
Eur. Phys. J. C (2015) 75:246
DOI 10.1140/epjc/s10052-015-3461-2

Special Article - Tools for Experiment and Theory

A multi-threaded version of MCFM

John M. Campbella, R. Keith Ellisb, Walter T. Gielec

Fermilab, PO Box 500, Batavia, IL 60510, USA

Received: 30 March 2015 / Accepted: 14 May 2015 / Published online: 3 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We report on our findings modifying MCFM
using OpenMP to implement multi-threading. By using
OpenMP, the modified MCFM will execute on any processor,
automatically adjusting to the number of available threads.
We modified the integration routine VEGAS to distribute the
event evaluation over the threads, while combining all events
at the end of every iteration to optimize the numerical integra-
tion. Special care has been taken that the results of the Monte
Carlo integration are independent of the number of threads
used, to facilitate the validation of the OpenMP version of
MCFM.

1 Overview

An important aspect of Monte Carlo programs is evaluation
speed and ease of use. A faster overall evaluation speed not
only means that more complicated processes can be evalu-
ated, but it also allows for more experimentation as results
are returned in a shorter time.

Computer processors are increasing their computational
power by including more and more computing cores. It
is therefore essential for Monte Carlo event generators to
explore the possibility of a parallel implementation of the
code by taking advantage of the multiple threads to reduce
the evaluation time for a given number of events. By properly
implementing the use of multi-threading, the Monte Carlo
evaluation speed will scale with the number of cores; this pro-
cess will continue as more and more cores become available
in the future. Monte Carlo event generators are well suited
to take advantage of multi-core processors. Parallelization is
straightforward as each generated event is evaluated indepen-
dently, while the results of these evaluations are all combined
to optimize the numerical integration.

a e-mail: johnmc@fnal.gov
b e-mail: ellis@fnal.gov
c e-mail: giele@fnal.gov

The reason processors increase the number of cores
instead of the processor frequency is the limitation deriv-
ing from the growth of the power consumption of the chip.
The power consumption in a chip is given by the equation

P = CV 2 f (1)

where P is power, C is the capacitance being switched per
clock cycle, V is voltage, and f is the processor frequency
(cycles per second). As the clock speed increases the power
(and hence heat) grows linearly. By having two circuits in
parallel, we can double the capacitance and halve the clock
speed. The voltage determines the rate at which the capac-
itance charges and discharges, so that a slower clock speed
can run with lower voltages. At half the clock speed, we can
approximately halve the voltage, leading to a saving in power
without a compromise in performance. The use of many cores
in this fashion may allow the growth of computing power to
continue following Moore’s law in the future. It is therefore
imperative that software evolve to take advantage of these
developments.

Currently the Intel Xeon-Phi coprocessor with 240 proces-
sor threads and General Purpose Graphics Processing Units
(GPGPU’s) with up to 2,880 gpu cores are the most extreme
implementation of this approach to increasing the computa-
tional power. The Xeon Phi is the first generation of the Intel
MIC (Many Integrated Cores) hardware. With an improved
version of this coprocessor planned for release in the summer
of 2015, further speed-ups can be expected.

We will explore using this co-processor and more conven-
tional processors using OpenMP. Specifically, we will test
our OpenMP version of MCFM1 on an Intel Core I7-4770 (4
hardware threads), a dual Intel Xeon X5650 (2 × 6 hardware
threads), a quadruple AMD 6128 HE Opteron (4 × 8 hard-
ware threads) and the Intel Xeon-Phi 5110P (240 hardware

1 MCFM-7.0 which runs under the OpenMP protocol as described in
this paper can be downloaded from the mcfm.fnal.gov website.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3461-2&domain=pdf
mailto:johnmc@fnal.gov
mailto:ellis@fnal.gov
mailto:giele@fnal.gov


246 Page 2 of 7 Eur. Phys. J. C (2015) 75 :246

threads). Note that the Intel Core i7 comes with 8 hyper-
threads, 2 software threads per core. The core can execute
only one of the threads and quickly switch to the other thread
if the current thread is waiting. As we will see this is of limited
benefit for our application.

The OpenMP standard2 [1] is a good choice for imple-
menting parallel programming. It is native to both the Intel
and GNU compilers and can be invoked by including the
‘openmp’-flag during compilation. No special libraries or
other software need to be installed. The OpenMP compiler
directives are simply implemented as comment statements
in either FORTRAN or C/C++ code. This has the advantage
that the code can be compiled without the ‘openmp’-flag. In
this case the OpenMP directives are interpreted as comments
by the compiler. Furthermore, we can implement the paral-
lelism with only minor alterations to the original code by just
adding these compiler directives.

The further layout of our paper is as follows. In Sect. 2
we discuss some details and considerations for implementing
OpenMP into the FORTRAN code of MCFM [2,3] (similar
considerations will hold for C/C++ code). The numerical
performance of the parallel code is explored in Sect. 3 using
several different processors. Finally, in Sect. 4 we sum up
our conclusions and review further possible developments
for the OpenMP MCFM program.

2 Implementing OpenMP in MCFM

2.1 MCFM

MCFM is a parton level integrator, developed over many
years at Fermilab, that calculates cross sections and distri-
butions of kinematic variables for hard scattering processes
in hadron-hadron collisions [2]. More than 300 processes
are included, the majority of them calculated at next-to-
leading order in the strong coupling. The event generator
consists of an adaptive integration routine which generates
the events. The returned event probabilities are used to fur-
ther optimize the integration using importance sampling. The
program spends the bulk of its time in the event evaluation
routines.

2 ‘OpenMP (Open Multi-Processing) is an API that supports multi-
platform shared memory multiprocessing programming in C, C++, and
Fortran, on most processor architectures and operating systems, includ-
ing Solaris, AIX, HP-UX, Linux, Mac OS X, and Windows platforms.
It consists of a set of compiler directives, library routines, and environ-
ment variables that influence run-time behavior. OpenMP is managed
by the nonprofit technology consortium OpenMP Architecture Review
Board (or OpenMP ARB), jointly defined by a group of major computer
hardware and software vendors, including AMD, IBM, Intel, Cray, HP,
Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments, Oracle Corporation,
and more.’, from Wikipedia.

For MCFM the multi-dimensional integration is imple-
mented using VEGAS [4,5]. It produces several iterations
of sets of events. After each iteration the grid is optimized
to reduce the weight fluctuations in the integration so that
faster convergence is obtained. This offers an obvious and
straightforward way to parallelize the program. While the
grid optimization is not parallelized, so that all the results
can be combined, the individual generation of phase space
points and subsequent matrix element evaluation can be done
in parallel as no data sharing is required between different
events. This allows the parallel program to access all evalu-
ated events to obtain maximum convergence, while the event
evaluation is sped up considerably by using each thread for
a different event generation and evaluation.

This should be contrasted with simultaneous running of
an individual program on each thread. In this case the grids
in each program are only updated with the events from that
particular thread, leading to a worse convergence. The paral-
lel version offers the advantage of combining the events from
all threads for the grid optimization.

2.2 OpenMP-MCFM

Here we detail the work needed to produce an OpenMP
implementation of MCFM. The MCFM code is large and
complicated. To convert MCFM to an OpenMP supported
MCFM requires some thought and work. We used as goals
(a) to minimize the changes in the original code and (b) to
implement the parallelism through comment compiler direc-
tives as much as possible. This makes the code compilable
with or without the OpenMP flag. Another goal (c) was to
make sure the program generates the same events indepen-
dent of the number of threads used. We verified that the results
obtained are independent of the number of threads used to
evaluate the cross sections. This greatly helps to validate that
the implementation of the parallel code is correct.

Almost all the work to be done is to make sure variables
are correctly assigned. In a parallel program we have to
decide whether a variable is global (i.e. potentially shared
by threads) or local to the thread (i.e. each thread has its own
version of the variable).

The most labor-intensive part is the treatment of data struc-
tures. The following rules will lead to a successful paralleliza-
tion. For all the code running in parallel one has to implement
the following steps:

– All variables in DATA statements in the parallel region
have to be included in SAVE statements ensuring they
are declared for each thread. If not done, the variables
are not necessarily initialized.

– All variables in SAVE statements in the parallel region
must be made ‘thread private’ in the respective functions
and subroutines.

123



Eur. Phys. J. C (2015) 75 :246 Page 3 of 7 246

– All common blocks whose variables are defined or
changed in the parallel region have to be declared ‘thread
private’ each time the common block is declared.

– All common blocks whose variables are defined or
changed outside the parallel region in addition to being
changed in the parallel region need to be declared ‘thread
private’. To ensure the values are copied to each thread
at the start of the parallel region a COPYIN directive
including the common block has to be issued.

Note that, where necessary, variables and common blocks
are made ‘thread private’ by adding the THREADPRIVATE
directive to the function or subroutine [1].

The MCFM code was originally written in FORTRAN 77,
but parts of the code now require a FORTRAN 90 compiler.
In view of the special treatment required for data statements,
indicated above, it is beneficial to eliminate data statements
wherever they are not needed. FORTRAN 90 allows param-
eter arrays, so it is useful to replace the FORTRAN 77 legacy
data arrays by parameter arrays wherever possible.

To ensure that the same events are generated, independent
of the number of threads used, we have to ensure VEGAS
generates the same sequence of groups of pseudo-random
numbers used to generate the momenta in an event. To do
this we use the CRITICAL directive forcing the pseudo-
random number generator to run serially, when assigning
the groups of pseudo-random numbers to a thread. When
looking at all threads combined, the same groups of random
numbers will be generated, and consequently the same set
of events. The order in which the groups of random num-
bers are accessed by the threads is not identical and varies
from run to run (i.e. which thread reaches the critical region
first) but in the end the same events are always generated. A
named CRITICAL directive provides a way of distinguish-
ing CRITICAL regions in different parts of the program.
When a thread arrives at a CRITICAL directive, it waits until
no other thread is executing a critical region with the same
name.

The ATOMIC construct, which applies only to the spe-
cific assignment statement that follows it, can be an efficient
alternative to a CRITICAL region. The statement following
an ATOMIC directive is executed by all threads, but only one
thread at a time can execute the statement.

This is still not sufficient to reach identical results
for the cross section. The reason for this is numerical
rounding differences due to the fact that the resulting
weights are added in different orders. Using Kahan sum-
mation [6] will ameliorate rounding error, leading not only
to identical cross section results but also to more accurate
results.

We checked that all processes in MCFM produce identical
results independent of the number of threads and in agree-
ment with the non-parallel version of MCFM (version 6.8).

3 Performance of OpenMP-MCFM

3.1 Runtime considerations

We used version 3.0 of OpenMP to prepare our code, which
includes all of the compiler directives discussed above. To
compile the program the ‘openmp’-flag has to be included.
The resulting executable will use by default all available
threads during execution. Note that if the program is com-
piled without the OpenMP flag it will not use multi-threading.
To lower the number of threads used, two options are
available. The first option uses the environmental variable
OMP_NUM_THREADS. This variable can be set to the
number of threads the OpenMP executable will use. Another
possibility is to include the omp_lib.h library in the program
which gives access to in-program OpenMP commands. The
function call omp_set_num_threads(int) sets the number of
threads used to the value of the integer ‘int’. This allows for a
dynamical change of the number of threads during execution.
The library also gives access to many more OpenMP function
calls, that are currently of no importance in running MCFM.

Another consideration is the memory stack size to be used
by each thread. The default size of the stack is not speci-
fied by the OpenMP standard. If the stacksize is too small
the program will crash with a segmentation fault or other
unexpected behaviour. To be able to execute all processes in
MCFM the stack size should be set to 16,000 or higher using
the environmental variable OMP_STACKSIZE (though for
most processes in MCFM a much smaller stacksize suffices).

3.2 Results

To benchmark the performance of the parallel version of
MCFM we use four different types of computer hardware.
This will test the code on a variety of hardware configurations
with differing clock frequency, number of threads, cache size
etc.

The first configuration is a standard desktop with an Intel
Core i7-4770. This processor has 4 cores, each with 2 hyper-
threads. The second configuration contains two Intel Xeon
X5650 processors, each with 6 cores for a total of 12 cores.
The third configuration contains four AMD 6128 HE Opteron
processors, each with 8 cores for a total of 32 cores. The
final configuration is an Intel Phi 5110P coprocessor card
connected to a PCI slot. This coprocessor has 60 cores, each
with 4 hardware threads for a total of 240 threads.

While we have validated all processes in this version
of MCFM, we pick one process in particular to study the
speedups gained by using multiple threads. The process we
choose is PP → H(→ bb̄)+ 2 jets which describes the pro-
duction of a Higgs boson in association with two jets through
an effective gluon-gluon-Higgs vertex. The Higgs boson sub-
sequently undergoes a two-body decay to two b-quarks. Thus

123



246 Page 4 of 7 Eur. Phys. J. C (2015) 75 :246

Table 1 The LO evaluation of PP → H(→ bb̄) + 2 jets using 4 ×
1000 + 10 × 10, 000 Vegas events for the Intel Core I7-4770

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 1.67 1.69 1.70 1.00 100.00

2 0.83 0.83 0.83 2.02 101.21

3 0.57 0.57 0.58 2.94 97.88

4 0.44 0.44 0.44 3.80 95.12

5 0.40 0.40 0.40 4.18 83.50

6 0.37 0.37 0.37 4.55 75.78

7 0.34 0.34 0.34 4.92 70.26

8 0.32 0.32 0.32 5.25 65.65

Table 2 The LO evaluation of PP → H(→ bb̄) + 2 jets using 4 ×
1000 + 10 × 10, 000 Vegas events for the Dual Intel Xeon X5650

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 2.88 2.89 2.89 1.00 100.00

2 1.49 1.49 1.50 1.94 96.76

3 0.99 1.00 1.00 2.90 96.60

4 0.75 0.75 0.75 3.85 96.13

6 0.50 0.50 0.51 5.72 95.30

8 0.38 0.38 0.38 7.57 94.59

10 0.31 0.31 0.31 9.37 93.66

12 0.26 0.26 0.26 11.16 92.96

Table 3 The LO evaluation of PP → H(→ bb̄) + 2 jets using 4 ×
1000 + 10 × 10, 000 Vegas events for the Quadruple AMD 6128 HE
Opteron

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 3.79 3.80 3.80 1.00 100.00

2 2.00 2.02 2.05 1.88 94.06

3 1.36 1.37 1.38 2.77 92.42

4 1.03 1.04 1.05 3.66 91.52

8 0.54 0.54 0.54 7.00 87.44

12 0.38 0.38 0.38 9.98 83.13

16 0.33 0.33 0.33 11.44 71.52

32 0.83 0.84 0.86 4.50 14.06

the process can have as many as 4 (5) jets in LO (NLO), two
of which can come from the Higgs decay. In lowest order a
process with n particles in the final state requires 3n−4 phase
space integrations and two integrals over parton density lon-
gitudinal fractions. Thus for this leading order (LO) process,
a 10-dimensional integration is required. The next-to-leading
(NLO) process requires a 13-dimensional integration. The
results are contained in Tables 1, 2, 3 and 4 for the LO runs

Table 4 The LO evaluation of PP → H(→ bb̄) + 2 jets using 4 ×
1000 + 10 × 10,000 Vegas events for the Intel Xeon Phi 5110P

Intel Xeon Phi 5110P

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 23.09 23.12 23.15 1.00 100.00

2 12.10 12.12 12.14 1.91 95.39

3 8.14 8.22 8.53 2.81 93.78

4 6.16 6.21 6.38 3.72 93.11

16 1.66 1.67 1.68 13.86 86.61

32 1.39 1.39 1.40 16.61 51.89

64 1.41 1.41 1.41 16.39 25.61

128 1.44 1.44 1.45 16.02 12.52

240 1.52 1.52 1.53 15.19 6.33

Table 5 The NLO evaluation of PP → H(→ bb̄) + 2 jets using
4 × 1000 + 10 × 10,000 Vegas events for the Intel Core I7-4770

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 238.83 238.95 239.07 1.00 100.00

2 120.16 120.45 120.73 1.98 99.19

3 81.99 82.03 82.07 2.91 97.10

4 63.01 63.02 63.02 3.79 94.80

5 58.67 58.69 58.71 4.07 81.43

6 54.84 54.85 54.86 4.36 72.61

7 51.52 51.53 51.54 4.64 66.24

8 48.62 48.63 48.64 4.91 61.42

Table 6 The NLO evaluation of PP → H(→ bb̄) + 2 jets using
4 × 1000 + 10 × 10,000 Vegas events for the Dual Intel Xeon X5650

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 496.43 496.43 496.44 1.00 100.00

2 249.73 249.83 249.94 1.99 99.35

3 166.20 166.41 166.62 2.98 99.44

4 124.58 124.58 124.59 3.98 99.62

6 83.01 83.04 83.06 5.98 99.64

8 62.24 62.26 62.29 7.97 99.66

10 49.79 49.80 49.80 9.97 99.69

12 41.46 41.46 41.46 11.97 99.78

and in Tables 5, 6, 7 and 8 for the NLO runs. The tables con-
tain, for each configuration and as a function of the number
of threads used, the minimum, average and maximum run-
time (in seconds), averaged over 10 runs for the first 3 con-
figurations and 2 runs for the coprocessor. The acceleration
compares the runtime to the single thread run time by taking
the ratio of the two. Finally we give the efficiency in percent-

123



Eur. Phys. J. C (2015) 75 :246 Page 5 of 7 246

Table 7 The NLO evaluation of PP → H(→ bb̄) + 2 jets using
4 × 1000 + 10 × 10,000 Vegas events for the Quadruple AMD 6128
HE Opteron

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 806.86 806.98 807.10 1.00 100.00

2 404.00 404.08 404.17 2.00 99.85

3 269.26 269.37 269.48 3.00 99.86

4 201.96 201.99 202.02 4.00 99.88

8 101.03 101.05 101.07 7.99 99.83

12 67.41 67.41 67.41 11.97 99.76

16 50.56 50.56 50.56 15.96 99.75

32 25.34 25.36 25.37 31.82 99.45

Table 8 The NLO evaluation of PP → H(→ bb̄) + 2 jets using
4 × 1000 + 10 × 10,000 Vegas events for the Intel Xeon Phi 5110P

Intel Xeon Phi 5110P

Thr. Time (s) Acc. Eff. (%)

Min Avg Max Avg

1 3784.45 3784.45 3784.45 1.00 100.00

2 1906.73 1906.73 1906.73 1.98 99.24

3 1282.26 1282.26 1282.26 2.95 98.38

4 958.59 958.59 958.59 3.95 98.70

16 242.66 242.66 242.66 15.60 97.47

32 121.25 121.25 121.25 31.21 97.54

64 62.29 62.29 62.29 60.76 94.93

128 41.22 41.22 41.22 91.81 71.73

240 31.82 31.82 31.82 118.94 49.56

ages. The efficiency is simply the acceleration divided by the
number of threads. For a perfect parallelization, doubling
the number of threads should double the acceleration, leav-
ing the efficiency at 100 %. All the average runtime results of
the tables are represented graphically in Fig. 1 where we plot
on a log-log scale the runtime as a function of the number of
threads used. Note that we do not generate histograms during
these benchmarking runs.

We will first look at the results for the Intel Core i7 in
Tables 1 and 5 (and Fig. 1). As we can see the speed-up as
far as 4 threads is good, with an acceleration for LO up to 3.80
and for NLO up to 3.79. As the processor has 4 cores, each
thread runs on a different core. If we use more than 4 threads
some or all of the threads will share a single core with another
thread. If one of the threads has to wait for a memory fetch, the
core will switch to the other thread and start executing. As can
be seen, this results in a much slower speed-up though some
speedup is still achieved (from 3.80 for 4 threads to 5.25 for
8 threads at LO and from 3.79 to 4.91 at NLO). Yet, by using
multi-threading on this basic configuration one can generate

threads used
1 10 210

threads used
1 10 210

ru
n 

tim
e 

(s
ec

on
ds

)

1

10

Processor:
Intel Psi 5110P
AMD 6128 HE
Intel Xeon X5650
Intel Core i7-4770

PP-> H(->bb)+ 2 jets @ LO

ru
n 

tim
e 

(s
ec

on
ds

)

210

310

Processor:
Intel Psi 5110P
AMD 6128 HE
Intel Xeon X5650
Intel Core i7-4770

PP-> H(->bb)+ 2 jets @ NLO

Fig. 1 The evaluation time of PP → H(→ bb̄) + 2 jets using 4 ×
1,000 + 10 × 10,000 Vegas events (in seconds) versus the number of
threads. The top graph is at LO and the bottom graph at NLO

around 6.3 million Vegas events at NLO order per hour. Note
that this depends on the cuts applied, as this will affect the
number of rejected events. However, the comparison to other
configurations is illuminating.

The next configuration to consider is the dual socketed
X5650 processors giving a total of 12 cores. The results of
Tables 2 and 6 show good scaling for LO with a maximum
acceleration of 11.16. At NLO the acceleration is nearly per-
fect with a maximum acceleration of 11.97 using 12 threads.
The difference in speed-up between LO and NLO can be
understood by the fact that the NLO process is computa-
tionally bound (i.e. the runtime is predominantly determined
by floating point operations), while at LO the computational
component is much smaller and the memory fetch time will
become more dominant, i.e. LO is more bandwidth bound.
In other words at LO we do not give the cores enough float-
ing point operations to keep them fully occupied. While this
processor runs a factor of 0.56 slower than the Core i7, in the

123



246 Page 6 of 7 Eur. Phys. J. C (2015) 75 :246

 (GeV)jjm
0 50 100 150 200 250 300

0

5

10

15

20

25

30

35

40
 1 thread 

32 threads

1-Thread vs Many-Threads

Fig. 2 The di-jet differential cross section forPP → H(→ bb̄)+2 jets
at NLO using 1 h of running time on the Intel Core I7-4770 using a
single thread and on the quadruple AMD 6128 HE Opteron using all
32 threads. The peak at m j j = 125 GeV when the two jets come from
the decay of the Higgs boson is visible

end it wins out due to the use of 12 cores. By using multi-
threading on this configuration one can generate 8.7 million
Vegas events at NLO order per hour.

In Tables 3 and 7 we move on to the quad-socketed AMD
6128 HE Opteron processors giving a total of 32 cores. We
very clearly see the effect of the bandwidth bound LO and
the computational bound NLO. The NLO gives nearly per-
fect acceleration of 31.82, while LO reaches its maximum
acceleration of 11.44 using 16 of the 32 cores. Using more
than 16 cores actually makes the evaluation time slower as
the bandwidth limitation becomes more important than the
computational one. Despite being slower by a factor 0.35
compared to the Core I7 processor one can generate 14.2
million Vegas events at NLO per hour.

The final configuration is the Xeon-Phi coprocessor with
240 hardware cores. To achieve good acceleration it is crucial
to have a computational bound calculation. This is dramat-
ically demonstrated in Tables 6 and 8. At LO it achieves
its fastest evaluation time using around 32 threads with an
acceleration around 16.61. However at NLO the coproces-
sor keeps accelerating up to 240 threads for the evaluation
time of 31.82 s, giving a maximum acceleration of around
119. One can generate 10.7 million Vegas events at NLO per
hour. While this co-processor has an impressive acceleration
of over a factor of 100, the processing speed of a single core
is slow. (It is a factor of 0.07 slower than the Core i7). The
next iteration of the co-processor is expected to be signifi-
cantly faster, making this MIC architecture very attractive in
the near future. It is worth noting this co-processor is a PCI-
bus card which, given the right configuration, can be added

 (GeV)jjm
0 50 100 150 200 250 300

0

5

10

15

20

25

30
 LO

NLO

Fig. 3 The di-jet differential cross section forPP → H(→ bb̄)+2 jets
using 4×1,500,000+10×15,000,000 events. At LO we use the Dual
Intel Xeon X5650 with 12 threads (about 12 min of runtime) and at NLO
we use the quadruple AMD 6128 HE Opteron (about 22 h of runtime)
with 32 threads. The peak when the two jets come from the decay of
the Higgs boson is clearly visible

to a desktop turning it into a very powerful stand-alone event
generator.

To see the impact of the faster running we show in Fig. 2
the results for the di-jet mass invariant mass distribution. We
compare the fastest single thread configuration (the Core-
I7) and the fastest multi-thread configuration (quad AMD)
using approximately 1 h of runtime for each. We see that the
single thread run is insufficient for any useful exploratory
runs. In contrast one hour of running on the multi-threaded
system gives a good result. Finally, in Fig. 3 we make the
di-jet distribution using about 24 h of runtime which is more
than sufficient to produce a stable final result.

4 Conclusions

To conclude we see that the threaded version of MCFM
accelerates well on different architectures. The computation-
ally bound NLO processes scale well with the number of
threads and the evaluation speeds are significantly improved.
In particular, the performance of the Xeon-Phi coprocessor is
impressive. A new coprocessor is to be released in the sum-
mer of 2015, promising even faster evaluation times. More-
over, this new version will also be available in a socketed
version, removing the PCI-bus and hopefully alleviating the
bandwith-bound issues of LO. This will make the Xeon-Phi
coprocessor a very attractive option for Monte Carlo gener-
ators in the near future.

As we have shown, we have successfully implemented a
parallel version of MCFM. It instantly reduces the execution

123



Eur. Phys. J. C (2015) 75 :246 Page 7 of 7 246

time dependent on the hardware configuration of the system
(i.e. number of cores, cache configuration, memory band-
width, clock frequency etc) without any intervention of the
user of MCFM. For the computing intensive next-to-leading
order processes we obtain very good accelerations on all
processors. In particular, utilizing the Xeon-Phi coproces-
sor with 240 hardware cores yields an acceleration of order
100 over running on a single thread.

The new Xeon-Phi processor, to be released in summer
2015, will overcome most of the bandwith limitation to which
the compute-light leading order processes are subject. More-
over the new processor will be substantially more powerful,
giving us accelerations well over a factor of 100. Now that
we have improved the speed of MCFM, we can implement
more complicated processes in the event generator and still
get acceptable evaluation times. Possibilities could include
adding more jets to current processes in MCFM or proceed-
ing to next-to-next-to leading order processes.

Acknowledgments The numerical work on the Intel Xeon-Phi pro-
cessor was performed using the Fermilab MIC development cluster
funded by the DOE Office of Science and operated by the Fermilab sci-
entific computing HPC department. We acknowledge useful discussions
with Don Holmgren and James Simone. This research is supported by
the US DOE under contract DE-AC02-07CH11359.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. B. Chapman, G. Jost, R. van der Pas, Using OpenMP (MIT press,
Cambridge, 2007)

2. J.M. Campbell, R.K. Ellis, Nucl. Phys. Proc. Suppl. 205–206, 10
(2010). doi:10.1016/j.nuclphysbps.2010.08.011

3. J.M. Campbell, R.K. Ellis, C. Williams, JHEP 1107, 018 (2011).
doi:10.1007/JHEP07(2011)018

4. G.P. Lepage, J. Comput. Phys. 27, 192 (1978). doi:10.1016/
0021-9991(78)90004-9

5. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numer-
ical Recipes in FORTRAN: The Art of Scientific Computing (Cam-
bridge University Press, Cambridge, 1992)

6. W. Kahan, Commun. ACM 8(1), 40 (1965). doi:10.1145/363707.
363723

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.011
http://dx.doi.org/10.1007/JHEP07(2011)018
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723

	A multi-threaded version of MCFM
	Abstract 
	1 Overview
	2 Implementing OpenMP in MCFM
	2.1 MCFM
	2.2 OpenMP-MCFM

	3 Performance of OpenMP-MCFM
	3.1 Runtime considerations
	3.2 Results

	4 Conclusions
	Acknowledgments
	References




