s) = −1/2.

(i) s = −e−iψ/3 and so |s| = 1. This yields that |ρ| = 2 cos(π/m) =
1, and so m = 3. By considering Re (s) = − cos(θ/3), we know

that θ = ±π + 6kπ (k ∈ Z) which means that s = −e∓iπ/3.
From (2.8), we get that

Det(H) = ∓
√
3 cos(φ/2) + sin(φ/2)− 2 sin(3φ/2).

We list the corresponding signature of Hermitian form for dif-
ferent s in Table 3.2.

Table 3.2. Signature of Hermitian form

s (2, 1) degenerate (3, 0)

−e−iπ/3 p > 4 p = 3 p = 2

−eiπ/3 none p = 6 p 6= 6

In this case, we get that n = m = 3.
(ii) s = e2iψ/3+e−iψ/3 = eiψ/62 cos(ψ/2) where ψ = 2θ. By solving

−1/2 = Re (s) = cos(4θ/3) + cos(2θ/3)

= 2 cos2(2θ/3) + cos(2θ/3)− 1
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we obtain cos(2θ/3) = (−1±
√
5)/4. That is, 2θ/3 = ±2π/5+

2kπ or ±4π/5+2kπ. Hence θ = ±3π/5+3kπ or ±6π/5+3kπ.
The only solution to |s| = 2| cos(θ)| = 2 cos(π/m) is m = 5

(coming from 2θ/3 = 4π/5− 2π). Therefore s = e2πi/5 + e4πi/5

or s = e−2πi/5 + e−4πi/5. In these cases we find, respectively,
that:

Det(H) = −
√

5 + 2
√
5 cos

φ

2
− (2 +

√
5 + 4 cosφ) sin

φ

2
,

Det(H) =

√

5 + 2
√
5 cos

φ

2
− (2 +

√
5 + 4 cosφ) sin

φ

2
.

Table 3.3. Signature of Hermitian form

s (2, 1) degenerate (3, 0)

e−
2πi
5 + e−

4πi
5 p 6 7 none p > 8

e
2πi
5 + e

4πi
5 p > 2 none none

In this case, we get that n = 3, m = 5.
(vi) s = e2πi/7 + e4πi/7 + e−6πi/7 = (−1 +

√
7i)/2. It follows that

Re (s) = −1/2 and |s| =
√
2 which indicates that m = 4. A

simple calculation yields that

Det(H) =
1

2
(1− 8 cosφ) sin

φ

2

from which it follows that the signature of the Hermitian form
will be of (2, 1) for p > 5, otherwise it will be positive. In this
case, we get that n = 3, m = 4.

Therefore we obtain the solutions (n,m) = (3, 3), (3, 4) and (3, 5).
(2) cos(2η) = 0. Now we have |σ|2 = 2 which yields Re (s) = 0. There-

fore one can get the following two equations
{

cos(2ζ)− cos(a− b)− cos(a+ 2b)− cos(2a+ b) = 1,

cos a+ cos b+ cos(a+ b) = 0.
(3.14)

Since the first of these has 1 on the right hand side, it must split as
the sum of (at least) two minimal subsums. Treating these case by
case we see that the only possibilities are cos(2ζ) = 0, which yields
m = n = 4 and cos(2ζ) = −1/2, which gives n = 4 and m = 3. The
former case is a particular instance of Lemma 3.3. In the latter case
we rewrite (3.10) as

|s|2 = 1 + |ρ|2 − 2Re (ρ) = 1 + 2 cos(2ζ)− 2 cos(2η) = 0.
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Therefore, the only solution is s = 0, or equivalently ρ = 1. This
implies that

Det(H) = −2 sin
3φ

2
= −2 sin

3π

p
,

and the signature of the Hermitian form will be positive if p = 2,
degenerate if p = 3, negative (of signature (2,1)) if p > 4. Therefore
in this case we get that n = 4, m = 3. Hence the only solutions we
get in this case are (n,m) = (4, 3) and (4, 4).

(3) cos(2η) = 1/2. Now we have |σ|2 = 3 from which it follows that
Re (s) = 1/2. We rewrite the two equations










cos(2ζ)− cos(a− b)− cos(a+ 2b)− cos(2a+ b) =
3

2
,

cos a+ cos b+ cos(a+ b) =
1

2
.

(3.15)

If the second equation is irreducible, then it must be one of Propo-
sition 3.1 parts (f), (g) or (i). We see in each case that the angles
involved do not sum to 0 (making each cosine positive, the sum is
π times the ratio of two odd integers for each choice of sign). If
the second equation splits as the sum of two rational subsums then,
without loss of generality, cos(a) is rational. Hence it is in the set
{0,±1/2.± 1}. Simple trigonometry shows that

2 cos(a/2) cos(a/2 + b) = cos(b) + cos(a+ b)

= 1/2− cos(a),

cos(a+ 2b) + 1 = 2 cos2(a/2 + b)

=
(

1/2− cos(a)
)2
/
(

1 + cos(a)
)

,

cos(a− b) + cos(2a+ b) = 2 cos(3a/2) cos(a/2 + b)

= −2
(

1/2− cos(a)
)2
.

Substituting these identities in the first equation, we see that cos(2ζ)
is a rational function of cos(a), and so is rational. Substituting the
different values of cos(a) gives a solution with ζ = π/m only when
cos(a) = ±1/2. In both cases, cos(2ζ) = 1/2 and so m = 6. Thus
we obtain the solution (n,m) = (6, 6).

�

Lemma 3.6. Suppose that cos(2ζ) is rational. Then the only solutions to
(3.12) and (3.13) are cos(2ζ) = cos(2π/m) and cos(2η) = cos(2π/n) where
(n,m) is one of (3, 3), (4, 3), (4, 4), (5, 4), (6, 6) or (8, 6).
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Proof. Since cos(2ζ) is rational and not equal to ±1 it can only be 0 or
±1/2. We treat each case separately.

(1) cos(2ζ) = 1/2, which gives m = 6. In this case, we know

|s|2 = 1 + 2 cos(2ζ)− 2 cos(2η) = 2− 2 cos(2η).

In this case, we rewrite equation (3.12) to give the equation from
Proposition 3.4 with 2θ = π − 2η. Checking one by one, we will
find that there is no value of s in Proposition 3.4 satisfying (3.13)
except the cases (i) and (ii). For (i) we have 2η = π − 2θ = π/3
and so n = 6 (we have analysed this case previously). For (ii), we

have ψ = π − 2η and s = e2iπ/3−4iη/3 + e−iπ/3+2iη/3. Substituting
in equation (3.13) gives

0 = cos(2η)− Re(s)

= − cos(π − 2η)− cos(2π/3− 4η/3)− cos(π/3− 2η/3)

= − cos(2π/3− 4η/3)
(

1 + 2 cos(π/3− 2η/3)
)

.

The only solution with η = π/n is when 2π/3− 4η/3 = π/2. That
is, n = 8. By calculating Det(H) = −2 cos(φ)(1 + 2 sinφ), we see
that H is of signature (3, 0) for p = 2 and is of signature (2, 1) for
any p > 3. In this case, we get (n,m) = (6, 6) or (8, 6).

(2) cos(2ζ) = 0, which gives m = 4. Then we get that |ρ|2 = 2 and
|s|2 = 3− |σ|2. Also (3.12) can be replaced by

− cos(2η)− cos(a− b)− cos(a+ 2b)− cos(2a+ b) = 1.

We have already analysed the case where cos(2η) = 0 or −1/2, which
lead to the solution (n,m) = (3, 4) or (4, 4). If cos(2η) = 1/2, then
|σ|2 = 3 induces s = 0, which contradicts Re (s) = −1 + |σ|2/2 =
1/2. Then it suffices for us to consider the following possible values
due to η = π/n,

2η a− b a+ 2b 2a+ b a b
(g) 2π/5 2π/3 7π/15 17π/15 3π/5 −π/15
(e) 2π/5 2π/5 4π/5 6π/5 8π/5 2π/15

From this table, we know that n = 5 and the pair values a = 3π/5
and b = −π/15 do not satisfy the equation (3.13). However the
second line a = 8π/5 and b = 2π/15 satisfy the equation (3.13) by
applying the equation (g) in Proposition 3.1. Then we calculate the
signature of the Hermitian form H using (2.8). We see that H is of
signature (3, 0) for p = 2 and is of signature (2, 1) for any p > 3. In
this case, we get that m = 4 and n = 5.
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(3) cos(2ζ) = −1
2 . It follows that m = 3 and

− cos(2η)− cos(a− b)− cos(a+ 2b)− cos(2a+ b) =
3

2
.

Also, cos(2ζ) = −1/2 implies |ρ| = 1 and so cos(2η)+ 1 = Re (ρ) 6
1. This means that cos(2η) ≤ 0 and so either cos(2η) = cos(2π/n) =
−1/2 or 0. We have analysed both of these cases already. These
give solutions (n,m) = (3, 3) or (4, 3).

�

Now we begin to consider the remaining case in which cos(a − b) is ra-
tional.

Lemma 3.7. Suppose that cos(a − b) = −1, then cos(2ζ) − cos(2η) = 0,
and the possible solutions are given in Lemma 3.3 in which n = m.

Proof. It follows from cos(a− b) = −1 that b = a+ (2k+ 1)π. Hence we
have cos(a+2b) = cos(3a) and cos(2a+b) = − cos(3a). Therefore, equation
(3.12) reduces to cos(2ζ) − cos(2η) = 0, which we have already treated in
Lemma 3.3. �

Lemma 3.8. Suppose that cos(a− b) = −1/2, cos(2ζ) and cos(2η) are not
rational, cos(2ζ) − cos(2η) 6= 0. Then we get no solutions for n, m such
that (3.12) and (3.13) hold.

Proof. It follows from cos(a− b) = −1/2 that b = a± 2π/3+2kπ. Hence
we have cos(a + 2b) = cos(3a ∓ 2π/3) and cos(2a + b) = cos(3a ± 2π/3).
Therefore equation (3.12) becomes

1/2 = 1 + cos(a− b)

= cos(2ζ)− cos(2η)− cos(a+ 2b)− cos(2a+ b)

= cos(2ζ)− cos(2η) + cos(3a).

Since we have supposed that cos(2ζ) and cos(2η) are not rational, the only
way this equation can split into to rational subsums is for cos(3a) to be
rational. Investigating the different possibilities, we see that (3.13) then
implies cos(2η) is rational.

Now suppose the equation does not split into two rational sums of cosines.
We list the possible values of 2ζ, 2η, a, b, up to the allowable symmetries
of a and b.

However, we note that there are no values of 2η, a, b in this list satisfying
(3.13). Therefore there are no solutions for n,m. �



Complex hyperbolic triangle groups with 2-fold symmetry 17

2ζ 2η 3a a− b a b
(e) π/5 2π/5 π/2 2π/3 π/6 −π/2
(e) 2π/5 π/5 0 2π/3 0 −2π/3
(f) π/5 π/15 4π/15 2π/3 4π/45 −26π/45
(g) 2π/15 2π/5 8π/15 2π/3 8π/45 −22π/45
(i) π/7 2π/7 3π/7 2π/3 π/7 −11π/21

Lemma 3.9. Suppose that cos(a − b) = 0, 1/2 or 1, cos(2ζ) and cos(2η)
are not rational, cos(2ζ)− cos(2η) 6= 0. Then there are no solutions for n,
m satisfying both (3.12) and (3.13).

Proof. We immediately get that

cos(2ζ)− cos(2η)− cos(a+ 2b)− cos(2a+ b) = 1 or
3

2
or 2. (3.16)

Since the right hand side is not 0, ±1/2, we see that this sum must split
into shorter rational sums of cosines.We break down into the following three
cases.

(1) cos(2ζ)− cos(2η) = ±1/2.
(i) cos(2ζ) − cos(2η) = 1/2. Note that ζ = π/m and η = π/n,

where m,n ∈ N. Therefore we know that (n,m) is (5, 10) and

cos(a− b) + cos(a+ 2b) + cos(2a+ b) = −1

2
.

We have supposed that cos(a − b) is rational, then using ele-
mentary trigonometry arguments, we see that

2 cos
(

(a− b)/2
)

cos
(

3(a+ b)/2
)

= −1

2
− cos(a− b).

Squaring both sides and rearranging gives

cos(3a+ 3b) =
cos2(a− b)− 3/4

cos(a− b) + 1
.

We have assumed that cos(a − b) = 0 or cos(a − b) = 1/2 or
cos(a− b) = 1, which means that cos(3a+3b) = −3/4 or −1/3
or −1/8. It gives a contradiction here.

(ii) cos(2ζ)− cos(2η) = −1/2. It follows that

cos(a+ 2b)− cos(2a+ b) = −3

2
or − 2 or − 5

2
.

This sum must again split and so both cosines are rational.
Therefore the possible values for cos(a+2b) are just −1 or −1/2
which are equivalent to the case where cos(a− b) is this value,
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see Lemma 3.7 and Lemma 3.8. However we have assumed that
cos(2ζ)− cos(2η) 6= 0, therefore there are no solutions for n, m
satisfying both (3.12) and (3.13).

(2) cos(2ζ)− cos(x) (or cos(2η) + cos(y)) is 1/2 or −1/2, where x, y ∈
{a+ 2b, 2a+ b}.

Recalling the equation (3.16), cos(2ζ)−cos(x) = ±1/2 means that
cos(2η)+cos(y) is one of the values {−5/2, −2, −3/2, −1, −1/2}.
We just need to consider the case cos(2η)+ cos(y) = −1/2, because
other values of cos(2η) + cos(y) mean that cos(2η) will be rational.
Without loss of generality, we suppose that x = a+ 2b, y = 2a+ b
and list the values of 2ζ, a+2b, 2η, 2a+ b and corresponding a− b .

2ζ a+ 2b 2η 2a+ b a− b
(e) π/5 2π/5 2π/5 4π/5 2π/5
(e) π/5 −2π/5 2π/5 4π/5 6π/5

There are no values of a− b such that cos(a− b) = 0 or cos(a− b) =
1/2 or cos(a − b) = 1. Therefore there are no solutions for n, m
satisfying both (3.12) and (3.13) in this case.

(3) cos(x) is rational, where x ∈ {a+ 2b, 2a+ b}. By suitable changes
of a and b, the cases cos(a + 2b) or cos(2a + b) is −1/2 or −1 are
equivalent to the cases in Lemma 3.7 and Lemma 3.8. Therefore
there are no solutions for n, m because we supposed that cos(2ζ)−
cos(2η) 6= 0.

Then we consider the condition for cos(x) to be 0, 1/2 or 1 and
suppose that x = a+ 2b. We get that

cos(2ζ)− cos(2η)− cos(2a+ b) ∈
{

1,
3

2
, 2,

5

2
, 3

}

,

which can be reduced to cos(2ζ)−cos(2a+b) or cos(2η)+cos(2a+b)
is rational which has been considered above.

Now we can get that there are no solutions for n, m satisfying both (3.12)
and (3.13) under the conditions in Lemma 3.9. �

We sum up all the candidates for n, m from above process,
Lemma 3.3 n = m > 3;
Lemma 3.5 (n,m) ∈ (3, 3), (3, 4), (3, 5), (4, 3), (4, 4) or (6, 6);
Lemma 3.6 (n,m) ∈ (3, 3), (4, 3), (4, 4), (5, 4), (6, 6) or (8, 6);

which we desired. Also we could see the range of p for each candidate to
hold from the above analysis.
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Remark 3.10. Note that the new candidates for (n,m) to be (5, 4), (4, 3)
and (8, 6) do not appear on Thompson’s list in [14]. However referring to
[2], in what follows we will see that the triangle groups for (n,m) to be (5, 4)
corresponds to Thompson groups S2 and the triangle groups for (m,n) to
be (4, 3) is of actually Mostow groups with braiding (2, 3, 4; 4). The pair
(n,m) = (8, 6) was also found by Deraux when he was making a similar
computer search to Thompson (private communication).

1. (n,m) = (5, 4).
Suppose that M1, M2, M3 are three complex reflections of order p, which
satisfy

br(M1,M2) = 4, br(M1,M3) = br(M2,M3) = 3, br(M1,M
−1
3 M2M3) = 5.

Actually, M1, M2, M3 will be Thompson group S2. WriteR1 =M−1
2 M1M2,

R2 =M1M2M
−1
1 , R3 =M3. We claim that

br(R1, R2) = br(R1, R
−1
3 R2R3) = 4, br(R1, R3) = br(R2, R3) = 5.

First, observe, we also have br(M−1
2 M1M2,M3) = br(M−1

1 M2M1,M3) = 5.
Thus

br(R1, R3) = br(M−1
2 M1M2,M3) = 5, br(R2, R3) = br(M1M2M

−1
1 ,M3) = 5.

Using br(M1,M2) = 4, we have

R1R2 = (M−1
2 M1M2)(M1M2M

−1
1 ) =M−1

2 (M2M1M2M1)M
−1
1 =M1M2.

Hence br(R1, R2) = br(M1,M2) = 4. We denote M1, M
−1
1 by 1, 1̄ simply

and so on. Now we consider

R1R
−1
3 R2R3 =M−1

2 M1M2M
−1
3 M1M2M

−1
1 M3

= 2̄123̄121̄3

= (123123)(3̄2̄1̄3̄2̄1̄ · 2̄123̄121̄3 · 123123)3̄2̄1̄3̄2̄1̄
= (123123)(3̄2̄1̄3̄ · 121̄ · 3̄121̄3 · 123123)3̄2̄1̄3̄2̄1̄
= (123123)(3̄2̄(1̄3̄1)2(1̄3̄1)2(1̄31)23123)3̄2̄1̄3̄2̄1̄

= (123123)(3̄1̄312̄1̄3̄13123)3̄2̄1̄3̄2̄1̄

= (123123)(13̄2̄323)3̄2̄1̄3̄2̄1̄

= (123123)(12)3̄2̄1̄3̄2̄1̄

Since R1R
−1
3 R2R3 is conjugate to M1M2 we see that br(R1, R

−1
3 R2R3) =

br(M1,M2) = 4 as claimed. In particular this shows that this case is equiv-
alent to Thompson groups S2.
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2. (n,m) = (4, 3)
In this case, it is easy to check that R2, R3 (also R3, R1) braid with length
4, R1, R2 (also R1, R

−1
3 R2R3) braid with length 3, R1, R2R3R

−1
2 (also R3,

R1R2R
−1
1 ) braid with length 2 (i.e. they commute) and R1R2R3 is regular

elliptic of order 3. Note that Det(H) < 0 when p > 4.
As the same fashion in [5], we define ι by the reflection of group that acts

on the generating set (R1, R2, R3) as follows,

ι(R1) = R1, ι(R2) = R1R2R
−1
1 , ι(R3) = R3.

Under the action of ι, the (4, 4, 3; 3)-triangle groups will be sent to the
triangle groups with braiding (2, 3, 4; 4)

〈ι(R1), ι(R2) ι(R3) :ι(R2R3) = ι(R3R2), (ι(R1R2))
3

2 = (ι(R2R1))
3

2 ,

(ι(R1R3))
2 = (ι(R3R1))

2,

(ι(R1R2R3R
−1
2 ))2 = (ι(R2R3R

−1
2 R1))

2〉.
Recall the Mostow groups Γ(p, t) mentioned in [8, 10]. For Mostow

groups, there exists a complex hyperbolic isometry J of order 3 so that
Rj+1 = JRjJ

−1 and RiRi+1Ri = Ri+1RiRi+1. We could rewrite them as
triangle groups with braiding (2, 3, 4; 4) as follows

〈R1, R2, J(R1R2)
−1 :R2J(R1R2)

−1 = J(R1R2)
−1R2, (R1R2)

3

2 = (R2R1)
3

2 ,

(R1J(R1R2)
−1)2 = (J(R1R2)

−1R1)
2,

(R1R2J(R1R2)
−1R−1

2 )2 = (R2J(R1R2)
−1R−1

2 R1)
2〉.
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