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Abstract. We extend the formalism of local exchange methods to calculate and

investigate the electronic structure of metals. It is well-known that the Hartree-Fock

method when applied to metals shows unphysical behaviour, however the accurate

treatment of exchange via DFT’s exact exchange method (EXX) and using our

local Fock exchange method (LFX) can be used to describe metallic band structures

accurately.

PACS numbers:
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1. Introduction

Prevention is a better than cure and the best way to avoid self interaction errors

in electronic structure calculations must be the accurate treatment of exchange. In

Hartree-Fock (HF) theory (often referred to as “exact exchange”), exchange effects are

indeed treated accurately (or exactly) but only for orbitals occupied in the ground state

HF Slater determinant. As is well known[1] the HF single-particle operator treats in

an asymmetric way its eigenfunctions representing occupied orbitals in the HF Slater

determinant, from its eigenfunctions that represent virtual orbitals. For an N electron

system, each occupied orbital is repelled by the charge of N − 1 electrons, while the

unoccupied orbitals are repelled by the full charge of N electrons. If we view a HF

virtual orbital, φa, as a single-particle excitation from a ground state occupied orbital,

φi, then this asymmetry is responsible for the self-interaction[2] of the electron hosted in

φa with itself in φi, i.e. when it occupied the ground state orbital φi before excitation.

This self-interaction is similar to the ghost self-interaction described in Reference [3].

There have been attempts to cure this asymmetry of the HF nonlocal exchange

operator, for example by improving the method for generating exchange potentials

from electronic wavefunctions[4]. The exact exchange (EXX) approach in DFT and

the local Fock exchange (LFX) potential method[5] offer an elegant way to deal with

self-interactions in general but in particular with this special case of self-interactions

too. They do so by adopting a local exchange potential, which is necessarily common

for all eigenorbitals (occupied and virtual) of the single-particle Hamiltonian.

The optimised effective potential (OEP) theory and the EXX potential have been

reviewed in detailed elsewhere[6], particularly for non-metals, therefore we briefly

mention only a few important works. It has been difficult to obtain a robust method of

convergence. The work of Görling et al [7, 8] has shown success in this area, compared

EXX to Kohn-Sham methods[9] and examined all-electron versus pseudopotential

methods[10]. Engel et al have examined relativistic OEP methods[11] and extensions

of OEP to correlation[12, 13]. Comparisons between exact and semi-local exchange

potentials in insulating solids have also been made[15, 14]. Using the OEP is has

also been possible to correct for the effect of self-interaction errors in the Kohn-Sham

potential[16, 17]. Also, we presented a robust implementation in a plane wave code in

two previous publications[5, 21]. Here we extend these methods to the treatment of

metals, where convergence is more challenging but our methods are also found to be

similarly robust. We are aware of some earlier attempt of exact exchange for metals by

Kotani et al[18, 19, 20].

In a previous publication we introduced a method to calculate the exact exchange

(EXX) potential using perturbation theory[21]. This perturbation theory based method

requires us to consider only the N occupied orbitals in the calculation and optimises

the Kohn-Sham (KS) effective potential, vσHx(r), by direct variation of this potential

vσHx → vσHx(r)− λδvσ(r), (1)

where λ > 0. In EXX, the local effective potential is the one which minimises the
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Hartree-Fock (HF) total energy,

E[vσHx] =
∑
σ

Nσ∑
i=1

−1

2
〈φσi |∇2|φσi 〉+

∫
drvext(r)ρ(r)

+
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r− r′|

− 1

2

∑
σ

Nσ∑
i=1

Nσ∑
j=1

∫ ∫
drdr′

φ†σj (r)φσi (r)φ†σi (r′)φσj (r′)

|r− r′|
, (2)

where the symbols have their standard meanings and the orbitals, φσi , are generated

from the KS equations[
−∇

2

2
+ vext(r) + vσHx(r)

]
φσi (r) = εσi φ

σ
i (r). (3)

In Eqn(2) we use the usual HF expression for exchange, although an alternative

definition in metals can be expressed within the adiabatic connection fluctuation-

dissipation theory framework[22].

For completeness, we summarise the method of solution here: the effective potential,

vσHx(r) is found by variational minimisation of the Hartree-Fock (HF) total energy and

the potential is updated using the change in the potential, δvσ(r) given by

δvσ(r) =
∫
dr′

1

|r− r′|
δE[vσHx]

δvσHx(r
′)
. (4)

The functional derivative of the total energy with respect to the potential is

δE[vσHx]

δvσHx(r
′)

= −
Nσ∑
i=1

φ̃†σi (r)φσi (r) + h.c, (5)

φ̃σi (r) is the first order correction to an orbital, explicitly given by

φ̃σi (r) = −
∞∑

a=Nσ+1

φσa(r)〈φσa |vH + V σ
x − vHx|φσi 〉

εσa − εσi
. (6)

Vx is the Fock non-local exchange operator. In practice this infinite sum is slowly

convergent and numerical attempts at direct solution are plagued with numerical

instabilities. For this reason we tackled this problem using a different approach, by

calculating the perturbative corrections from the Sternheimer equation

(hσ − εσi )|φ̃σi 〉+

Î − Nσ∑
j=1

|φσj 〉〈φσj |


×(vH + V σ

x − vHx)|φσi 〉 = 0, (7)

as this requires only the evaluation of occupied orbitals.

In another publication we introduced the local Fock exchange (LFX) potential,

where this potential optimally adopts the HF ground state as its own approximate

ground state[5]. Starting with the calculated HF density, this is again accomplished by

direction variation of the potential where the change in the potential is given by

δvσ(r) =
∫
dr′

1

|r− r′|
δTHF [vσHx]

δvσHx(r
′)
. (8)
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The reason for choosing this is the particularly simple form of the functional derivative

δT [vσHx]

δvσHx(r)
= ρHF(r)− ρv(r), (9)

where it can be seen clearly that at the minimum the HF density, ρHF(r) and the LFX

density, ρv(r) are equal[23]. In the LFX, one obtains the best local potential that

replicates the HF density. For a numerical procedure, it was more robust to optimise

the LFX potential using a Hartree-like energy of the difference in the densities, so U is

minimised, where U is

U =
∫ ∫

drr′
(ρHF(r)− ρv(r)) (ρHF(r′)− ρv(r′))

|r− r′|
. (10)

2. Fractional Occupancies

Implicitly the formulation of the EXX applies only to insulating systems, as it has been

assumed that the eigenvalues of the KS system are divided into two kinds; occupied

up to the Nσ-th orbital and unoccupied thereafter. To allow the application of the KS

system to a metallic system each orbital must be assigned an occupancy, nσi with values;

0 ≤ nσi ≤ 1. The density is then

ρ(r) =
∞∑
i

nσi φ
†σ
i (r)φσi (r). (11)

Quantities such as the kinetic energy are written as

T = − 1

2

∞∑
i

nσi

∫
drφ†σi (r)∇2φσi (r), (12)

and the Fock exchange energy as

Vx = − 1

2

∑
σ

∞∑
i,j=1

nσi n
σ
j

∫ ∫
drdr′

φ†σj (r)φσi (r)φ†σi (r′)φσj (r′)

|r− r′|
. (13)

To retain numerical stability the occupancies must vary smoothly from 1 → 0 on

crossing the Fermi level, hence smearing is used. In the density of states of an insulating

system the energy eigenvalues are Dirac δ functions. For a metallic system the delta

functions are replaced with a broadening function, δθ

εσi → δθ(ε
σ
i ) =

1

θ
δ̃
(
εσi
θ

)
. (14)

δ̃(x) is the smearing function and integrates to 1, and in the limit θ → 0 then δθ tends

to the Dirac δ function. The occupancy of a band is

nσi = Θ̃
(
εF − εσi

θ

)
=
∫ εF−εσ

i
θ

−∞
δ̃(x)dx, (15)

and the Fermi level is then defined by the number of electrons

N =
∑
σ

∞∑
i=1

Θ̃
(
εF − εσi

θ

)
. (16)
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3. EXX Extended To Metals

Following the extension of density functional perturbation theory to metals of Baroni et

al [24], to extend our method for calculating the EXX potential we must introduce

fractional occupancies into the functional derivative. Expanding the functional

derivative of energy with respect to potential using the chain rule gives

δE[vσHx]

δvσHx(r)
=

Nσ∑
i=1

∫
dr′

δE[vσHx]

δφσi (r′)

δφσi (r′)

δvσHx(r)
+ h.c. (17)

Also, the derivative of an orbital with respect to the potential can be partitioned

δφσi (r′)

δvσHx(r)
= −

∞∑
j=1,j 6=i

φσj (r)φσj (r′)

εσj − εσi
φσi (r′) (18)

= −
∞∑

k=1,k 6=i
nσk
φσk(r)φσk(r′)

εσk − εσi
φσi (r′)

−
∞∑

a=1,a 6=i
(1− nσa)

φσa(r)φσa(r′)

εσa − εσi
φσi (r′). (19)

Substitution of (19) into the functional derivative (17) gives

δE[vσHx]

δvσHx(r)
= −

∞∑
i=1

∞∑
k=1,k 6=i

nσi n
σ
k

[
φσ†k (r)φσi (r)

εσk − εσi
〈φσi |vH + V σ

x − vHx|φσk〉+ h.c.

]

−
∞∑
i=1

∞∑
a=1,a6=i

nσi (1− nσa)

[
φσ†a (r)φσi (r)

εσa − εσi
〈φσi |vH + V σ

x − vHx|φσa〉+ h.c.

]

+
∞∑
i=1

∆nσi (∆εF −∆εσi )|φσi (r)|2, (20)

where the last term accounts for possible changes in occupation numbers induced by

shifts in the eigenvalues, ∆εσi = 〈φσi |vH + V σ
x − vHx|φσi 〉 as well as in the Fermi energy

of the system. The first term in equation (20) cancels with its complex conjugate upon

interchange of the indices i and k and the second term can be simplified by expansion

of the Hermitian conjugate

δE[vσHx]

δvσHx(r)
= − 2

nσi→0∑
i=1

∞∑
a=1

(nσi − nσa)Θ̃
(
εσa − εσi

θ

)
φσ†a (r)φσi (r)

εσa − εσi
〈φσi |vH + V σ

x − vHx|φσa〉

+
∞∑
i=1

∆nσi (∆εF −∆εσi )|φσi (r)|2. (21)

Θ is introduced and allows the sum over i to be truncated once the occupancy of the

i-th state becomes negligible, by exploiting the symmetry in i and a and the relation

Θ̃(x)+Θ̃(−x) = 1. The term when a = i can be evaluated as long as; (nσi −nσa)/(εσa−εσi )

is replaced with the limit −δ̃((εσF − εσi )/θ) whenever εσa − εσi → 0, which accounts for

the change in the occupancy due to ∆εσi .

Retaining the structure of the EXX method for insulators we have

δE[vσHx]

δvσHx(r)
= 2

nσi→0∑
i=1

nσi φ̃
σ†
i (r)φσi (r)
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+
∞∑
i=1

∆nσi ∆εF |φσi (r)|2. (22)

where the first order orbital, φ̃σi (r) is

φ̃σi (r) = −
∞∑
a=1

(nσi − nσa)

nσi
Θ̃
(
εσa − εσi

θ

)
φσa(r)

× 〈φ
σ
a |vH + V σ

x − vHx|φσi 〉
εσa − εσi

. (23)

To calculate the first order orbital in a tractable manner, the orbital is partitioned into

a sum over states with full or partial occupancy and a sum over unoccupied states, thus

φ̃σi (r) = −
nσi→0∑
k=1

(nσi − nσk)

nσi
Θ̃
(
εσk − εσi

θ

)
φσk(r)

〈φσk |vH + V σ
x − vHx|φσi 〉

εσa − εσi

−
∞∑

a=nσi→0

φσa(r)
〈φσa |vH + V σ

x − vHx|φσi 〉
εσa − εσi

. (24)

While the first term in equation (24) can be directly evaluated using our method in

reference [21], we calculate the second term in the above from a Sternheimer equation

where the projector

Pc = Î −
nσj→0∑
j=1

|φσj 〉〈φσj |. (25)

in the Sternheimer equation projects all states with partial or full occupancy.

It is straightforward to show that for a system of non-partial occupancy the

definitions of the functional derivative and first order orbital revert to the forms given

for insulators.

4. LFX Extended To Metals

Here the LFX potential is extend to metallic systems along similar lines. The LFX

functional derivative is simply the difference of two densities

δTHF[vσHx]

δvσHx(r)
= ρσHF(r)− ρσv (r)

=

nσi,HF→0∑
i=1

nσi,HFψ
σ†
i (r)ψσi (r)−

nσi→0∑
i=1

nσi φ
σ†
i (r)φσi (r), (26)

where ρσHF is the Hartree-Fock density and ρσv is the density of LFX Kohn-Sham system.

As in the case of insulators, the objective functional, U [vσHx] is given by

U [vσHx] =
∫ ∫

drdr′
[ρσHF(r)− ρσv (r)][ρσHF(r′)− ρσv (r′)]

|r− r′|
. (27)

5. Implementation

Our procedure for determining the EXX and LFX potentials involves a direct

minimisation of the potential, using the optimisation schemes outlined in references
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[21] and [5]. For the EXX potential we perform an LDA calculation (exchange and

correlation) to give an initial approximate effective potential. For the LFX potential we

are required to perform a HF calculation to generate the target density. The variation

of the potential is accomplished via a conjugate gradient scheme using a line search.

We use a Fletcher-Reeves[25] conjugate gradient update with a parabolic line search

to minimise our objective functionals (the HF total energy or U). After each step

of this minimisation new Kohn-Sham orbitals are found non-self-consistently and the

occupancies corresponding to these new orbitals updated. When the difference in the

objective functional per step is smaller than a predetermined limit the calculation is

considered converged.

EXX and LFX has been implemented with the pseudopotential plane-wave code

CASTEP[26, 27]. The orbitals, density and potentials are represented on rectilinear

grids in the usual manner of a plane-wave implementation[28]. Kohn-Sham orbitals are

described on reciprocal space grid points G within a sphere of radius Gmax, and the

density and potentials are described with a sphere of radius 2Gmax. Hence the grids in

both real and reciprocal space used to represent the density and potentials have twice

the dimensions of the grids used for the orbitals. The minimisation of the potentials is

performed in real space by direct variation.

The pseudopotentials used in this work are the optimised norm-conserving

pseudopotentials generated using the OPIUM code[29]. As we are attempting to treat

exchange exactly for the valence electrons, we use the HF approximation to generate

the pseudopotentials. The non-analytic behaviour of HF for pseudopotentials is treated

by using the localisation and optimisation scheme of Al-Shadi et al.[30] and we include

semi-core states as valence in all cases where applicable. In the calculations that follow,

the basis set size (plane-wave cut off energy) and Brillouin-zone sampling were chosen

to be less than 2.5 meV/atom. Sampling of the Brillouin-zone is accomplished using a

Monkhorst-Pack grid[31] of 12× 12× 12.

6. Calculated Electronic Structures

The EXX and LFX potentials were applied to some elemental metallic systems and the

band structures plotted. We also include calculated LDA and HF band structures for

comparison. The total energy differences for the EXX and LFX from the corresponding

HF total energies are shown in Table 1. In all cases we use the HF total energy expression

in terms of the partially-occupied orbitals of the corresponding potential. In all cases

the EXX and LFX total energies are nearly identical and minimally above the HF result.

Using orbitals non-self-consistently generated from other functionals will give a larger

energy difference[14, 32].

It is well known that the Hartree-Fock approximation, when applied to jellium,

gives at the Fermi level a logarithmically divergent dispersion, hence the density of

states vanishes at the Fermi level. The divergence in the Hartree-Fock calculation can

be seen in figure 1, however by using the local potentials, LFX and EXX, both give band
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Material ∆E (eV)

EXX LFX

Jellium 0.003 0.003

Na 0.009 0.009

Mg 0.057 0.058

Al 0.036 0.036

Ca 0.298 0.314

Graphene 0.110 0.110

Table 1. Total energy differences from the HF total energy for EXX and LFX.

structures matching the LDA (considered exact) results for the homogeneous electron

gas.

Moving away from the ideal situation of the homogeneous electron gas and looking

at a real material, for example sodium (figure 2), HF gives a greatly increased valence

bandwidth, with a steep (vertical) dispersion at the Fermi level, and EXX and LFX

give band structures very close to the LDA result. The same observations as made

for sodium are made for magnesium and aluminium band structures and hence are not

shown.

For calcium the result is more dramatic with HF giving an insulating ground state,

yet using the EXX and LFX the result is metallic and accurately reproduces the Ca

LDA band structure. The EXX and LFX are similar to the LDA band structure result.

Finally, for a different class of metallic material, we have calculated the result for

graphene. Encouragingly, the LDA, EXX and LFX methods are very similar, and as

expected, HF forces open a gap at the K-point giving an insulating state.

In the literature (and textbooks)[33, 34], the failure of HF to correctly describe

jellium as a metal is attributed to the lack of correlation and it is often claimed that

only by including correlation can the incorrect treatment of metals by HF be rectified.

The effect of correlation is to “screen” the exchange interaction, removing the divergence

at the Fermi level. However the EXX and LFX methods are exchange-only methods but

from the calculations it is evident that the divergence (or steep slope of the dispersion

curve) vanishes when using a local potential. Hence the divergence is an artifact of the

non-local exchange potential used in Hartree-Fock rather than lack of correlation[2]. In

Hartree-Fock, the self-repulsion in the unoccupied states is not canceled resulting in

the very large band gaps seen in insulators. This repulsion pushes the virtual states to

higher energies, diminishing the density of states at the Fermi level.

7. Conclusions

EXX and LFX give a good description of metals in contrast to the poor description

that results from using HF. This is particularly striking for LFX, which uses the HF

density from a HF calculation that gives qualitatively the wrong result. The EXX and
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Figure 1. Band structures for jellium using the following potentials; (a) LDA, (b)

EXX, (c) LFX and (d) HF. The Fermi level has been set to 0eV for all band structures.

LFX band structures for simple metals coincide (almost) with the LDA band structures,

the EXX/LFX total energies neglect correlation and differ substantially from the LDA

total energy. Neither EXX or LFX display the unphysical divergence at the Fermi level

seen in some Hartree-Fock calculations and both correctly give metallic states when HF

gives insulating (calcium and graphene). An advantage of the methods presented here

over HF based methods is that a single technique for dealing with exact exchange can

be used across a wide variety of systems from metals to insulators.
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Figure 4. Band structures for graphene using the following potentials; (a) LDA, (b)

EXX, (c) LFX and (d) HF. The Fermi level has been set to 0eV for all band structures.
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